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Using the witness method to detet rigidsubsystems of geometri onstraints in CADDominique Mihelui∗ Pasal Shrek†Simon E.B. Thierry† Christoph Fünfzig*Jean-David Génevaux†September 1st � 3rd, 2010AbstratThis paper deals with the resolution of geometri onstraint systemsenountered in CAD-CAM. The main results are that the witness methodan be used to detet that a onstraint system is over-onstrained andthat the omputation of the maximal rigid subsystems of a system leadsto a powerful deomposition method.In a �rst step, we reall the theoretial framework of the witnessmethod in geometri onstraint solving and extend this method to gen-erate a witness. We show then that it an be used to inrementally de-tet over-onstrainedness. We give an algorithm to e�iently identify allmaximal rigid parts of a geometri onstraint system. We introdue thealgorithm of W-deomposition to identify all rigid subsystems: it managesto deompose systems whih were not deomposable by lassial ombi-natorial methods.Keywords: Geometri Constraints Solving, witness on�guration, Ja-obian matrix, rigidity theory, W-deomposition1 IntrodutionGeometri onstraints solving in Computer-Aided Design (CAD) aims at yield-ing a �gure whih meets some inidene and metri requirements (e.g. distanesbetween points or angles between lines), usually spei�ed in graphial form. For-mally, a geometri onstraint system (GCS) onsists in onstraints (prediates),unknowns (geometri entities) and parameters (metri values). Solutions arereturned as the oordinates of the geometri entities. The left of �gure 1 showsan example of a tehnial sketh, and the right shows a possible solution.The literature desribes a number of di�erent approahes to solve geometrionstraint systems:
∗LE2I, UMR CNRS 5158, Université de Bourgogne
†LSIIT, UMR CNRS 7005, Université de Strasbourg1
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Figure 1: A 2D tehnial sketh (left) and a possible solution (right).
• algebrai methods onsist in translating the GCS into a set of equationsand working on the equation system, thus forgetting the geometrial bak-ground. Algebrai methods an be lassi�ed in numerial methods [22℄ (it-erative omputations onverging to an approximate solution from initialvalues given by the user) and symboli methods [2, 11℄ (diret omputa-tions on the equations � these methods are seldom used beause of theiromplexity),
• geometri methods use the geometri knowledge to solve the system: graph-based methods [6, 9, 22, 28, 29, 31℄ ompile this knowledge into algorithmswhih onsider only ombinatorial and onnetivity riteria, rule-basedmethods [3, 17℄ dedue onstrutions plans by an expliit use of geometrirules,
• hybrid methods [4, 8, 18℄ alternate algebrai and geometri phases of om-putations to use the power of both approahes.For more details on geometri onstraint solving, see [12℄. A general trend,both to redue omplexity and to enhane resolution power, is to deomposethe GCS into solvable subsystems and to assemble their solutions [4, 5, 9, 13,15, 22, 28, 29, 31, 33℄. For instane, on the 2D example of �gure 1, it is easy toseparately solve eah �triangle� (p1p2p6, p2p3p4 and p4p5p6) and then assemblethem. For a detailed survey of deomposition methods, see [16℄.Notie that, on the example of �gure 1, if one removes one of the triangles,say p2p3p4, and then tries to solve the remaining system, one needs to add in-formation from the solved subsystem, otherwise the remaining system beomesartiulated. This piee of information is alled the boundary [24℄. Although sev-eral methods exist to �nd the relevant information in spei� resolution frame-works [28℄, no general algorithm yet exists to ompute the boundary withoutadding too muh information.Indeed, it is important for resolution methods, espeially for graph-basedmethods, that the system does not have too few or too many onstraints.Loosely speaking, a system is alled 2



• under-onstrained if it has an in�nite number of solutions beause thereare not enough onstraints to pin down every geometri entity,
• over-onstrained if it has no solution beause of onstraint ontraditions,
• well-onstrained if it has a �nite positive number of solutions.Invariane of rigid systems by displaements is generally taken into aount byanhoring a point and a diretion in 2D, a point and two diretions in 3D.The point and the diretion are alled a referene for the displaements. Othertransformation groups may be onsidered [30℄.A lot of work has been done about the detetion of over-onstrainedness [14,27℄ or under-onstrainedness [19, 32, 37℄ and more generally about the hara-terization of rigidity [21, 20, 30, 35℄. Yet, methods desribed in the literaturemay fail to onsider the onsequenes of mathematial theorems that are notexpliitly taken into aount in the onstrution of the resolution algorithm.Sine a theorem list annot be exhaustive, it is impossible to develop a rule-based or graph-based algorithm that detets geometri properties indued bymathematial theorems.In this artile, we extend the witness method [25℄ to address several problemsited above: how to determine the onstrainedness level of a GCS withoutbeing triked by mathematial theorems (see for instane �gure 6); how toe�iently detet all maximal well-onstrained subsystems of a given GCS; howto deompose a well-onstrained system into the set of all its minimal well-onstrained subsystems.For oniseness reasons, in the rest of this paper, we onsider 2D systems,unless expliitly mentionned otherwise. Yet, all algoritms an be extended to 3Dsystems with nearly no hanges and, most of the time, the only modi�ation tobe made for the text to be valid in 3D is to exhange mentions of three degreesof freedom/parameters with mentions of six degrees of freedom/parameters.This artile is organized as follows: setion 2 realls the priniples of the wit-ness method and gives a way to generate a witness; setion 3 demonstrates thatan inremental version of the Gauss-Jordan elimination has the same ompu-tational ost than the original version but allows to detet overonstrainednessin all ases; setion 4 gives algorithms to e�iently identify the maximal rigidsubsystems of an artiulated system; setion 5 dedues from these algorithmsa method to further deompose a rigid system into rigid subsystems; �nally,setion 7 onludes and gives perspetives to this work.
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2 The witness method2.1 PrinipleThe witness method omes from ideas of Strutural Topology, or Rigidity The-ory [10℄ where the question of rigidity is studied through the notion of frame-works. A framework is a triple (V, E, p) where (V, E) is a graph and p : V → R
da realization of the graph, whih maps the verties of V to points of dimension

