Using Visual Pages Analysis for optimizing Web Archiving’

Myriam Ben Saad
Advisor: Stéphane Gancarski
LIP6, University P. and M. Curie Paris, France
Myriam.Ben-Saad@lip6.fr

ABSTRACT

Due to the growing importance of the World Wide Web,
archiving it has become crucial for preserving useful source

of information. To maintain a web archive up-to-date, crawlers

harvest the web by iteratively downloading new versions
of documents. However, it is frequent that crawlers re-
trieve pages with unimportant changes such as advertise-
ments which are continually updated. Hence, web archive
systems waste time and space for indexing and storing use-
less page versions. Also, querying the archive can take more
time due to the large set of useless page versions stored.
Thus, an effective method is required to know accurately
when and how often important changes between versions
occur in order to efficiently archive web pages. Our work
focuses on addressing this requirement through a new web
archiving approach that detects important changes between
page versions. This approach consists in archiving the vi-
sual layout structure of a web page represented by semantic
blocks. This work seeks to describe the proposed approach
and to examine various related issues such as using the im-
portance of changes between versions to optimize web crawl
scheduling. The major interesting research questions that
we would like to address in the future are introduced.

Keywords

Web archiving, change detection, visual page analysis, web
crawling

1. MOTIVATION

Archiving the web has become crucial for preserving use-
ful source of information. For this reason, it has become
an issue for many national archiving institutes around the
world. However, the web is highly dynamic, evolving over
time (pages change frequently). Most often, web archiving is

*This research was supported by the French National Re-
search Agency ANR in the CARTEC Project (ANR-07-
MDCO-016).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for prof't or commercial advantage and that copies
bear this notice and the full citation on the frst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specif ¢
permission and/or a fee.

EDBT 2010, March 22-26, 2010, Lausanne, Switzerland

Copyright 2010 ACM 978-1-60558-990-9/10/03 ...$10.00.

automatically performed using web crawlers. Web crawlers
visit web pages to be archived and build a snapshot and/or
index of web pages. In order to maintain the archive up-to-
date, crawlers must revisit periodically the pages and update
the archive with fresh images. However, the crawler can not
revisit a site and download a new version of a page all the
time because it usually has limited resources (such as band-
width, space storage, etc.) with respect to the huge amount
of pages to archive. Thus, the archiving system must esti-
mate the behavior of a site in order to guess when or with
which frequency it must be visited. This can avoid down-
loading duplicated versions during the web crawl.

Several works [9, 8] have focused on estimating the change
frequency to improve the Web crawlers. However, it’s fre-
quent that crawlers waste time and space to download a
new page version with unimportant changes such as adver-
tisements which are continually updated. Thus, an effective
method is required to know accurately when and how often
important changes between versions occur. Up to now, ap-
proaches that estimate the frequency of changes only take
into account the amount of detected changes. But, they do
not consider the importance of changes that have occurred.
If we can predict important changes frequencies much more
accurately, web crawl can be optimized.

In order to estimate the frequency of updates, changes be-
tween already retrieved versions of documents must be de-
tected. Many existing algorithms [15, 10, 19] have been spe-
cially designed to detect changes between semi-structured
documents (XML and HTML). However, there is no method
that detects and distinguishes relevant/irrelevant changes
from useful/useless (noisy) information.

Our goal is to propose an approach for (1) detecting im-
portant changes between versions and exploit it to (2) opti-
mize web crawling, to (3) efficiently index/store pages ver-
sions and to (4) temporally request archived pages and changes
occurred between them. Our approach will be applied on
a repository for the French National Audiovisual Institute
(INA). One of the missions of INA is to create a legal deposit
which preserves French radios and televisions web pages and
related pages. A strong requirement for this project is that
the visual aspect of the pages must be preserved. Thus our
idea is to use a visual page analysis to assign importance to
web pages parts, according to their relative location.

