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Analyzing Network Coding Gossip Made Easy

(Simpler Proofs for Stronger Results Even in Adversariah@wyic Networks)

Bernhard Haeupler

Abstract—We give a new technique to analyze the stopping Our Results
time of gossip protocols that are based on random linear netark This paper has two main contributions. The first is a new
coding (RLNC). Our analysis drastically simplifies, extend and 55\ sis technique that is both simpler and more powerfui th
strengthens previous results. We analyze RLNC gossip in a : . . .
general framework for network and communication models tha ~ Pr€VIOUs approaches. Our technlque relates the stoppireg i
encompasses and unifies the models used previously in thisfor £ messages to the much easier to analyze fimeeeded
context. We show, in most settings for the first time, that it to disseminate a single message. For the first time, and in
converges with high probability in the information-theoretically practically all settings, this technique shows that RLNGsijp
optimal time. Most stopping times are of the form O(k + T)  gchieves perfect pipelining, i.e., it disseminatemessages in
where k is the number of messages to be distributed and” is . . )
the time it takes to disseminate one message. This means RLNCOrder thlmaIO(T +k) _tlme. Our results match, and in most
gossip achieves “perfect pipelining”. cases improve, all previously known bounds and apply to much

Our analysis directly extends to highly dynamic networks in more general models. To formalize this, we give a general
which the topology can change completely at any time. This framework for network and communication models that en-
remains true even if the network dynamics are controlled by o, 5a55e5 and unifies the models suggested in the literature
a fully adaptive adversary that knows the complete network . . . .
state. Virtually nothing besides simpleO(kT) sequential flooding SO far. We give concrete results for several instantiatainsis
protocols was previously known for such a setting. framework and give more detailed comparisons with previous

While RLNC gossip works in this wide variety of networks its  results in each section separately.
ar.“';'ySis remainsl the Sa“;e ahnd extremely :impled This .CO”IMB As a second major contribution, our framework extends all
g':onén?éguﬁgngg?;ﬂgg ;ZS;%ZZZE“ orward to give less models to (highly) dynamic networks in whi_ch the topology

is allowed to completely change at any time. All of our
results hold in these networks even if the network dynamics
. INTRODUCTION are controlled by a fully adaptive adversary that decides th
HIS paper presents a new way to analyze gossip protoctdpology at each time based on the complete network state as
based on random linear network coding that substantiallyell as all previously used randomness. Virtually nothioe;
simplifies, extends, and strengthens the results of previaides simple sequential flooding protocéls|[29], was presip
work [1]-[5]. Gossip is a powerful tool to efficiently dissem known in such truly pessimistic network dynamics. Having
inate information. Its randomized nature is especiallylweloptimal “perfectly pipelined” stopping times in worst-eas
suited to work in unstructured networks with unknown, unstadaptive dynamic networks is among the strongest stability
ble or changing topologies. Because of this, gossip prééocguarantees for RLNC gossip that one might hope for. To this
have found a wide range of applications [6]H[10] and hawend, our results are the first that formally explain RLNC gmss
been extensively studied over the past several decades [13¢rformance in the dynamic environments it is used in and was
[19]. designed for. While the algorithm works in this wide variefy

Recently, gossip protocols based on random linear netwattings, our analysis remains mostly the same and extyemel
coding (RLNC) [20]-[22] have been suggested |[23] to copsimple, in contrast with complex proofs that were previgusl
with the additional complexities that arise when multiplgut forward for the static setting.
messages are to be distributed in parallel. RLNC gossip has
been adopted in many practical implementations [6], [2Z28}
and has performed extremely well in practice.

These successes stand in contrast to how little RLNC gossipgGossip is the process of spreading information via a ran-
is understood theoretically. Since its initial analysis tie domized flooding procedure to all nodes in an unstructured
complete graph [1])12]/123], several papdrs [3]-[5] haved network. It stands in contrast to structured multi-cast hick
to give good upper bounds on the stopping time of RLN@®formation is distributed via an explicitly built and mé&kined
gossip in more general topologies. However, none of thestructure (e.g. spanning tree). While structured muléit@an
address the case of unstable or changing topologies, aofien guarantee optimal use of the limited communication
even with the restriction to static networks, the guarasmtge resources it relies heavily on having a know and stable mitwo
far from being general or tight on most graphs. In additiotnopology and fails in distributed or uncoordinated seting
all existing proofs are quite involved and do not seem Bossip protocols were designed to overcome this problem. By
generalize easily. flooding information in a randomized fashion they guaratdee

o _ N deliver messages with high probability to all nodes wittidit
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distribution, peer-to-peer networks, sensor networksh@x edge faults in each round_[30], or in which each node is
networks and wireless networks and literature applyingigos connected to other random nodes in each round. Other work,
in many areas and for many purposes is vast (£lg.[[6]-[10]¢.g. on population protocols (see [13] for a recent surveg) h

The gossip spreading of both a single message and multipRen invested in studying networks that eventually stzili
messages [11]=[19] has been intensely studied. The spgeadPther models [[31]£[34] allows for worst-case changes in
of one message often follows a comparatively simple epidenfietwork connectivity to happen, but only at a slow pace with
random process in which the message is flooded to a randomlgnty of time for self-stabilization to adapt to the chasge
chosen subset of neighbors. Spreading multiple message&#ssip [14]-[17],[[35] and broadcastirig [36]-[39] are amon
parallel is significantly more complicated because nodesinghe most frequently considered primitives in these sedting
to select which information to forward. The main problem Recently, Kuhn, Lynch, and Oshmén [29] proposed a truly
in this context is that widely spread messages get forwardeéssimal model of network connectivity: that an adaptive
more often and quickly outnumber rarer messages. In maagversary chooses the network structure in each rouncgaubyj
cases the slow spread of the rare messages dominates the @iy to the requirement that the network be connected in each
needed until all nodes know every message. round, and that nodeanonymously broadcastome chosen

A powerful and elegant way to avoid this and similamessage without knowing who their current neighbors are. Th
problems is the use of network coding techniques. Netwopkength of this model means that any algorithms that work
coding as introduced by the seminal work of Ahlswede, Cdn it will be broadly applicable to dynamic networks. Kuhn
Li and Yeung [20] breaks with the traditional concept that al. give simple algorithms based on sequentially flooding
information is transported by the network as an unchanggtessages through the network as a proof that computation
entity. Ahlswede at al. show that in many multi-cast sceosariiS at least possible though with strong performance losses
the optimal communication bandwidth can be achieved if as@mpared to static networks (even a simple consensus takes
only if intermediate nodes in the network code informatiof? (?) rounds in which all. nodes communicate) .
together. Li, Yeung and C&i [21] showed that for multi-cagi  Our network model framework adopts the pessimal dynam-
enough if intermediate nodes use linear coding, i.e. comgutics of Kuhn et al. [[29] and can be seen as extending the
linear combinations of messages. Following this Ho, Kagtténodel to also include network topologies with different €on
Médard, Karger and Effro$ [22] showed that the coefficienfectivities, asynchronous communication or non-broatugs
for these linear combinations need not be carefully chosBghavior. More importantly is that this paper shows that RLN
with regard to the network topology but that for any fixe@0ssip remains highly efficient in these dynamic networks gi
network the use of random linear combinations works witlg the first improvements over the simple flooding algorithm
high probability. in [29].

The strong performance guarantees and the independeDeganization
of the coding procedure from any global information about Section[ll reviews the RLNC algorithm and Sectibn] IV
the network makes random linear network coding (RLNC) thgives our new analysis technique. In Seci{idn V we introduce
perfect tool for spreading multiple messages. This was fitgle network model framework. Sectidn]VI shows how to
observed and made formal by Deb and Médard [23]. Theyply our technique in various instantiations of this frame
show that using randomized gossip and RLNC in a complei@rk. Sectiori VIl finally discusses several ways in which the
network in which each of the nodes starts with one messageentionally simple proofs from Sectidn VI can be extended
all information can be spread to all nodes in linear timeyr sharpened.
beating all non-coding approaches. After the introductibn
_this protocol _in [_23] and its follow-up[]1],[12] it was used Il. THE RLNC ALGORITHM
in many applications[ [24]=[28], most notably the Microsoft i i ) i .
Secure Content Distribution (MSCD) or Avalanche System [6] N this section, we give a brief description of the RLNC
There has also been more theoretical wéik [3]-[5] investig&t!90rithm. The algorithm is simple and completely indepen-
ing the convergence time of the RLNC-algorithm on generg?nt Of_ the netv_vork structure or commu_nlcatlon protocol.
static network topologies. We give a detailed descriptind g Alternative descriptions of the same algorithm can be found

comparison to these works in section VI. in [23] or [25]. _ _
The RLNC algorithm sends out packets in the form of

