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Abstract

In order to meet service level agreements (SLAs) and to maintain peak performance for database management
systems (DBMS), database administrators (DBAs) need to implement policies for effective workload scheduling,
admission control, and resource provisioning. Accuratelypredicting response times of DBMS queries is necessary
for a DBA to effectively achieve these goals. This task is particularly challenging due to the fact that a database
workload typically consists of many concurrently running queries and an accurate model needs to capture their in-
teractions. Additional challenges are introduced when DBMSes are run in dynamic cloud computing environments,
where workload, data, and physical resources can change frequently, on-the-fly. Building an efficient and highly ac-
curateonlineDBMS performance model that is robust in the face of changingworkloads, data evolution, and physical
resource allocations is still an unsolved problem. In this work, our goal is to build such an online performance model
for database appliances using anexperiment-drivenmodeling approach. We use a Bayesian approach and build novel
Gaussian models that take into account the interaction among concurrently executing queries and predict response
times of individual DBMS queries. A key feature of our modeling approach is that the models can be updated online
in response to new queries or data, or changing resource allocations. We experimentally demonstrate that our models
are accurate and effective – our best models have an average prediction error of 16.3% in the worst case.

1 Introduction

Database appliances are becoming a popular way of deployingdatabase management systems (DBMSes) in to-
day’s cloud computing environments. A database appliance is a virtual machine (VM) with a pre-installed and pre-
configured copy of an operating system and a DBMS, ready to go out of the box. Using a database appliance reduces
the total cost of ownership by saving multiple hours that aretypically spent on installing, configuring, and tunning a
DBMS from scratch. Users can run a database appliance in an Infrastructure as a Service (IaaS) cloud, such as Ama-
zon’s Elastic Computing Cloud (EC2) [1], renting computingpower on-demand. A related paradigm for deploying and
using database systems is Database as a Service (DaaS), exemplified by Amazon’s Relational Database Service [2]
and Microsoft’s AzureSQL [3]. In addition to saving setup and deployment costs, these approaches offer low-cost
alternatives to in-house infrastructure procurement and management, and enable flexible resource provisioning and
adapting the available resources to the dynamically changing workload. For all these reasons, database appliances are
widely deployed on the cloud and their use will continue to grow.

One of the problems with database appliances is that the highly dynamic nature of the workloads and the environ-
ment makes it difficult for a database administrator (DBA) topredict the performance of a running query or workload.
In this work, our goal is to build anonlineperformance model for database appliances that can predictresponse times
of individual DBMS queries, given aquery typeand a set of queries already executing in the DBMS, which we call a
query mix(details in Section 3). A key feature of our models is that they can adapt to changes in the queries, data, or
DBMS configuration in an online manner.
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Predicting the response time of a database query before execution is very useful for many administrative tasks.
For example, such a prediction can enable a database administrator (DBA) or an automatic tool to schedule workloads
effectively, perform better admission control, do capacity planning, and formulate policies for effective resource pro-
visioning. For example, given two database appliances and their respective workloads, a DBA can use a performance
model to predict the effect of giving more resources (e.g., memory or CPU) to one or the other DB appliance and then
decide how to efficiently partition the available resourcesamong these appliances so that they both meet their SLAs.

Traditionally, the performance of DBMSes has been studied by constructing elaborate analytical models. However,
such models need to be carefully constructed by a domain expert and are usually specific to a particular DBMS. More-
over, these models do not capture the full complexities of query execution and the interactions among concurrently
executing queries in the system. Furthermore, analytical models become obsolete as soon as there are any changes to
the DBMSs implementation.Experiment-drivenmodeling techniques [5, 6, 9, 18, 19] overcome the above mentioned
shortcoming of analytical models and have therefore becomevery popular. We use an experiment-driven modeling
approach in this paper.

Experiment-driven modeling relies on: (1) sampling the space of possible query executions to collect training data,
and then (2) fitting statistical or machine learning models to the collected sample data. Most existing techniques [4, 5,
6, 9, 13, 18, 19, 21, 22] for database experiment-driven performance modeling rely on static models that are trained
offline for specific configurations and resource allocation levels. These models cannot be updated online due to the
inherent inflexibility of the learning techniques used. Thus, any changes in the workload, the database configuration,
or resource allocation to the VM containing the DBMS (i.e., the database appliance) require collecting new samples
and re-training of models. Collecting new samples is very costly, taking hours or days, which severely limits the
applicability of prior experiment-driven modeling techniques. This limitation is especially restrictive for database
appliances, since in addition to the dynamic nature of the database and queries, resource allocations can also change
in an online manner.

In this work, our goal is to address this limitation and buildefficient and highly accurateonlinequery response
time models for database appliances that take into account the interactions among concurrently running queries and
can dynamically and robustly adapt in the face of changes in the workload, database or physical resource allocation,
without the need for additional sampling experiments. We identify the use of Gaussian Process (GP) models and show
how to effectively apply them to build online response time models. Gaussian Process models have been previously
applied to various problems, including database performance modeling [6, 18]. We choose them in this work because
they lend themselves well to online adaptation. However, weshow that a simplistic approach to adapting GP models
is too costly. A major contribution of this paper is to develop a novel Bayesian approach for efficient online adaptation
of GP models. Our experimental results demonstrate that GP models outperform other techniques in terms of good-
ness of fit, accuracy, and model training/prediction time. Furthermore, the expressiveness offered by the Bayesian
framework allows us to effectively leverage prior knowledge derived from sample data to learn response time models
for previously unseen queries and configurations for which there is no offline sampled response time data. The high
accuracy and fast convergence of online GP models make them suitable for online performance modeling of databases
appliances.

2 Related Work

Database systems have traditionally relied on analytical performance models, with model parameters based on simple
statistics. Analytical models are most prominently used inquery optimizers, and there has been some recent work to
adapt optimizer models online [14]. Analytical models werealso used to set the multi-programming limit (MPL) of
a DBMS for improved throughput [4, 22]. There has also been work on self-predicting databases that are capable of
answering “what-if” questions [14, 17]. In addition to these internal database models, queuing models for multi-tier
architectures also attempt to include the performance of the DBMS [21, 23]. A significant limitation of these analytical
modeling techniques is that they are notoriously hard to evolve with the system and they necessarily make simplifying
assumptions, so they do not capture the complex execution ofdynamically changing workloads. As a result, there is
increasing focus in the research community on experiment-driven performance modeling for database and multi-tier
systems.