Previous works [5, 12] show that a page can be partitioned
into multiple segments or blocks and, often, the blocks in a
page have different importances. In fact, different regions
inside a web page have different importance weights accord-
ing to their location, area size, content, etc. Typically, the

most important information is on the center of a page, ad-
vertisement is on the header or on the left side and copyright
is on the footer. Once the page is segmented, then a rela-
tive importance must be assigned to each block. This can
be achieved automatically using for instance the algorithm
of [18], or though a supervised machine learning method.
Then, we can compute the importance of changes between
two page versions, based on (i) the relative importance of
blocks and (ii) the relative importance of operations (in-
sert, delete, update, etc.) occurred in those blocks, detected
by comparing the two versions. Thus, our work seeks to
combine those concepts to address issues related to detect-
ing/analyzing important web pages changes. Then, the anal-
ysis results can be exploited for an optimized web crawling,
an adequate index/storage and an efficient temporal query-
ing.

This paper is structured as follows. Section 2 defines our
research problem and identifies all related issues. Section 3
describes the proposed approach including the web archive
architecture. In Section 4, some related works are discussed.
Section 5 describes, in more details, the different steps of our
approach. Some preliminary results are presented in Section
6. Finally, Section 7 concludes and discusses issues that we
would like to address in future works.

2. RESEARCH PROBLEM

The design of web archiving systems presents many chal-
lenges; (i) an optimized web crawling, (ii) an adequate in-
dex/storage and (iii) an efficient temporal querying. By
pointing out the problem of downloading useless/unimportant
page versions, we can considerably improve the effectiveness
of those three points. Thus, web crawlers must carefully de-
cide what page should be refreshed /archived and with which
priority. They must also decide how frequently pages should
be revisited in order to keep the web archive as up-to-date
as possible. In fact, it is impossible to maintain a complete
archive of the whole Web, or even a part of it, containing
all the versions of all the pages because the web is evolv-
ing over time and allocated resources are usually limited.
Thus, the problem can be stated as follows: how to optimize
the crawling in order to download the “most important ver-
sions”, so that the minimum of useful information is lost?
An important version is the version that has “important”
changes since the last one archived. Of course, this problem
must be solved without any help from web sites managers.
Thus, an effective method is required to know accurately
when and how often “important” changes between versions
occur. Up to now, existing approaches that estimate the
frequency of crawlers do not take into account the impor-
tance of changes between versions. In fact, it’s frequent that
crawlers download pages with unimportant changes such as
advertisements which are continually updated. In order to
estimate an appropriate frequency of crawlers, changes be-
tween already retrieved versions must be detected and an-
alyzed. Although various algorithms have been designed to
detect changes between documents, there is no method that
detects and distinguishes important/unimportant changes
from useful/useless (noisy) information.

In this thesis, we address some of these important chal-
lenges: (1) How can archiving systems detect useful changes
between already archived versions and how they can assess
their importance? (2) How can crawlers select the most ur-
gent/important version to be refreshed in case of limited

resources with the respect to the huge amount of document
to be archived? This can be achieved by either developing
crawl scheduling strategies or by estimating the frequency of
changes. (3) How can the analysis result of changes impor-
tance be exploited to decide indexing or storing the differ-
ent versions? (4) How can the archive be efficiently queried
about the different page versions and the changes occurred
between them? The proposed approach described in the
next section seeks to address the first and the second chal-
lenges. The questions (3) and (4) remain open for future
works.

3. PROPOSED APPROACH

In this section, we present our proposed approach which
points out the issue of efficiently archiving web pages. As
mentioned in the introduction, the visual aspect of the web
pages must be preserved in our project. Thus, the idea of
our web archiving approach is to analyze/archive the visual
structure of documents and to assign importance values to
web pages blocks, according to their relative location. In
other words, page versions are restructured into blocks ac-
cording to their visual representation. Detecting changes on
such restructured page versions gives relevant information
for understanding the dynamics of the web sites. Also, it
enables to distinguish relevant/irrelevant changes from use-
ful/useless information. Thus, the proposed approach com-
bines three concepts; visual page analysis (or segmentation),
change detection and the importance of web pages’ blocks in
order to optimize web crawling. Those concepts are not new.
However, as far as we know, they had never been combined
for archiving the web. To better understand our approach
the architecture of the web archive is described in greater
details.

