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Abstract

In order to meet service level agreements (SLAs) and to miaimteak performance for database management
systems (DBMS), database administrators (DBAs) need tdeimgnt policies for effective workload scheduling,
admission control, and resource provisioning. Accurapegdicting response times of DBMS queries is necessary
for a DBA to effectively achieve these goals. This task igipatarly challenging due to the fact that a database
workload typically consists of many concurrently runningegies and an accurate model needs to capture their in-
teractions. Additional challenges are introduced when [#&8lare run in dynamic cloud computing environments,
where workload, data, and physical resources can changeeindy, on-the-fly. Building an efficient and highly ac-
curateonline DBMS performance model that is robust in the face of changiokloads, data evolution, and physical
resource allocations is still an unsolved problem. In thiskyour goal is to build such an online performance model
for database appliances usingexperiment-drivemodeling approach. We use a Bayesian approach and buildl nove
Gaussian models that take into account the interaction grnoncurrently executing queries and predict response
times of individual DBMS queries. A key feature of our modeliapproach is that the models can be updated online
in response to new queries or data, or changing resouraatibas. We experimentally demonstrate that our models
are accurate and effective — our best models have an averdjetipn error of 16.3% in the worst case.

1 Introduction

Database appliances are becoming a popular way of deplaatapase management systems (DBMSes) in to-
day’s cloud computing environments. A database appliameevirtual machine (VM) with a pre-installed and pre-
configured copy of an operating system and a DBMS, ready taugofdhe box. Using a database appliance reduces
the total cost of ownership by saving multiple hours thattgpécally spent on installing, configuring, and tunning a
DBMS from scratch. Users can run a database appliance infa@structure as a Service (laaS) cloud, such as Ama-
zon’s Elastic Computing Cloud (EC2) [1], renting computpayver on-demand. A related paradigm for deploying and
using database systems is Database as a Service (DaaSpliéirenby Amazon’s Relational Database Service [2]
and Microsoft's AzureSQL [3]. In addition to saving setupdageployment costs, these approaches offer low-cost
alternatives to in-house infrastructure procurement andagement, and enable flexible resource provisioning and
adapting the available resources to the dynamically cimangorkload. For all these reasons, database appliances are
widely deployed on the cloud and their use will continue tovgr

One of the problems with database appliances is that théyfdghamic nature of the workloads and the environ-
ment makes it difficult for a database administrator (DBAptedict the performance of a running query or workload
In this work, our goal is to build aonline performance model for database appliances that can predjmbnse times
of individual DBMS queries, given query typeand a set of queries already executing in the DBMS, which Weca
qguery mix(details in Section 3). A key feature of our models is thaytb&n adapt to changes in the queries, data, or
DBMS configuration in an online manner.



Predicting the response time of a database query beforeitexeds very useful for many administrative tasks.
For example, such a prediction can enable a database attatimigDBA) or an automatic tool to schedule workloads
effectively, perform better admission control, do capaplanning, and formulate policies for effective resource-p
visioning. For example, given two database applianceslaidtespective workloads, a DBA can use a performance
model to predict the effect of giving more resources (e.g@maory or CPU) to one or the other DB appliance and then
decide how to efficiently partition the available resouras®mng these appliances so that they both meet their SLAs.

Traditionally, the performance of DBMSes has been studyezbinstructing elaborate analytical models. However,
such models need to be carefully constructed by a domairriexipe are usually specific to a particular DBMS. More-
over, these models do not capture the full complexities @rgexecution and the interactions among concurrently
executing queries in the system. Furthermore, analyticalats become obsolete as soon as there are any changes to
the DBMSs implementatiorExperiment-drivemodeling techniques [5, 6, 9, 18, 19] overcome the aboveioresd
shortcoming of analytical models and have therefore becaemg popular. We use an experiment-driven modeling
approach in this paper.

Experiment-driven modeling relies on: (1) sampling thecgpaf possible query executions to collect training data,
and then (2) fitting statistical or machine learning modelthe collected sample data. Most existing techniques [4, 5,
6, 9, 13, 18, 19, 21, 22] for database experiment-driveroperdnce modeling rely on static models that are trained
offline for specific configurations and resource allocatevels. These models cannot be updated online due to the
inherent inflexibility of the learning techniques used. $hany changes in the workload, the database configuration,
or resource allocation to the VM containing the DBMS (i.be tlatabase appliance) require collecting new samples
and re-training of models. Collecting new samples is verstlgptaking hours or days, which severely limits the
applicability of prior experiment-driven modeling techjpes. This limitation is especially restrictive for databa
appliances, since in addition to the dynamic nature of theldese and queries, resource allocations can also change
in an online manner.

In this work, our goal is to address this limitation and buefficient and highly accuratenline query response
time models for database appliances that take into accharibteractions among concurrently running queries and
can dynamically and robustly adapt in the face of changeseémiorkload, database or physical resource allocation,
without the need for additional sampling experimeimt& identify the use of Gaussian Process (GP) models and show
how to effectively apply them to build online response timed®ls. Gaussian Process models have been previously
applied to various problems, including database perfoomamodeling [6, 18]. We choose them in this work because
they lend themselves well to online adaptation. Howevershav that a simplistic approach to adapting GP models
is too costly. A major contribution of this paper is to deyedonovel Bayesian approach for efficient online adaptation
of GP models. Our experimental results demonstrate that GdRels outperform other techniques in terms of good-
ness of fit, accuracy, and model training/prediction timerttfermore, the expressiveness offered by the Bayesian
framework allows us to effectively leverage prior knowledtgrived from sample data to learn response time models
for previously unseen queries and configurations for whiene is no offline sampled response time data. The high
accuracy and fast convergence of online GP models make thiggible for online performance modeling of databases
appliances.

2 Related Work

Database systems have traditionally relied on analytiegbpmance models, with model parameters based on simple
statistics. Analytical models are most prominently useduery optimizers, and there has been some recent work to
adapt optimizer models online [14]. Analytical models walgo used to set the multi-programming limit (MPL) of
a DBMS for improved throughput [4, 22]. There has also beerkwa self-predicting databases that are capable of
answering “what-if” questions [14, 17]. In addition to tledaternal database models, queuing models for multi-tier
architectures also attempt to include the performancesdP®BMS [21, 23]. A significant limitation of these analytical
modeling techniques is that they are notoriously hard tdvemsith the system and they necessarily make simplifying
assumptions, so they do not capture the complex executidgrafmically changing workloads. As a result, there is
increasing focus in the research community on experimeanéid performance modeling for database and multi-tier
systems.