The recent literature includes several examples of experiment-driven models for database systems. Predicting
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Query Run-Time (PQR) trees [10] make use of binary classification trees to represent disjoint sets of time ranges. A
new query traverses through the tree reaching a leaf node which represents the predicted time range for that query.
Ganapathi et al. [9] use Kernel Canonical Correlation Analysis (KCCA) to predict multiple metrics for database
queries, including response times. The KCCA technique takes two covariance matrices (query feature and perfor-
mance) and projects them onto two subspaces such that the projections of the two matrices are maximally correlated.
The authors report a prediction time of “under a second”, while our models take a total of 81 ms on average for predic-
tion. Tozer et al. [19] use a linear regression response timemodel for throttling long running queries. Linear regression
models are typically less accurate than the GP models that weuse (which can be seen in theR2 correlation coefficient).
Watson et al. [21] predict quantile ranges for multi-tier applications under virtual resource allocation. They model per-
formance as a joint distribution over performance metric and resource allocation. All of these approaches suffer from a
fundamental limitation: they require re-learning the model for any change in the workload or configuration, rendering
them ineffective for online performance modeling of database appliances. Another limitation of these approaches is
their inability to leverage prior knowledge in a meaningfulway. Furthermore, most of these approaches provide point
value predictions with no confidence intervals.

In this paper, we use Gaussian Process model that rely only onquery types and no additional features, and hence
are DBMS agnostic. The proposed GP models are very expressive and are not constrained by a fixed function form.
They can be updated efficiently in an online manner, and new highly accurate models for queries running on different
configurations can be learned by using prior knowledge. As anadded advantage, these models can predict not only
a point (mean) response time but the complete response time distribution, which can be used to provide confidence
intervals for the prediction. Gaussian Processes have beenused in [6, 18] but these works, like other prior work on
experiment-driven modeling, do not consider dynamically updating these models.

3 Solution Overview

Our goal is to build a query-interaction-aware response time model for database appliances that is able to adapt itself
to changing workloads and resource allocations in an onlinefashion. We assume that each query submitted to the
DBMS belongs to a specific query typeQi, where1 ≤ i ≤ T andT is the total number of query types. A workload
W comprises zero or more instances of each query type. The mix of concurrently running queries,mj , is represented
as a vector< N1j , ..., NTj >, whereNij represents the number of instances of query typeQi in the mixmj . Query
interactions have been shown to significantly affect the response time of an incoming query [5, 6, 19]. Therefore,
our response time models should take into account the particular mix of queries,mj , or at least the total number of
queries in this mixl given by

∑T
i=1 Nij = l. It is always true thatl ≤ M , whereM is themulti-programming limit

(MPL) of the DBMS and is specified by the DBA. Given the query mix currently running on the system, we want
to be able to predict the response time of individual incoming queries. That is, we want to find a functionf(.) such that

r̂ij = f(mj, Qi)

wherer̂ij is the estimated response time of a query typeQi running in a mixmj . The functionf(.) can be based on
the distribution of queries in the mix, or just on the total number of queries in the mix (l). We use anexperiment-driven
black boxmodeling approach to collect training data consisting of samplesSi =< mj, rij >, whererij is the actual
response time of a query typeQi running in a mixmj . We then use this data to learn models for predicting query
response times (i.e., to learnf(.)).

The response time of a particular query depends not only on the current load and the query mix but also on different
tunable configuration parameters (e.g., buffer pool size, MPL, available CPU, and memory). One very important goal
of our modeling approach is to adapt our models as these parameters change, without offline sample generation and
model re-learning. To achieve this, we build two separate models: 1) response time model:a model to predict
query response times for each query type of interest and2) configuration model: a model to predict the response
time model’s parameters for different configurations. We present response time and configuration models in Section 5
and 7, respectively.

Figure 1 shows the overall workflow of our model learning process. As a first step, a DBA will generate different
training query mixes using our workload generator module which takesM (MPL) andT (total query types) as input
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Figure 1: Model learning workflow

(Section 4). Using the generated query mix samples, the DBA will then run a series of experiments for different con-
figurations (e.g., buffer pool size, total physical memory,CPU, etc.) using a client coordinator. Our client coordinator
is a client-side program implemented in C++. The client coordinator creates client threads, each with a separate con-
nection to the DBMS. Each thread then selects and runs a queryfrom a given query mix. Once the desired query mix
is running, a separate thread executes a target query and measures its response time. This results in training samples
of the formSi =< mj , rij >. These samples are then used to learn an offline configurationmodel (Section 7) which
accumulates all configuration parameters and the corresponding response time model parameters for the selected con-
figurations. The configuration model is then usedonline by the client coordinator to initialize query response time
models (Section 5) for new unseen configurations and query types for which there are no offline trained models. The
configuration model takes the observed response time of the most recently executed instance of a query type, and the
DBMS+VM configuration to periodically generate parametersfor that query type’s response time model. During the
online phase, the configuration model can generate new modelparameters for the response time model of a given
query type when the query is run in a new configuration. To detect the need for generating the new model parameters,
the configuration model monitors the DBMS+VM configuration and the observed execution time of queries of this
type. The response time model, which is specific to each configuration and query type, updates itself by incorporating
the most recent response time data (details in Section 6).

Note that in our current implementation the client coordinator is external to the DBMS, which is suitable for
applications such as capacity planning, workload scheduling, or admission control, among others. Alternatively,
the client coordinator can be integrated with the DBMS, to provide, for example, more accurate statistics for query
optimization or dynamically controlling theMPL for maximum performance.

4 Generating Training Workloads

Like other experiment-driven approaches, we require sampling experiments to collect data for training our models.
However, since our models adapt dynamically they are not as sensitive to the sampling policy used as models in prior
work [6, 19]. A simple sampling approach that guarantees relatively good coverage of the space of possible query
mixes will provide a good starting point for an offline trained model. The model will then be able to correct itself
quickly even if the initial training samples are not the bestrepresentative of the running workload.