Our archiving system consists of four major components:
the web crawlers, the freshness component, the storage com-
ponent and the query engine. Figure 1 presents an overview
of the system.

The Web Crawler. The web crawlers harvest the web by

Figure 1: An Overview of the Web Archive.

iteratively downloading documents referenced by URLs. We
consider two types of web crawlers. The first one downloads
automatically web pages according to a certain frequency
given by an estimator. The second one is an event-driven
crawler. It downloads the most urgent document to be re-
freshed, as computed by a scheduler.

The Freshness Component. The freshness component
allows maintaining the archive up-to-date. It consists of
three main modules: The freshness manager enables the

optimization of allocated resources, so that less information
is lost. It consists of either a change frequency estimator or
a scheduler. The estimator computes the best change fre-
quency for the first type of crawlers. The scheduler chooses
the most urgent page to be downloaded by the event driven
crawler in order to maintain the archive as up-to-date as
possible. It manages a list of documents ordered by a fresh-
ness urgency function. This function estimates, for each
page, how it is urgent to refresh it at a given date. Both
estimator and scheduler depend on the changes already de-
tected and quantified by the document analyzer on previ-
ously archived versions. They take also into account the
estimation of changes importance occurred between succes-
sive downloaded versions. Based on the freshness urgency
function, the scheduler can organize and order the list of
pages to be urgently refreshed.

Figure 2: The Document Analyzer.

The Document Analyzer allows detecting and analyzing
retrieved web page versions. We give here more details on
the document analyzer since it is the core of our approach.
It consists of several sub-modules corresponding to the var-
ious phases of the page analysis. It is depicted in Figure
2. The document analyzer interacts with the crawler to
get the current version of the HTML page to be archived.
Then, the page is treated by a rendering engine in order to
retrieve visual information. The main advantage of render-
ing is providing a real and a complete visual description of
the document even if embedded scripts, such as JavaScript,
are present. After that, the rendered page is partitioned
and the visual page layout structure is built. The used algo-
rithm of page segmentation generates, as output, a Vi-XML
document that describes the hierarchical content structure
of the page. At the end of the segmentation process, a
change detection algorithm (Vi-DIFF') provides a descrip-
tion of changes that occurred between the new generated
Vi-XML version V' (n) and the last version archived V (n—1).
Changes are gathered in a delta XML file, called Vi-Delta,
that describes the operations (insertion, deletion, etc.) oc-
curred between two documents. Thereafter, the Vi-Delta
file is analyzed by the submodule Importance Changes An-
alyzer to evaluate the importance of detected changes. The
result of this change evaluation can be used by the sub mod-
ule Changes Evolution either to improve the estimation of
the crawler frequency or to compute the freshness urgency
function used by scheduler. At the end, the Vi-Delta, the
current Vi-XML version and additional meta-data are stored
in the database through storage interface. The storage in-
terface interacts with the storage component to store/index
page versions, Vi-Deltas and other meta-data obtained dur-
ing the analysis.

The Storage Component. The storage component con-
sists of data and meta-data storage units. It includes also
an index that facilitates querying the archive.

The Query Engine. Through the query engine, users can
temporally request the archive about the different versions
and the visual changes occurred between them.

4. RELATED WORKS

The approach proposed in Section 3 is related to different
areas. We present below related works in these major areas;
web archiving, visual web page analysis, changes detection
and web crawling.