The recent literature includes several examples of exparirdriven models for database systems. Predicting



Query Run-Time (PQR) trees [10] make use of binary classifindrees to represent disjoint sets of time ranges. A
new query traverses through the tree reaching a leaf nodehwhpresents the predicted time range for that query.
Ganapathi et al. [9] use Kernel Canonical Correlation Asialf{KCCA) to predict multiple metrics for database
queries, including response times. The KCCA techniquestak®e covariance matrices (query feature and perfor-
mance) and projects them onto two subspaces such that tleetiwos of the two matrices are maximally correlated.
The authors report a prediction time of “under a second”|entmiir models take a total of 81 ms on average for predic-
tion. Tozer et al. [19] use a linear regression responsertimael for throttling long running queries. Linear regressi
models are typically less accurate than the GP models thasaéwvhich can be seen in th# correlation coefficient).
Watson et al. [21] predict quantile ranges for multi-tiepbgations under virtual resource allocation. They modstp
formance as a joint distribution over performance metrit @source allocation. All of these approaches suffer from a
fundamental limitation: they require re-learning the mddeany change in the workload or configuration, rendering
them ineffective for online performance modeling of datbappliances. Another limitation of these approaches is
their inability to leverage prior knowledge in a meaningfay. Furthermore, most of these approaches provide point
value predictions with no confidence intervals.

In this paper, we use Gaussian Process model that rely ordyery types and no additional features, and hence
are DBMS agnostic. The proposed GP models are very expeessiy are not constrained by a fixed function form.
They can be updated efficiently in an online manner, and ngiMyhaccurate models for queries running on different
configurations can be learned by using prior knowledge. Aadded advantage, these models can predict not only
a point (mean) response time but the complete response tstrédbdtion, which can be used to provide confidence
intervals for the prediction. Gaussian Processes have lsshin [6, 18] but these works, like other prior work on
experiment-driven modeling, do not consider dynamicafigating these models.

3 Solution Overview

Our goal is to build a query-interaction-aware response tinodel for database appliances that is able to adapt itself
to changing workloads and resource allocations in an oriéiekion. We assume that each query submitted to the
DBMS belongs to a specific query tygg, wherel < ¢ < T andT is the total number of query types. A workload
W comprises zero or more instances of each query type. Thefrabnaurrently running queries;;, is represented

as a vectok Nyj,..., Np; >, whereN,; represents the number of instances of query Yp@ the mixm;. Query
interactions have been shown to significantly affect th@aase time of an incoming query [5, 6, 19]. Therefore,
our response time models should take into account the platimix of queriesyn;, or at least the total number of
queries in this mixX given byZiT:1 N;; = 1. Itis always true that < M, whereM is themulti-programming limit
(MPL) of the DBMS and is specified by the DBA. Given the query mix eatly running on the system, we want
to be able to predict the response time of individual incangjueries. That is, we want to find a functiff) such that

fij = f(mjv Qi)

wheref,; is the estimated response time of a query tgheunning in a mixm;. The functionf(.) can be based on
the distribution of queries in the mix, or just on the totahrher of queries in the miX). We use amxperiment-driven
black boxmodeling approach to collect training data consisting offgl@sS, =< m,;, r;; >, wherer;; is the actual
response time of a query ty@g; running in a mixm;. We then use this data to learn models for predicting query
response times (i.e., to leafi.)).

The response time of a particular query depends not onlyeauttrent load and the query mix but also on different
tunable configuration parameters (e.g., buffer pool siZél Mavailable CPU, and memory). One very important goal
of our modeling approach is to adapt our models as these péeesrchange, without offline sample generation and
model re-learning. To achieve this, we build two separatélet® 1) response time model:a model to predict
guery response times for each query type of interest23rabnfiguration model: a model to predict the response
time model's parameters for different configurations. Wespnt response time and configuration models in Section 5
and 7, respectively.

Figure 1 shows the overall workflow of our model learning s As a first step, a DBA will generate different
training query mixes using our workload generator modulectvbakes)M (MPL) andT (total query types) as input
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Figure 1: Model learning workflow

(Section 4). Using the generated query mix samples, the DBAhgn run a series of experiments for different con-
figurations (e.qg., buffer pool size, total physical mem@U, etc.) using a client coordinator. Our client coordinat

is a client-side program implemented in C++. The client dowator creates client threads, each with a separate con-
nection to the DBMS. Each thread then selects and runs a fr@anya given query mix. Once the desired query mix
is running, a separate thread executes a target query arglirasats response time. This results in training samples
of the formsS; =< m;,r;; >. These samples are then used to learn an offline configuratiaie! (Section 7) which
accumulates all configuration parameters and the correapgpresponse time model parameters for the selected con-
figurations. The configuration model is then usadine by the client coordinator to initialize query response time
models (Section 5) for new unseen configurations and quesstfor which there are no offline trained models. The
configuration model takes the observed response time of tis¢ macently executed instance of a query type, and the
DBMS+VM configuration to periodically generate parameferahat query type’s response time model. During the
online phase, the configuration model can generate new npadameters for the response time model of a given
query type when the query is run in a new configuration. Todé¢he need for generating the new model parameters,
the configuration model monitors the DBMS+VM configuratiordahe observed execution time of queries of this
type. The response time model, which is specific to each aanafitpn and query type, updates itself by incorporating
the most recent response time data (details in Section 6).

Note that in our current implementation the client coortiinas external to the DBMS, which is suitable for
applications such as capacity planning, workload schedulor admission control, among others. Alternatively,
the client coordinator can be integrated with the DBMS, tovjite, for example, more accurate statistics for query
optimization or dynamically controlling thdPL for maximum performance.

