
ar
X

iv
:1

01
0.

05
58

v1
  [

cs
.D

C
]  

4 
O

ct
 2

01
0

1

Analyzing Network Coding Gossip Made Easy
(Simpler Proofs for Stronger Results Even in Adversarial Dynamic Networks)

Bernhard Haeupler

Abstract—We give a new technique to analyze the stopping
time of gossip protocols that are based on random linear network
coding (RLNC). Our analysis drastically simplifies, extends and
strengthens previous results. We analyze RLNC gossip in a
general framework for network and communication models that
encompasses and unifies the models used previously in this
context. We show, in most settings for the first time, that it
converges with high probability in the information-theoretically
optimal time. Most stopping times are of the form O(k + T )
where k is the number of messages to be distributed andT is
the time it takes to disseminate one message. This means RLNC
gossip achieves “perfect pipelining”.

Our analysis directly extends to highly dynamic networks in
which the topology can change completely at any time. This
remains true even if the network dynamics are controlled by
a fully adaptive adversary that knows the complete network
state. Virtually nothing besides simpleO(kT ) sequential flooding
protocols was previously known for such a setting.

While RLNC gossip works in this wide variety of networks its
analysis remains the same and extremely simple. This contrasts
with more complex proofs that were put forward to give less
strong results for various special cases.

I. I NTRODUCTION

T HIS paper presents a new way to analyze gossip protocols
based on random linear network coding that substantially

simplifies, extends, and strengthens the results of previous
work [1]–[5]. Gossip is a powerful tool to efficiently dissem-
inate information. Its randomized nature is especially well-
suited to work in unstructured networks with unknown, unsta-
ble or changing topologies. Because of this, gossip protocols
have found a wide range of applications [6]–[10] and have
been extensively studied over the past several decades [11]–
[19].

Recently, gossip protocols based on random linear network
coding (RLNC) [20]–[22] have been suggested [23] to cope
with the additional complexities that arise when multiple
messages are to be distributed in parallel. RLNC gossip has
been adopted in many practical implementations [6], [24]–[28]
and has performed extremely well in practice.

These successes stand in contrast to how little RLNC gossip
is understood theoretically. Since its initial analysis onthe
complete graph [1], [2], [23], several papers [3]–[5] have tried
to give good upper bounds on the stopping time of RLNC
gossip in more general topologies. However, none of them
address the case of unstable or changing topologies, and,
even with the restriction to static networks, the guarantees are
far from being general or tight on most graphs. In addition,
all existing proofs are quite involved and do not seem to
generalize easily.

B. Haeupler is with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
e-mail: (see http://people.csail.mit.edu/haeupler/).

Our Results
This paper has two main contributions. The first is a new

analysis technique that is both simpler and more powerful than
previous approaches. Our technique relates the stopping time
for k messages to the much easier to analyze timeT needed
to disseminate a single message. For the first time, and in
practically all settings, this technique shows that RLNC gossip
achieves perfect pipelining, i.e., it disseminatesk messages in
order optimalO(T + k) time. Our results match, and in most
cases improve, all previously known bounds and apply to much
more general models. To formalize this, we give a general
framework for network and communication models that en-
compasses and unifies the models suggested in the literature
so far. We give concrete results for several instantiationsof this
framework and give more detailed comparisons with previous
results in each section separately.

As a second major contribution, our framework extends all
models to (highly) dynamic networks in which the topology
is allowed to completely change at any time. All of our
results hold in these networks even if the network dynamics
are controlled by a fully adaptive adversary that decides the
topology at each time based on the complete network state as
well as all previously used randomness. Virtually nothing,be-
sides simple sequential flooding protocols [29], was previously
known in such truly pessimistic network dynamics. Having
optimal “perfectly pipelined” stopping times in worst-case
adaptive dynamic networks is among the strongest stability
guarantees for RLNC gossip that one might hope for. To this
end, our results are the first that formally explain RLNC gossip
performance in the dynamic environments it is used in and was
designed for. While the algorithm works in this wide varietyof
settings, our analysis remains mostly the same and extremely
simple, in contrast with complex proofs that were previously
put forward for the static setting.

II. BACKGROUND AND RELATED WORK

Gossip is the process of spreading information via a ran-
domized flooding procedure to all nodes in an unstructured
network. It stands in contrast to structured multi-cast in which
information is distributed via an explicitly built and maintained
structure (e.g. spanning tree). While structured multi-cast can
often guarantee optimal use of the limited communication
resources it relies heavily on having a know and stable network
topology and fails in distributed or uncoordinated settings.
Gossip protocols were designed to overcome this problem. By
flooding information in a randomized fashion they guaranteeto
deliver messages with high probability to all nodes with little
communication overhead. This stability and distributed nature
of gossip makes it an important tool for collaborative content
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distribution, peer-to-peer networks, sensor networks, ad-hoc
networks and wireless networks and literature applying gossip
in many areas and for many purposes is vast (e.g. [6]–[10]).

The gossip spreading of both a single message and multiple
messages [11]–[19] has been intensely studied. The spreading
of one message often follows a comparatively simple epidemic
random process in which the message is flooded to a randomly
chosen subset of neighbors. Spreading multiple messages in
parallel is significantly more complicated because nodes need
to select which information to forward. The main problem
in this context is that widely spread messages get forwarded
more often and quickly outnumber rarer messages. In many
cases the slow spread of the rare messages dominates the time
needed until all nodes know every message.

A powerful and elegant way to avoid this and similar
problems is the use of network coding techniques. Network
coding as introduced by the seminal work of Ahlswede, Cai,
Li and Yeung [20] breaks with the traditional concept that
information is transported by the network as an unchanged
entity. Ahlswede at al. show that in many multi-cast scenarios
the optimal communication bandwidth can be achieved if and
only if intermediate nodes in the network code information
together. Li, Yeung and Cai [21] showed that for multi-cast it is
enough if intermediate nodes use linear coding, i.e. computing
linear combinations of messages. Following this Ho, Koetter,
Médard, Karger and Effros [22] showed that the coefficients
for these linear combinations need not be carefully chosen
with regard to the network topology but that for any fixed
network the use of random linear combinations works with
high probability.

The strong performance guarantees and the independence
of the coding procedure from any global information about
the network makes random linear network coding (RLNC) the
perfect tool for spreading multiple messages. This was first
observed and made formal by Deb and Médard [23]. They
show that using randomized gossip and RLNC in a complete
network in which each of the nodes starts with one message
all information can be spread to all nodes in linear time,
beating all non-coding approaches. After the introductionof
this protocol in [23] and its follow-up [1], [2] it was used
in many applications [24]–[28], most notably the Microsoft
Secure Content Distribution (MSCD) or Avalanche System [6].
There has also been more theoretical work [3]–[5] investigat-
ing the convergence time of the RLNC-algorithm on general
static network topologies. We give a detailed description and
comparison to these works in section VI.

Gossip in Dynamic Networks Models
While previous work on RLNC gossip focused on static

networks our analysis shows that it works equally well in a
wide range of dynamic network topologies. This contributesto
ongoing work on modeling dynamic networks and exploring
ways to efficiently communicate over them. With more and
more modern networks being highly dynamic this task has
recently gained importance. The model for studying these
networks is still in flux.

Substantial work has been devoted to random connectivity
models in which a particular graph suffers different random

edge faults in each round [30], or in which each node is
connected to other random nodes in each round. Other work,
e.g. on population protocols (see [13] for a recent survey) has
been invested in studying networks that eventually stabilize.
Other models [31]–[34] allows for worst-case changes in
network connectivity to happen, but only at a slow pace with
plenty of time for self-stabilization to adapt to the changes.
Gossip [14]–[17], [35] and broadcasting [36]–[39] are among
the most frequently considered primitives in these settings.