d. Thinking of graph edges as rigid bars and of verties as artiulation points,the main goal of ombinatorial rigidity is to answer �Is (V, E, p) rigid?�, i.e. itadmits only rigid motions as a whole, no deformations.In�nitesimal �exion. In Rigidity Theory, an in�nitesimal �exion is a map
q : V → R

d suh that (p(i) − p(j)) · (q(i) − q(j)) = 0, for eah (i, j) ∈ E. Aframework is alled in�nitesimally rigid, if the only in�nitesimal �exions arisefrom the diret isometries of R
d, i.e. the translations and rotations.Under mild assumptions onerning inidene relationships, if one frame-work (V, E, p0) is in�nitesimally rigid then almost all frameworks (V, E, p) arein�nitesimally rigid. And the in�nitesimal rigidity implies the rigidity of theframework. Note that there are ounter-examples for the onverse, whih on-tain speial inidenes.In other words, a framework in rigidity theory orresponds to the realizationof a geometri onstraint system where all onstraints are point-to-point distaneonstraints: suh a system is generially well-onstrained up to diret isometriesif it is generially rigid. This was generalized by Mihelui et al. [25, 26℄ tometri onstraints over points, lines, et. (distanes and angles) and to inideneonstraints (olinearities in 2D and 3D, oplanarities in 3D).In CAD when the designer draws a sketh, he/she has a solution X0 for asystem F (X, Ae) = 0, with some parameter values Ae read on the sketh. Thenthe goal is a solution for the system F (X, Aa) = 0, where Aa are the valuesgiven for the dimensioning.Witness. Let F (X, A) = 0 be a onstraint system, where X are the un-knowns and A the parameters. We suppose that F (X, A) is di�erentiable. Awitness is then a solution X0 of F (X, A) = 0 for some parameter values Ae.Using a Taylor expansion for a small perturbation around the solution X0of F (X, Ae) = 0, we have

F (X0 + εv, Ae) = F (X0, Ae) + εF ′(X0, Ae)v + O(ε2)where v an also be seen as the instant veloity of eah objet involved in thesystem and ε is a small time step. Thus, if an in�nitesimally small perturbationis another solution of F (X, Ae), we must have
F ′(X0, Ae)v = 0The spae of the in�nitesimal motions allowed by the onstraints at the witnessis then given by ker(F ′(X0, Ae)). Note that

• the matrix F ′(X0, Ae) is known as the Jaobian of system F (X, Ae) = 0taken at point X0; 4



• when all onstraints are point-to-point distanes, the Jaobian is the rigid-ity matrix onsidered in Rigidity Theory;
• for other onstraints with parameters the generiity onditions are moreompliated than in the ombinatorial ase: a parameter value Ae and aorresponding solution X0 are generi if the root is an impliit funtion ofthe parameters in some open neighborhood of (X0, Ae); for instane, for atriangle spei�ed with three length parameters, this ondition forbids thatone length is the sum of the others; more generally this ondition impliesthat the matrix

(

∂F (X, A)/∂X ∂F (X, A)/∂A
0 Id

)has the same rank in an open neighborhood of (X0, Ae) It remains thatthe generi parameter values are dense in the set of parameter valuesorresponding to a realization.We give some examples for the formulation of generi onstraints. For point,line, plane inidenes, we assume that the orresponding onstraints are spei-�ed expliitly without parameters. This is to avoid expressing point-point ini-denes by a distane onstraint (P1,x−P2,x)2 +(P1,y−P2,y)2 = d2 with distaneparameter d = 0. For a distane onstraint (P1,x−P2,x)2 + (P1,y −P2,y)2 = d2,the parameter d = 0 is not generi, as the onstraint is singular at the solu-tion point. For an angle onstraint angle(P1, P2, P3) = θ, i.e. P1P2 · P3P2 =
lP1P2