4 Generating Training Workloads

Like other experiment-driven approaches, we require saqxperiments to collect data for training our models.
However, since our models adapt dynamically they are notmsitdve to the sampling policy used as models in prior
work [6, 19]. A simple sampling approach that guaranteestivaly good coverage of the space of possible query
mixes will provide a good starting point for an offline trathmodel. The model will then be able to correct itself
quickly even if the initial training samples are not the begresentative of the running workload.

4.1 Uniform Sampling

A direct consequence of constructing the sample query nuiged for training by sampling each query type uniformly
in the rangel0 — M] is that the distribution of load, where the load is the totaiber of queries in the mix,
approximates a normal distribution around the mean vald€lof the central limit theorem). The variance decreases
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as the number of identical uniform distributions, one foclequery type, increases (shown in Figure 2). A detailed
discussion of the exact distribution of the sum of identicahd non-identically distributed uniform distributionan

be found in [8]. Based on the upper limit of each query typevedld in the mix, the distribution over load is very
narrow. This is not desirable for learning response timeefsfibr widely varying loads.

4.2 Workload Characterization Based Sampling

To solve the problem of uniform sampling, we look at the queiy from two perspectives: the overall load and the
query types contributing to that load as shown in Figure 3cdwer the spectrum we generate uniformly distributed
samples across two dimensions: 1) total number of quenes2athe number of different types of queries running
(termed thenteraction levein [6]). Sampling is done by first randomly selecting the lesfdoad from 0 toM, and
then randomly selecting the number of queries that cort&ibuthis level of load. The value of this variable ranges
from 1 to min {total query types, random load leyelThese two values are used to control the random generdtion o
the number of queries of each type. This sampling processrgtas a distribution over loads that covers the workload
spectrum from low load to high load.

Our workload generator uses characterization based sagngigenerate query mixes. The client coordinator
runs the generated workload and collects the training seenjph our experiments, it takes under 20 hours to run these
experiments for a workload with about 600 different querxasi Next, we present details of the Gaussian models
for predicting query response times and their online adptaSection 7 describes the configuration model and how
itis used.

5 Gaussian Response Time Models

Bayesian Networks (BN&ll under the broader class pfobabilistic graphical models/here dependencies between
variables are encoded using conditional probability itistions. More specifically, a BN is a directed acyclicalma
(DAG) in which each nod&; has a conditional probabilistic distributid?( X;| Parents(X;)) quantifying the effect
of parents on the node. The Bayesian framework offers a nuafla@lvantages over alternative modeling approaches
including flexibility and consistent semantic interpraiat We choose to develop BN based models for two reasons:
1) The Bayesian framework provides a theoretical basis fmdeting uncertainty using probabilities. This allows us
to predict not only the mean response time but also the cdegistribution for the response time of a particular
qguery. This uncertainty in the response time model can bextijr propagated to a decision making system (e.g.,
autonomic provisioning tool, throttling system, etc.) 2)elBayesian framework offers the ability to encode expert or
prior knowledge using prior probability distributions. i§hnherent flexibility allows us to specify effective prgofor
dynamic models using offline learned models.

Our proposed modeling approach uses non-linear Gausstre$d models. However, we start by presenting
simpler, linear Gaussian models that are easier to learradapgt to online changes. The BNs for linear Gaussian
models are shown in Figure 4.

5.1 Linear Gaussian Models

Our proposed linear models encode each conditional priiyadtistribution using dinear Gaussian distributioras
P(Y|z) = N(Bo + >, Bizi,0?). Such networks are referred to @aussian Bayesian networfk2]. Linear models

are particularly attractive because they are easier td lamitl given their low model generation and update cost, they
can be easily used in an online setting.

For a Bayesian network model, the likelihood of model parans® given dataD is the probability of observing
dataD given parameterg and can be written af K (6 : D). We use Maximum Likelihood Estimation (MLE) [7]
for finding the model parameters most likely to have produbedobservations in the training data. We adopt the
common practice of taking the log of the likelihood to turegucts into sums for easy derivation of gradients. Using
this approach we define two linear Gaussian models, whicheseribe next.



a) Linear Load Model (LLM)  b) Linear Query Mix Model (LQMM)

Figure 4: Bayesian Networks for linear Gaussian models

5.1.1 Linear Load Model

The first linear model that we develop is what we call linear load model (LLM) As shown in Figure 4(a), in
this model the response time of a query is modeled only as &ifumof load () i.e., total number of concurrently
executing queries. We model the probability of the randonatsée R, representing the response time of query type
Q;, conditional upon the random variable representing load, as a Gaussian distribution given ByR;|L) =
N(Bo + Bil;0?). The parameterér, 1. (Bo, B1,0?) can be estimated by maximizing the log-likelihobick,, as
shown in Equation 1, wherg, andr;, are the load and response time for #th sample in the training datB

(Sk =< lk,"’ilk >)

lkr, (Or, D) = —% log (270%) — %Z [% (Bo + Bulk — ra,)” 1)
k

By taking the derivatives dftr, (0r, |1, : D) with respect tg3, and; and setting td we get Equations 2 and 3.
Ep[Ri] = Bo + p1ED[L] 2

Ep[R;L] = Bo[L] + S1Ep[L?] 3

whereEp’s are the respective means and momémts L, R; L, L?) observed in the sample dafafor query type
Q;. Solving these linear equations givesdssandp;. o2 is given by Equation 4.

0% = Coup|R;; R;] — f1CovpL; L] (4)

Once these parameters have been learned, we have a Gaissiantibn N (5, + 3:11; 02) over the predicted response
times for each value of loaldon the database for a query ty@e. The mean of the Gaussian distributiofy + 511)
is treated as the model's response time predidtjpfor a particular load.

5.1.2 Linear Query Mix Model

Linear query mix model (LQMMis similar to LLM but considers the query mix instead of thgyagated load. A
query mix network is depicted in Figure 4(b) where each quérnype Q; directly impacts the response time of all
gueries. Similar to the load model, response time is a Gansistribution centered on the linear weighted sum of the
number of queries of each type running on the database. Tbility distribution and the likelihood function are
shown in Equation 5 and 6.