Recently, Kuhn, Lynch, and Oshman [29] proposed a truly
pessimal model of network connectivity: that an adaptive
adversary chooses the network structure in each round, subject
only to the requirement that the network be connected in each
round, and that nodesanonymously broadcastsome chosen
message without knowing who their current neighbors are. The
strength of this model means that any algorithms that work
in it will be broadly applicable to dynamic networks. Kuhn
et al. give simple algorithms based on sequentially flooding
messages through the network as a proof that computation
is at least possible though with strong performance losses
compared to static networks (even a simple consensus takes
O(n2) rounds in which alln nodes communicate) .

Our network model framework adopts the pessimal dynam-
ics of Kuhn et al. [29] and can be seen as extending the
model to also include network topologies with different con-
nectivities, asynchronous communication or non-broadcasting
behavior. More importantly is that this paper shows that RLNC
gossip remains highly efficient in these dynamic networks giv-
ing the first improvements over the simple flooding algorithms
in [29].

Organization
Section III reviews the RLNC algorithm and Section IV

gives our new analysis technique. In Section V we introduce
the network model framework. Section VI shows how to
apply our technique in various instantiations of this frame-
work. Section VII finally discusses several ways in which the
intentionally simple proofs from Section VI can be extended
or sharpened.

III. T HE RLNC ALGORITHM

In this section, we give a brief description of the RLNC
algorithm. The algorithm is simple and completely indepen-
dent of the network structure or communication protocol.
Alternative descriptions of the same algorithm can be found
in [23] or [25].

The RLNC algorithm sends out packets in the form of
vectors over a finite fieldFq, whereq is an arbitrary prime
or prime power. We assume that there arek messages,
~m1, . . . , ~mk, that are vectors fromFl

q of lengthl. Every packet
that is sent around during the execution of the algorithm has
the form (~µ, ~m), where ~m =

∑k
i=1 µi ~mi ∈ F

l
q is a linear

combination of the messages, and~µ = (µ1, . . . , µk) ∈ F
k
q

is the vector of the coefficients. If enough packets of this
form are known to a node, i.e., the span of the coefficient
vectors is the full spaceFk

q , Gaussian elimination can be used
to reconstruct all messages. For this, onlyk packets with
linearly independent coefficient vectors are needed. Linearity
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furthermore guarantees that any “new packet” that is created
by taking a linear combination of old packets has the same
valid format. With this, it is easy to see that a node can
produce any packet whose coefficient vector is spanned by
the coefficient vectors of the packets it knows. The algorithm
is now easily described:

Each nodev maintains a subspaceXv that is the span of
all packets known to it at the beginning and received so far.
If v does not know any messages at the beginning, thenXv

is initialized to contain only the zero vector. Ifv knows some
message(s)~mi at the beginning,Xv is initialized to contain the
packet(~µ, ~mi) in which ~µ is theith standard basis vector.Xv

furthermore contains all linear combinations that complete the
span of these packet(s). Whenever nodev sends out a packet,
it chooses a uniformly random packet fromXv. At the end of
each round, all received packets are added toXv and again
the span is taken. If the subspace spanned by the coefficient
vectors is the full space, a node decodes all messages.

Throughout the rest of the paper we will solely concentrate
on the “spreading” of the coefficient vectors; the linear com-
bination of the messages implied by a coefficient vector~µ is
always sent along with it. We therefore defineYu to be only
the coefficient part ofXu, i.e., the projection onto the firstk
components.

Remark: The parameterq is used to trade of a faster
running time versus bandwidth. While a largerq can lead to
faster convergence it increases communication overhead by
increasing the size of thek (log q)-size RLNC-coefficients. In
contrast to some of the related papers all results in this paper
hold for arbitrary choices ofq. For simplicity we will often
restrict ourself toq = 2. Note that this is the hardest case
for running time considerations and it can be safely assumed
that convergence times for largerq will only be better. The
caseq = 2 is furthermore interesting because it leads to the
minimal RLNC-coefficients overhead and allows the use of
simple XORs as a basic arithmetic operation.

IV. OUR TECHNIQUE

A. Previous Approaches

When analyzing the RLNC algorithm presented in Section
III, Sub and Médard [23] were the first to use the notion of
dimensionality of the subspacesYv as a measure of progress.
They made the observation that a nodeu can, and most likely
will, transmit new information to a nodev, and thus increase
the dimension ofYv, whenever the subspaceYu is not already
contained inYv. For this reason. they call such a nodeu
helpful for v. It is easy to see that the vectors that do not
extend the dimensionality ofv, namely those inYu ∩ Yv,
form a lower dimensional subspace inYu. This results in a
success probability of at least1 − 1/q if a random vector
from Yu is chosen as a transmission. This fact and the notion
of helpfulness is used as a crucial tool in all further RLNC
proofs [1]–[5].

B. Our Analysis Technique

We argue that the right way to look at the spreading of
information is to look at the orthogonal (dual) complement1

Y ⊥
u of the coefficient subspacesYu. While the coefficient sub-

spaces grow monotonically to the full space their orthogonal
complement decreases monotonically to the empty span. To
see how quickly this happens we first concentrate on one
fixed (dual) vector~µ, determine the time that is needed until
it disappears from all subspacesY ⊥

u with high probability and
than take a union bound over all those dual vectors.

To formalize this we introduce the following crucial notion
of knowing:

Definition 4.1: A node A knows about~µ ∈ Fq if its
coefficient subspaceYA is not orthogonal to~µ, i.e., if there is
a vector~c ∈ YA with < ~c, ~µ > 6= 0.

Note that a nodeA knowing a vector~µ does not imply
~µ ∈ YA or anything aboutA being able to decode a
message associated with the coefficients~µ. Knowing ~µ only
indicates that the node is not completely ignorant about the
set of packets that have a coefficient vector orthogonal to~µ.
Counterintuitively, because we are not working over a positive-
definite inner-product space1, it can even be that~µ ∈ YA but
A does not know~µ. For example, overF 2

2 , if YA is just (the
span of) the vector(1, 1), then since(1, 1) overF 2

2 (has dot
product 0 with itself mod 2),A does not know(1, 1), even
though(1, 1) ∈ YA. The next lemma proves the two facts that
make this notion of knowledge so useful:

Lemma 4.2:If a node A knows about a vector~µ and
transmits a packet to nodeB thenB knows about~µ afterwards
with probability at least1−1/q. Furthermore if a node knows
about all vectors inFk

q then it is able to decode allk messages.

Proof: Knowledge about a~µ essentially spreads with
probability 1 − 1/q because the vectors inYu that are per-
pendicular to~µ form a hyperplane inYu. For a complete and
more elementary proof see Appendix B.

With this, the spreading of knowledge for a vector~µ is
a monotone increasing set growing process. It is usually
relatively easy to understand this process and to determine
its expected cover timeT . Because the spreading process can
be seen as a monotone Markov process, it is easy to prove
that the cover time always has an exponentially decaying tail.
In most cases this tail kicks in close to the expectation. This
allows to pick at (usually t = O(T + k)) such that aftert
time any vector inFk

q has spread with probability2−O(k) and
then take a union bound over allqk vectors to complete the
proof that with high probability everything has spread. The
following theorem summarizes this idea:

Theorem 4.3:Fix a prime (power)q ≥ 2, a probability
δ > 0 and an arbitrary network and communication model.
Suppose a single message is initiated at a nodev and then
flooded through the network by the following faulty broadcast:
In every round every node that knows the message and is
supposed to communicate according to the communication

1While this section is self-contained Appendix A offers additional infor-
mation on orthogonal complements.
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model does forward the message with probability1− 1/q and
remains silent otherwise. If for every nodev the probability
that the message reaches all nodes aftert rounds is at least
1−δq−k thenk messages can be spread in the same model in
time t with probability1− δ using the RLNC gossip protocol
with field sizeq.