lP3P2
cos θ, the parameter values θ = ±π, θ = ±π/2, and θ = 0 are notgeneri. Similarly, point-line, line-plane inidenes and line-line, plane-planeparallelism/orthogonality onstraints are not expressed by angle onstraints be-ause it would introdue non-generi angles.Typiality. A witness is typial if it is representative for the searhed solu-tion, i.e. it has the same ombinatorial properties (oinidenes, ollinearities,oplanarities, et.). So a random solution (X0, Ae), {(X, A) : F (X, A) = 0}with the spei�ed ombinatorial properties is typial with probability 1 for aset of witness solutions. Note that systems exist with witness solutions, whihare di�erent in ombinatorial properties, and no ontinuous deformation existsto transform one into the other. For an example of suh a system see �gure 14in [16℄.We an then study the degrees of freedom of the system by studying therank of the Jaobian F ′(X0, Ae) on a typial witness X0, and in the ase ofunder-onstrainedness, the struture of the allowed in�nitesimal motions an bededued from the study of the kernel of F ′(X0, Ae).In the rest of this paper, we onsider that rows of the Jaobian matrixrepresent onstraints and olumns represent oordinates of the unknowns. Welassially denote by m the number of rows and by n the number of olumns ofthe matrix. 5



2.2 Generation of a witnessThe sketh is usually a witness but due to implied inidenes this may not be thease. In this ase, we solve the under-determined system {(X, A) : F (X, A) = 0}for a witness (X0, Ae). In the subdivision solver presented in [7℄, the nonlinearmonomials x2

i and xixj for i < j are replaed by additional variables xi,i and xi,j ,whih are enlosed in a polytope BD(xi, xi,i, xi,j,i<j) ≥ 0 with halfspaes givenby the non-negativity of relevant Bernstein polynomials (Bernstein polytope).The quadrati onstraint system beomes a polytope S(xi, xi,i, xi,j,i<j) ≥ 0after rewriting into the additional variables xi,i and xi,j . The subsript D of
BD(xi, xi,i, xi,j,i<j) ≥ 0 indiates that this polytope depends on the domain D.In this way, bounds for the solution domain of quadrati polynomials an beexpressed as two linear programs

min xi and max xi

S(xi, xi,i, xi,j,i<j) ≥ 0
BD(xi, xi,i, xi,j,i<j) ≥ 0Domain bounds are omputed by linear programming in order to redue theurrent solution domain D. If the feasible set is empty, whih is deteted bylinear programming, then the urrent domain box ontains no solution. Other-wise, we an perform a sequene of redutions and bisetions of domain boxesuntil the domain box D = [x1, x1] × . . . × [xn, xn] is δ-small: (xi − xi) < δ forall i. These δ-small boxes over the solution set pieewise.The subdivision solver requires a domain box to start the searh. The in-tervals for generi parameter values of onstraints are easy to �nd: angle pa-rameters cos θ (cos θ instead of θ to avoid trigonometri funtions in the solver)are in [−1 + ǫ,−ǫ] or [ǫ, 1 − ǫ] with a small, arbitrary ǫ; intervals for distaneparameters d an be obtained from magnitude bounds of the point oordinates.Finding a bound on the magnitude of any root [36℄, would be neessary to provethat the system has no solution. For the problems here, a bound on the pointoordinates is known beforehand.In order to enumerate all solutions of a system, we used mid-bisetion of thelargest interval in [7℄, whih minimizes the height of the exploration tree whileyling through dimensions. For the ase of determining a single solution as fastas possible, the hoie of the smallest interval (greater or equal δ) is bene�ialas setting variables to values allowing solutions improves the e�etiveness of thedomain redution step.We selet the next domain box (of smallest minimum side length greaterthan δ) for redution and bisetion at random. In this way, we �nd a solutionbox ontaining a random solution, and we take the box enter projeted ontothe solution set as a witness.As examples, we show two systems of di�erent di�ulty. In �gure 2, twotriangles with a ommon point p0 are spei�ed by six side lengths. In therandom solution, the side lengths are all di�erent. In �gure 3, four points and�ve lines with 10 point-line inidenes are spei�ed by four angle parameters anda distane parameter. The left part shows a solution with symmetri and nie6
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Figure 3: 2D system of 4 points and 5 lines with 10 point-line inidenes, 4 angleparameter angle(qp, cp), angle(cp, rp), angle(rq, cq), angle(cq, pq) and 1 distaneparameter d(r, c). Symmetri solution (left) and random, typial witness solu-tion (right). 7