P(R;|M;) = N(Bo + B1N1; + B2Naj... + BrNrj,0?) (5)
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lkr,(Or, 2 D) = —5109(27”’2) -y Z(ﬂo + B1Nig + .. + BrNry, — 1ip.)? (6)
%

The likelihood function can be differentiated with respect, to 51 to yield T+ 1 linear equations which can be
solved for the values g, to 7. The variancer? can be computed as shown in Equation 7.

T T
0? = Coup[Ri; Ri] = > > B;xCoup[Nj; Ni| 7)
7 k

5.2 Non-Linear Gaussian Process Models

Query performance varies in a complex non-linear way wittyiva the query mix, the hardware, and the DBMS
configuration. For example, if a query involves a join, théadgor of this join varies significantly and in a non-
linear way depending on whether the data fits in memory orseetle read from disk. Therefore, the linear models
developed in the previous section may not be sufficientlyeate and we need non-linear models. It is difficult to use
any non-linear parametric model (e.g., a cubic model) siesponse times may not follow a parametric distribution.
An alternative is to use non-parametric models that camladyitrary functions over load and query mix for response
times. In this paper we use such a model, and in particularsge€daussian Processes (GP) [15].

A Gaussian Process is a collection of infinite random vagisldny finite number of which have a joint Gaussian
distribution. GP based models are flexible, probabilistid aperate in a Bayesian framework which makes them
suitable for modeling uncertainty and exploiting prior lwiedge. In this section we develop GP based response time
models that are trained offline. We describe in Section 6 henadapt these models in an online setting. We train
three different models and their variants:

1. Gaussian Process Load Model (GPLM): We train a GP load model where the response timg 6f a query
typeQ); is a function of load ) similar to LLM.

2. Gaussian ProcessMix Model (GPMM): GPMM is a non-parametric variant of LQMM and models the resgo
timer;; of a query of type?); as a function of query mixu;.

3. Gaussian Process Mix + Load Model (GPMLM): GPMLM models the response timg; as a function of both
query mix n;) and load {). We show in Section 8 that GPMLM is not only more accurate théher GP based
models but also more robust.

5.2.1 Bayesian Inference with Gaussian Processes

In Bayesian inference the probability of a hypothepissterior probability depends on the likelihood of the hypoth-
esis (based on observed data) and the prior bgdigdi probability). For Gaussian Process based models we specify
a GP prior as follows:

f(x) ~ Gp(m(x)v k(xvx/)) (8)

wherem(z) is a mean function ankl(z, z’) is a covariance function. This function is also known &ewmnel function
For a Gaussian process the joint distribution of the obskevaéuesy and the predicted valug(z.) atz. is shown in

Equation 9.
e [ (L LT s ) ®

This results in a posterior Gaussian Process that is usguiddiction as shown in Equations 10, 11 and 12.

fID ~GP(mp,kp) (10)



mp(x) = m(z) + k(K +0°1)" (y — m) (1)
kp(z,2') = k(z, ') — kT (K 4 o)1k (12)

wherep = m(z;) for all samples in the training data? is the transpose of the vector of co-variances ofith each
training sample K is the covariance matrix for training date? is the noise in samples, ands a vector of response
values in the training data.

As shown in Equations 11 and 12,5 (x) is the mean predicted value, which is the surpidér mean m(xand a
smooth function. Similarly, the variance for a point preitic & (z, ') is the difference between the variance of the
data and how well GP is able to explain the data at the tarde¢ v@herefore, the Gaussian Process not only captures
the variance in the data but also how confident the model iswphedicting at a particular point. The variance tends
to increase as we move further away from data in the inputespac

5.2.2 Specifying Prior Distributions

Bayesian inference requires specifying a priofx) andk(z, 2') in our Gaussian Process models (Equation 8). We
create variants of GP models by using the following mean amdek functions, and we evaluate their performance in
Section 8.

Mean Functions

The approximate global shape of the function (i.e. linealypomial ..) is specified using a mean functieriz). We
use the following mean functions:

1. 0 Mean Function: The mean and variance of the predictive distribution vaititneanfor f, atz., is given in
Equations 13 and 14.

E(f.) =kT(K+01) "y (13)
Var(f.) = k(z., 22) — k.7 (K + 021) 'k, (14)
2. Linear Mean Function: Based on LQMM we also experimented with the following meamcfion:

m(z) = Bo + Brw1 + Baw2 + ... + Brar (15)

Following the discussion on incorporating explicit basisdtions in [16] we get the predictive distribution
represented in Equations 16 and 17.

E(g.) = E(f) + R"§' (16)

B(g.) = E(f.) + R"(HE,"H") 'R 17

whereH is the matrix collection of all basis functiongz) for all training and test caseR,is H. — HK , "' K,
andg* is given by(HKyleT)_lHKyfly.

Kernel Functions

Kernel functions (covariance functions in Equation 8) areeasure of proximity of two input samples (load or query
mix). We experimented with two kernel functions (Equatid8sand 19): 1 5quared exponential function (Skith
parameterd = {7, o—J%} and 2)Rational quadratic function (RQyith parameterg = {7, o—J%, at.

k(zp,zq) = Uﬁe:vp <_(xp - xq)Tzn%I(xp - xq)) (18)



yr 1 h

W(% —Tq) (19)

k(zp,zq) = ch2¢» 1+ (xp — x4
wheren is the characteristic length scale, a parameter indicdtowg much each dimension of thevector must
change before the covariance function significantly chang%is the signal strength and controls the shape of the
kernel function. '
Notation: A variant of Gaussian Process Mix Model with linear mean aqdl d®variance function is referred
to as GPMM (LIN, RQ). The same conventions are used for riefgto other variants of GP based models in the
subsequent sections.

Hyper-Parameter Learning

After selecting the mean and kernel functions, the next steép specify the parameters associated with the mean
(< Bo, B1,-, Bn >) and kernel 4, cr}, «) functions. These parameters are referred to asyper-parametersf the
model. The parameters are learned in light of training daigdtimizing the log marginal likelihood given in Equation
20 using a conjugate gradients based technique.

1 1 _ n
log P(ylz,0) = —§log|K| - §yTK Ly — §log2w (20)

A numerical approximation technique such as one based ojugate gradients generally works well. In the
optimization of the log marginal likelihood the term%log|K| is the complexity penalty which penalizes complex
functions and—%yTKfly is the data fit measure [16]. The model therefore autométisalects a simpler model
(Occam'’s razor) [16] which explains the data well withouepfitting, allowing the model to generalize well in
practice as opposed to regression based models which btedéita.