4.1 Uniform Sampling

A direct consequence of constructing the sample query mixesused for training by sampling each query type uniformly
in the range[0 − M ] is that the distribution of load, where the load is the total number of queries in the mix,l,
approximates a normal distribution around the mean value ofl (by the central limit theorem). The variance decreases
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Figure 2: Consequence of Unifrom sampling.
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as the number of identical uniform distributions, one for each query type, increases (shown in Figure 2). A detailed
discussion of the exact distribution of the sum of identically and non-identically distributed uniform distributionscan
be found in [8]. Based on the upper limit of each query type allowed in the mix, the distribution over load is very
narrow. This is not desirable for learning response time models for widely varying loads.

4.2 Workload Characterization Based Sampling

To solve the problem of uniform sampling, we look at the querymix from two perspectives: the overall load and the
query types contributing to that load as shown in Figure 3. Tocover the spectrum we generate uniformly distributed
samples across two dimensions: 1) total number of queries, and 2) the number of different types of queries running
(termed theinteraction levelin [6]). Sampling is done by first randomly selecting the level of load from 0 toM , and
then randomly selecting the number of queries that contribute to this level of load. The value of this variable ranges
from 1 to min {total query types, random load level}. These two values are used to control the random generation of
the number of queries of each type. This sampling process generates a distribution over loads that covers the workload
spectrum from low load to high load.

Our workload generator uses characterization based sampling to generate query mixes. The client coordinator
runs the generated workload and collects the training samples. In our experiments, it takes under 20 hours to run these
experiments for a workload with about 600 different query mixes. Next, we present details of the Gaussian models
for predicting query response times and their online adaptation. Section 7 describes the configuration model and how
it is used.

5 Gaussian Response Time Models

Bayesian Networks (BN)fall under the broader class ofprobabilistic graphical modelswhere dependencies between
variables are encoded using conditional probability distributions. More specifically, a BN is a directed acyclical graph
(DAG) in which each nodeXi has a conditional probabilistic distributionP (Xi|Parents(Xi)) quantifying the effect
of parents on the node. The Bayesian framework offers a number of advantages over alternative modeling approaches
including flexibility and consistent semantic interpretation. We choose to develop BN based models for two reasons:
1) The Bayesian framework provides a theoretical basis for modeling uncertainty using probabilities. This allows us
to predict not only the mean response time but also the complete distribution for the response time of a particular
query. This uncertainty in the response time model can be directly propagated to a decision making system (e.g.,
autonomic provisioning tool, throttling system, etc.) 2) The Bayesian framework offers the ability to encode expert or
prior knowledge using prior probability distributions. This inherent flexibility allows us to specify effective priors for
dynamic models using offline learned models.

Our proposed modeling approach uses non-linear Gaussian Process models. However, we start by presenting
simpler, linear Gaussian models that are easier to learn andadapt to online changes. The BNs for linear Gaussian
models are shown in Figure 4.

5.1 Linear Gaussian Models

Our proposed linear models encode each conditional probability distribution using alinear Gaussian distributionas
P (Y |x) = N(β0 +

∑

i βixi, σ
2). Such networks are referred to asGaussian Bayesian networks[12]. Linear models

are particularly attractive because they are easier to build and given their low model generation and update cost, they
can be easily used in an online setting.

For a Bayesian network model, the likelihood of model parametersθ given dataD is the probability of observing
dataD given parametersθ and can be written asLK(θ : D). We use Maximum Likelihood Estimation (MLE) [7]
for finding the model parameters most likely to have producedthe observations in the training data. We adopt the
common practice of taking the log of the likelihood to turn products into sums for easy derivation of gradients. Using
this approach we define two linear Gaussian models, which we describe next.
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Figure 4: Bayesian Networks for linear Gaussian models

5.1.1 Linear Load Model

The first linear model that we develop is what we call thelinear load model (LLM). As shown in Figure 4(a), in
this model the response time of a query is modeled only as a function of load (l) i.e., total number of concurrently
executing queries. We model the probability of the random variableRi representing the response time of query type
Qi, conditional upon the random variableL representing load, as a Gaussian distribution given by:P (Ri|L) =
N(β0 + β1l;σ

2). The parametersθRi|L (β0, β1, σ
2) can be estimated by maximizing the log-likelihoodlkRi

, as
shown in Equation 1, wherelk and rilk are the load and response time for thekth sample in the training dataD
(Sk =< lk, rilk >)

lkRi

(

θRi|L : D
)

= −
1

2
log

(

2πσ2
)

−
1

2

∑

k

[

1

σ2
(β0 + β1lk − rilk)

2

]

(1)

By taking the derivatives oflkRi
(θRi|L : D) with respect toβ0 andβ1 and setting to0 we get Equations 2 and 3.

ED[Ri] = β0 + β1ED[L] (2)

ED[RiL] = β0[L] + β1ED[L2] (3)

whereED ’s are the respective means and moments(Ri, L,RiL,L
2) observed in the sample dataD for query type

Qi. Solving these linear equations gives usβ0 andβ1. σ2 is given by Equation 4.

σ2 = CovD[Ri;Ri]− β1CovD[L;L] (4)

Once these parameters have been learned, we have a Gaussian distributionN(β0+β1l;σ
2) over the predicted response

times for each value of loadl on the database for a query typeQi. The mean of the Gaussian distribution(β0 + β1l)
is treated as the model’s response time predictionr̂il for a particular loadl.

5.1.2 Linear Query Mix Model

Linear query mix model (LQMM)is similar to LLM but considers the query mix instead of the aggregated load. A
query mix network is depicted in Figure 4(b) where each queryof typeQi directly impacts the response time of all
queries. Similar to the load model, response time is a Gaussian distribution centered on the linear weighted sum of the
number of queries of each type running on the database. The probability distribution and the likelihood function are
shown in Equation 5 and 6.