shaped triangles, obtained by additional minimum distane onstraints betweenthe triangle points. In the right part, a typial witness solution is shown, whihwas found at random. It is used for further analysis.3 Over-onstrainednessWe already showed in setion 1 that the detetion of over-onstrainedness is aompliated yet essential problem in the �eld of geometri onstraints solving.In this setion, we show that the use of the witness method leads to ane�ient and robust detetion of redundany in geometri onstraints.We also show the usefulness of the witness method to enhane robustness ofdeomposition methods by an aurate omputation of the boundary.3.1 Inremental detetion of redundanyWe showed in [25℄ that it is possible to interrogate a witness in order to detetwhether a set of onstraints is dependent or not. Indeed, it is possible to omputethe rank of the Jaobian matrix at the witness and to ompare it with thenumber of onstraints. However, �nding a maximal independent subset of adependent set is not a trivial problem. Working on the witness, the naive ideawould be to try and remove onstraints one by one and, at eah step, omputethe rank again to determine if the onstraint is redundant with the remainingset. If the rank of S − c equals the rank of S, then onstraint c is redundantand an be removed. Performed this way, the removal of redundant onstraintsis expensive. Yet, onsidering an inremental onstrution of the geometrionstraint system allows to identify the set of redundant onstraints with noadditional osts in omparison to the basi detetion of redundany.Indeed, onsider a geometri onstraint system S with no redundany be-tween the onstraints. Applying the Gauss-Jordan elimination method on theJaobian matrix at the witness leads to a matrix J ′ = (IP ) with I a m × mdiagonal matrix and P a m × f matrix, f = n − m being the number of a-tual degrees of freedom of the system. This method has a known omplexityof O(min(n, m)nm). Let us now onsider a system S′ with S ⊂ S′. In orderto know if S′ is over-onstrained, one only needs to inrementally add the ge-ometri entities and the onstraints (bearing in mind that a onstraint an beinserted only when the geometri entities it onerns are all in the system) of
S′ − S to S and applying Gauss-Jordan again. Sine the leftmost part of thematrix is the diagonal, the number of operations is at most 2 min(m, n)f : foreah row of I, eah non-zero element of P must be multiplied and added to thenew row. The number of operations is in fat far smaller, sine the number ofzero elements in the new row of the matrix is high.Proeeding inrementally does not raise the number of operations: it onlyhanges the order of the operations. Indeed, the lassial Gauss-Jordan elimina-tion method onsists in olumn-by-olumn operations: for eah olumn c, dividerow c by Jc,c, then substrat Jr,c times this new row from row r for every r, so8
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r6 −1 1 0 0 0 0 1 −1that olumn c is a null vetor exept for the c-th value. With the inrementalalulus of the redued row ehelon form, one proeeds row by row: for eah row
r, substrat Jc,c times row c for eah c < r, then divide row r by Jr,r so thatthe r − 1 �rst elements of row r are zero and the r-th element is 1. Thus, theoverall omplexity of the inremental omputation of the redued row ehelonform of J is also of O(min(n, m)nm).The inremental version of the Gauss-Jordan elimination has the same om-plexity as the one-step version, but has a major advantage in our ase: at eahstep, when a onstraint is inserted, one may ompare the new rank with theprevious one and thus detet a redundant onstraint. With exatly the samenumber of operations as in the ase of the lassial Gauss-Jordan elimination,one obtains the redued row ehelon form of the Jaobian matrix together withthe list of redundant onstraints.Let us onsider the 2D example of �gure 4. The Jaobian matrix of thissystem is shown in table 2. Consider the following witness: p1 = (2, 7), p2 =
(5, 6), p3 = (1, 1) and p4 = (6, 3). The Jaobian at this witness is shown intable 1, with a partial Gauss-Jordan elimination, sine the sixth row has not9



Table 2: The Jaobian matrix for the system of �gure 4.
x1 y1 x2 y2 x3 y3 x4 y4

r1: dist(p1, p2) x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0 0 0
r2: dist(p1, p3) x1 − x3 y1 − y3 0 0 x3 − x1 y3 − y1 0 0
r3: dist(p2, p4) 0 0 x2 − x4 y2 − y4 0 0 x4 − x2 y4 − y2

r4: dist(p3, p4) 0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3

r5: dist(p2, p3) 0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2 0 0
r6: dist(p1, p4) x1 − x4 y1 − y4 0 0 0 0 x4 − x1 y4 − y1

Figure 5: �The double-banana�: famous ounter-example to the extension ofLaman's haraterization of rigidity in 3D. Eah segment represents a distaneonstraint.been modi�ed. That is, table 1 shows the matrix obtained by performing theinremental version of the Gauss-Jordan elimination, after inserting the sixthonstraint but before performing Gauss pivoting on it. It is easy to see that thesixth row is redundant, sine it an be obtained by substrating the �rst rowfrom the seond one. Thus, we deteted the over-onstrainedness.For a more omplex and famous example, onsider the double-banana (see�gure 5): adding the last onstraint of the double-banana leads to a zero-�lledrow in the Jaobian matrix at the witness. If one onsiders an example withhigher onnetivity [23℄, our method still sueeds to e�iently detet over-onstrainedness.Moreover, the witness method orretly handles redundany in under-onstrainedases, where graph-based methods are helpless beause they do not onsidergeometri theorems. For instane, onsider the 2D example of �gure 6. It is un-likely that a graph-based method an ever detet the fat that point y is �xed,10