6 Online Model Adaptation

In this section, we describe how Gaussian models can be ddifisiag actual observations of query response times
and how they can adapt to changes in configuration and wat&lo&ection 7 shows how prior knowledge can be
leveraged effectively by using the configuration model itdfize the hyper-parameters of the response time models
for unseen query types and resource allocations.

For the linear Gaussian models where parameters are leasiegl MLE, there are no hyper-parameters that
need to be learned. Also, these models can be easily updalied by maintaining running or moving averages for
computing theEp values, which can be updated with new data. However, as we Bh8ection 8, linear models
have unsatisfactory prediction accuracy on some configunat Therefore, in the following sections we focus on the
non-trivial case of adapting the more accurate non-lindab&sed models to an online setting.

6.1 Adding/Removing A Sample (Rank-1 Updates)

If we have an offline trained model for samples and we want to incorporatg; into the model we need to
recompute the inverse of the new+ 1 by n + 1 covariance matrixk,, ;. However, the time complexity of
the inverse computation i9(n3) which makes the operation prohibitive in an online settitige make use of the
partitioned inverse equations presented in [11] for a pesitefinite matrix where we have the invedsg ™', K, .1 "
can then be computed as in Equation 21.

_ F b
k= [0h)] @
whereD, b andF' are given by Equations 22, 23 and 24
D=(k—kp1 Ky Ykpy1)? (22)

10



b=—-DK, “kni1 (23)
F =K, ' = Dkyi1kni1” (24)

andk = K(zy+1, zn+1) Wherek,, 1, is the covariance vector af,; with all n samples.

Similar to adding a new sample, removing a sample is equitateremoving the corresponding column from
K11 '. If we want to remove thgth column, we will first need to permute theh column andjth row to the end
of the matrix. Using the above definitions we gét ' = F + Dk, +1k,11" . These updates where we only add or
remove a single column to the inverse covariance matrixefegned to asank-1 updates

6.2 Data Replacement Policy

To update the models of different query types online we na@ird set of recently observed response times for each
guery type. We replace old samples in this set with newly nlegsesamples and cap the number of samples maintained
for each query type to 400, which we refer to as shenple limitC'. There are two motivations for setting a cap on
the number of samples. First, for all the experiments thatemducted we saw the greatest gains in accuracy for
the first 100 samples and diminishing returns subsequesgiyond, and more importantly, old response time data for
particular query mixes becomes irrelevant given new respadime samples for a close enough query mix. In fact,
stale response time data, if kept, results in inaccuratgigtiens over time similar to an offline trained model which

is not updated online. This happens because of data evolartio changes in database access patterns over time. We
add new samples using rank-1 updates (Section 6.1) ungamally as long as we have less th@samples. This is

the case when we need to learn a model for a query online anstigsded in Section 7.1. Once we h&samples,

we replace the sample that is closest to a new sample in thie sppce. A very suitable measure of proximity in the
input space is the kernel function (the covariance fungtion

6.3 Data Reuse Policy

To better adjust to dynamic changes in the system, like imthditf queries and changes in resource allocations we
employ two policies for reuse of data accumulated by the hafdeach query type:

1. Keeping prior data with new kernel function: Whenever resource allocation is changed, we keep theraxisti
data in models and recompute the ! matrix with the new kernel function.

2. Extending prior data: To model the impact of new query types on the existing quergetso(by adding
samples containing this new query type), we extend the diioarof the query mix fronT" to T" + 1 for all existing
samples. This extension does not require re-computatitireafovariances between the samples.

7 Configuration Model

Even when real-time data is incorporated into the model heddata reuse policies are adopted as described in the
previous section, an online response time model takes tapttbconverge below reasonable error rates if uninforma-
tive hyper-parameters are used for the model. This is detraied experimentally in Section 8.4.3. For the online
response time models to converge quickly we need good Ipgrameters. In our approach, we use the configuration
model (described next) to predict these hyper-paramegers§ponse time models.

During the offline training phase, we learn the response timeels for different configurations. We explored
how the kernel hyper-parameterare affected by factors such as the average response timguefrg, the variance
of the query response time, and the configuration parameteltgling buffer pool, memory, and CPU allocation.
We found that the query response time, buffer pool, and CRi¢ation (in that order) accounted for a significant
amount of variation in the values of the hyper-parametarsdsponse time models. Therefore, we buil@daussian
Process Configuration Model (GPCNY) leverage prior knowledge from the offline trained modelgredict hyper-
parameters for new queries on seen and unseen configuraB®®M is maintained offline and is updated with the
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Figure 5: Average percentage error of different models

hyper-parameters of a newly trained response time model farticular query on a configuration. GPCM is query
type agnostic and only encodes the mean and variance inmesgtime and the configuration parameters as follows:

[RMEAN,RSD,BP, CPUnum,CPU, MEM] = [’I],O’?,Ox]

Note that there are two GPCMs for the SE based GP models fdigtirey 7, o—]%, and three GPCMs for RQ based

GP models for predicting each o)‘a?, a. BP andM E M are encoded in MBs (e.g. 2GB as 2048) and CPU in MHz
(e.g. 3.0GHz as 3000) where Bs; 4 andRsp are encoded in seconds.

8 Experimental Evaluation

8.1 Experimental Setup

For our experiments we use an IBM blade server with 2 dual A04® Opteron processors 2216 HE at 2.2 GHz,

8 GB physical memory, and a 45 GB SCSI hard drive. As our soéiwanfiguration, we use 64-bit Ubuntu Server
10.04 running Linux Kernel 2.6.32-21 with the PostgreSQL.8DBMS (referred to as Postgres) and Xen 3.2.3. In
this work, we build and train response time models for TPCeddihnmark queries [20]. TPC-H is a decision support
(DSS) benchmark that consists of 22 query types. These ¢y model a real world data warehousing environment
where complex ad-hoc queries are expected to be run agaéndata warehouse. We use a scale factor 1 database with
a total size of 2.3 GB on disk. Note that our techniques aregdly applicable to other DSS and online transaction
processing (OLTP) style workloads. Training models fosthether workloads is a part of our future work.