P (Ri|Mj) = N(β0 + β1N1j + β2N2j ...+ βTNTj , σ
2) (5)
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lkRi
(θRi|M : D) = −

1

2
log(2πσ2)−

1

2σ2

∑

k

(β0 + β1N1k + ...+ βTNTk − rik)
2 (6)

The likelihood function can be differentiated with respectto β0 to βT to yieldT +1 linear equations which can be
solved for the values ofβ0 to βT . The varianceσ2 can be computed as shown in Equation 7.

σ2 = CovD[Ri;Ri]−

T
∑

j

T
∑

k

βjβkCovD[Nj;Nk] (7)

5.2 Non-Linear Gaussian Process Models

Query performance varies in a complex non-linear way with varying the query mix, the hardware, and the DBMS
configuration. For example, if a query involves a join, the behavior of this join varies significantly and in a non-
linear way depending on whether the data fits in memory or needs to be read from disk. Therefore, the linear models
developed in the previous section may not be sufficiently accurate and we need non-linear models. It is difficult to use
any non-linear parametric model (e.g., a cubic model) sinceresponse times may not follow a parametric distribution.
An alternative is to use non-parametric models that can learn arbitrary functions over load and query mix for response
times. In this paper we use such a model, and in particular we use Gaussian Processes (GP) [15].

A Gaussian Process is a collection of infinite random variables, any finite number of which have a joint Gaussian
distribution. GP based models are flexible, probabilistic and operate in a Bayesian framework which makes them
suitable for modeling uncertainty and exploiting prior knowledge. In this section we develop GP based response time
models that are trained offline. We describe in Section 6 how we adapt these models in an online setting. We train
three different models and their variants:

1. Gaussian Process Load Model (GPLM): We train a GP load model where the response time (ril) of a query
typeQi is a function of load (l) similar to LLM.

2. Gaussian Process Mix Model (GPMM): GPMM is a non-parametric variant of LQMM and models the response
timerij of a query of typeQi as a function of query mixmj .

3. Gaussian Process Mix + Load Model (GPMLM): GPMLM models the response timerijl as a function of both
query mix (mj) and load (l). We show in Section 8 that GPMLM is not only more accurate then other GP based
models but also more robust.

5.2.1 Bayesian Inference with Gaussian Processes

In Bayesian inference the probability of a hypothesis (posterior probability) depends on the likelihood of the hypoth-
esis (based on observed data) and the prior belief (prior probability). For Gaussian Process based models we specify
a GP prior as follows:

f(x) ∼ GP (m(x), k(x, x′)) (8)

wherem(x) is a mean function andk(x, x′) is a covariance function. This function is also known as akernel function.
For a Gaussian process the joint distribution of the observed valuesy and the predicted valuef(x∗) atx∗ is shown in
Equation 9.

[

y

f(x∗)

]

∼ N

( [

µ

x∗

]

,

[

K + σ2I k∗
T

K∗ k(x∗, x∗)

] )

(9)

This results in a posterior Gaussian Process that is used forprediction as shown in Equations 10, 11 and 12.

f |D ∼ GP (mD, kD) (10)
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mD(x) = m(x) + kT (K + σ2I)−1(y −m) (11)

kD(x, x′) = k(x, x′)− kT (K + σ2I)−1k′ (12)

whereµ = m(xi) for all samples in the training data.kT is the transpose of the vector of co-variances ofx with each
training sample.K is the covariance matrix for training data,σ2 is the noise in samples, andy is a vector of response
values in the training data.

As shown in Equations 11 and 12,mD(x) is the mean predicted value, which is the sum ofprior mean m(x)and a
smooth function. Similarly, the variance for a point prediction kD(x, x′) is the difference between the variance of the
data and how well GP is able to explain the data at the target value. Therefore, the Gaussian Process not only captures
the variance in the data but also how confident the model is when predicting at a particular point. The variance tends
to increase as we move further away from data in the input space.

5.2.2 Specifying Prior Distributions

Bayesian inference requires specifying a prior,m(x) andk(x, x′) in our Gaussian Process models (Equation 8). We
create variants of GP models by using the following mean and kernel functions, and we evaluate their performance in
Section 8.

Mean Functions

The approximate global shape of the function (i.e. linear, polynomial ..) is specified using a mean functionm(x). We
use the following mean functions:

1. 0 Mean Function: The mean and variance of the predictive distribution with0 meanfor f∗ at x∗ is given in
Equations 13 and 14.

E(f∗) = k∗
T (K + σ2I)

−1
y (13)

V ar(f∗) = k(x∗, x∗)− k∗
T (K + σ2I)

−1
k∗ (14)

2. Linear Mean Function: Based on LQMM we also experimented with the following mean function:

m(x) = β0 + β1x1 + β2x2 + ...+ βTxT (15)

Following the discussion on incorporating explicit basis functions in [16] we get the predictive distribution
represented in Equations 16 and 17.

E(g∗) = E(f∗) +RTβ′ (16)

E(g∗) = E(f∗) +RT (HKy
−1HT )

−1
R (17)

whereH is the matrix collection of all basis functionsh(x) for all training and test cases,R isH∗−HKy
−1K∗

andβ∗ is given by(HKy
−1HT )

−1
HKy

−1y.

Kernel Functions

Kernel functions (covariance functions in Equation 8) are ameasure of proximity of two input samples (load or query
mix). We experimented with two kernel functions (Equations18 and 19): 1)Squared exponential function (SE)with
parametersθ = {η, σ2

f} and 2)Rational quadratic function (RQ)with parametersθ = {η, σ2
f , α}.

k(xp, xq) = σ2
f exp

(

−(xp − xq)
T 1

2η2I
(xp − xq)

)

(18)
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k(xp, xq) = σ2
f

[

1 + (xp − xq)
T 1

2αη2I
(xp − xq)

]−α

(19)

whereη is the characteristic length scale, a parameter indicatinghow much each dimension of thex vector must
change before the covariance function significantly changes. σ2

f is the signal strength andα controls the shape of the
kernel function.

Notation: A variant of Gaussian Process Mix Model with linear mean and RQ covariance function is referred
to as GPMM (LIN, RQ). The same conventions are used for referring to other variants of GP based models in the
subsequent sections.