Proof: This follows directly from the discussion above
and Lemma 4.2. Initially every non-zero vector~µ ∈ F

k
q

is known to at least one node namely the one that knows
about theith message wherei is a non-zero component of
~µ. Whenever the network and communication model dictates
that a nodeA that knows~µ sends a message to a nodeB
Lemma 4.2 shows that with probability1 − 1/q the nodeB
afterwards knows~µ. The spreading of each vector~µ therefore
behaves like a faulty flooding process that floods~µ in every
transmission with probability1−1/q. By assumption we have
that aftert time steps every vector fromFk

q fails to spread to
all nodes with probability at mostδq−k. Taking a union bound
over allqk vectors gives the guarantee that the probability that
aftert rounds all nodes know about all vectors is at least1−δ.
According to Lemma 4.2 all nodes can decode in this case and
have learned thek messages.

C. A Typical Template

Next we give a typical and easy way to apply Theorem
4.3. We show that the cover time for one vector~µ is often
dominated by a negative binomial distributionNB(T, 1− p),
whereT is the expected coverage-time, andp is a constant
probability. Such a distribution has a strong enough tail to
prove optimalO(T + k) stopping times. In what follows we
give a simple template to establish this:

What is needed for this template is a definition of a
“successful round” such that at mostT such rounds are needed
to spread a single vector~µ and such that a round is not a
success with (say for now constant) probability at mostp.
The appropriate definition of success depends on the network
model and is usually centered around its expansion, cuts, or
diameter which determine how many additional nodes come to
know about the vector in a “good round”. Since nodes do not
forget any information this spreading process is monotone and
no progress gets lost in a bad round. Thus if the knowledge
about~µ has not spread aftert = c(k + T + log δ) steps, then
there were at leastc(k+T+log δ)−T > (c−1)(k+T+log δ)
failures, whereas one would only expectpc(k + T ). If we
choose the constantc large enough, a Chernoff bound or even
simpler methods can now show that the probability for this to
happen is at most2−O(k+T+log δ). This is small enough that,
after a union bound over allqk vectors (e.g. forq = 2), the
probability that allk messages have not spread is at mostδ.
This simple template often applies directly and leads to simple
proofs of expected and high probability converges times of
O(k+T ) that are often already order optimal. Even when not
stated explicitly, all of our results hold furthermore withhigh
probability. In particular as shown here, an optimal additive
Θ(log δ−1) additional rounds typically suffice to obtain a1−δ
success probability for anyδ > 0.

V. NETWORK MODEL AND COMMUNICATION

FRAMEWORK

In this section, we elaborate on our network model frame-
work that encompasses and extends the models suggested in
the literature so far. The models and the results are very stable
and can easily be extended further. We chose the following
description as a trade-off between simplicity and generality.

The Network
We consider networks that consist ofn nodes. A network

is specified by a (directed) graphG(t) on these nodes for
every time t. Edges inG(t) are links and present potential
communication connections between two nodes in roundt.
We will usually assume that the network has, at all times,
certain connectivity properties and will express the stopping
time in terms of these parameters. (See also Section VII-D.)

(Adversarial) Dynamics
In all previous papers that analyzed the RLNC algorithm,

the network topology was assumed to bestatic, i.e., ∀t :
G(t) = G. As discussed in the introduction, we allow the
network topology to change completely from round to round
and allow a fully adaptive adversary to choose the network.
Because we are dealing with randomized protocols, we have
to specify precisely what the adversary is allowed to adapt to.
In our models (similar to [29]) anadaptive adversarygets to
know the complete network state and all previously used ran-
domness when choosing the topology. After that, independent
randomness is used to determine the communication behavior
and the messages of the nodes on this topology.

The Goal: Gossip
Distributed over the network arek messages numbered

1, . . . , k each known to at least one node. Throughout this
paper, we assume a worst-case starting configuration for
all messages including the case in which all messages are
exclusively known to only one node (see also Section VII-A).
The goal of gossip protocols is to make all messages known
to all nodes in the network using as little time as possible (in
expectation and with high probability)

Communication
Nodes communicate along links with each other during

transactions that are atomic in time. In each round, one packet
is transmitted over a link if this link is activated in this
round. From the view of a node, there are four commonly
considered types of connections. Either a node sends to all
its neighbors, which is usually referred to as BROADCAST,
or it establishes a connection to one (e.g. uniformly random)
neighbor and sends (PUSH) or receives (PULL) a message or
both (EXCHANGE). In all cases, the packet is chosen without
the sender knowing which node(s) will receive it.

Message and Packet Size
As described in Section III we assume that all messages

and packets have the same size, and that a packet exactly
contains one encoded message and its RLNC-coefficients.
Note that the restriction on the message size is without loss
of generality, since one can always cut a big message into
multiple messages that fit into a packet. We also assume that
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the message size is large enough that the size of the RLNC-
coefficients that are sent along is negligible. This assumption
was made by all previous work and is justified by simulations
and implementations in which the overhead is only a small
fraction (e.g.< 1% [23]) of the packet size.

Synchronous versus Asynchronous Communication
We consider two types of timing models. In the synchronous

case, all nodes get activated at the same time and choose their
messages independently, and messages get delivered according
to the current networkG(t) and who sends and receives
from whom. Note that this model is inherently discrete, and
we assume thatt = 1, 2, . . . are the times when nodes
communicate. We discuss this model in Section VI-A. For the
asynchronous case, we assume that every node communication
is triggered independently by a Poisson clock. This means
that (with probability one) at any time only one node sends
its message. This model can be directly translated into a
discrete time model that defines roundi as theith time such
a communication takes place. The model considered in the
literature so far assumes that every node is activated uniformly
at random to communicate and then chooses a uniformly
random neighbor for a PUSH, PULL or EXCHANGE. They
also scale the time in the asynchronous model by a factor
of 1/n so that each node gets activated once per time unit
in expectation. We do not assume uniformity in either of the
two distributions, and we present results for this more general
model in Section VI-B.

VI. A PPLICATIONS AND RESULTS

In this section we take the models from Section V and
describe the results that can be obtained for them using our
analysis technique. There is a section for each different kind
of communication model. We start with the Random Phone
Call Model [23] that introduced RLNC-gossip. We than cover
the extensions to arbitrary underlying network topologiesas
considered by [3]–[5]. Section VI-B proves stopping times
for a communication model that encompasses all former
asynchronous communication protocols (PUSH, PULL, EX-
CHANGE, . . . ). For this model we answer a question of [5]
and show that a simple min-cut quantity exactly captures the
behavior of gossip ofn messages. Lastly in Section VI-C
we give the first bounds for the performance of synchronous
and asynchronous BROADCAST in general networks. In this
section we concentrate on showing only simple proofs that
solely use the template from Section IV-C. In Section VII,
we revisit the models covered here and show some proof
extensions.

A. Random Phone Call Model and Gossip Mongering

In this section, we consider the work of Deb and
Médard [23] and its follow-up [1], [2] and show how to sim-
plify and improve the analysis. The papers use a fairly simple
model from our framework, namely the synchronous PUSH
or PULL model on the complete graph, i.e.,G(t) = Kn.
This means in each round each node picks a random other
node to exchange information with. This model is also known
as the random phone call model and was introduced by [8].

It is shown [23] that it is possible in this model to spread
k = Θ(n) messages inO(n) time if q = n. This beats the
O(n logn) time of n sequentialO(log n)-phases of flooding
just one message. The follow-up papers [1], [2] generalize
this result to smaller number of messagesk and allow q to
be as small ask. They show that the running time of the
algorithm ist = O(k +

√
k log k logn), i.e., order optimal as

long ask ≥ log3 n. In order to prove this result, they have
to assume that each node knows initially only one message
and that initially the messages are equally spread. Even with
these assumptions the analysis is long and complicated and
the authors state themselves in their abstract that “While
the asymptotic results might sound believable, owing to the
distributed nature of the system, a rigorous derivation poses
quite a few technical challenges and requires careful modeling
and analysis of an appropriate time-varying Bernoulli process.”