Gossip in Dynamic Networks Models vectors over a finite field,, wheregq is an arbitrary prime
While previous work on RLNC gossip focused on statior prime power. We assume that there dremessages,
networks our analysis shows that it works equally well in &, ..., 7, that are vectors fronﬁlq of length!l. Every packet

wide range of dynamic network topologies. This contributes that is sent around during the execution of the algorithm has
ongoing work on modeling dynamic networks and explorinhe form (ji, ), wherem = Zf:l pinit; € Fy is a linear
ways to efficiently communicate over them. With more angombination of the messages, afid= (u1,...,u;) € IF’;
more modern networks being highly dynamic this task has the vector of the coefficients. If enough packets of this
recently gained importance. The model for studying theserm are known to a node, i.e., the span of the coefficient
networks is still in flux. vectors is the full spac”, Gaussian elimination can be used
Substantial work has been devoted to random connectivity reconstruct all messages. For this, oilypackets with
models in which a particular graph suffers different randofimearly independent coefficient vectors are needed. Lityea



furthermore guarantees that any “new packet” that is cdeatB. Our Analysis Technique

by taking a linear combination of old packets has the samey argue that the right way to look at the spreading of

valid format. With this, it is easy to see that a node caormation is to look at the orthogonal (dual) complerfient
produce any packet whose coefficient vector is spanned Py ot the coefficient subspaces. While the coefficient sub-

the coefficient vectors of the packets it knows. The alg(mthSpaces grow monotonically to the full space their orthogjona

is now easily described: complement decreases monotonically to the empty span. To
Each nodev maintains a subspac¥, that is the span of see how quickly this happens we first concentrate on one
all packets known to it at the beginning and received so faixed (dual) vectori, determine the time that is needed until
If v does not know any messages at the beginning, fign it disappears from all subspackEs- with high probability and
is initialized to contain only the zero vector.4fknows some than take a union bound over all those dual vectors.
message(s)i; at the beginningX, is initialized to containthe  To formalize this we introduce the following crucial notion
packet(ji, ;) in which ji is thei™ standard basis vectak,, of knowing:
furthermore contains all linear combinations that congptae
span of these packet(s). Whenever nodsends out a packet, - X LA i
it chooses a uniformly random packet fraki,. At the end of CoemC'th SUbSpQCEA 'f QOt orthogonal tgi, i.e., if there is
each round, all received packets are added(toand again & VECIOr€ € Ya with < ¢, /i ># 0.
the span is taken. If the subspace spanned by the coefficierfNote that a noded knowing a vectorji does not imply
vectors is the full space, a node decodes all messages. # € Ya or anything aboutA being able to decode a
Throughout the rest of the paper we will solely concentrafB€SSage associated with the coefficiggitsknowing /i only
on the “spreading” of the coefficient vectors; the linear eonindicates that the node is not completely ignorant about the
bination of the messages implied by a coefficient vegtds set of pgcke_z@s that have a coefficient vect(_)r orthogonai._to
always sent along with it. We therefore defilig to be only Cogr!ter!ntwtlvely, because we are not working over a pasit
the coefficient part ofX,, i.e., the projection onto the firgt definite inner-product spateit can even be thati € Y4 but
components. A does not knowii. For examplt_a, oveFy, if Y4 is just (the
. . span of) the vectof1, 1), then since(1, 1) over F (has dot
Remark: The parameter; is used to trade of a faSterproduct 0 with itself mod 2)A does not know(1, 1), even

running time versus .ba.de|dth. While a Ia_\rggcan lead to though(1,1) € Y4. The next lemma proves the two facts that
faster convergence it increases communication overhead Xke this notion of knowledge so useful:

increasing the size of thie (log ¢)-size RLNC-coefficients. In
contrast to some of the related papers all results in thigpap Lemma 4.2:If a node A knows about a vectofi and
hold for arbitrary choices of.. For simplicity we will often transmits a packet to node then B knows aboufi afterwards
restrict ourself tog = 2. Note that this is the hardest casavith probability at least —1/q. Furthermore if a node knows
for running time considerations and it can be safely assuma@out all vectors iff’¥ then it is able to decode all messages.
that convergence times for largerwill only be better. The Proof: Knowledge about gi essentially spreads with
caseq = 2 is furthermore interesting because it leads to thsrobability 1 — 1/q because the vectors iF, that are per-
minimal RLNC-coefficients overhead and allows the use @fndicular toi form a hyperplane ifY,,. For a complete and
simple XORs as a basic arithmetic operation. more elementary proof see Appendik B. u

With this, the spreading of knowledge for a vectoris
a monotone increasing set growing process. It is usually
relatively easy to understand this process and to determine
its expected cover tim&'. Because the spreading process can
be seen as a monotone Markov process, it is easy to prove
A. Previous Approaches that the cover time always has an exponentially decayirig tai
In most cases this tail kicks in close to the expectationsThi
When analyzing the RLNC algorithm presented in Secticallows to pick at (usuallyt = O(T + k)) such that after
[ Sub and Médard([23] were the first to use the notion dfme any vector iff has spread with probability~—©*) and
dimensionality of the subspac&s as a measure of progressthen take a union bound over aff vectors to complete the
They made the observation that a nadean, and most likely proof that with high probability everything has spread. The
will, transmit new information to a node, and thus increase following theorem summarizes this idea:
the dimension ot,,, whenever the subspagdg is not already
contained inY,. For this reason. they call such a node
helpful for v. It is easy to see that the vectors that do n
extend the dimensionality of, namely those inY, N Y,,

Definition 4.1: A node A knows abouti € F, if its

IV. OUR TECHNIQUE

Theorem 4.3:Fix a prime (power)g > 2, a probability
0 > 0 and an arbitrary network and communication model.
%uppose a single message is initiated at a noded then
. . . . flooded through the network by the following faulty broadcas
form a lower dimensional subspace . This results in a In every round every node that knows the message and is

success_probabmty of at Ieasl'F—_l/q i a random vector .supposed to communicate according to the communication
from Y, is chosen as a transmission. This fact and the notion

of helpfulne;s is used as a crucial tool in all further RLNC 1ypie this section is self-contained Appendi} A offers didial infor-
proofs [1]-[5]. mation on orthogonal complements.



model does forward the message with probability 1 /¢ and V. NETWORK MODEL AND COMMUNICATION
remains silent otherwise. If for every nodethe probability FRAMEWORK

that the message reaches all nodes aftesunds is at least

1— 64~ thenk messages can be spread in the same model iHn this section, we elaborate on our network model frame-
time ¢ with probability 1 — § using the RLNC gossip protocol work that encompasses and extends the models suggested in
with field sizeq the literature so far. The models and the results are vebjesta

and can easily be extended further. We chose the following

Proof: This foIIO\_/v_s directly from the discussion abovedescription as a trade-off between simplicity and genigrali
and Lemmal[4]2. Initially every non-zero vectgr ¢ F*

q
is known to at least one node namely the one that kno#§e Network .
about the:th message whereé is a non-zero Component of We consider networks that consist @fnodes. A network
fi. Whenever the network and communication model dictatis Specified by a (directed) grapi(¢) on these nodes for
that a nodeA that knowsji sends a message to a noffle €very timet. Edges inG(t) are links and present potential
LemmalZ.2 shows that with probability— 1/¢ the nodeB Communication connections between two nodes in round
afterwards knowgi. The spreading of each vectgrtherefore We Wwill usually assume that the network has, at all times,
behaves like a faulty flooding process that flogtiin every Certain connectivity properties and will express the siogp
transmission with probability —1/¢. By assumption we have time in terms of these parameters. (See also Setfion VII-D.)
that aftert time steps every vector froﬂﬁ’; fails to spread to (Adversarial) Dynamics

all nodes with probability at mosly~*. Taking a union bound | all previous papers that analyzed the RLNC algorithm,
over all¢* vectors gives the guarantee that the probability thgfe network topology was assumed to B@tic i.e., V¢ :
aftert rounds all nodes know about all vectors is at ldast. G(t) = G. As discussed in the introduction, we allow the
According to Lemma4]2 all nodes can decode in this case gpstwork topology to change completely from round to round
have learned thé messages. B and allow a fully adaptive adversary to choose the network.