Hyper-Parameter Learning

After selecting the mean and kernel functions, the next stepis to specify the parameters associated with the mean
(< β0, β1, ., βN >) and kernel (η, σ2

f , α) functions. These parameters are referred to as thehyper-parametersof the
model. The parameters are learned in light of training data by optimizing the log marginal likelihood given in Equation
20 using a conjugate gradients based technique.

logP (y|x, θ) = −
1

2
log|K| −

1

2
yTK−1y −

n

2
log2π (20)

A numerical approximation technique such as one based on conjugate gradients generally works well. In the
optimization of the log marginal likelihood the term− 1

2 log|K| is the complexity penalty which penalizes complex
functions and− 1

2y
TK−1y is the data fit measure [16]. The model therefore automatically selects a simpler model

(Occam’s razor) [16] which explains the data well without over-fitting, allowing the model to generalize well in
practice as opposed to regression based models which over-fit to data.

6 Online Model Adaptation

In this section, we describe how Gaussian models can be refined using actual observations of query response times
and how they can adapt to changes in configuration and workloads. Section 7 shows how prior knowledge can be
leveraged effectively by using the configuration model to initialize the hyper-parameters of the response time models
for unseen query types and resource allocations.

For the linear Gaussian models where parameters are learnedusing MLE, there are no hyper-parameters that
need to be learned. Also, these models can be easily updated online by maintaining running or moving averages for
computing theED values, which can be updated with new data. However, as we show in Section 8, linear models
have unsatisfactory prediction accuracy on some configurations. Therefore, in the following sections we focus on the
non-trivial case of adapting the more accurate non-linear GP based models to an online setting.

6.1 Adding/Removing A Sample (Rank-1 Updates)

If we have an offline trained model forn samples and we want to incorporatexn+1 into the model we need to
recompute the inverse of the newn + 1 by n + 1 covariance matrixKn+1

−1. However, the time complexity of
the inverse computation isO(n3) which makes the operation prohibitive in an online setting.We make use of the
partitioned inverse equations presented in [11] for a positive definite matrix where we have the inverseKn

−1,Kn+1
−1

can then be computed as in Equation 21.

Kn+1
−1 =

[

F b

b D

]

(21)

whereD, b andF are given by Equations 22, 23 and 24

D = (k − kn+1
TKn

−1kn+1)
−1 (22)
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b = −DKn
−1kn+1 (23)

F = Kn
−1 −Dkn+1kn+1

T (24)

andk = K(xn+1, xn+1) wherekn+1 is the covariance vector ofxn+1 with all n samples.
Similar to adding a new sample, removing a sample is equivalent to removing the corresponding column from

Kn+1
−1. If we want to remove thejth column, we will first need to permute thejth column andjth row to the end

of the matrix. Using the above definitions we getKn
−1 = F +Dkn+1kn+1

T . These updates where we only add or
remove a single column to the inverse covariance matrix are referred to asrank-1 updates.

6.2 Data Replacement Policy

To update the models of different query types online we maintain a set of recently observed response times for each
query type. We replace old samples in this set with newly observed samples and cap the number of samples maintained
for each query type to 400, which we refer to as thesample limitC. There are two motivations for setting a cap on
the number of samples. First, for all the experiments that weconducted we saw the greatest gains in accuracy for
the first 100 samples and diminishing returns subsequently.Second, and more importantly, old response time data for
particular query mixes becomes irrelevant given new response time samples for a close enough query mix. In fact,
stale response time data, if kept, results in inaccurate predictions over time similar to an offline trained model which
is not updated online. This happens because of data evolution and changes in database access patterns over time. We
add new samples using rank-1 updates (Section 6.1) unconditionally as long as we have less thanC samples. This is
the case when we need to learn a model for a query online and is discussed in Section 7.1. Once we haveC samples,
we replace the sample that is closest to a new sample in the input space. A very suitable measure of proximity in the
input space is the kernel function (the covariance function).

6.3 Data Reuse Policy

To better adjust to dynamic changes in the system, like addition of queries and changes in resource allocations we
employ two policies for reuse of data accumulated by the model of each query type:

1. Keeping prior data with new kernel function: Whenever resource allocation is changed, we keep the existing
data in models and recompute theK−1 matrix with the new kernel function.

2. Extending prior data: To model the impact of new query types on the existing query models (by adding
samples containing this new query type), we extend the dimension of the query mix fromT to T + 1 for all existing
samples. This extension does not require re-computation ofthe covariances between the samples.

7 Configuration Model

Even when real-time data is incorporated into the model and the data reuse policies are adopted as described in the
previous section, an online response time model takes too long to converge below reasonable error rates if uninforma-
tive hyper-parameters are used for the model. This is demonstrated experimentally in Section 8.4.3. For the online
response time models to converge quickly we need good hyper-parameters. In our approach, we use the configuration
model (described next) to predict these hyper-parameters for response time models.

During the offline training phase, we learn the response timemodels for different configurations. We explored
how the kernel hyper-parametersθ are affected by factors such as the average response time of aquery, the variance
of the query response time, and the configuration parametersincluding buffer pool, memory, and CPU allocation.
We found that the query response time, buffer pool, and CPU allocation (in that order) accounted for a significant
amount of variation in the values of the hyper-parameters for response time models. Therefore, we build aGaussian
Process Configuration Model (GPCM)to leverage prior knowledge from the offline trained models to predict hyper-
parameters for new queries on seen and unseen configurations. GPCM is maintained offline and is updated with the
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Figure 5: Average percentage error of different models

hyper-parameters of a newly trained response time model fora particular query on a configuration. GPCM is query
type agnostic and only encodes the mean and variance in response time and the configuration parameters as follows:

[RMEAN , RSD, BP,CPUNUM , CPU,MEM ] ⇒ [η, σ2
f , α]

Note that there are two GPCMs for the SE based GP models for predictingη, σ2
f , and three GPCMs for RQ based

GP models for predicting each ofη, σ2
f , α. BP andMEM are encoded in MBs (e.g. 2GB as 2048) and CPU in MHz

(e.g. 3.0GHz as 3000) where asRMEAN andRSD are encoded in seconds.