Our next lemma shows that RLNC gossip actually always
finishes with high probability in order optimal stopping time
O(k + logn). Our analysis is much simpler and has many
further advantages: It holds for all choices ofk and allows
q to be as small as2. Our proof does also not rely on any
assumptions on the initial message distribution. We show in
Section VII-B that the well-mixed initial state assumed in
[1], [2], [23] actually provably speeds up the convergence
compared to the worst-cast distribution for which our result
holds. Our proof furthermore gives a success probability of
1 − 2t if the algorithm runs forO(t) time. In the setting of
[23] with k = n, this is1− 2−n instead of the1− 1/n stated
there. Lastly it is interesting to note that previous general
approaches [3], [5] are unable to prove any running time
that beats the simple non-coding non-gossipingO(n log n)
sequential flooding approach when applied to the complete
graph/network.

Lemma 6.1:The RLNC gossip in the random phone call
model withq = 2 spreadsk messages with high probability in
exactlyΘ(k+ logn) time. This holds independently from the
initial distribution of the messages and of the communication
model (e.g. PUSH, PULL, EXCHANGE).

B. Asynchronous single transfer protocols

After the helpfulness of RLNC gossip was established for
the complete graph by [23], the papers [3], [4] and [5] general-
ized it to general static topologies and consider asynchronous
and synchronous PUSH, PULL and EXCHANGE gossip. In
this section we first review the previous results and than show
how to improve over them giving an exact characterization of
the stopping time or RLNC gossip fork = n messages using
the template of Section IV-C.

The paper “Information Dissemination via Network Cod-
ing” [3] by Mosk-Aoyama and Shah was the first to consider
general topologies. They consider a similarly general version
of the synchronous and asynchronous gossip as presented here
and analyze the stopping times fork = n in dependence on the
conductance. Their analysis implies that with high probability
O(n logn) phases ofn asynchronous rounds suffice for the
complete graph and constant degree expanders andO(n2)
such phases for the ring-graph. While the analysis is very
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interesting, these results do not beat the simple (non-coding)
sequential flooding protocol and the stopping time of the ring-
graph and many other graphs is even off by a factor ofn.
Their running times for the synchronous model are similar but
lose anotherlogn-factor. Their dependence is on the success
probability 1 − δ is furthermore multiplicative inlog δ−1

because it stems from a standard probability amplification
argument.

Two recent papers [4], [5] analyzed RLNC gossip using
two completely different approaches. The second [5] points
out that the analysis of the first [4] is flawed and prove that
the asynchronous RLNC gossip on a network with maximum
degree∆ takes with high probabilityO(∆n) time. Their proof
uses an interesting reduction to networks of queues and applies
Jackson’s theorem. They also give a tight analysis and lower
bounds for a few special graphs with interesting behavior
(see below). While their analysis is exact for few selected
graphs the analysis is far from tight and in most graphs the
maximum degree has nothing to do with the stopping time
of RLNC gossip. The major question asked in [5] is to find
a characterizing property of the graph that determines the
stopping time.

We give exactly such a characterization for the asyn-
chronous case withk = n assuming a worst-cast message
initialization. The model we use is a generalization of the
classical PUSH, PULL and EXCHANGE model: We allow
the topology in every round to be specified by a graph with
directed and/or undirected edges and a probability weight
pe on every edgee, such that the sum over all edges is at
most 1. In every round each edge gets exclusively selected
with probability pe, i.e., in each round at most one edge
gets selected. If the edge is undirected an EXCHANGE is
performed and if a directed edge gets activated a packet is
delivered in the direction of the edge. Note that this model is
a generalization of the “classical” communication models.To
obtain the probability graph from the undirected network with
PUSH or PULL one just has to replace every undirected edge
{u, v} by two directed edges with probability weight1n∆u

and
1

n∆v
where∆u and∆v are the degrees ofu andv respectively.

To obtain the EXCHANGE protocol each undirected edge
{u, v} simply has the probability weight 1n∆u

+ 1
n∆v

.
Given such a network graphG with probability weightspe

we define the min-cutγ(G) as:

γ(G) = min
∅6=S⊂V

∑

e∈Γ+

G
(S)

pe

whereΓ+
G(S) are all edges leaving a non-empty vertex-subset

S ⊂ V in G. The next two lemmas show that this quantity
exactly captures how long RLNC gossip forn messages takes.

Lemma 6.2:If for every time t the min-cut ofG(t) is at
leastγ then the asynchronous single transfer algorithm with
q = 2 spreadsn messages with probability at least1 − 2−n

in O(nγ ) time.

The next lemma proves thatO(nγ ) is optimal.

Lemma 6.3:With high probability, the asynchronous single
transfer algorithm takes at leastΩ( kγ ) rounds to spreadk

messages if it is used on anyfixed graphG with (min-)cut
γ on which at leastΘ(k) messages are initialized inside this
cut.

Applying Lemma 6.2 to the standard PUSH/PULL model
gives aO(n2∆) stopping time for any dynamic graph whose
maximum degree is bounded by∆, which is the main result
of [5]. It also givesO(n2) for the complete graph (instead of
the worst caseO(n3) of [5]) and nicely explains the behavior
of the barbel graph and the extended barbel-graph that were
considered by [5]. The proof of Lemma 6.2 can furthermore
easily be extended to show that the dependency on the success
probability is only logarithmic and additive in contrast tothe
previous work [3], [5].

C. BROADCAST

In this section we give convergence results for synchronous
and asynchronous BROADCAST gossip in arbitrary dynamic
networks. These are to our knowledge the first results for
the RLNC algorithm in such a setting. We think the results
in this section are of particular interest for highly dynamic
networks. The reason for this is that many of the highly
unstable or dynamic networks that occur in practice like ad-
hoc-, vehicular- or sensor-networks are wireless and thus have
inherent broadcasting behavior.

To fix a model we first consider the simple synchronous
broadcast model. We assume without loss of generality that
the network graphG is directed because any undirected edge
can be replaced by its two anti-parallel directed edges. Having
wireless networks in mind we also assume that in each round
each nodes computes only one packet that is then send out to
all neighbors. Our results also hold for the less realistic model
where a node sends out a different packet to each neighbor.

The parameter that governs the time to spread one message
in a static setting is (not surprisingly) the diameterD and
it is easy to proveΘ(D + k) stopping times fork messages
using our technique. In a dynamic setting this is not true. Even
for just one message, an adaptive adversary can, for example,
always connect both the set of nodes that know about it and the
set of nodes that do not know about it to a clique and connect
the two cliques by one edge. Even though the graphG(t)
has diameter2 at all times, it clearly takes at leastn rounds
to spread one message. In order to prove stopping times in
the adaptive adversaries model we switch to a parameter that
indirectly gives a good upper-bound on the diameter for many
graphs. The parameter we use is the isoperimetric number
h(G), which is defined as follows:

h(G) := min
S⊆V

|Γ+
G(S)|

min(|S|, |S|)
,

whereΓ+
G(S) are the nodes inG outside of the subsetS that

are in the directed neighborhood ofS.
To give a few example values: for disconnected graphsh(G)

is zero and for connected graphs it ranges between1 and 2
n ;

for a k-vertex-connected graphG we haveh(G) = Ω( kn ) and
h(G) = Θ(1) holds if and only ifG is a vertex-expander (or
a complete graph).
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We are going to show that the expected time for one
message to be broadcasted is at mostT = log(nh(G))

h(G) . This
is O(n) for a line andO(log n) for any vertex-expander. Our
bound is tight in the sense that for any valueh with 1 ≥ h ≥ 2

n
there is a static graphG that has diameter at leastO(T ) and
isoperimetric numberh(G) = Θ(h). Having an upper bound
on the timeT it takes to spread one message we again prove
an perfectly pipelined time ofO(T + k) for k messages:

Lemma 6.4:The synchronous broadcast gossip protocol
takes with high probability at mostO( log(nh)h + k) rounds
to spreadk messages as long as the isoperimetric number of
the graphG(t) is at leasth at every timet.