PSfrag replaements
a b x

p

l

y

p1
p2 p′

PSfrag replaements
a b x

p

l

y
p1

p2
p′Figure 6: In 2D, given three aligned points a, b and x and for any point p andline l traversing x, y is unhanged: p1 = (ap)∩ l, p2 = (bp)∩ l, p′ = (ap2)∩(bp1),
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• the three angles between the sides of the triangle.It is easy to see that if the boundary of a subsystem is not added afterremoval of the subsystem from a rigid GCS, then the remaining GCS beomesunder-onstrained beause information is lost. For instane, onsider the GCSof �gure 4 without the onstraint shown with dotted lines. The triangle p1p2p3is rigid and trivially solved. If it is removed from the system, the remainingGCS is a 2-bars system ontaining two distane onstraints: p3 � p4 and p2 �

p4. This remaining system has solutions whih are not sub�gures of the globalGCS, sine the angle between both bars may vary.To get rid of this problem, one may add the boundary of the solved sub-system to the remaining system [24℄. In the example above, the boundary oftriangle p1p2p3 onsists of the distane between points p2 and p3. With a biggerboundary, a new problem arises. Consider, for instane, a rigid subsystem whihshares three points with the remaining system. One an ompute the values ofthe three point-point distanes, but also the values of the three angles. Thus,11



the boundary is an over-onstrained GCS with three points and six onstraints.Although, formally, the system is not over-onstrained sine the metris are on-sistent, it is struturally over-onstrained, whih means that any ombinatorialmethod will fail to ontinue the solving proess.Using our inremental Gauss-Jordan elimination method, one an ompute awell-onstrained subset of the boundary system whih ontains all the informa-tion to generate the rest of the boundary system. One adds all the onstraintsof the boundary one by one to an empty system. If the last inserted onstraintis redundant with the previous ones, one removes it.Note that all maximal independent subsets of the onstraints are geometri-ally equivalent, i.e. the omputed boundary will depend on the order in whihonstraints are onsidered, but whatever this order is, the result will be orret.4 Detetion of maximal rigid subsystems in ar-tiulated systemsIn this setion, we show how the witness method an be used to e�iently detetall maximal rigid subsystems (MRS) of a geometri onstraint system, even withsystems for whih graph-based methods would fail to detet rigidity. We give abasi algorithm based on a series of Gauss-Jordan eliminations then show twoways to enhane omputation speed.The basi idea of our MRS detetion algorithm is to study whih geometrientities are �xed when one anhors a referene for the displaements (see [24℄ or[30℄ for a formal de�nition of referenes). In the witness framework, anhoringa referene for the displaements onsists in swithing olumns in the Jaobianmatrix so as to put the three olumns of the referene in the right-most positions.Indeed, performing a Gauss-Jordan elimination diagonalizes the matrix fromthe left and thus onsists in expressing the di�erent oordinates as funtionsof the right-most olumns (the ones that do not belong to the identity partof the matrix). For instane, table 1 shows the redued row ehelon form ofthe Jaobian matrix at the witness for the GCS of �gure 4. Sine this GCS isrigid (with the redundant onstraint removed), three olumns do not belong tothe identity part of the matrix: they orrespond to oordinates x4, y4 and y3,whih form a referene for the system. All other oordinates an be expressedin funtion of these three oordinates. For instane, the �rst line of the matrixmust be interpreted as x1 −
4

5
y3 − x4 + 4

5
y4 = 0, i.e. x1 = 4

5
y3 + x4 −

4

5
y4.When the GCS is not rigid, three parameters are not enough to anhor allentities. There are then more than three olumns at the right of the identity.Table 3 shows the redued row ehelon form of the Jaobian matrix at a witnessfor the GCS of �gure 7. Notie that olumns y2 and y4 were moved to the right,sine it would have been impossible to �nd a pivot and �nish the Gauss-Jordanelimination otherwise. All oordinates an be expressed as funtions of y2, y4,

y6, x7 and y7. Indeed, a referene for this GCS an onsist in point p7, diretion
p7-p6, diretion p5-p4 and diretion p3-p2.12
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p3 p4

p5

p6

p7Figure 7: 2D artiulated hain made of three rigid triangles. Distane on-straints are impliitly represented by the segments.An important result to identify MRSs omes from the zeros in olumns y2and y4. Rows 7, 8 and 9 of table 3 an be interpreted as the fat that thevalues of x5, y5 and x6 depend only on those of y6, x7 and y7. Put di�erently, ifone anhors a referene for the displaements by pinning down p7 and diretion
p7-p6, then points p6 and p5 are �xed, i.e. p5p6p7 is a rigid subsystem.A naïve algorithm immediately arises, based on anhoring a referene for thedisplaements, i.e. swithing olumns to have the orresponding olumns onthe right of the Jaobian matrix and identifying the parts of the GCS whih are�xed. The pseudo-ode is shown as algorithm 1. In this algorithm, anhoringa referene for the displaements means swithing olumns so as to have theolumns orresponding to the referene at the right of the Jaobian matrix. Inorder to not identify the same MRS twie, we anhor referenes only on untaggedparts of the GCS, that means that at least one of the olumns annot be tagged.Algorithm 1 Naïve MRS identi�ation algorithm1: i← 02: repeat3: anhor a referene for the displaements on an untagged part of the GCS4: perform a Gauss-Jordan elimination5: tag with label i the olumns of the GCS whih orrespond to oordinatesdepending only on the referene6: i← i + 17: until all the olumns are tagged 13