8 Experimental Evaluation

8.1 Experimental Setup

For our experiments we use an IBM blade server with 2 dual coreAMD Opteron processors 2216 HE at 2.2 GHz,
8 GB physical memory, and a 45 GB SCSI hard drive. As our software configuration, we use 64-bit Ubuntu Server
10.04 running Linux Kernel 2.6.32-21 with the PostgreSQL 8.4.4 DBMS (referred to as Postgres) and Xen 3.2.3. In
this work, we build and train response time models for TPC-H benchmark queries [20]. TPC-H is a decision support
(DSS) benchmark that consists of 22 query types. These querytypes model a real world data warehousing environment
where complex ad-hoc queries are expected to be run against the data warehouse. We use a scale factor 1 database with
a total size of 2.3 GB on disk. Note that our techniques are generally applicable to other DSS and online transaction
processing (OLTP) style workloads. Training models for these other workloads is a part of our future work.

8.2 Model Accuracy

We start by comparing the accuracy of the proposed GP models and the linear Gaussian models. We measure the
accuracy of predictions using the average percentage error(APE) which is calculated by taking the average of the
percentage error|y−f(x)|

y
for each prediction.
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8.2.1 Effect of Buffer Pool Size

Figure 5 shows the relative error for all 22 TPC-H query typesat different buffer pool sizes, using GP and linear
Gaussian models. All models are learned offline using the response time data collected for query mix samples gen-
erated using our workload generator. The figure shows that linear models are not sufficiently accurate. They perform
well for very small and very large buffer pool sizes where almost nothing fits in the buffer pool (32MB) or where
almost the complete database fits in the buffer pool (2GB). However, the prediction error can be close to 50% in some
cases, which renders these models ineffective for most practical purposes. Thus, the simplicity of linear Gaussian
models comes at the expense of insufficient accuracy, and we do not consider them further in this paper, focusing
instead on GP models. As expected, GP models perform significantly better than linear models. Even the simplest
GPLM outperforms LQMM on all buffer pool sizes, demonstrating the inherent non-linearity of query response time
distributions.

8.2.2 Effectiveness under Overload

Our results on various configurations show that the variancein response times increases significantly when the database
is overloaded, i.e.,l ≥ 70. However, all GP based models were able to capture this variance in the predicted confidence
intervals. An example of this is Figure 6, where the responsetimes of TPC-H Q12 are modeled using GPMM (0, RQ)
on a 2GB buffer pool. The shaded area in Figure 6 represents the 95% confidence interval for the mean response
time prediction. Note that the prediction curve is smooth asa function of the 22-dimensional query mix, however it
is shown only as a function of 1-dimensional load. Our results consistently showed that the predicted variance by GP
models increases for overloaded databases where there is considerable variation in response times and for test cases
which were very far from the training data. This ability to capture the uncertainty associated with prediction is yet
another advantage of our approach and can be directly propagated to a decision making system.

8.2.3 Overall Accuracy

Figure 7 shows the predicted values and the actual response time values for GPMLM (0, RQ) model for around 4700
test cases for all query types on all five buffer pool sizes. Overall, GPMLM (0, RQ) is the best performing model
with an average error ranging from 7.7% for the 2 GB buffer pool to 16.3% for 512 MB buffer pool, as shown in
Figure 5. Note that we do not propose GPMLM with linear mean because of the significant training cost associated
with linear mean based GP models as discussed in 8.3.1. For GPMLM (0, RQ), the overall correlation coefficient for
all configurations and all query types is 0.94.

8.3 Online Adaptability

8.3.1 Online Costs

Model Adaptability: Despite the simplicity of linear models, due to the high error rates on some configurations
(shown in Section 8.2) we do not adapt these models online. Onthe other hand, GP models with linear mean, which
are highly accurate as shown in Section 8.2, pose serious scalability problems. This is because the number of hyper-
parameters for the linear mean function isT + 1, whereT is the number of different query types. With around 500
samples for a query type it takes approximately one hour to learn the hyper-parameters for 22 models, one for each
query type. Furthermore, the hyper-parameters of GPMM(LIN,*) are highly sensitive to the actual response times and
therefore cannot be predicted using GPCM. Therefore, as with linear models, we do not adapt GP based models with
prior linear mean functions to an online setting.

GP*(0,SE) are the most efficient GP based models, since thereare only two hyper-parameters ({η, σ2
f}) to learn

offline or predict in an online setting. However, the extra flexibility of the RQ kernel function with three hyper-
parameters ({η, σ2

f α}) pays off with respect to model accuracy. Additionally, since the number of hyper-parameters
for GP*(0,RQ) is independent ofT , we adapt GP*(0,RQ) based models online and evaluate their performance in the
following sections. The time to learn hyper-parameters forSE and RQ based models with 0 mean, 22 query types, and
500 samples per query type, is approximately 4 and 7 minutes,respectively.
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Wall clock times
Complexity (n data samples)

400 1000 3000
GP - Point O(n) 4ms 17ms 82ms
Prediction
K

−1
O(n3) 40ms 413ms 11s

Computation
Rank-1 O(n2) 12ms 64ms 623ms
K

−1 Updates
Learning - 13s 19s 1100s
Hyper-Parameters

Table 1: Wall clock times for various operations
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Figure 8: Online models for changing configurations

Incremental Data Addition: The complexity of adding or removing a new data sample using rank-1 updates is
O(n2) as opposed toO(n3) for recomputing the inverse of the covariance matrix. As shown in Table 1 each new query
(assuming 1000 data samples for that query’s model) takes around 17ms for prediction and another 64ms for updating
the model with the actual response time of the query. The prediction includes the time to calculate both the mean
and variance of the predictive Gaussian distribution. The calculation of variance takes almost two thirds of the total
prediction time. For an application of the response time model which does not require the predictive variance, only the
mean response time can be computed to further reduce the prediction cost. Similarly, 64ms for updates include two
calls, one for removing a sample and another for adding a sample. There are other opportunities that can be exploited
for example, reusing the covariances computed for responsetime prediction. However, we have not implemented these
features, leaving them for future work.