A similar result to Lemma 6.4 can be proven for the
asynchronous BROADCAST model in which at every round
each node gets selected uniformly independently at random
(i.e. with probability1

n ) to broadcast its packet to its neighbors:

Lemma 6.5:The asynchronous broadcast gossip protocol
takes with high probability at mostO(n ·( log(nh)h +k)) rounds
to spreadk messages as long as the isoperimetric number of
the graphG(t) is at leasth at any timet.

VII. E XTENSIONS

In this section we discuss how the simple proofs from
Section VI that use only the template from Section IV-C can
be extended to give more detailed or sharper bounds.

A. Exploiting a Well-Mixed Message Initialization

As stated in Section V we assume throughout the paper that
k messages are to be spread that are initially distributed in a
worst-case fashion. All earlier papers restricted themselves to
the easier special case thatk = n and that each node initially
holds exactly one message [3], [5], or thatk is arbitrary but
the network starts in a similarly well-mixed state in which
each message is known by a different node and all messages
are equally spread over the network [1]. In many cases the
worst-case and any well-mixed initialization take equallylong
to converge because the running time is lower bounded and
bottlenecked by the flooding timeT for a single message or
the time it takes for a node to receive at leastk packets.
Nevertheless there are cases where a well-mixed initialization
can drastically improve performance.

Our proof technique explains this and we give a simple
way to exploit assumptions about well-mixed initializations
to prove stronger performance guarantees: If, e.g., each node
initially holds exactly one ofk = n messages then most
vectors~µ are already known to most nodes initially. More
precisely exactly the

(

n
i

)

(q − 1)i vectors with i non-zero
components are initially known to exactlyi nodes. With many
vectors already widely spread initially the union bound over
the failure probabilities for all vectors to spread aftert rounds
can decrease significantly. Taking the different quantities and
probabilities for nodes that are initially known to a certain
number of nodes in account one can prove in theses cases
that a smallert suffices.

One example for a mixed initialization being advantageous
is discussed in the next Section VII-B and another one is

the convergence time of the asynchronous PUSH and PULL
protocol on the star-graph: For both PUSH and PULL the
network induced by the star-graph has a min-cut of1/n2

which leads according to Lemma 6.2 and 6.3 to a stopping time
of Θ(n3) under a worst-case initialization. To lower bound the
convergence time Lemma 6.3, which relates the convergence
time to the min-cut of the network graph, has to assume that
at least a constant fraction of the messages are initialized
inside a bad cut. For the “classical” initialization in which
each node starts with exactly one message this is true for
the PUSH model but not in the PULL model in which every
bad cut only contains few messages. Indeed assuming a well-
mixed initialization the PUSH protocol takes stillΘ(n3) time
to converge while a much lowerΘ(n2 logn) stopping time for
the PULL model can be easily derived using our techniques.

B. Exact Dependence onk and Perfect Pipelining

In most (highly connected) networks the spreading timeT
for one message is short andO(k) becomes the dominant term
in the order optimalO(k + T )-type upper bounds presented
in this paper. So is, for example,T = O(log n) for most
expanding networks. While it is clear that at leastk packets
need to be received at each node it becomes an interesting
question how large the constant factor hidden by theO-
notation is. Differently stated, we ask how large the fraction
of helpful or innovative packets received by a node is over the
execution of the protocol.

Determining and even more optimizing proofs to obtain
such constants is usually a big hassle or even infeasible
due to involved proofs. Simulation is therefore often used in
practice to get a good estimation of the constants (e.g. [1]).
Our template from Section IV-C reduces the question for the
stopping time of RLNC gossip to a simple standard question
about tail bounds for negative binomial random variables.
This makes it often possible to determine and prove (optimal)
constants (and lower order terms). All that is needed is to
replace the Chernoff bound in the template from Section IV-C
by an argument that gives the correct base in the exponential
tail-bound. In Section VII-B1 we give such a bound. We than
exemplify then how to apply this bound by two examples: in
Section VII-B2 the synchronous BROADCAST gossip from
Section VI-C and in Section VII-B3 the Rumor Mongering
from Section VI-A. In both cases we can show that the
constant in the dependency onk is arbitrarily close to the
absolutely optimal constant1, i.e. we can obtain a perfectly
pipelinedt = k +O(T ) stopping time.

1) A Tighter Tail Bound:The following simple lemma gives
a stronger guarantee on the tail of a negative binomial random
variable than the Chernoff bound used in the template from
Section IV-C. The lemma proves that a constant factor away
from the expectation the probability drops by a factor ofp
with every additional trial instead of a constant factor drop
that would be obtained by a standard Chernoff bound:

Lemma 7.1:The probability that aftert = k + O(T )
independent trials there are less thanT successes is at mostpk

wherep is the failure probability (with− log p ≥ Ω(log t)).
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If we apply this stronger tail bound in the template from
Section IV-C we obtain the following corollary:

Corollary 7.2: Let q ≥ nΩ(1) and T, k, d ≤ nO(1). If in
order to spread any fixed coefficient vectorµ onlyT successful
rounds are needed and if a round fails with probability at most
p then k messages spread int = log p

log q k + O(T ) + d rounds
with probability at least1 − pd. For p = 1/q this means a
running time oft = k + O(T ) in expectation and with high
probability.

2) Perfect Pipelining of Synchronous Broadcast:In this
section we use the tighter tail bounds from the last Section
VII-B1 to sharpen the bounds on the convergence time of the
synchronous BROADCAST from Section VI-C:

Lemma 7.3:The synchronous broadcast gossip protocol
takes with high probability at mostk + O(T ) rounds to
spreadk messages whereT = log(nh)

h if the isoperimetric
number of the graphG(t) is at leasth at any timet. (and
log q = Ω(logn))

3) Perfect Pipelining of Rumor Mongering:Another inter-
esting case in which the exact dependence on the number of
messagesk was considered is the Rumor Mongering process
from Section VI-A. The authors of [1] give a theoretical
analysis in the regimek > log2 n where theO(k) term
clearly dominates and prove an upper bound of3.46k for the
PUSH protocol and5.96k for the PULL model. They also
simulated the protocol and estimated the stopping time to be
1.5k + log2 n. Both their analytic bounds and the simulation
assume that messages start out in separate nodes and are
equally spread over the network (see also Section VII-A). In
this section we improve over these findings and show that the
PULL model in this setting actually converges in(1 + o(1))k
time for k > log1+o(1) n. Interestingly we also show that with
a worst-cast initialization (see also Section VII-A) the PULL
model does not achieve this convergence time but has a leading
constant between1.58 and1.83:

Determining the correct constants for random communica-
tion protocols like the random phone call model is much more
delicate than proving order optimal convergence times. The
reason for this is that the union of random exchanges over
many rounds almost surely form an expander while the graph
in a single round is usually not even connected. This is the
case for all of the presented random phone call models. While
all these models are very stable order optimal one must be
much more careful to achieve and even more prove optimal
k(1 + o(1))-type bounds for largek. We exemplify this by
describing these concerns in detail for the PULL protocol:

The worst-case initialization for the PULL protocol is
when all messages are initially known to only one node. In
this case this node is not pulled at all in one round with
probability (1 − 1/n)n ≈ e−1 = 0.367879441. In order to
get pulled at leastk times it takes therefore in expectation
at leastk/(1 − e−1) = 1.58197671k rounds. Thus for the
case that only one node initially knows about all messages
and if this node prepares a message in each round which it
sends out to the nodes requesting it this is an information-
theoretic lower bound on the number of rounds. A direct

analysis of the protocol using Corollary 7.2 for this case
gives a constant oflog(q)/ log((1/e + (1 − 1/e)/q)) which
is 1.82462135k for q = 2. This can be improved if the start
state is a bit more mixed, e.g., if each message is known toi
nodes initially. In this case the information-theoreticallower
bound becomes1/(1 − e−i)k and our upper bound becomes
log(q)/ log((1/ei+(1−1/ei)/q)) this means that fori = ω(1)
our proof gives the optimal stopping timet = k(1 + o(1)).
Lemma 7.4 also shows a(1 + o(1))k stopping time for the
case where all messages are initiated at different nodes. This
contrasts the upper bound of5.96k and the estimate of1.5k
of [1] for this setting. More extensive simulation results than
the ones in [1] confirm that the constant for the dependency
on k should indeed be smaller than the projected1.5k.

Lemma 7.4:The RLNC algorithm in the random phone
call PULL model even withq = 2 spreadsk = log1+o(1) n
messages with high probability in(1 + o(1))k time if all
messages are initially known to different nodes.

C. Asynchronous Single Transfer with smallk

Section VI-B proves convergence times for spreadingk =
n messages using the asynchronous single transfer protocols.
These bounds are tight and directly extend to aΘ( kγ ) bound
for k = Ω(n) messages. In what follows we want to generalize
this to smaller number of messages and discuss the bounds that
can be obtained using the technique from Section IV.

For small number of messages, e.g.k = 1, the convergence
time of RLNC single transfer gossip can be much faster than
O(nγ ) but still be ω( kγ ). This shows that the min-cutγ is
not the right quantity to look at in this scenario. Again, as
in Section VI-C, conductance quantities capture much better
how fast a small number of messages spreads. The quantity
we consider is:

λ(G) = min
S⊂V

∑

e∈out(S) pe

min(|S|, |S|)

The next lemma shows that it takes at mostT = O( log n
λ )

time for one message to spread if the conductance is bounded
by λ.

Theorem 7.5:In the asynchronous single transfer model
(with any q) it takes in expectation at mostT = O( log n

λ )
time for one message to spread.

Proof: The probability that a set of nodes that know about
the message grows from sizei < n to i + 1 is at least(1 −
1/q)(λmin(k, n−k)). It thus takes at least 1

(1−1/q)λ rounds in
expectation for the first success, 1

2(1−1/q)λ rounds for the sec-
ond success and in generalT =

∑n
i=1

1
min(i,n−i)(1−1/q)λ <

(1 + 1
q−1 )

2
λ logn = O( log n

λ ) rounds in expectation for one
message to spread.

This is a tight bound for many regular graphs and gives e.g.
a flooding time ofΘ(n logn) for the complete graph or any
other regular expanders. It is clear that RLNC-gossip for any
k needs to take at least so much time. The other lower bound
that kicks in for large enoughk is theΩ( kγ ) lower bound from
Lemma 6.3. Similar to the results for the other models we want
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show that the total running time is essentially (up to at most
a logn factor) either dominated by theT = logn

λ rounds to
spread one message or for larger number of messagesk the
O( kγ ) rounds coming from the communication lower bound
that thek messages have to cross the worst case cut.

Lemma 7.6:Disseminatingk messages in the asynchronous
single transfer model withq = 2 takes with high probability
at mostt = O( kγ + log2 n

λ ) rounds if the graphG as a min-cut
of at mostγ and a conductance of at leastλ at all timest.

D. Weaker Requirements for Random Networks

The idea behind proving performances in the rather strong
adaptive adversary model introduced in this paper is that the
guarantees directly extend to the widest possible range of
dynamic networks including random models. Most of our
proofs like the ones of Lemma 6.2, 6.4 or 6.5 demand that the
network graphG(t) has a certain connectivity requirement at
any timet. These requirements might be too strong especially
for random network models. We discuss in the following how
these requirements can be easily weakened in many ways:

The simple fact that no progress in the spreading of
knowledge gets lost makes it easy to deal with the case that
the connectivity fluctuates (e.g., randomly). Increasing the
stopping time by a constant factor easily accounts for models
in which the desired connectivity occurs only occasionallyor
with constant probability. Looking at the average connectiv-
ity is another possibility. It is furthermore not necessaryto
require the entire graph to be expanding on average but it
suffices to demand that each subset expands with constant
probability according to its size. This way convergence can
be proven even for always disconnected graphs. Especially
for random models it can also be helpful to consider the
union of the network graphs of consecutive rounds, i.e.
G′(t) = G(3t′) ∪ G(3t′ + 1) ∪ G(3t′ + 2). This gives for
example directly valid upper bounds for the synchronous or
asynchronous BROADCAST model.

As a simple example for the usefulness of these approaches
we discuss an alternative way to prove Lemma 6.1 about the
stopping time of the Rumor Mongering process: Instead of
analyzing the Rumor Mongering as a synchronous protocol
on the complete graph in which each node performs a PULL,
PUSH or EXCHANGE one can alternatively see it as a
synchronous BROADCAST (see Section VI-C) on a random
network. The network graphG(t) in this case is simply
formed by a random directed in-edge, directed out-edge or
undirected edge at each node depending on whether on looks
at the PUSH, PULL or EXCHANGE model. The results from
Lemma 6.4 or 6.4 will not directly give any bounds simply
because the network graphG(t) is with high probability dis-
connected. Using either of the two more advanced extensions
solves this problem: with constant probability every set has a
constant expansion; alternatively one can use that the union of
a constant number of rounds, as described above, forms with
an expander with high probability.

VIII. C ONCLUSIONS ANDOPEN QUESTIONS

We have given a new technique to analyze the stopping
times of RLNC-gossip that drastically simplifies, strengthens
and extends previous results. Most notably all our results hold
in highly dynamic networks that are controlled by a fully
adaptive adversary.

Theorem 4.3 gives a direct way to transfer results for the
single-message flooding/gossip process to the multi-message
RLNC-gossip if strong enough tail bounds are provided. One
candidate for which this could work is, e.g., [19] which can be
interpreted as giving bounds on a synchronous single transfer
gossip for one message.

This paper also gives evidence that in most network models
RLNC-gossip achieves perfect pipelining, i.e. the bounds for
disseminatingk messages have the formO(k + T ) whereT
is the expected time to (faultily) flood one message. It is a
very intriguing question under which general conditions onthe
network model one can prove this behavior. It is easy to see
that the monotone set-growing process induced by the faulty
flooding process of one message always exhibits a strong
exponential tail as needed to apply Lemma 4.3. This already
implies asymptotic convergence times of the formkγ (1+o(1))
(see also Lemma 7.6) whereγ is the min-cut in the induced
Markov-Chain, i.e. the minimal probability over all sets to
inform another node within one round. The main question
remaining is therefore to guarantee that this tail kicks in after
O(T ) rounds.

APPENDIX A
PRELIMINARIES: ORTHOGONAL DUAL COMPLEMENT

In this section we provide a few background facts in
linear algebra on vector spaces without (positive-definite) inner
product, especially the notions involved in orthogonality. Even
so the Section IV is fully self-containing this section might be
helpful in understanding the proofs.