Table 3: Redued row ehelon form of the Jaobian matrix at a witness for theGCS of �gure 7
x1 y1 x2 x3 y3 x4 x5 y5 x6 y2 y4 y6 x7 y7

r′1 1 0 0 0 0 0 0 0 0 4

3

101

18
− 181

108
-1 − 473

108

r′2 0 1 0 0 0 0 0 0 0 − 7

3
− 40

9

28

27
0 140

27

r′3 0 0 1 0 0 0 0 0 0 4 29

2
− 15

4
-1 − 59

4

r′4 0 0 0 1 0 0 0 0 0 0 9

2
− 17

12
-1 − 37

12

r′5 0 0 0 0 1 0 0 0 0 0 5

2
− 7

12
0 − 35

12

r′6 0 0 0 0 0 1 0 0 0 0 3 − 7

6
-1 − 11

6

r′7 0 0 0 0 0 0 1 0 0 0 0 − 2

3
-1 2

3

r′
8

0 0 0 0 0 0 0 1 0 0 0 − 1

6
0 − 5

6

r′
9

0 0 0 0 0 0 0 0 1 0 0 − 7

6
-1 7

6The ost of this algorithm depends on the number k of MRSs: for eah ofthem, it performs a Gauss-Jordan elimination only one, so that the total ostis O(k min(n, m)nm).This ost an be redued toO((k+min(n, m))nm) by not starting the Gauss-Jordan elimination from srath for eah MRS. At the end of line 6 in thealgorithm, the Jaobian matrix at the witness is in redued row ehelon form.By swithing the olumns in an appropriate way, one needs only perform theGauss-Jordan pivot operation on two to three olumns. Indeed, by looking atthe onstraint graph, it is possible to selet a new referene for the GCS (i.e. aset of f olumns, f being the number of degrees of freedom of the GCS) whihsatis�es the following onditions:
• it inludes a referene for the displaements whih is not totally tagged,
• eah identi�ed MRS is �xed, i.e.� the referene inludes three oordinates in the MRS,� the MRS shares a geometri entity with a �xed MRS and the refereneinludes a oordinate in the MRS.To selet this referene, one only needs to onsider a geometri entity whih isin an already identi�ed MRS and whih is linked by a onstraint to an untaggedentity. More ases our with systems for whih the onstraint graph has severalonneted omponents or with systems with impliit points (e.g. similarity-invariant systems with only lines and angles), but the priniple remains thesame. Thus, in most ases, one only needs to swith two olumns, so as tohange the point in the referene. Three swithes happen with disonnetedgraphs. Algorithm 2 shows how to perform MRS identi�ation. For the sake ofsimpliity, the algorithm is desribed for artiulated GCS made of several MRSsonneted by points, but it is easily extended to systems with other kinds ofgeometri entities.In the ase of open hains, i.e. GCS where all yles in the onstraintgraph are inluded in rigid subsystems, an even less ostly algorithm exists, by14



Algorithm 2 MRS identi�ation algorithm for an artiulated system1: anhor a referene for the displaements and identify and tag a �rst MRS2: repeat3: selet a tagged point linked by a onstraint to an untagged element4: swith the olumns of this point with the olumns of the point in the lastreferene5: perform Gauss-Jordan elimination on the two latter in order to identify anew MRS6: tag the new MRS7: until all the olumns are taggedusing both the onstraint graph and the Jaobian matrix. After performingthe Gauss-Jordan elimination, a �rst MRS is identi�ed by onsidering all theoordinates whih depend only on the referene. From there, one an onsider allthe oordinates whih depend on the referene and on one additional parameter.In the matrix of table 3, with the additional parameter y4, x3, y3 and x4 are�xed. Taking a look at the onstraint graph, we notie that the previouslyidenti�ed MRS (p5p6p7) shares only one point with the rest of the system andthus annot �transfer� more than two degrees of displaement.This enables us to remove the MRS and exhange the three parameters y6,
x7 and y7 with parameters x5 and y5 in the Jaobian matrix. The numerialvalues are not important in this proess: we onsider that all the values of botholumns are non-zero. With this new matrix, one noties that parameters x5,
y5 and y4 form a referene for the displaements and that by anhoring thisreferene, x3, y3 and x4 are �xed, i.e. p3p4p5 is a rigid system. We ontinuethis algorithm by notiing that this system shares only one point with the restof the system, removing it and replaing it with non-zero-�lled olumns x3 and
y3 and thus identifying the last MRS p1p2p3.When the last identi�ed MRS shares more than one point with the restof the system, two ases our: either the removal of the MRS leads to twodisonneted graphs (i.e. the MRS is in the middle of the artiulated system)and one thus ontinues the algorithm separately on eah part of the graph; orthe MRS belongs to a non-rigid losed hain.When one uses this algorithm on a GCS ontaining non-rigid losed hains, itleads to ases where one annot detet the MRSs of the losed hains, beause ofthe inter-dependane of the rigid subsystems of the hain. After identifying the�rst MRS of the losed hain, the algorithm is stuk beause it is not possible toidentify another system whih depends only on three parameters. In this ase,we get bak to algorithm 2 to identify the di�erent MRSs of the losed hain.Notie that this setion is about identi�ation of maximal rigid subsystemsbut that sine it is based on the anhoring of referenes, one may adapt the al-gorithms to identify maximal subsystems well-onstrained modulo other trans-formation groups than the displaements.15