Data Reuse Costs:We adopt the policy of keeping prior data when new hyper-parameters are selected as in the
case where resource allocations for a DBMS are changed. Thisrequires re-computation of the covariance matrix with
the new kernel function and then the inverse of the matrix. The total cost of this operation is approximately 7 seconds
for 22 models with 1000 data samples each. The time taken scales linearly with the number of query types given a
fixed number of samples for each model. Similarly, the cost ofextending all existing data samples (22× 1000) by an
additional ‘0’ when a new query is added is reasonable (¡ 2 seconds) considering the frequency of such additions.
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Figure 9: Online performance models for changing workload

8.3.2 Adapting to Dynamic Configurations

In order to model new (unseen) configurations, we learn an offline configuration model from the data collected at five
buffer pool configurations on a physical machine with 2 coresat 2.2GHz with 8GB memory. We encode the CPU,
memory, and buffer pool size as discussed in Section 7.

Online Response Time Models:Queries are generated and run online on a VM with 4GB memory and 3 cores at
2.2GHz (config 1 in Figure 8) and models are created for each query type dynamically by getting the kernel function
hyper-parameters from GPCM. Note that in this case we have noprior response time data and the models are learned
from scratch for this configuration. The blue line in Figure 8shows that the average percentage error falls below 20%
when the model has seen only under 40 samples on average. After the model’s error rate falls below 12%, we reduce
the number of VM CPUs from 3 to 2 and its memory from 4 GB to 2 GB (config 2 in Figure 8).

A simple policy is to get new hyper-parameters from the configuration model, discard the previously accumulated
data by the online response time model, and learn the model for the new configuration from scratch as done for the
previous configuration. As show in Figure 8 (red), a drawbackof this approach is that initially before the model
converges, the error rate can be very high. To prevent this from happening, the online model keeps all the existing
data accumulated from previous configurations and evolves by incorporating actual observed response time data.
Keeping response time data collected from the previous configuration until new data replaces it, significantly reduces
the maximum error. This is shown in Figure 8 (green), where the model converges more quickly as compared to the
case of starting from scratch (red). However, to reuse the previous response time data, we have to recompute the
K−1 matrix for each query’s model. The cost associated with thiscomputation is discussed in Section 8.3.1. This
computation is done by the online model, whenever the resource allocation is changed.

Comparison with Offline Trained Models: Dashed lines in Figure 8 show the performance of offline trained
models for the two unseen configurations for the queries seenonline. These offline models are trained retrospectively
for comparison purposes, i.e., the offline models are trained for the response time data seen during online operation.
As shown in Figure 8, the online models converge quickly below reasonable error rates ( ¡ 20% ) for configurations
for which we have no previous training data and ultimately approach the accuracy of models that are trained offline
specifically for these configurations.
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Figure 10: Impact of new queries on trained query models

8.3.3 Adapting to Dynamic Workloads

In addition to being used for unseen configurations the offline trained configuration model is used to learn response
time models for unseen workloads. In this experiment, querymixes are generated and run against a DBMS with 2GB
buffer pool size. The online response time models are learned from scratch for 17 randomly selected TPC-H query
types and shown in Figure 9 (blue line). When the average accuracy of the models falls below 10%, the workload is
changed by introducing the remaining 5 TPC-H query types in the system.

A simple policy for dealing with changing workloads is to discard all prior data accumulated by the online models
and start learning online models from scratch (red line in Figure 9). The main drawback of this approach is that the
initial error is too high and the models take longer to converge below acceptable error rates. The policy adopted for
changing workloads is to extend the existing query mix vectors (Section 6). The models then evolve by incorporating
new real-time response time data. As shown in Figure 9, thereis a slight increase in error with the addition of 5 new
query types and the models then converge quickly below an average error of less than 20%. Similar to Figure 8, the
dashed lines in Figure 9 represent the error rates for the offline models trained retrospectively for the two workloads
with 17 and 22 query types.

8.4 Model Robustness

8.4.1 Impact of new queries

In this experiment, we show that GP models generalize very well and are capable of modeling the addition of new
query types online. We train our models offline using query mixes with 17 TPC-H query types. While the system is
running, we introduce the remaining 5 query types which our trained model has never seen before. Figure 10 shows
the impact of new queries on the model accuracy of existing queries for various GP models. The increase in percentage
error for the model is relative to the percentage error when the model is running online and there are no new queries.
Figure 10 shows that the accuracy of all the models decreasessince each model is trained using query mixes with fewer
query types (17) than the actual types (22) running in the system. LQMM and GPMM both suffer from addition of new
queries with the overall percentage error increasing by almost 12% and 10%, respectively. However, GPMLM fares
very well with an overall increase of less than 4% in percentage error. The reason for this resilience is that although
the number of queries of each new query type is not captured bythe query mix in GPMLM, but the contribution by
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Figure 11: Average percentage error for all configurations

new queries to the overall load on the system is effectively captured by the model. These results clearly demonstrate
that GPMLM is better suited to handle the addition of new query types as compared to mix only models. Note that
we adopt the policy of extending the query mix samples whenever a new query type is added, resulting in a similar
convergence of all query models as described in Section 8.3.3 after the initial rise in error shown in Figure 10.

8.4.2 Offline Model Convergence

Figure 11 shows the average percentage error for three models trained offline for 8 configurations and all query types
with the number of samples. The hyper-parameters are re-learned after every 5 samples in an offline manner. The
experiment shows the best models that can be learned when theparameters are re-learned after every 5 samples and
the learning process taking almost 4 hours for query models for each configuration. The results show that the most
gains are made for the first 50 samples, motivating us to set a cap on the number of data samples.

LQMM not only has the highest initial error rate but also has amore uneven behavior when new data samples are
added and model retrained. Both GP based models perform significantly better and the initial quick drop in percentage
error which we saw for all GP based models make the models suitable for online adaptation. As shown in Figure 11
GPMLM is the best performing model with an average of less than 25 samples for the model to fall below 20% error.
GPMLM performed worst for VM with 1 CPU at 2.2GHz and 1GB memory and 512MB buffer pool, where the APE
dropped below 20% after an average of 46 data samples. The next section evaluates the convergence of different
models when they are trained online.