For a vector spaceV the dual spaceV ∗ consists of all
linear forms onV . For any subsetS ⊆ V the orthogonal
(dual) complementS ⊥ is defined as all elements fromV ∗

that disappear onS. It is easy to see that the orthogonal
complement is a subspace inV ∗ and has co-dimension equal
to the dimension of the span ofS in V . The dual space
V ∗ is isomorphic toV and in the case ofFk

q the dot-
producty 7→ (x 7→< x, y >) is an isomorphism. Using this
identification the orthogonal complement can also be defined
as the space of all vectors that are perpendicular (i.e. having
a zero dot-product) to all vectors inS. This is the standard
definition of orthogonality and for inner-product spaces like
Rk it matches the geometrical notion of orthogonality. This is
not true forFk

q in which the dot-product is not positive definite.
This leads to counter-intuitive situations, e.g. the vector [1, 1]
is orthogonal to itself inF 2

2 . But the fact remains that every
subspaceS ⊆ F

k
q can be assigned a orthogonal complement

subspaceS⊥ with dim(S) + dim(S⊥) = k remains true and
is the important notion used in Section IV.
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APPENDIX B
PROOFS

Proof of Lemma 4.2:We give a more basic proof here:
For this we define two vectors~c1,~c2 ∈ F

k
q as equivalent if

< ~c1, ~µ >=< ~c2, ~µ >. This splitsYA in exactlyq equivalence
classes of equal size. To see this note that, becauseYA is a
subspace, scalar-multiplication is a bijection between any two
equivalence classes that correspond to a non-zero dot-product.
By assumptionYA furthermore contains a vector~c that has
a non-zero dot-product with~µ. This gives that~µ-translation
is a bijection between the zero dot-product equivalent class
and another equivalence class. Thus with probability exactly
1 − 1/q a packet with coefficient vector from a non-zero
equivalence class is chosen for transmission. In this case this
coefficient vector gets added toYB and the nodeB now knows
~µ.

For the second claim we prove that any nodeA that is not
able to decode does not know about at least one vector~µ: If
A can not decode thanYA is not the full space. BecauseYA

is a subspace it is lower-dimensional and we can use Gram-
Schmidt to construct a orthogonal basis ofYA and a vector~µ
that is orthogonal toYA. This vector~µ is then by definition
not known toA, a contradiction.

Proof of Lemma 6.1:For the lower bound we note that
each node receives in expectation (and with high probability)
only Θ(1) packets per round. Thus if in the beginning at
least one node did not already know about a constant fraction
of the messages, then the algorithm has to run for at least
Ω(k) rounds. It is also clear that even one message takes
in expectationΩ(logn) time to spread to all nodes. This
completes the lower bound.

To prove the upper bound, we use the template from IV-C:
For this we fix a coefficient vector~µ and define a round as
successful if the number of nodes that know about it increases
by at least a constant factorλ > 1 or if the number of nodes
that do not know about~µ decreases by a factor ofλ. There are
at mostO(log n) successful rounds needed until at leastn/2
nodes know about~µ and at most anotherO(log n) successful
rounds until all nodes know about~µ. It remains to be shown
that each round succeeds with constant probability.

We first consider the PULL model. At first we havei < n/2
nodes that know about~µ and at leastn/2 nodes pulling for it.
Each of those nodes has a probability ofi/n to hit a knowing
node. We expect ai/n fraction of the ignorant nodes, i.e., at
leasti/2 nodes, to receive a message from a node that knows
about~µ. The independence of these successes and Lemma 4.2
prove that with constant probability at leastΩ(i) nodes learn
about~µ. Once there are at leastn/2 nodes that know~µ, each
of the ignorant nodes pulls a packet from a knowing node with
probability at least1/2.

The proof for the PUSH model is similar. If there arei <
n/2 nodes that know about~µ and push out a message, then
there are at leastn/2 ignorant nodes that each receive at least
one message from one of thei nodes with probability1−(1−
1/n)i. It is not hard to see that, in total,Ω(i) ignorant nodes
receive a message from a node that knows~µ with constant
probability. Lemma 4.2 now guarantees that, with constant

probability, the number of ignorant nodes that learn~µ is only
a small factor smaller. Once there aren/2 nodes knowing
about~µ and each of these pushes out, each node that does
not know~µ has a chance of(1 − 1/n)n/2 = e−2 per round
to receive a message from a node that knows~µ. Applying
Lemma 4.2 again finishes the proof.

Proof of Lemma 6.2:Our proof proceeds along the lines
of the simple template from Section IV-C and concentrates on
the spreading of one coefficient vector. We define a round as
a success if and only if one more node learns about it. It is
clear that exactlyn successes are needed. From the definition
of γ and Lemma 4.2 follows that each round is successful with
probability at leastγ(1 − 1/q). Thus if we run the protocol
for t = c( n

(1−1/q)γ ) rounds we expect at leastcn successes
and by Chernoff bound the probability that we get less thann
is at most2−O(n). If we choosec appropriately this is small
enough to end up with2−n after taking the union bound over
the qk = 2n vectors.

Proof of Lemma 6.3:In each round, at most one packet
can cross the cut. For this to happen, an edge going out of
the cut has to be selected and the probability for this is by
definition exactlyγ. In order to be able to decode thek
messages at leastΘ(k) packets have to cross the cut each
taking in expectation at leastO( 1γ ) rounds. It takes with
high probability at leastΩ( kγ ) rounds untilΘ(k) packets have
crossed the cut.

Proof of Lemma 6.4: We use the simple template
from Section IV-C and concentrate on the spreading of one
coefficient vector~µ. We define a round to be a success if and
only if the number of nodes that know about~µ grows at least
by a h

7 fraction or the number of nodes that do not know about
~µ shrinks at least by the same factor.
We want to argue that at mostT = O( log(nh)h ) successes are
needed to spread~µ completely. Note that this is slightly better
than the straight forward(1+ h

7 )
T ≥ n bound that would lead

to T = O( log(n)h ). The improvement comes from exploiting
the fact that the number of nodes that learn is an integral
quantity: In the first 7h successful rounds at least one node
learns about~µ. The next 7

2h successful rounds at least2 nodes
learn about~µ and the following 7

3h successful rounds it is3

new nodes and so on. There aren
2 ·

(

7
h

)−1
such phases until

at leastn/2 nodes know about~µ. The downward progression
than follows by symmetry. The total number of successes sums
up to:

T ≤ 2
7

h

O(nh)
∑

i=1

1

i
= O(

log nh

h
).

To finish the proof we show that every round has a constant
success probability. This follows from Lemma 4.2 if for a
success only one node is supposed to learn about~µ. If at least
⌈i⌉ ≥ 2 nodes are supposed to learn then by the definition of
a success and ofh(G(t)) there arek ≥ ⌈7i⌉ ≥ 4⌈i⌉ nodes
on the knowledge cut, i.e., at leastk nodes that do not know
about ~µ are connected to a node that knows about~µ. We
invoke Lemma 4.2 again to see that each of these nodes fails
to learn about~µ with probability at most1/q ≤ 1/2. Finally
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Markov’s inequality gives that the probability that more than
k−⌈i⌉ ≥ 3

4k fail to learn is at most2/3. A round is therefore
successful with probability at least1/3.

Proof of Lemma 6.5: The proof is nearly identical to
the one of Lemma 6.4 but instead of defining a round as
a success we define successes for phases ofn consecutive
rounds. Using the same definition of success and following the
same reasoning as before it is clear that at mostO( log(nh)h )
successful phases are needed. To finish the proof we have to
show that every phase has a constant success probability. For
this we note again that at leastk ≥ 4⌈i⌉ nodes are on the
knowledge-cut of~µ if ⌈i⌉ nodes need to learn about~µ. For
each of these4⌈i⌉ nodes the probability that no neighboring
node that knows~µ is activated duringn rounds is at most
(1 − 1/n)n = e−1. According to Lemma 4.2 the probability
for each of thek nodes to fail to learn about~µ is thus at most
1 − (1 − 1/q)(1 − e−1) < 0.7 < 3/4. Markov’s inequality
again implies that the probability for a failed round in which
more thank − ⌈i⌉ ≥ 3/4k fail is at most0.7/0.75.