Because we are dealing with randomized protocols, we have

to specify precisely what the adversary is allowed to adapt t
C. A Typical Template In our models (similar to[[29]) amdaptive adversargets to

Next we give a typical and easy way to apply Theorefsnow the complete ne_twork state and all previous_ly used ran-
3. We show that the cover time for one vecfbiis often domness Whgn choosing the tqpology. After thz?\t, mdepande.n
dominated by a negative binomial distributidfB(T, 1 — p), randomness is used to determine the communication behavior
whereT is the expected coverage-time, apds a constant 2Nd the messages of the nodes on this topology.
probability. Such a distribution has a strong enough tail tbhe Goal: Gossip
prove optimalO(T' + k) stopping times. In what follows we  Distributed over the network aré messages numbered
give a simple template to establish this: 1,...,k each known to at least one node. Throughout this

What is needed for this template is a definition of paper, we assume a worst-case starting configuration for
“successful round” such that at m@Stsuch rounds are neededall messages including the case in which all messages are
to spread a single vectqgf and such that a round is not aexclusively known to only one node (see also Sedfion VII-A).
success with (say for now constant) probability at mpst The goal of gossip protocols is to make all messages known
The appropriate definition of success depends on the netweskall nodes in the network using as little time as possitie (i
model and is usually centered around its expansion, cuts,expectation and with high probability)
diameter which determine how many additional nodes Comeé%mmunication

know about the vector in a “good round”. Since nodes do not . . . .
. ) . . . Nodes communicate along links with each other during
forget any information this spreading process is monotanke at . T
no progress gets lost in a bad round. Thus if the knowled rgnsactlons that are atomic in time. In each round, onegiack
= . i transmitted over a link if this link is activated in this
aboutji has not spread aftér= c(k + T + log §) steps, then )
there were at leas{k+T+log 6)~T > (c—1)(k-+T +log 6) round. From the view of a node, there are four commonly
considered types of connections. Either a node sends to all

failures, whereas ne would only expget(k + T). If we its neighbors, which is usually referred to as BROADCAST,
choose the constantlarge enough, a Chernoff bound or everg)r it establishes a connection to one (e.g. uniformly random
simpler methods can now show that the probability for this {0 9 y

: —O(k+T+1og 8) L neighbor and sends (PUSH) or receives (PULL) a message or
happen |s_at most [ This is small eni)ugh that, both (EXCHANGE). In all cases, the packet is chosen without
after a union bound over alf* vectors (e.g. fory = 2), the

probability that allk messages have not spread is at ndost the sender knowing which node(s) will receive it

This simple template often applies directly and leads tqpsém Message and Packet Size

proofs of expected and high probability converges times of As described in Sectiob ]Il we assume that all messages

O(k+T) that are often already order optimal. Even when naind packets have the same size, and that a packet exactly
stated explicitly, all of our results hold furthermore whigh contains one encoded message and its RLNC-coefficients.
probability. In particular as shown here, an optimal agditi Note that the restriction on the message size is without loss

©(log 1) additional rounds typically suffice to obtainla-6  of generality, since one can always cut a big message into

success probability for any > 0. multiple messages that fit into a packet. We also assume that



the message size is large enough that the size of the RLNCis shown [23] that it is possible in this model to spread
coefficients that are sent along is negligible. This assionpt £ = ©(n) messages iO(n) time if ¢ = n. This beats the
was made by all previous work and is justified by simulation8(n logn) time of n sequentialO(log n)-phases of flooding
and implementations in which the overhead is only a smalist one message. The follow-up papéers [L], [2] generalize
fraction (e.g.< 1% [23]) of the packet size. this result to smaller number of messadgeand allow ¢ to

be as small ag. They show that the running time of the

Synchronous versus Asynchronous Communication _ ¢ X ;
We consider two types of timing models. In the synchrono@dorithm ist = 3O(k +Vklogklogn), i.e., order optimal as
long ask > log” n. In order to prove this result, they have

case, all nodes get activated at the same time and choose t

messages independently, and messages get deliverediagcord @ssume that each node knows initially only one message
to the current networkG(t) and who sends and receive@nd that initially the messages are equally spread. Evem wit

from whom. Note that this model is inherently discrete, anffi€S€ assumptions the analysis is long and complicated and
we assume that — 1.2.... are the times when nodesth€ authors state themselves in their abstract that “While

communicate. We discuss this model in Seclion VI-A. For tH€ asymptotic results might sound believable, owing to the
asynchronous case, we assume that every node communicafigiiicuted nature of the system, a rigorous derivationepos
is triggered independently by a Poisson clock. This meafluite a few technical challenges and requires careful niogiel

that (with probability one) at any time only one node send¥d @nalysis of an appropriate time-varying Bernoulli psz”
its message. This model can be directly translated into aQUr next lemma shows that RLNC gossip actually always

discrete time model that defines rounds theit" time such inishes with high probability in order optimal stopping &m

a communication takes place. The model considered in ek + logn). Our énalyss is much simpler and has many
literature so far assumes that every node is activated umigo further advantages: It holds for all choices lofand allows

at random to communicate and then chooses a unifornflyl® P€ as small ag. Our proof does also not rely on any

random neighbor for a PUSH, PULL or EXCHANGE. TheypSsumptions on the initial message distribution. We show in
also scale the time in the asynchronous model by a factofClionlVI-E that the well-mixed initial state assumed in

of 1/n so that each node gets activated once per time ul: [2]. [23] actually provably speeds up the convergence

in expectation. We do not assume uniformity in either of thgPmpared to the worst-cast distribution for which our resul
two distributions, and we present results for this more gﬂnehc"ds- Our proof furthermore gives a success probability of

model in Sectiof VI-B. 1 — 2t if the algorithm runs forO(¢) time. In the setting of
[23] with k = n, this is1 — 27" instead of thel — 1/n stated
VI. APPLICATIONS AND RESULTS there. Lastly it is interesting to note that previous gehera

. . pproaches| [3],[[5] are unable to prove any running time
In t.h|s section we take the modelg from Sectlon V anfhat beats the simple non-coding non-gossipi: log n)

descnt_)e the “?S““S that can be ob_talned for them using _%lérquential flooding approach when applied to the complete

analysis technique. There is a section for each differemd ki raph/network

of communication model. We start with the Random Phor‘(f]e '

Call Model [23] that introduced RLNC-gossip. We than cover Lemma 6.1:The RLNC gossip in the random phone call

the extensions to arbitrary underlying network topologiss model withq = 2 spreads: messages with high probability in

considered by[[3][5]. Sectioh VIIB proves stopping timeexactly©(k 4 logn) time. This holds independently from the

for a communication model that encompasses all formétial distribution of the messages and of the communacati

asynchronous communication protocols (PUSH, PULL, Exnodel (e.g. PUSH, PULL, EXCHANGE).

CHANGE, ...). For this model we answer a question[af [5]

and show that a simple min-cut quantity exactly captures tige Asynchronous single transfer protocols

behavior of gossip of» messages. Lastly in Sectién VI-C After the helpfulness of RLNC gossip was established for

we give the first bounds for the performance of synchron0H§e com : .
. plete graph by [23], the papeérs [3], [4] dnd [5] gekera
and asynchronous BROADCAST in general networks. In thf?ed it to general static topologies and consider asynaiusn

section we concentrate on showing only simple proofs thgﬁd :
; synchronous PUSH, PULL and EXCHANGE gossip. In
solely use the template from Sectibn IV-C. In Section] V”th's section we first review the previous results and thamvsho

we revisit the models covered here and show some P90w to improve over them giving an exact characterization of

extensions. the stopping time or RLNC gossip fér=n messages using
_ . the template of Sectidn TVAC.

A. Random Phone Call Model and Gossip Mongering The paper “Information Dissemination via Network Cod-

In this section, we consider the work of Deb andhg” [3] by Mosk-Aoyama and Shah was the first to consider
Médard [23] and its follow-up_]1],[]2] and show how to sim-general topologies. They consider a similarly generaligars
plify and improve the analysis. The papers use a fairly simpbf the synchronous and asynchronous gossip as presented her
model from our framework, namely the synchronous PUSahd analyze the stopping times foe= n in dependence on the
or PULL model on the complete graph, i.€5(t) = K,. conductance. Their analysis implies that with high proligbi
This means in each round each node picks a random otli¥n logn) phases ofn asynchronous rounds suffice for the
node to exchange information with. This model is also knowsomplete graph and constant degree expandersd)
as the random phone call model and was introduced by [8lich phases for the ring-graph. While the analysis is very



interesting, these results do not beat the simple (nonAgddi messages if it is used on arfixed graphG with (min-)cut
sequential flooding protocol and the stopping time of thg+iny on which at leasB (k) messages are initialized inside this
graph and many other graphs is even off by a factomof cut.