8.4.3 Online Model Convergence

In this section, we describe how models can be learned efficiently for new query types on-the-fly, as opposed to
requiring offline re-training. We train an offline model for 21 query types and learn the model online for a new query
type using GPMM and GPMLM models with RQ kernel and 0 mean. Theexperiment is repeated for all 22 TPC-H
query types where the offline model is trained for the remaining 21 queries on a 512MB buffer pool allocation. For
the new query type, we have no training data so we generate random query mixes online, creating and evolving a
new model dynamically for the query. As described before, new response times can be incorporated into the model
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Figure 12: Comparison of hyper-parameter selection schemes

efficiently. However, hyper-parameter optimization cannot be performed online. For RQ kernel and 0 mean, our goal
is to estimate values ofη, s2f , α for the response time model of a new query type. We compare three different schemes
for selecting hyper-parameters to seed the model for new query type.

1. Uninformative Hyper-Parameters: We set the values of all three kernel hyper-parameters to 0. Figure 12
shows that without a proper kernel function the online models converge at a very slow rate, even with the addition of
new response time data. This counters any advantage gained by online modeling as the prediction error will be too
high for too long. In fact, GPMLM model performs worse than the GPMM model and the APE is more than 50% even
after the addition of 370 response times.

2. Average Hyper-Parameters:In this scheme, we simply take the average of the hyper-parameters of the 21
query models that were trained offline and use these values ashyper-parameters for the response time model of a
new query type. As shown in Figure 12, the average hyper-parameter selection yields an online model that converges
quickly. This also demonstrates the dependence of hyper-parameters on the configuration. However, a limitation of
this approach is that when we have no offline trained model forany query, as in the case of unseen configurations, we
will not have any hyper-parameters to work with.

3. Predicting Hyper-Parameters with GPCM: We next leverage the configuration model to predict the hyper-
parameters for the response time model of a new query type. The three hyper-parameters are a function of mean
response time, variance of response time, and the buffer pool. In this case the GPCM is learned for 3 buffer pool
configurations (32MB, 512MB and 2GB). The configuration model waits for five response time samples and then
generates hyper-parameters for initializing response time models. The GPCM generates new hyper-parameters after
everyk=50 samples to ensure that we have “good” parameters based on thecurrent average response time of a new
query type. Note that when new hyper-parameters are generated, the response time model recomputes the inverse
covariance matrix (K−1). This is the same as when new hyper-parameters are generated for unseen configurations.
Both GPMM and GPML models do better with hyper-parameters predicted using GPCM, requiring fewer than half
the samples compared to the average hyper-parameters case to converge to an error below 20%. The dashed line
in Figure 12 represents the offline model trained retrospectively for the query mixes seen online by the DBMS with
optimized hyper-parameters. The results show that most gains are made for the first hundred samples, motivating us
to set a cap on the number of data samples (C).
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Figure 13: GPLML (0,RQ) % error for unseen configurations.

8.4.4 Configuration Model Accuracy

In this experiment we compare the response time model’s error rate for the three different VM configurations when
the hyper-parameters are predicted using GPCM to the error rate for an offline trained response time model for each
configuration. The three configurations are termedVmin, Vmed, andVmax and are described in Figure 13. The x-
axis represents the offline trained response time models fordifferent configurations that are used to learn GPCM.
This learned GPCM is then used to predict the hyper-parameters for configurations for which there is no offline
trained model. The hyper-parameters are used to train models for all 22 TPC-H query types for the previously unseen
configuration. The y-axis in the figure represents the difference in APE between the online trained model and an
offline trained model. The offline model is trained by waitingtill 100 samples have been observed by the online model
then learning the offline model from these samples. The offline model in this case represents an ideal case where the
training data is exactly the same as the test data.Vmed generally has the smallest difference in error when hyper-
parameters are predicted from GPCM trained using one or two other VM configurations. On the other hand the two
cases where we see the greatest increase in error for the online trained models are when GPCM is trained forVmax

and hyper-parameters are predicted forVmin (7.8%) and similarly when GPCM is trained forVmin and the hyper-
parameters are predicted forVmax (10.3%). The reason for this is that the configuration for which an offline model is
trained is far from the configuration for which hyper-parameters are predicted. Note that the number of samples for
each configuration areT = 22, one for each query type.

9 Discussion and Future Work

Since the online response time models rely on the configuration model for getting good hyper-parameters, in cases
when the configuration model is learned for configurations that are very different from the configuration for which an
online model is learned, the prediction error can be high. However, since the space of valid configurations is small
compared to the space of possible workloads, a DBA can easilytrain the configuration model for a few representative
configurations and still get high convergence rates for online models for various unseen configurations and work-
loads. A limitation of the current approach is that when a newconfiguration parameter is added (e.g., I/O), the offline
configuration model needs to be retrained. However, we expect these additions to be relatively infrequent.

It would be interesting to explore hierarchical Bayesian networks and sampling based techniques to get a number
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of hyper-parameters for constructing online response timemodels and selecting parameters dynamically based on error
rates. This would have the added advantage of relieving the DBA of training the offline configuration model even for a
few configurations and the whole process could become completely online. Evaluating the trade-offs in accuracy and
learning costs of such models are part of our future work.

Although we target database appliances in this work, our techniques are not specific to database workloads and can
be applied to other workloads that have well defined request types where requests of a particular type are expected to
behave similarly. Examples include HTTP requests in a web-server, or different servlet types in an application server.
Applying our techniques to these systems is part of our future work.

10 Conclusion

We presented a novel experiment-driven performance model for predicting DBMS query response times using Gaus-
sian Process models based on Bayesian learning techniques.One of the main strengths of using a Bayesian approach
is that it allows the model to effectively adapt to changes inthe query workload, database characteristics, or ma-
chine configuration in an online manner, without the need forre-training. This is in stark contrast to all prior work
in this area, which required re-training the model for any ofthese changes. The ability of a response time model to
adapt online to changes in configurations is highly desirable in today’s cloud computing environments where changes
are frequent. For example resources allocated to a databaseappliance can change online via the virtualization layer.
Through extensive experimentation using the TPC-H benchmark, we show that our best model (GPMLM) performs
very well in terms of goodness of fit, accuracy, and model training/prediction time. We also show that our models are
able to quickly adapt to new unseen configurations, demonstrating their applicability to the dynamic environment of
the cloud.
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