Proof of Lemma 7.1: We pick t = k − (T +
1) log t/ log p+ T and have now that

pk = pt−T tT+1 >
t

∑

i=t−T

(

t

t− i

)

pi(1 − p)t−i

which is exactly the probability for having at leastt−T failures
in t rounds.

Proof of Corollary 7.2: Follows directly by applying
Theorem 4.3 according to the template in Section IV-C and the
use of Lemma 7.1 to get the right bound on the tail probability.

Lemma B.1:Let X1, X2, . . . , Xl be i.i.d. Bernoulli vari-
ables with probabilityP (X1 = 0) = p ≤ 1

2 . The probability
that a positively weighted sum of the variables is at most1

4
its expectation is at mostp:

∀w1, . . . , wl > 0 : P (
∑

j

wjXj ≤
1

4
(1− p)

∑

j

wj) ≤ p.

Proof: We first scale the weights such that
∑

j wj = 1
and than use the second moment method:

P





∑

j

wj Xj ≤ 1

4
(1 − p)





= P





∑

j

wj(1 −Xj)− p
∑

j

wj ≥ 1− 1

4
(1 − p)− p





= P





∑

j

wj(1 −Xj)− p
∑

j

wj ≥ 3

4
(1− p)





= P











∑

j

wj(1−Xj)− p
∑

j

wj





2

≥ 9

16
(1 − p)2







Now the left-hand side is the variance of a weighted sum
of i.i.d. Bernoulli variables with probability1 − p, and as
such its expectation is exactly

∑

j w
2
j (1−p)p. Using Markov’s

inequality on this expectation, we get that the probabilitywe
want to bound is at most:




∑

j

w2
j (1− p)p





(

9

16
(1− p)2

)−1

=
16

9

p

1− p

∑

j

w2
j

≤ 16

9
2p 1/4 ≤ p.

The last transformation holds because1−p ≥ 1/2 and because
we can assume that all weights are at most1/4. This is true
because if there is awi ≥ 1/4 then alreadyXi = 1 leads to
an outcome of at least1/4 the expectation and the probability
for this to happen isp.

Proof of Lemma 7.3: We modify the proof of Lemma
6.4 only in the way that we use the stronger tail bound from
Corollary 7.2 instead of the simpler template from Section
IV-C. We keep the same definition of success but prove that
the success probability of a round is at least1/q instead of
1/4 as in Lemma 6.4:

If only one node is supposed to learn for a success this
is again clear by Lemma 4.2. If at least⌈i⌉ nodes nodes
are needed to a success we know also by the definition of
a success that at least4⌈i⌉ nodes that do not know about~µ
are connected to a node that knows about it. We assign each
ignorant node to exactly one node that knows about~µ breaking
ties arbitrarily. Now according to Lemma 4.2 with probability
1 − 1/q each such node independently sends out a message
that is not perpendicular to~µ and all ignorant nodes that are
connected to it learn~µ. We can now directly apply Lemma
B.1 and obtain that we indeed have a success probability of
at least1/q per round. This finishes the proof.

Proof of Lemma 7.4:We assume each message is initially
known to exactly one node and all messages are known to
different nodes. This implies that exactly the

(

k
i

)

(q − 1)i

vectors that havei non-zero components are initially known
to exactly i nodes. We will prove that the running time
t > k + O(log n) log t suffices to spread all messages with
probability at least1− n−Ω(1).

For this we pick a thresholdf = ω(1) and first look at the
∑f

i=1

(

k
i

)

(q− 1)i ≤ fkf vectors that are known to at mostf
nodes initially. From the proof of Lemma 6.1 we know that
aftert rounds each of these vectors has a probability of at most
2−O(t−O(logn)) to not have spread completely. Choosingt >
k+O(logn) therefore suffices easily to make the contribution
of these vectors to the union bound at mostn−Ω(1).

Most of the qk vectors start initially known to at leastf
nodes. For these vectors~µ we choose the same definition of
success as in the proof of Lemma 6.1: A round is successful
if the number of nodes that know about~µ increases by at least
a constant factorλ > 1 or if the number of nodes that do not
know about~µ decreases by a factor ofλ. We will show that
if we chooseλ small enough these vectors have a probability
of 1

q to spread successfully in one round.
While with our initial analysis the start phase was the critical
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bottleneck we can show that the success probability for this
phase can now even be pushed below1/q by choosingλ small
enough. In the first phase we havek < n/2 nodes that know
~µ and at leastn/2 nodes that are pulling for it. Each of those
nodes has an independent probability ofk/n to hit a knowing
node. Becausek ≥ f we have that the probability that none
of these nodes pulls from a node knowing about~µ is (1 −
k/n)n/2 < e−k ≤ e−f = o(1). Lemma 4.2 shows than that
each node that does pull from a node that knows about~µ has
a probability of(1− 1/q) = 1/2 to learn~µ. This means more
generally we have at leastn/2 nodes that have an independent
chance ofk/2n to learn~µ. For a small enoughλ it is clear
that the probability that at leastλk nodes learn about~µ can
be made an arbitrarily small constant.

In the second phase there are at leastn/2 nodes that know
about~µ and we want that of the remainingk ≤ n/2 nodes
at least aλ-fraction learns~µ. Each of these nodes has a
probability of at least1/2(1 − 1/q) to pull from a knowing
node and learn~µ (see Lemma 4.2). Choosingλ = 1/8 suffices
to guarantee that the probability that at least aλ-fraction learns
~µ is at least1/2. The only reason that this probability can not
be reduced is because if only one node remains to learn to
learn about~µ a round is successful with probability exactly
1/2.

Using the proof from Lemma 7.1 it is easy to verify that
choosingt such thatt > k + O(log n) log t suffices to also
make a union bound over these vectors at mostn−Ω(1).
Combining this to a union bound over all vectors finished the
proof by showing that the probability that aftert rounds not
all vectors have spread is at mostn−Ω(1).

Proof of Lemma 7.6: We want to show that running
the protocol fort = O( kγ + T ) rounds, whereT = O( log

2 n
λ )

suffices to spreadk messages. Note that we always havet > n
and can also safely assume thatlog t = O(log n). As a first
step we definepi to be a lower bound for the probability that
if i nodes know about~µ in the next round one more node
learns about~µ. Note that by assumption and Lemma 4.2pi is
lower bounded by(1−1/q)min{i, n−i}λ and(1−1/q)γ. We
now look atn phases in which we allowln 3t

pi
tries for i nodes

informing the next node about~µ. The number of rounds spend
in successful phases sums up to at most

∑

= i = 1n ln 3t
pi

≤
O( log n

λ )
∑

= i = 1n/21
i ≤ O( log

2 n
λ ) = T . Lets now look at

the probability that~µ has not spread aftert > T steps. In this
case we have at leastt−T failures that can occur after any of
then phases. The probability that at leastm errors occur after
phasei is at most(1 − pi)

ln 3t
pi

+m
< (3t)−1(1 − γ/2)m. We

thus get a(2t)−1 factor for every phase that does not finish
“in time”. We also get a total factor of(1− γ/2)t−T from all
t−T failures occurring after any round. Letj be the number of
phases that finish not “in time”. There are exactly

(

(t−T )+j
j

)

<

(2t)j ways of distributing thet−T failures to thesej phases.
Putting all this together we get the following upper bound on
the probability that the algorithm did not converge aftert > T
steps:

n
∑

j=1

(2t)j(3t)−j(1− γ/2)t−T ≤≤ e−γ/2(t−T )

Choosingt = O( kγ + T ) makes this smaller thanq−k2−n.
Applying Theorem 4.3 now finishes the proof.
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