8.2 Model Accuracy

We start by comparing the accuracy of the proposed GP moddlshe linear Gaussian models. We measure the
accuracy of predictions using the average percentage @RIE) which is calculated by taking the average of the
percentage erroll‘%(””)‘ for each prediction.

12



8.2.1 Effect of Buffer Pool Size

Figure 5 shows the relative error for all 22 TPC-H query typeslifferent buffer pool sizes, using GP and linear
Gaussian models. All models are learned offline using theorese time data collected for query mix samples gen-
erated using our workload generator. The figure shows tikaaitimodels are not sufficiently accurate. They perform
well for very small and very large buffer pool sizes where @dinnothing fits in the buffer pool (32MB) or where
almost the complete database fits in the buffer pool (2GByvéd@r, the prediction error can be close to 50% in some
cases, which renders these models ineffective for mostipaa@urposes. Thus, the simplicity of linear Gaussian
models comes at the expense of insufficient accuracy, andoweticonsider them further in this paper, focusing
instead on GP models. As expected, GP models perform sigmiljcbetter than linear models. Even the simplest
GPLM outperforms LQMM on all buffer pool sizes, demonstigtthe inherent non-linearity of query response time
distributions.

8.2.2 Effectiveness under Overload

Our results on various configurations show that the varianaesponse times increases significantly when the database
is overloaded, i.el,> 70. However, all GP based models were able to capture thisnagia the predicted confidence
intervals. An example of this is Figure 6, where the respdinses of TPC-H Q12 are modeled using GPMM (0, RQ)
on a 2GB buffer pool. The shaded area in Figure 6 represeat85o confidence interval for the mean response
time prediction. Note that the prediction curve is smootla disnction of the 22-dimensional query mix, however it

is shown only as a function of 1-dimensional load. Our restdinsistently showed that the predicted variance by GP
models increases for overloaded databases where theresglemable variation in response times and for test cases
which were very far from the training data. This ability toptare the uncertainty associated with prediction is yet
another advantage of our approach and can be directly patgéitp a decision making system.

8.2.3 Overall Accuracy

Figure 7 shows the predicted values and the actual respiomsealues for GPMLM (0, RQ) model for around 4700
test cases for all query types on all five buffer pool sizeser@N, GPMLM (0, RQ) is the best performing model
with an average error ranging from 7.7% for the 2 GB bufferlgodl6.3% for 512 MB buffer pool, as shown in
Figure 5. Note that we do not propose GPMLM with linear meatalise of the significant training cost associated
with linear mean based GP models as discussed in 8.3.1. Rdi BK0, RQ), the overall correlation coefficient for
all configurations and all query types is 0.94.

8.3 Online Adaptability
8.3.1 Online Costs

Model Adaptability: Despite the simplicity of linear models, due to the high emates on some configurations
(shown in Section 8.2) we do not adapt these models onlingh®nother hand, GP models with linear mean, which
are highly accurate as shown in Section 8.2, pose seriolebdltgt problems. This is because the number of hyper-
parameters for the linear mean functiorfist- 1, whereT is the number of different query types. With around 500
samples for a query type it takes approximately one houramléhe hyper-parameters for 22 models, one for each
query type. Furthermore, the hyper-parameters of GPMM(®)lare highly sensitive to the actual response times and
therefore cannot be predicted using GPCM. Therefore, dslinttar models, we do not adapt GP based models with
prior linear mean functions to an online setting.

GP*(0,SE) are the most efficient GP based models, since #ierenly two hyper-parametergy, cr}}) to learn
offline or predict in an online setting. However, the extrxifidity of the RQ kernel function with three hyper-
parameters{{, aj% a}) pays off with respect to model accuracy. Additionally,cgirthe number of hyper-parameters
for GP*(0,RQ) is independent &f, we adapt GP*(0,RQ) based models online and evaluate tedmnmance in the
following sections. The time to learn hyper-parametersiarand RQ based models with 0 mean, 22 query types, and
500 samples per query type, is approximately 4 and 7 mintgspectively.
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Wall clock times
Complexity (n data samples)
400 | 1000 | 3000
GP - Point O(n) 4ms | 17ms | 82ms
Prediction
KT o(n?) 40ms | 413ms| 11s
Computation
Rank-1 o(n?) 12ms| 64ms | 623ms
K~! Updates
Learning - 13s 19s 1100s
Hyper-Parameters

Table 1: Wall clock times for various operations
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Figure 8: Online models for changing configurations

Incremental Data Addition: The complexity of adding or removing a new data sample usang+1 updates is
O(n?) as opposed t®(n?) for recomputing the inverse of the covariance matrix. Asishim Table 1 each new query
(assuming 1000 data samples for that query’s model) takemerl 7ms for prediction and another 64ms for updating
the model with the actual response time of the query. Theiglied includes the time to calculate both the mean
and variance of the predictive Gaussian distribution. Tdleutation of variance takes almost two thirds of the total
prediction time. For an application of the response time ehadhich does not require the predictive variance, only the
mean response time can be computed to further reduce theetgvadtost. Similarly, 64ms for updates include two
calls, one for removing a sample and another for adding a karfipere are other opportunities that can be exploited
for example, reusing the covariances computed for respganegrediction. However, we have notimplemented these
features, leaving them for future work.

Data Reuse CostsWe adopt the policy of keeping prior data when new hyperipatars are selected as in the
case where resource allocations for a DBMS are changedrd&dpisres re-computation of the covariance matrix with
the new kernel function and then the inverse of the matrixe fbital cost of this operation is approximately 7 seconds
for 22 models with 1000 data samples each. The time takeesstinkbarly with the number of query types given a
fixed number of samples for each model. Similarly, the costx¢énding all existing data sample2(x 1000) by an
additional ‘0’ when a new query is added is reasonable (j @rsdx) considering the frequency of such additions.
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Figure 9: Online performance models for changing workload

8.3.2 Adapting to Dynamic Configurations

In order to model new (unseen) configurations, we learn ameftlonfiguration model from the data collected at five
buffer pool configurations on a physical machine with 2 cae2.2GHz with 8GB memory. We encode the CPU,
memory, and buffer pool size as discussed in Section 7.