Their running times for the synchronous model are simildr bu Applying Lemmal6.2 to the standard PUSH/PULL model
lose anothetog n-factor. Their dependence is on the succegives aO(n2A) stopping time for any dynamic graph whose
probability 1 — § is furthermore multiplicative inlogé—! maximum degree is bounded ly, which is the main result
because it stems from a standard probability amplificatigy [5]. It also givesO(n2) for the complete graph (instead of
argument. ) _ the worst cas€®(n?) of [5]) and nicely explains the behavior
Two recent papers [4], [5] analyzed RLNC gossip usingf the barbel graph and the extended barbel-graph that were
two completely different approaches. The secdnd [5] poinggnsidered by[[5]. The proof of Lemniab.2 can furthermore
out that the analysis of the firstl[4] is flawed and prove th@jsily be extended to show that the dependency on the success

the asynchronous RLNC gossip on a network with maximugopability is only logarithmic and additive in contrast ttoe
degreeA takes with high probability)(An) time. Their proof Frevious work [3], [5].

uses an interesting reduction to networks of queues andtapp
Jackson’s theorem. They also give a tight analysis and lower
bounds for a few special graphs with interesting behaviér. BROADCAST

(see below). While their analysis is exact for few selected |, this section we give convergence results for synchronous
graphs the analysis is far from tight and in most graphs g4 asynchronous BROADCAST gossip in arbitrary dynamic
maximum degree has nothing to do with the stopping tiMgworks. These are to our knowledge the first results for
of RLNC gossip. The major question asked lin [5] is to finghe RLNC algorithm in such a setting. We think the results
a characterizing property of the graph that determines i this section are of particular interest for highly dynami
stopping time. o networks. The reason for this is that many of the highly
We give exactly such a characterization for the asypmstable or dynamic networks that occur in practice like ad-

chronous case withk = n assuming a worst-cast messaggoc-, vehicular- or sensor-networks are wireless and taws h
initialization. The model we use is a generalization of th@nerent broadcasting behavior.

classical PUSH, PULL and EXCHANGE model: We allow 14 iy 4 model we first consider the simple synchronous

the topology in every round to be specified by a graph wiifyoadcast model. We assume without loss of generality that
directed and/for undirected edges and a probability weigigle network grapi@ is directed because any undirected edge
pe On every edge, such that the sum over all edges is aap pe replaced by its two anti-parallel directed edgesirigav
most 1. In every round each edge gets exclusively selecigflojess networks in mind we also assume that in each round
with probability p, i.e., in each round at most one edggach nodes computes only one packet that is then send out to
gets selected. If the edge is undirected an EXCHANGE i§ heighbors. Our results also hold for the less realistiziet
performed and if a directed edge gets activated a packel\jgere a node sends out a different packet to each neighbor.

delivered in the direction of the edge. Note that this model i 11 parameter that governs the time to spread one message
a generalization of the “classical” communication mod&ts. ;. 5 static setting is (not surprisingly) the diameter and

obtain the probability_ graph from the undirected ngtwort«hvvi it is easy to proved(D + k) stopping times fork messages
PUSH or PULL one just has to replace every undirected edgging our technique. In a dynamic setting this is not truerEv
{u, v} by two directed edges with probability welggﬁ_and for just one message, an adaptive adversary can, for example
TAT whereA,, andA,, are the degrees afandv respectively. ajways connect both the set of nodes that know about it and the
To obtain the EXCHANGE protocol each undirected edggat of nodes that do not know about it to a clique and connect

{u, v} simply has the probability weight - + —x-. the two cliques by one edge. Even though the gréf{h)
Given such a petwork grap with probability weightsp.  has diamete at all times, it clearly takes at leastrounds
we define the min-cu(G) as: to spread one message. In order to prove stopping times in
) the adaptive adversaries model we switch to a parameter that
1(G) = LSy Z Pe indirectly gives a good upper-bound on the diameter for many
e€TG(S) graphs. The parameter we use is the isoperimetric number
wherel'};(S) are all edges leaving a non-empty vertex-subsitG): which is defined as follows:
S C Vin G. The next two lemmas show that this quantity ITL(S)|
exactly captures how long RLNC gossip formessages takes. h(G) := min <

SCV min(|S],[S])’
Lemma 6.2:If for every timet the min-cut of G(¢) is at ) )
least~ then the asynchronous single transfer algorithm withnereI';(S) are the nodes it outside of the subsef that
q = 2 spreads: messages with probability at least- 2-»  are in the directed neighborhood 6f

in O(2) time. To give a few example values: for disconnected graglds)
Thg next lemma proves that(Z) is optimal is zero and for connected graphs it ranges betwieand %;
P g P ' for a k-vertex-connected grapfi we haveh(G) = Q(£) and

Lemma 6.3:With high probability, the asynchronous singlen(G) = ©(1) holds if and only ifG is a vertex-expander (or
transfer algorithm takes at Ieaﬁ(%) rounds to spread: a complete graph).



We are going to show that the expected time for orthe convergence time of the asynchronous PUSH and PULL
message to be broadcasted is at mbst log(&%. This protocol on the star-graph: For both PUSH and PULL the
is O(n) for a line andO(logn) for any vertex-expander. Our network induced by the star-graph has a min-cutlgh?
bound is tight in the sense that for any valuwith 1 > » > 2 which leads according to Lemrhab.2 6.3 to a stopping time
there is a static grapti’ that has diameter at leaé(T") and of ©(n?) under a worst-case initialization. To lower bound the
isoperimetric numbeh(G) = ©(h). Having an upper bound convergence time Lemnia 6.3, which relates the convergence
on the timeT it takes to spread one message we again protige to the min-cut of the network graph, has to assume that
an perfectly pipelined time o®(T + k) for £ messages: at least a constant fraction of the messages are initialized
iqside a bad cut. For the “classical” initialization in whic
0 ) o
each node starts with exactly one message this is true for

. . g th]e PUSH model but not in the PULL model in which every
to spreadk messages as long as the isoperimetric numberkg) d | ins f deed ; I
the graphG(¢) is at leasth at every timet ad cut only contains few messages. Indee assuming a wefl-
o ’ mixed initialization the PUSH protocol takes s#l(n?) time
A similar result to Lemma 6l4 can be proven for thgy converge while a much lowe(n? log n) stopping time for

asynchronous BROADCAST model in which at every rounghe pyLL model can be easily derived using our technigues.
each node gets selected uniformly independently at random

(i.e. with probability%) to broadcast its packet to its neighbors:

Lemma 6.4:The synchronous broadcast gossip protoc
takes with high probability at mosﬂ(% + k) rounds

Lemma 6.5:The asynchronous broadcast gossip protocg’r Exact Dependence dnand Perfect Pipelining

takes with high probability at mog?(n - (@ +k)) rounds  In most (highly connected) networks the spreading tifhe

to spreadk messages as long as the isoperimetric number fof one message is short addk) becomes the dominant term

the graphG(t) is at leasth at any timet. in the order optimalO(k + T')-type upper bounds presented
in this paper. So is, for exampld; = O(logn) for most
VIl. EXTENSIONS expanding networks. While it is clear that at leaspackets

In this section we discuss how the simple proofs frorﬂeed to be received at each node it becomes an interesting

Section[V] that use only the template from Section IV-C Caﬂuestion_ hOW_ large the constant factor hidden by the_
be extended to give more detailed or sharper bounds. notation is. Differently stated, we ask how large the frawti
of helpful or innovative packets received by a node is over th

N ] o execution of the protocol.

A. Exploiting a Well-Mixed Message Initialization Determining and even more optimizing proofs to obtain

As stated in SectionlV we assume throughout the paper tBath constants is usually a big hassle or even infeasible
k messages are to be spread that are initially distributed irjae to involved proofs. Simulation is therefore often used i
worst-case fashion. All earlier papers restricted theweseto practice to get a good estimation of the constants (Elg. [1])
the easier special case thiat= n and that each node initially Our template from Sectidn IVAC reduces the question for the
holds exactly one messade [3]] [5], or thais arbitrary but stopping time of RLNC gossip to a simple standard question
the network starts in a similarly well-mixed state in whickabout tail bounds for negative binomial random variables.
each message is known by a different node and all messagag makes it often possible to determine and prove (op}imal
are equally spread over the netwolk [1]. In many cases tbenstants (and lower order terms). All that is needed is to
worst-case and any well-mixed initialization take equédlyg replace the Chernoff bound in the template from SedfionlIV-C
to converge because the running time is lower bounded ag an argument that gives the correct base in the exponential
bottlenecked by the flooding tim& for a single message ortail-bound. In Sectiof VII-BlL we give such a bound. We than
the time it takes for a node to receive at ledspackets. exemplify then how to apply this bound by two examples: in
Nevertheless there are cases where a well-mixed inittadiza Section[VI[-B2 the synchronous BROADCAST gossip from
can drastically improve performance. Section[VI-C and in Section_VI-B3 the Rumor Mongering

Our proof technique explains this and we give a simpigom Section[VI-A. In both cases we can show that the
way to exploit assumptions about well-mixed initializaiso constant in the dependency dnis arbitrarily close to the
to prove stronger performance guarantees: If, e.g., eads nabsolutely optimal constarit, i.e. we can obtain a perfectly
initially holds exactly one ofk = n messages then mostpipelinedt = k + O(T) stopping time.
vectorsji are already known to most nodes initially. More
precisely exactly the(”)(¢ — 1)* vectors withi non-zero
components are initially known to exactlynodes. With many
vectors already widely spread initially the union boundrov

the failure probabilities for all vectors to spread afteounds from the expectation the probability drops by a factorof
can decrease significantly. Taking the different quarstidad -with every additional trial instead of a constant factor gro

probabilities for nodes that are initially known to a cenmtai . )
number of nodes in account one can prove in theses cagleast would be obtained by a standard Chernoff bound:

that a smallet suffices. Lemma 7.1:The probability that aftert = k& + O(T)
One example for a mixed initialization being advantageoirsdependent trials there are less tifasuccesses is at mgst
is discussed in the next Section VII-B and another one wgherep is the failure probability (with—logp > Q(logt)).