5 W-deomposition of a rigid GCSThe previous setion gives algorithms to identify all MRSs of a GCS. Havingsuh an algorithm leads to a natural method to deompose a rigid geometrionstraint system. We all this method W-deomposition and a system whihan be deomposed by this method is said to be W-deomposable. In thissetion, we explain the priniples of W-deomposition and give examples.Algorithm 2 identi�es maximal rigid subsystems, i.e. if a MRS an be de-omposed in several rigid subsystems, this will not be deteted. The basi ideaof W-deomposition is to remove onstraints from the onstraint graph and seeif it breaks the MRS in non-trivial MRSs, i.e. MRSs whih are not limited totheir boundary (e.g. a system limited to a point-point distane). If it does,then we use W-deomposition on eah non-trivial MRS. Algorithm 3 gives thepseudo-ode of the algorithm.Algorithm 3 W-deompositionInput: a rigid GCS S withits onstraint graph G = (V, E) anda witness W of SOutput: a list of rigid subsystems1: repeat2: Selet a onstraint e3: Identify MRSs of (V, E/{e}) with alg. 24: while eah MRS is equivalent to its boundary do5: Choose another onstraint e and identify MRSs of (V, E/{e})6: until all onstraints are tested or there is a MRS whih is not equivalent toits boundary7: if no MRS bigger than its boundary is found then8: return list [G℄ //G is W-indeomposable9: else10: remove all the onstraints inluded in non-trivial MRSs11: insert the boundary of all non-trivial MRSs in the system// f. setion 3.212: reintrodue onstraint e in the system//this gives a rigid onstraint system13: reursively W-deompose the resulting system14: reursively W-deompose all previously identi�ed MRSs15: return the onatenation of the lists obtained in the last two linesLet us illustrate this algorithm on the example of �gure 8a, whih representsthe onstraint graph of a rigid GCS. The graph is 3-onneted and has two K3,3subgraphs, onneted by three �middle� edges. Algorithm 2 detets the rigidityof the whole system. Let us onsider the removal of two onstraints at line 2 ofalgorithm 3: dotted edges e1 and e2.If we remove edge e1, the use of algorithm 2 at line 3 identi�es four MRSs:the rigid K3,3 subsystems, and eah edge between them. The latter are equiv-alent to their boundary. Replaing the rigid hexagons by their boundaries andreintroduing edge e1 leads to the graph of �gure 8b (note that edge e1 must be16
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e1

e2 a
b Figure 8: 2D systems where edges represent point-point distanes; a: 3-onneted onstraint graph made of two K3,3 graphs onneted with 3 on-straints; b and : graphs obtained by replaing MRSs identi�ed by algorithm 3by their boundary with respetively edges e1 and e2 removed.taken into aount for the omputation of the boundaries). The reursive useof W-deomposition (line 14) on eah non-trivial MRS leads to the knowledgethat they are not W-deomposable, as does the reursive use on the system of�gure 8b (line 13).If we do not remove edge e1 but e2 instead, the left K3,3 subsystem of�gure 8a is no longer rigid. The identi�ation of non-trivial MRS thus onlyidenti�es the hexagon on the right of �gure 8a. One it is replaed by itsboundary, we obtain the system shown on �gure 8. The reursive use of W-deomposition will then lead, after removal of one of the three �middle� edges,to the identi�ation of the seond rigid hexagon and thus to the system shownon �gure 8b.Exeution time depends on the hoie of the removed onstraint. In theworst ase, all onstraints are tested: n times the algorithm 2 is used, thus theomplexity is O(n3m).Our algorithm is more powerful than algorithms found in the literature, forseveral reasons:

• �rst of all, it is independent of the onnetivity of the onstraint graph.17
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a b
Figure 9: 2D examples for the W-deomposition: eah vertex is a point andeah edge represents a distane onstraint. a: W-deomposable 4-onnetedGCS (the blue subsystem is rigid); b: W-indeomposable system; : there areW-indeomposable systems with an arbitrary number of points.For instane, �gure 9a gives an example of a 4-onneted onstraint graphwhih is W-deomposable, no matter what is inside the inner blue part aslong as it is rigid,