Online Response Time ModelsQueries are generated and run online on a VM with 4GB mematBatores at
2.2GHz (config 1 in Figure 8) and models are created for eaehydgype dynamically by getting the kernel function
hyper-parameters from GPCM. Note that in this case we hayginoresponse time data and the models are learned
from scratch for this configuration. The blue line in Figurst®ws that the average percentage error falls below 20%
when the model has seen only under 40 samples on averagethetmodel’s error rate falls below 12%, we reduce
the number of VM CPUs from 3 to 2 and its memory from 4 GB to 2 Gé&nfig 2 in Figure 8).

A simple policy is to get new hyper-parameters from the camfitjon model, discard the previously accumulated
data by the online response time model, and learn the mod#iéonew configuration from scratch as done for the
previous configuration. As show in Figure 8 (red), a drawbaickhis approach is that initially before the model
converges, the error rate can be very high. To prevent this fiappening, the online model keeps all the existing
data accumulated from previous configurations and evolyesdnrporating actual observed response time data.
Keeping response time data collected from the previousgoargtion until new data replaces it, significantly reduces
the maximum error. This is shown in Figure 8 (green), wheeentodel converges more quickly as compared to the
case of starting from scratch (red). However, to reuse teeipus response time data, we have to recompute the
K~! matrix for each query’s model. The cost associated with¢bigputation is discussed in Section 8.3.1. This
computation is done by the online model, whenever the resaltocation is changed.

Comparison with Offline Trained Models: Dashed lines in Figure 8 show the performance of offline &@in
models for the two unseen configurations for the queries sakme. These offline models are trained retrospectively
for comparison purposes, i.e., the offline models are tdafoethe response time data seen during online operation.
As shown in Figure 8, the online models converge quickly Waleasonable error rates ( j 20% ) for configurations
for which we have no previous training data and ultimatelgrapch the accuracy of models that are trained offline
specifically for these configurations.

16



12 T |
-H-LQMM .,.—"
-H-GPMM (0, RQ) K

10p GPMLM (0, RQ) . 1

S J R

= ‘ -’

w ol S Lt

\o , '¢

= . L.

o gl .-z ]

> -l a="

3 ___.:._.

£ m- o

4

g 4r ’ ¢' [

© ,' R

9 . '¢

8 " ¢.

£ ,
¢ L?

r 0
l,'"
E] L L L L
0 1 2 3 4 5

Unseen Query Types

Figure 10: Impact of new queries on trained query models

8.3.3 Adapting to Dynamic Workloads

In addition to being used for unseen configurations the effiiained configuration model is used to learn response
time models for unseen workloads. In this experiment, quéEres are generated and run against a DBMS with 2GB
buffer pool size. The online response time models are lelfnmoen scratch for 17 randomly selected TPC-H query
types and shown in Figure 9 (blue line). When the averageracgwf the models falls below 10%, the workload is
changed by introducing the remaining 5 TPC-H query typebérstystem.

A simple policy for dealing with changing workloads is toehsd all prior data accumulated by the online models
and start learning online models from scratch (red line guFé 9). The main drawback of this approach is that the
initial error is too high and the models take longer to cogedselow acceptable error rates. The policy adopted for
changing workloads is to extend the existing query mix vec{BSection 6). The models then evolve by incorporating
new real-time response time data. As shown in Figure 9, tisaaeslight increase in error with the addition of 5 new
query types and the models then converge quickly below arageesrror of less than 20%. Similar to Figure 8, the
dashed lines in Figure 9 represent the error rates for theeffhodels trained retrospectively for the two workloads
with 17 and 22 query types.

8.4 Model Robustness
8.4.1 Impact of new queries

In this experiment, we show that GP models generalize vetiyamel are capable of modeling the addition of new
guery types online. We train our models offline using queryasiwith 17 TPC-H query types. While the system is
running, we introduce the remaining 5 query types which cained model has never seen before. Figure 10 shows
the impact of new queries on the model accuracy of existirgigs for various GP models. The increase in percentage
error for the model is relative to the percentage error whemtodel is running online and there are no new queries.
Figure 10 shows that the accuracy of all the models decrsassseach model is trained using query mixes with fewer
query types (17) than the actual types (22) running in theeaysLQMM and GPMM both suffer from addition of new
queries with the overall percentage error increasing byatrhi2% and 10%, respectively. However, GPMLM fares
very well with an overall increase of less than 4% in percgatarror. The reason for this resilience is that although
the number of queries of each new query type is not capturgtdoguery mix in GPMLM, but the contribution by
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Figure 11: Average percentage error for all configurations

new queries to the overall load on the system is effectivapytured by the model. These results clearly demonstrate
that GPMLM is better suited to handle the addition of new gugpes as compared to mix only models. Note that
we adopt the policy of extending the query mix samples whenawew query type is added, resulting in a similar
convergence of all query models as described in SectioB &f8r the initial rise in error shown in Figure 10.

8.4.2 Offline Model Convergence

Figure 11 shows the average percentage error for three swwdiled offline for 8 configurations and all query types
with the number of samples. The hyper-parameters are reddafter every 5 samples in an offline manner. The
experiment shows the best models that can be learned wheratameters are re-learned after every 5 samples and
the learning process taking almost 4 hours for query moaeledch configuration. The results show that the most
gains are made for the first 50 samples, motivating us to s&p @ the number of data samples.

LQMM not only has the highest initial error rate but also hasae uneven behavior when new data samples are
added and model retrained. Both GP based models perforifisigly better and the initial quick drop in percentage
error which we saw for all GP based models make the modelsidaifor online adaptation. As shown in Figure 11
GPMLM is the best performing model with an average of lesa @@msamples for the model to fall below 20% error.
GPMLM performed worst for VM with 1 CPU at 2.2GHz and 1GB memand 512MB buffer pool, where the APE
dropped below 20% after an average of 46 data samples. Theseetion evaluates the convergence of different
models when they are trained online.