1) A Tighter Tail Bound:The following simple lemma gives

a stronger guarantee on the tail of a negative binomial nando
variable than the Chernoff bound used in the template from
E‘Sec:tioriE:. The lemma proves that a constant factor away



If we apply this stronger tail bound in the template fronanalysis of the protocol using Corollafy 7.2 for this case
Section IV-C we obtain the following corollary: gives a constant ofog(q)/log((1/e + (1 — 1/e)/q)) which
Corollary 7.2: Let ¢ > n®® and T, k,d < n®®. If in is 1.82462135k for ¢ = 2. This can be improved if the start

order to spread any fixed coefficient vectoonly 7' successful state is a bit more mixed, e.g., if each message is known to

rounds are needed and if a round fails with probability attmo'gOdes initially. In this case the information-theoretitaber

. log bound becomes$/(1 — e™*)k and our upper bound becomes
p then k messages spread in= gk + O(T) +d rounds - vy /ew/r((1_1 /ei)) /q)) this means that for = w(1)
with probability at leastl — p®. For p = 1/¢ this means a . . . oo
R ; . -~ ~ our proof gives the optimal stopping time= k(1 + o(1)).

running _tlme oft = k + O(T) in expectation and with high LemmalZ# also shows @ + o(1))k Stopping time for the
probability. case where all messages are initiated at different nodes. Th

2) Perfect Pipelining of Synchronous Broadcast this contrasts the upper bound 6f96k and the estimate of .5k
section we use the tighter tail bounds from the last Section [1] for this setting. More extensive simulation resulsmn
VII-BTlto sharpen the bounds on the convergence time of ttiee ones in[[l1] confirm that the constant for the dependency
synchronous BROADCAST from Sectign VI-C: on k should indeed be smaller than the projectesk.

Lemma 7.3:The synchronous broadcast gossip protocol Lemma 7.4:The RLNC algorithm in the random phone
takes with high probability at most + O(T) rounds to call PULL model even withy = 2 spreadsk = log”"(l)n
spreadk messages wherg = % if the isoperimetric messages with high probability ifil + o(1))k time if all
number of the graplG(¢) is at leasth at any timet. (and messages are initially known to different nodes.

log ¢ = Q(logn))
3) Perfect Pipelining of Rumor MongeringAnother inter- C. Asynchronous Single Transfer with small

esting case in which the exact dependence on the number Oéectiorm proves convergence times for spreading
message# was considered is the Rumor Mongering process messages using the asynchronous single transfer pratocols

from Section[VI-A. The authors ofl [1] give a theoreticalryese pounds are tight and directly extend ©@) bound

o ; 2
analysis in the regimé: > log"n where theO(k) term (5, _ () messages. In what follows we want to generalize
clearly dominates and prove an upper bound.dbk for the

this to smaller number of messages and discuss the bourids tha
RUSH protocol and>.96% for the PULL model. .They also .an be obtained using the technique from Sedfioh IV.
simulated the protocol and estimated the stopping time to beFor small number of messages, ekg- 1, the convergence
1.5k + log, n. Both their analytic bounds and the simulatioi\e ot R NC single transfer gossip can be much faster than
assume that messages start out in separate nodes andOz(\s_% but still be w(). This shows that the min-cuf is
equally §pread over the network (se_e 6_“50 Sedion VIl-A). Hbtwthe right quantitg/ to look at in this scenario. Again, as
this section we improve over these findings and show that tm"Sectionm, conductance quantities capture much bette

PULL model in this setting actually converges(ih+ o(1))k how fast a small number of messages spreads. The quantity
time for k > log" ™" n. Interestingly we also show that with,, & consider is:

a worst-cast initialization (see also Sectlon VII-A) the IRU

model does not achieve this convergence time but has a padin A(G) = min Zeeout(s)_pe

constant betwee.58 and 1.83: SCV min(|S], |S])
Determining the correct constants for random communica- . log 1

tion protocols like the random phone call model is much more The next lemma shows that |t_takes at mest O(T)

delicate than proving order optimal convergence times. THEN® for one message to spread if the conductance is bounded

reason for this is that the union of random exchanges o A

many rounds almost surely form an expander while the graphTheorem 7.5:In the asynchronous single transfer model

in a single round is usually not even connected. This is tli&ith any ¢) it takes in expectation at mogtf = O(l"’i”)

case for all of the presented random phone call models. Whiime for one message to spread.

all these models are very stable order optimal one must bé  proof: The probability that a set of nodes that know about
much more careful to achieve and even more prove optimgh message grows from size< n to i + 1 is at least(1 —
k(1 + o(1))-type bounds for largé:. We exemplify this by 1/¢)(Amin(k, n—k)). It thus takes at |eaw rounds in

describing these concerns in detail for the PULL protocol:. expectation for the first succe 1_11  rounds for the sec-
The worst-case initialization for the PULL protocol is _ T-179) )
nd success and in genefBl= "

when all messages are initially known to only one node. A X =1 min(i,n—0)(1-1/q)A <

this case this node is not pulled at all in one round withl + 7=7)% logn = O(=%*) rounds in expectation for one
probability (1 — 1/n)" ~ e~ = 0.367879441. In order to Message to spread. u

get pulled at leask times it takes therefore in expectation This is a tight bound for many regular graphs and gives e.g.
at leastk/(1 — e~!) = 1.58197671k rounds. Thus for the a flooding time of©(nlogn) for the complete graph or any
case that only one node initially knows about all messagether regular expanders. It is clear that RLNC-gossip for an
and if this node prepares a message in each round whiclk iheeds to take at least so much time. The other lower bound
sends out to the nodes requesting it this is an informatioiat kicks in for large enough is theQ(£) lower bound from
theoretic lower bound on the number of rounds. A direttemmd®.B. Similar to the results for the other models we want




show that the total running time is essentially (up to at most VIIl. CONCLUSIONS ANDOPEN QUESTIONS
a log n factor) either dominated by th& = 10% rounds to

spread one message or for larger number of messages  We have given a new technique to analyze the stopping
O(%) rounds coming from the communication lower bounémes of RLNC-gossip that drastically simplifies, streregts
that thek messages have to cross the worst case cut. and extends previous results. Most notably all our resuitd h

Lemma 7.6:Disseminating: messages in the asynchronou'sn highly dynamic networks that are controlled by a fully

single transfer mode2I witly = 2 takes with high probability adarp])tlve adversar.y. di ¢ its for th
at mostt — O(% N log)\ ") rounds if the grapl@ as a min-cut Theoren[ 4B gives a direct way to transfer results for the

: single-message flooding/gossip process to the multi-rgessa
of at mosty and & conductance of at leastat all timess. RLNC-gossip if strong enough tail bounds are provided. One
candidate for which this could work is, e.d., [19] which can b
interpreted as giving bounds on a synchronous single &ansf
gossip for one message.