• seond, it is also not based on a luster formation. Sine the graph of�gure 9b is not deomposable by urrent graph deomposition methods,the system of �gure 9a, with the inner part replaed by �gure 9b, willalso lead to a deomposition failure for these methods, whereas it is W-deomposable.Ultimate deomposition onsists in yielding a triangular equation system.For algebrai systems, Wu-Ritt deomposition or Gröbner basis with lexialorder lead to suh deompositions, but unfortunately, they are untratable inthe CAD domain. On the other hand, W-deomposition is not as powerful asthese algebrai methods sine it is possible to onstrut an in�nite family ofW-indeomposable onstraint systems like the one depited in �gure 9: thereis no onstraint in this system suh that its removal produes a system with aMRS bigger than a point-point distane. But, on the positive side, it is easy tosee that
• all Owen-deomposable systems are W-deomposable (that is, artiulation18



pairs are deteted by the hoie of the deleted onstraint)
• all onstraint systems whih are deomposable by luster formation meth-ods or on the searh of minimal rigid parts, are also W-deomposable.We think that the ratio of e�ieny to power of deomposition is good enoughto give good results in CAD even in the 3D ase.6 Robustness issueOur method assumes it is possible to ompute the rank of a set of vetors, givenby their oordinates. It is a basi problem in omputerized linear algebra withwell-known methods. Only at �rst glane, it looks like an easy problem.Sine the rank is not a ontinuous funtion, it is not omputable in the senseof Computable Analysis [34℄. In short, Computable Analysis uses interval arith-meti with interval bounds represented using a long �oat arithmeti. However,the interval width is never zero. In this arithmeti, it is impossible to detetthat a number (a Gauss pivot, or a determinant) is zero. On the ontrary, itis possible to detet that a number is non-zero: ompute a su�iently preiseinterval, not ontaining zero.If a rational witness is available, an exat rational arithmeti an be used.The rank of rational vetors is omputable, and this apprah is pratial. Itis explored in [25℄ with a number of examples. If a rational witness is notavailable, like for a regular pentagon, one may theoretially resort to an exatalgebrai arithmeti, for instane an algebrai arithmeti based on gap theorems[1℄. Unfortunately, the large time omplexity of this method makes it impratialfor general systems.We use rational arithmeti when rational witnesses are available. When norational witness is available, and the solver is used, it provides interval approx-imations of witnesses. We use an epsilon-heuristi like the dynami geometrysoftwares (Cabri Géomètre, Cinderella, GeoGebra, et.): we deide by an ep-silon threshold in the Gauss-Jordan algorithm whether vetors are dependentor not. Beause all our appliations of the Gauss-Jordan elimination algorithmdo not depend on a speial ordering of onstraint rows (setion 3), we an useall pivoting tehniques available for it.In pratie, all geometri onstraint systems met in CAD / CAM seem tohave a rational witness. Systems without rational witnesses exist like for exam-ple a regular pentagon but they appear to us as arti�ial instanes.7 ConlusionAfter proposing a way to generate a witness, we showed in this paper how thewitness method ould be used to detet over-onstrained systems without anyadditional omputational ost by an inremental Gauss-Jordan elimination of19



the Jaobian matrix at the witness. This allows the omputation of a well-onstrained boundary inside the deomposition method.We gave algorithms to identify all maximal well-onstrained subsystems ofa GCS, i.e. the system itself if it is well-onstrained, or its rigid parts if it is ar-tiulated. From this algorithm, we dedued a method, alled W-deomposition,to deompose a rigid GCS into the set of all its non-trivial rigid subsystems,based on the removal of a onstraint and the omputation of the new maximalrigid subsystems.The method to detet over-onstrainedness is e�ient (the omputation ofthe redued row ehelon form of the Jaobian matrix is performed inO(min(n, m)nm))and is not triked by mathematial theorems, even when these theorems are un-known to the developer. The MRS identi�ation is also e�ient (O(n2m) withalgorithm 2) and works as well with other transformation groups than the dis-plaements. W-deomposition is performed in O(n3m) in the worst ase.For oniseness reasons, the algorithms we desribed work on 2D systems,but they an be easily extended to 3D systems. Complexity of the algorithmsis independent of the dimension.Further researh needs to be done in order to �nd heuristis for the opti-mization of W-deomposition. The example of �gure 8 shows that some edgesare better than others for the removal (line 2 of algorithm 3). We think that apromising trak is the omputation of a minimum hain overing and the searhfor onstraints whih appear in only a few hains.Referenes[1℄ J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cam-bridge, 1988.[2℄ S.-C. Chou and X.-S. Gao. Ritt-wu's deomposition algorithm and geome-try theorem proving. In CADE '90: Proeedings of the 10th InternationalConferene on Automated Dedution, pages 207�220, Kaiserslautern, Ger-many, 1990. Springer.[3℄ J.-F. Dufourd, P. Mathis, and P. Shrek. Geometri onstrution by as-sembling solved sub�gures. Arti�ial Intelligene, 99(1):73�119, 1998.[4℄ A. Fabre and P. Shrek. Combining symboli and numerial solvers tosimplify indeomposable systems solving. In SAC '08: Proeedings of the23rd ACM Symposium on Applied Computing, pages 1838�1842, Fortaleza,Brazil, 2008. ACM.[5℄ S. Foufou, D. Mihelui, and J.-P. Jurzak. Numerial deomposition of ge-ometri onstraints. In SPM '05: Proeedings of the 10th ACM Symposiumon Solid and physial modeling, pages 143�151, Cambridge, Massahusetts,USA, 2005. ACM. 20
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