8.4.3 Online Model Convergence

In this section, we describe how models can be learned effigifor new query types on-the-fly, as opposed to
requiring offline re-training. We train an offline model fat guery types and learn the model online for a new query
type using GPMM and GPMLM models with RQ kernel and 0 mean. &geriment is repeated for all 22 TPC-H
query types where the offline model is trained for the renmgril queries on a 512MB buffer pool allocation. For
the new query type, we have no training data so we generatlomaguery mixes online, creating and evolving a
new model dynamically for the query. As described beforgy ressponse times can be incorporated into the model
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efficiently. However, hyper-parameter optimization carty® performed online. For RQ kernel and 0 mean, our goal
is to estimate values of, s?», « for the response time model of a new query type. We compage ttifferent schemes
for selecting hyper-parameters to seed the model for newydyee.

1. Uninformative Hyper-Parameters: We set the values of all three kernel hyper-parameters toiguré 12
shows that without a proper kernel function the online msdehverge at a very slow rate, even with the addition of
new response time data. This counters any advantage gaimadibe modeling as the prediction error will be too
high for too long. In fact, GPMLM model performs worse thaa tBPMM model and the APE is more than 50% even
after the addition of 370 response times.

2. Average Hyper-Parameters:In this scheme, we simply take the average of the hyper-pateaasof the 21
guery models that were trained offline and use these valubymer-parameters for the response time model of a
new query type. As shown in Figure 12, the average hypempeter selection yields an online model that converges
quickly. This also demonstrates the dependence of hypanpaters on the configuration. However, a limitation of
this approach is that when we have no offline trained modedfigrquery, as in the case of unseen configurations, we
will not have any hyper-parameters to work with.

3. Predicting Hyper-Parameters with GPCM: We next leverage the configuration model to predict the hyper
parameters for the response time model of a new query type. tAree hyper-parameters are a function of mean
response time, variance of response time, and the buffdr podhis case the GPCM is learned for 3 buffer pool
configurations (32MB, 512MB and 2GB). The configuration moslaits for five response time samples and then
generates hyper-parameters for initializing response timndels. The GPCM generates new hyper-parameters after
everyk=50 samples to ensure that we have “good” parameters based cnrtteat average response time of a new
guery type. Note that when new hyper-parameters are gederthie response time model recomputes the inverse
covariance matrix X —1). This is the same as when new hyper-parameters are gethésatenseen configurations.
Both GPMM and GPML models do better with hyper-parameteesligted using GPCM, requiring fewer than half
the samples compared to the average hyper-parametersocasaverge to an error below 20%. The dashed line
in Figure 12 represents the offline model trained retrosypagtfor the query mixes seen online by the DBMS with
optimized hyper-parameters. The results show that moesgae made for the first hundred samples, motivating us
to set a cap on the number of data samples (
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8.4.4 Configuration Model Accuracy

In this experiment we compare the response time model's eate for the three different VM configurations when
the hyper-parameters are predicted using GPCM to the aterfor an offline trained response time model for each
configuration. The three configurations are term&gd,,, Vineq, andV,,.. and are described in Figure 13. The x-
axis represents the offline trained response time modeldifi@rent configurations that are used to learn GPCM.
This learned GPCM is then used to predict the hyper-paraméte configurations for which there is no offline
trained model. The hyper-parameters are used to train méatedll 22 TPC-H query types for the previously unseen
configuration. The y-axis in the figure represents the difiee in APE between the online trained model and an
offline trained model. The offline model is trained by waitiilgl 00 samples have been observed by the online model
then learning the offline model from these samples. The effiwdel in this case represents an ideal case where the
training data is exactly the same as the test d&fa.q; generally has the smallest difference in error when hyper-
parameters are predicted from GPCM trained using one or ther &M configurations. On the other hand the two
cases where we see the greatest increase in error for thedrdined models are when GPCM is trained ¥y, ..

and hyper-parameters are predicted ¥gy;,, (7.8%) and similarly when GPCM is trained fdf,,;, and the hyper-
parameters are predicted figy, ... (10.3%). The reason for this is that the configuration foraltan offline model is
trained is far from the configuration for which hyper-paraeng are predicted. Note that the number of samples for
each configuration aré = 22, one for each query type.

9 Discussion and Future Work

Since the online response time models rely on the configuratiodel for getting good hyper-parameters, in cases
when the configuration model is learned for configuratioas #ne very different from the configuration for which an
online model is learned, the prediction error can be highwéi@r, since the space of valid configurations is small
compared to the space of possible workloads, a DBA can daaitythe configuration model for a few representative
configurations and still get high convergence rates fornenthodels for various unseen configurations and work-
loads. A limitation of the current approach is that when a newfiguration parameter is added (e.g., I/0), the offline
configuration model needs to be retrained. However, we éxpese additions to be relatively infrequent.

It would be interesting to explore hierarchical Bayesiatwoeks and sampling based techniques to get a number
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of hyper-parameters for constructing online response timoéels and selecting parameters dynamically based on error
rates. This would have the added advantage of relieving B & training the offline configuration model even for a
few configurations and the whole process could become cdetplenline. Evaluating the trade-offs in accuracy and
learning costs of such models are part of our future work.

Although we target database appliances in this work, otnrtigcies are not specific to database workloads and can
be applied to other workloads that have well defined reqyesistwhere requests of a particular type are expected to
behave similarly. Examples include HTTP requests in a wales, or different servlet types in an application server.
Applying our techniques to these systems is part of our é&nvork.

10 Conclusion

We presented a novel experiment-driven performance modgirédicting DBMS query response times using Gaus-
sian Process models based on Bayesian learning technionesf the main strengths of using a Bayesian approach
is that it allows the model to effectively adapt to changeshim query workload, database characteristics, or ma-
chine configuration in an online manner, without the needéetraining. This is in stark contrast to all prior work
in this area, which required re-training the model for anyh&fse changes. The ability of a response time model to
adapt online to changes in configurations is highly desérabtoday’s cloud computing environments where changes
are frequent. For example resources allocated to a datapatiance can change online via the virtualization layer.
Through extensive experimentation using the TPC-H bendkhma show that our best model (GPMLM) performs
very well in terms of goodness of fit, accuracy, and modehtrg/prediction time. We also show that our models are
able to quickly adapt to new unseen configurations, dematirsrtheir applicability to the dynamic environment of
the cloud.
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