This paper also gives evidence that in most network models

The idea behind proving performances in the rather strofid-NC-gossip achieves perfect pipelining, i.e. the bourats f
adaptive adversary model introduced in this paper is that tHisseminating: messages have the for@(k + 7') whereT’
guarantees directly extend to the widest possible range idfthe expected time to (faultily) flood one message. It is a
dynamic networks including random models. Most of oufery intriguing question under which general conditionstos
proofs like the ones of Lemmia 6[2, b.4[or16.5 demand that tAgtwork model one can prove this behavior. It is easy to see
network graphG(t) has a certain connectivity requirement athat the monotone set-growing process induced by the faulty
any timet. These requirements might be too strong especiaffpoding process of one message always exhibits a strong
for random network models. We discuss in the following hofxponential tail as needed to apply Lemimd 4.3. This already
these requirements can be easily weakened in many waysimplies asymptotic convergence times of the fokifi +o(1))

The simple fact that no progress in the spreading ésfee also Lemma 7.6) whereis the min-cut in the induced

knowledge gets lost makes it easy to deal with the case tt ?rkov-Chaln, le. the _rm_mmal probability over ?‘” sets _to
the connectivity fluctuates (e.g., randomly). Increasihg ¢ !nform _ano_ther node within one round. T_he main question
stopping time by a constant factor easily accounts for nmdégmalnmg is therefore to guarantee that this tail kicksftera
in which the desired connectivity occurs only occasionally (T') rounds.
with constant probability. Looking at the average conmecti
ity is another possibility. It is furthermore not necesstoy
require the entire graph to be expanding on average but it APPENDIXA
suffices to demand that each subset expands with constanPRELIMINARIES: ORTHOGONAL DUAL COMPLEMENT
probability according to its size. This way convergence can
be proven even for always disconnected graphs. Especiallyin this section we provide a few background facts in
for random models it can also be helpful to consider tHmear algebra on vector spaces without (positive-defjiiteer
union of the network graphs of consecutive rounds, i.product, especially the notions involved in orthogonaltyen
G'(t) = G(3t') UG(3t' +1) U G(3t' +2). This gives for so the Sectioh 1V is fully self-containing this section midpe
example directly valid upper bounds for the synchronous belpful in understanding the proofs.
asynchronous BROADCAST model. For a vector spac& the dual spaceV* consists of all
As a simple example for the usefulness of these approactiesar forms onV. For any subsetS C V the orthogonal
we discuss an alternative way to prove Lemimad 6.1 about t(dal) complementS L is defined as all elements frofi*
stopping time of the Rumor Mongering process: Instead dfat disappear orb. It is easy to see that the orthogonal
analyzing the Rumor Mongering as a synchronous protocamplement is a subspace ¥ and has co-dimension equal
on the complete graph in which each node performs a PULlo, the dimension of the span & in V. The dual space
PUSH or EXCHANGE one can alternatively see it as &* is isomorphic toV and in the case otF’; the dot-
synchronous BROADCAST (see Section VI-C) on a randoproducty — (z —< z,y >) is an isomorphism. Using this
network. The network graplG(¢) in this case is simply identification the orthogonal complement can also be defined
formed by a random directed in-edge, directed out-edge @s the space of all vectors that are perpendicular (i.e ngavi
undirected edge at each node depending on whether on loakgero dot-product) to all vectors ifi. This is the standard
at the PUSH, PULL or EXCHANGE model. The results frondefinition of orthogonality and for inner-product spacée li
Lemmal6.4 of 64 will not directly give any bounds simplyR* it matches the geometrical notion of orthogonality. This is
because the network gragh(t) is with high probability dis- not true for]F’qc in which the dot-product is not positive definite.
connected. Using either of the two more advanced extensidifss leads to counter-intuitive situations, e.g. the ve¢tol]
solves this problem: with constant probability every set ha is orthogonal to itself inf7. But the fact remains that every
constant expansion; alternatively one can use that thenwfio subspaces C IF’; can be assigned a orthogonal complement
a constant number of rounds, as described above, forms vétibspaces* with dim(S) + dim(S+) = k remains true and
an expander with high probability. is the important notion used in Sectibnl IV.

D. Weaker Requirements for Random Networks
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APPENDIXB probability, the number of ignorant nodes that le@ris only
PROOFS a small factor smaller. Once there ang2 nodes knowing

about ;i and each of these pushes out, each node that does

not know ji has a chance ofl — 1/n)"/? = ¢=2 per round

to receive a message from a node that kngivsApplying

Lemmal[4.2 again finishes the proof. [ |

Proof of Lemma _4]2:We give a more basic proof here:

For this we define two vectorg,, c; € IF’; as equivalent if
< &, ji >=< &, ji >. This splitsYy in exactlyq equivalence
classes of equal size. To see this note that, beciysis a
subspace, scalar-multiplication is a bijection betweentamm Proof of Lemm&®6I12:Our proof proceeds along the lines
equivalence classes that correspond to a non-zero dotigirodof the simple template from Sectién TW-C and concentrates on
By assumptionYsy furthermore contains a vectet that has the spreading of one coefficient vector. We define a round as
a non-zero dot-product witlg. This gives thatji-translation a success if and only if one more node learns about it. It is
is a bijection between the zero dot-product equivalentsclaglear that exactly: successes are needed. From the definition
and another equivalence class. Thus with probability éxacbf v and Lemmé4J2 follows that each round is successful with
1 — 1/q a packet with coefficient vector from a non-zer@robability at leasty(1 — 1/q). Thus if we run the protocol
equivalence class is chosen for transmission. In this d#se ffor ¢ = c(7=17557) rounds we expect at least successes
coefficient vector gets added ¥¢; and the node? now knows and by Cherno#%ound the probability that we get less than
i. is at most2— 9™ If we choosec appropriately this is small

For the second claim we prove that any noti¢hat is not enough to end up with—" after taking the union bound over
able to decode does not know about at least one vgttth the ¢* = 2" vectors. ]
.A can not dechg thats IS not the full space. Becausé, Proof of Lemm& 6]3:In each round, at most one packet
is a subspace it is lower-dimensional and we can use Gram-

Schmidt to construct a orthogonal basisYof and a vectoli ;?n cr?is thte CbUt' F(I)r tth'csj to giﬁpen’ zn be_lt_jtgef gotl;:_g (.)UtbOf
that is orthogonal td’4. This vectorji is then by definition € cut has 1o be selected an € probability Tor this IS by

not known toA, a contradiction. definition exactly~. In order to be able to decode the
messages at lea§ (k) packets have to cross the cut each
Proof of Lemméa_6]1:For the lower bound we note thattaking in expectation at Ieas:t)(%) rounds. It takes with
each node receives in expectation (and with high probgpilithigh probability at leasf2(%) rounds until©(k) packets have
only ©(1) packets per round. Thus if in the beginning agrossed the cut. K m
least one node did not already know about a constant fraction )
of the messages, then the algorithm has to run for at least ~700f of Lemma[6]4: We use the simple template
Q(k) rounds. It is also clear that even one message takiQm SectionIV-C and concentrate on the spreading of one
in expectationQ(logn) time to spread to all nodes. Thiscoefficient vectori. We define a round to be a success if and

completes the lower bound. only if the number of nodes that know abquigrows at least

To prove the upper bound, we use the template IV-@:V a% fraction or the number of nodes that do not know about
For this we fix a coefficient vectof and define a round as/ Shrinks at least by the same facto&)g(nh)
successful if the number of nodes that know about it inceagife Want to argue that at mot = O(=,==) successes are
by at least a constant factar> 1 or if the number of nodes needed to sp_reaﬁi completel%/. ?Iote that this is slightly better
that do not know aboyt decreases by a factor af There are than the stqalght forwardl + 2)" > n bound that would lead
at mostO(log n) successful rounds needed until at leage © T = O(*&")) The improvement comes from exploiting
nodes know abouyt and at most anothe®(log n) successful the fact that the number of nodes that learn is an integral
rounds until all nodes know aboyit It remains to be shown quantity: In the first% successful rounds at least one node
that each round succeeds with constant probability. learns aboufi. The nexty; successful rounds at leasnodes

We first consider the PULL model. At first we hawe n/2 learn about and the followingz%- successful rounds it i3
nodes that know about and at least:/2 nodes pulling for it. new nodes and so on. There &fe (%)_1 such phases until
Each of those nodes has a probabilityi of to hit a knowing at leastn/2 nodes know aboyi. The downward progression
node. We expect &/n fraction of the ignorant nodes, i.e., athan follows by symmetry. The total number of successes sums
leasti/2 nodes, to receive a message from a node that knou to:
aboutzi. The independence of these successes and Lémina 4.2 7 1 log nh
prove that with constant probability at led3fi) nodes learn T=2¢ > 7 =0(——)
aboutji. Once there are at leasy2 nodes that knowi, each i=1
of the ignorant nodes pulls a packet from a knowing node witfo finish the proof we show that every round has a constant
probability at leastl /2. success probability. This follows from Lemma 4.2 if for a

The proof for the PUSH model is similar. If there arec  success only one node is supposed to learn afdolfitat least
n/2 nodes that know aboyt and push out a message, themi| > 2 nodes are supposed to learn then by the definition of
there are at least/2 ignorant nodes that each receive at least success and df(G(t)) there arek > [7i] > 4[i] nodes
one message from one of th@odes with probability — (1— on the knowledge cut, i.e., at ledstnodes that do not know
1/n)% It is not hard to see that, in totdl(i) ignorant nodes about /i are connected to a node that knows abgutWe
receive a message from a node that kngivaiith constant invoke Lemmd 4R again to see that each of these nodes fails
probability. Lemma4]2 now guarantees that, with constattt learn aboufi with probability at mostl/q < 1/2. Finally

O(nh)
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Markov’s inequality gives that the probability that moreath  Now the left-hand side is the variance of a weighted sum
kE—1Ti] > %k fail to learn is at mos2/3. A round is therefore of i.i.d. Bernoulli variables with probabilitt — p, and as
successful with probability at leasy/3. m  such its expectation is exactly ; w?(1—p)p. Using Markov’s
inequality on this expectation, we get that the probabilty

Proof of Lemmd_6l5: The proof is nearly identical to g{\gam t0 bound is at most:

the one of Lemma 6l4 but instead of defining a round
a success we define successes for phases obnsecutive 9 T
. . . 2 2 p 2
rounds. Using the same definition of success and followieg th ij(l —pp (E(l -p) > = 91-, ij
same reasoning as before it is clear that at n@(s!t’g;ﬂ) J P
successful phases are needed. To finish the proof we have to
show that every phase has a constant success probability. Fo
this we note again that at leakt> 4[i] nodes are on the
knowledge-cut ofiz if [i] nodes need to learn abofit For
each of thesel[i] nodes the probability that no neighborin
node that knowsi is activated durings rounds is at most
(1 —1/n)" = e~t. According to Lemma4]2 the probability
for each of thek nodes to fail to learn about is thus at most
1-(1—-1/¢)(1 —e ') < 0.7 < 3/4. Markov’s inequality Proof of Lemmd713: We modify the proof of Lemma
again implies that the probability for a failed round in whic6.4 only in the way that we use the stronger tail bound from
more thank — [i] > 3/4k fail is at most0.7/0.75. m Corollary[7.2 instead of the simpler template from Section
. [V-Cl We keep the same definition of success but prove that
Proof of Lemmal7ll: We pick t = k — (T + the success probability of a round is at leagy instead of
1)logt/logp + T and have now that 1/4 as in Lemmd 64:

16
<3 2 14 =<p

The last transformation holds becausep > 1/2 and because
we can assume that all weights are at mst. This is true
%ecause if there is @; > 1/4 then alreadyX; = 1 leads to
an outcome of at leadt/4 the expectation and the probability
for this to happen i. [ ]

. T ¢ ¢ ; i If only one node is supposed to learn for a success this
pr=p t > Z (t_l.)l? (1-p) is again clear by Lemmbh—4.2. If at leagt] nodes nodes
i=t=T are needed to a success we know also by the definition of
which is exactly the probability for having at ledstT failures a success that at lea$fi] nodes that do not know aboyt
in ¢ rounds. B are connected to a node that knows about it. We assign each

ignorant node to exactly one node that knows akibbiteaking

Proof of Corollary[Z.2: Follows directly by applying _: N . ! >
Theoreni 4.8 according to the template in Sedfion ]V-C and tFll'S_S ?;2”;22'%’- S’:‘J‘;‘;]V ig‘;(;r?rl]r:jge ;(; rl;génnrglgﬁjei c;/gtgurirgbriiggsage

use of Lemma7]1 to get the right bound on the tail probabili%at is not perpendicular tg and all ignorant nodes that are

connected to it learni. We can now directly apply Lemma
Lemma B.1:Let X1, X,,...,X; be ii.d. Bernoulli vari- and obtain that we indeed have a success probability of
ables with probabilityP(X; = 0) = p < 3. The probability at leastl/q per round. This finishes the proof. ]
that a positively weighted sum of the variables is at mﬁast

its expectation is at most Proof of Lemma7]4We assume each message is initially

) known to exactly one node and all messages are known to
Vwr,...,w >0 P> wiX; < L —p) S wy) <p. different nodes. This implies that exactly tHg) (¢ — 1)*
j i vectors that havé non-zero components are initially known
_ _ to exactly i nodes. We will prove that the running time
Proof: We first scale the weights such thal w; =1 ¢ > k 4 O(logn)logt suffices to spread all messages with
and than use the second moment method: probability at leastt — n=(1),

For this we pick a threshold = w(1) and first look at the
S (%) (@ —1)" < fkf vectors that are known to at mogt
nodes initially. From the proof of Lemnia_6.1 we know that
aftert rounds each of these vectors has a probability of at most
2-0(t=0(ogn)) tg not have spread completely. Choosing

1 k+O(logn) therefore suffices easily to make the contribution
= (1 -X;) - o >1-—-(1=p)— )

P ij(l Xj) pr] 21 4(1 p)—p of these vectors to the union bound at mast*().

! ! Most of the ¢* vectors start initially known to at least

IA
|
—
=
|
E

P Z w; X j
J

3 nodes. For these vectofswe choose the same definition of
=P ij(l -X;) - pzwa‘ 2 1(1 - p) success as in the proof of Lemmal6.1: A round is successful
J J if the number of nodes that know abquincreases by at least

2 9 a constant factoiA > 1 or if the number of nodes that do not
=P | D wl=X)—p) wj| = (1 —p)? | know aboutii decreases by a factor 6f We will show that
; ; 16 if we choose\ small enough these vectors have a probability

of % to spread successfully in one round.
While with our initial analysis the start phase was the caiti
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bottleneck we can show that the success probability for th#hoosingt = O(% + T) makes this smaller thag—*2—",

phase can now even be pushed belgw by choosing\ small
enough. In the first phase we hake< n/2 nodes that know
il and at least/2 nodes that are pulling for it. Each of those
nodes has an independent probabilitykgf. to hit a knowing

Applying Theoren 4]3 now finishes the proof.
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each node that does pull from a node that knows ajcas
a probability of(1—1/¢) = 1/2 to learnji. This means more
generally we have at leasy/2 nodes that have an independent
chance ofk/2n to learni. For a small enough it is clear g
that the probability that at leastt nodes learn aboyt can
be made an arbitrarily small constant.

In the second phase there are at lea&t nodes that know
about i and we want that of the remaining < n/2 nodes
at least a\-fraction learnsji. Each of these nodes has al?l
probability of at leastl /2(1 — 1/¢) to pull from a knowing
node and learig (see Lemm&4]2). Choosing= 1/8 suffices [4]
to guarantee that the probability that at leastfaaction learns 5]
il is at leastl /2. The only reason that this probability can not
be reduced is because if only one node remains to learn &
learn abouti a round is successful with probability exactly
1/2. [7]

Using the proof from LemmBA 7.1 it is easy to verify that
choosingt such thatt > & + O(logn)logt suffices to also
make a union bound over these vectors at mestX(!), 18]
Combining this to a union bound over all vectors finished the
proof by showing that the probability that afterounds not
all vectors have spread is at most®(1), m

(2]

Proof of Lemmd_7]6: We want to show that running
the protocol fort = O(% + T) rounds, wherdl" = O(@) [10]
suffices to spreall messages. Note that we always have n
and can also safely assume thagt = O(logn). As a first |19
step we defing); to be a lower bound for the probability that
if ¢ nodes know aboufi in the next round one more node[
learns aboufi. Note that by assumption and Leminal 4,2s
lower bounded by1—1/¢) min{i,n—i}Aand(1—1/q)y. We
now look atn phases in which we allowzﬁ tries for: nodes
informing the next node aboyt The number of rounds spend
in successful phases sums up to at mpst i = 1nl‘% < [14]
O(f8n) 3™ — i — 1n/21 < O('%8") — T. Lets now look at
the probability thafii has not spread aftér> T' steps. In this [15]
case we have at least- T failures that can occur after any of
then phases. The probab!lig)t/ that at leasterrors occur after [1g]
phasei is at most(1 — p;) 7 " < (3t)71(1 — v/2)™. We
thus get a(2t)~! factor for every phase that does not finish
“in time”. We also get a total factor ofl —~/2)*=7 from all [17]
t—T failures occurring after any round. Lgbe the number of
phases that finish not ‘in time”. There are exadfy 7)*7) < 18]
(2t)7 ways of distributing the — T failures to thesg phases.
Putting all this together we get the following upper bound oA®!
the probability that the algorithm did not converge after T'
steps:

12]

(23]

[20]
D@1 —r/2) T << e

Jj=1

[21]

Muriel Médard.

REFERENCES

S. Deb, M. Medard, and C. Choute, “Algebraic gossip: avoek coding
approach to optimal multiple rumor mongeringgZEE Transactions on
Information Theoryvol. 52, no. 6, pp. 2486 — 2507, 2006.

——, “On random network coding based information disseation,”
in Proceedings of the International Symposium on Informafitieory
(ISIT), 2005, pp. 278 —282.

D. Mosk-Aoyama and D. Shabh, “Information disseminatida network
coding,” in Proceedings of the IEEE International Symposium on Infor-
mation Theory (I1SIT)2006, pp. 1748-1752.

D. Vasudevan and S. Kudekar, “Algebraic gossip on Aduitr Net-
works,” Arxiv preprint/arXiv:0901.14442009.

M. Borokhovich, C. Avin, and Z. Lotker, “Tight Bounds foklgebraic
Gossip on GraphsArxiv preprint/arXiv:1001.3265 v1 [cs. IT]2010.
C. Gkantsidis and P. Rodriguez, “Network coding for kugrale content
distribution,” in Proceedings of the 24th International Conference on
Computer Communications (INFOCOM)ol. 4, 2005.

Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-based ad hmating,”
IEEE/ACM Transactions on Networks (TQNpl. 14, no. 3, pp. 479—
491, 2006.

A. Demers, D. Greene, C. Hauser, W. lIrish, J. Larson, Sengér,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithnfior
replicated database maintenance,Piroceedings of the 6th Symposium
on Principles of Distributed Computing (PODC)987, pp. 1-12.

D. Agrawal, A. El Abbadi, and R. C. Steinke, “Epidemic atghms
in replicated databases (extended abstract)Primceedings of the 16th
Symposium on Principles of Database Systems (POT2S)/, pp. 161—
172.

D. Kempe, J. Kleinberg, and A. Demers, “Spatial gossig aesource
location protocols,”Journal of the ACM (JACM)vol. 51, no. 6, pp.
943-967, 2004.

S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman, Survey
of gossiping and broadcasting in communication networkigtworks
vol. 18, pp. 319-349, 1988.

D. M. Topkis, “Concurrent broadcast for informationssémination,”
IEEE Transactions on Software Engineeringl. SE-11, no. 10, 1985.
J. Aspnes and E. Ruppert, “An introduction to populatiproto-
cols,” in Middleware for Network Eccentric and Mobile Applications
B. Garbinato, H. Miranda, and L. Rodrigues, Eds. Springenag,
2009, pp. 97-120.

J. Hromkovi€, R. Klasing, B. Monien, and R. Peine, “Besnination of
information in interconnection networks (broadcasting &ssiping),”’
Combinatorial Network Theorypp. 125-212, 1996.

D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based coatjout of ag-
gregate information,” irProceedings of 44th Symposium on Foundations
of Computer Science (FOCGS)003, pp. 482-491.

D. Kempe and J. Kleinberg, “Protocols and imposswiliesults for
gossip-based communication mechanismsPiioceedings of 43rd Sym-
posium on Foundations of Computer Science (FQ@892, pp. 471-
480.

R. Karp, C. Schindelhauer, S. Shenker, and B. Vockiff@ndomized
rumor spreading,” irProceedings of 41st Symposium on Foundations of
Computer Science (FOCS)000, pp. 565-574.

Y. Minski, “Spreading rumors cheaply, quickly, and iadly, 2002,
Ph.D. dissertation, Ph. D. Thesis, Cornell University.

F. Chierichetti, S. Lattanzi, and A. Panconesi, “Alrhtight bounds for
rumour spreading with conductance,” Rroceedings of the 42nd ACM
Symposium on Theory of Computing (STOZD10, pp. 399-408.

R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network infaation flow,”
IEEE Transactions on Information Thegryol. 46, no. 4, pp. 1204—
1216, 2000.

S. Li, R. Yeung, and N. Cai, “Linear network codindEEE Transac-
tions on Information Theoryol. 49, no. 2, pp. 371-381, 2003.


http://arxiv.org/abs/0901.1444
http://arxiv.org/abs/1001.3265

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros,H& benefits

of coding over routing in a randomized setting,” Btoceedings of the
IEEE International Symposium on Information Theory (I1S2003, pp.
442-442.

S. Deb and M. Médard, “Algebraic gossip: a network cgdapproach

to optimal multiple rumor mongering,” ifProceedings 42rd Allerton
Conference on Communication, Control, and Compuyt2@p4.

S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Medard, “Thaportance

of being opportunistic: Practical network coding for was$ environ-
ments,” in Proceedings 43rd Allerton Conference on Communication,
Control, and Computing2005.

P. Chou, Y. Wu, and K. Jain, “Practical network codin@m”Proceed-
ings of the 41st Allerton Conference on Communication @brand
Computing vol. 41, no. 1, 2003, pp. 40-49.

C. Fragouli, J. Widmer, and J.-Y. Le Boudec, “Efficientoadcasting
using network coding,1JEEE/ACM Transactions Netywol. 16, no. 2,
pp. 450-463, 2008.

S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J.o@croft,
“XORs in the air: practical wireless network codinglEEE/ACM
Transactions on Networking (TONyol. 16, no. 3, pp. 497-510, 2008.
C. Fragouli, J. Widmer, and J. Boudec, “A network codagproach to
energy efficient broadcasting: from theory to practice,Pimceedings

of the 25th International Conference on Computer Commutioica
(INFOCOM), 2006.

F. Kuhn, N. Lynch, and R. Oshman, “Distributed compiatat in
dynamic networks,” inProceedings of the 42nd Symposium on Theory
of Computing (STOC)Y010, pp. 557-570.

Y. Afek and D. Hendler, “On the complexity of gloabl contation in
the presence of link failures: The general cagastributed Computing
vol. 8, no. 3, pp. 115-120, 1995.

Y. Afek, B. Awerbuch, and E. Gafni, “Applying static mebrk protocols

to dynamic networks,” irProceedings of 28th Symposium on Founda-
tions of Computer Science (FOC3p87, pp. 358-370.

B. Awerbuch and M. Sipser, “Dynamic networks are as &ssstatic net-
works,” in Proceedings of 29th Symposium on Foundations of Computer
Science (FOCS$)1988, pp. 206—220.

B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. E. Saksjagting to
asynchronous dynamic networks,”toceedings of the 24th Symposium
on Theory of Computing (STOC)992, pp. 557-570.

E. Dijkstra, “Self-stabilizing systems in spite of tlibuted control,”
Communications of the ACMol. 11, pp. 643-644, 1974.

D. Mosk-Aoyama and D. Shah, “Computing separable fionet via
gossip,” inProceedings of 25th Symposium on Principles of Distributed
Computing (PODGC)2006, pp. 113-122.

R. Bar-Yehuda, O. Goldreich, and A. Itai, “On the timengaexity of
broadcast in radio networks: An exponential gap betweearghittiism
and randomization,Journal of Computer and System Sciences (JCSS)
vol. 45, no. 1, pp. 104-126, 1992.

A. E. G. Clementi, A. Monti, and R. Silvestri, “Distribed multi-
broadcast in unknown radio networks,” Rroceedings of 20th Sympo-
sium on Principles of Distributed Computing (PODQQP01, pp. 255—
263.

A. E. F. Clementi, A. Monti, F. Pasquale, and R. SilvesBroadcasting

in dynamic radio networks,Journal of Computer and System Sciences
(JCSS) vol. 75, no. 4, pp. 213-230, 2009.

H. Baumann, P. Crescenzi, and P. Fraigniaud, “Parsiousnflooding

in dynamic graphs,” inProceedings of 28th Symposium on Principles
of Distributed Computing (PODCR009, pp. 260-269.

13



	I Introduction
	II Background and Related Work
	III The RLNC Algorithm
	IV Our Technique
	IV-A Previous Approaches
	IV-B Our Analysis Technique
	IV-C A Typical Template

	V Network Model and Communication Framework
	VI Applications and Results
	VI-A Random Phone Call Model and Gossip Mongering
	VI-B Asynchronous single transfer protocols
	VI-C BROADCAST

	VII Extensions
	VII-A Exploiting a Well-Mixed Message Initialization
	VII-B Exact Dependence on k and Perfect Pipelining
	VII-B1 A Tighter Tail Bound
	VII-B2 Perfect Pipelining of Synchronous Broadcast
	VII-B3 Perfect Pipelining of Rumor Mongering

	VII-C Asynchronous Single Transfer with small k
	VII-D Weaker Requirements for Random Networks

	VIII Conclusions and Open Questions
	Appendix A: Preliminaries: Orthogonal Dual Complement
	Appendix B: proofs
	References