Web Archiving. There are several projects launched
by different archiving institutes (national libraries, histori-
cal data archives, etc.) around the world to preserve their
country’s web heritage. Most of the web archiving initiatives
are described at [1]. Some studies [2, 4] focus on the selection
of web pages to be archived by defining the web perimeter.
Others [9, 8] work on modeling and evaluating the frequency
of web changes. They propose change frequencies estimators
and various refresh policies to improve the archive freshness.
Some researchers [7, 13] address issues concerning the for-
mat of information to be stored and indexed by proposing
their own storage system. Others studies [2, 3] focus on the
control and the representation of changes. They propose
a change detection algorithm and/or a delta format for an
efficient query and storage of the web archive.

Though interesting, those approaches do not take the vi-
sual aspect and the relative importance of pages parts, which
are at the core of our approach.

Visual Web Page Analysis. Several methods have
been proposed to analyze the visual representation of web
pages. Most approaches discover the logical structure of a
page by either analyzing the rendered document or analyz-
ing the document code. Gu et al. [14] propose a top down
algorithm which detects the web content structure based on
the layout information. Kovacevic et al. [12] define heuris-
tics to recognize common page areas (header, footer, cen-
ter of the page, etc.) based on visual information. Cai et
al. [5] propose the algorithm VIPS which segments the web
page into multiple semantic blocks based on visual informa-
tion retrieved from browser’s rendering. Cosulshi et al. [11]
propose an approach that calculates the block correspon-
dence between web pages by using positional information of
DOM tree’s elements. Compared to existing methods, VIPS
method described above seems to be the most appropriate
for our approach because it allows an adequate granularity
of the page partitioning. It builds a hierarchy of semantic
blocks of the page that better simulates how a user under-
stands the web layout structure based on his visual percep-
tion. Thus, VIPS is used to build the visual structure of
documents.

Changes Detection. Several algorithms have been de-
signed to detect changes between two (versions of) semi-
structural documents (HTML, XML). They find a minimum
set of change operations (insert, delete, ...) that transform
one data tree to another. These changes operations are of-
ten gathered in a delta script or a delta file. The design
of diff algorithms depends on the purposes and the require-
ments (time complexity, operations to be handled, quality
of the delta, etc.). Cobéna et al. [10] propose the XyDiff al-
gorithm to improve time and memory management. XyDiff
supports move operation and achieves a time complexity of

O(n * log(n)). Despite its high performance, it does not al-
ways guarantee an optimal result (i.e. minimal edit script).
Wang et al. [19] propose X-Diff which can detect the optimal
differences between two unordered XML trees in quadratic
time O(n?) but it does not handle a move. DeltaXML [15]
can compare, merge and synchronize XML documents for
ordered and unordered trees by supporting basic operations
but it does not detect a move. There are several other al-
gorithms like DTD-Diff [16], etc. After studying these algo-
rithms, we decided to not use existing methods for our web
archiving approach because they are generic-purpose. As we
have various specific requirements related to the visual lay-
out structure of documents, we prefer proposing our ad’hoc
algorithm (Vi-DIFF). This algorithm enables for a better
trade-off between complexity and completeness of the de-
tected operations set.

Web Crawling. Several existing studies address the
problem of optimizing web crawling by either developing
scheduling strategies [6, 17] or by estimating the frequency
of changes [9, 8]. However, as far as we know, those studies
do not consider the importance of changes that have oc-
curred between already analyzed versions. If we can pre-
dict important changes frequencies much more accurately,
we may avoid indexing unimportant information and wast-
ing space storage. This is the goal of our work through the
proposed approach to improve the effectiveness of the web
archive system.

5. STEPS OF PROPOSED APPROACH

We describe here, in greater details, the steps of proposed
approach which points out the first problem question; (1)
detecting/analyzing changes importance between page ver-
sions. Also, a crawl scheduling strategy which uses the anal-
ysis of changes importance is proposed. This strategy seeks
to optimize the event-driven crawler that addresses one part
of the second question (2) as mentioned in section 2.

5.1 Visual Page Segmentation

As mentioned in section 4, VIPS [5] is used to segment
a web page into nested semantic blocks based on suitable
nodes in the HTML DOM tree of the page. It detects the
horizontal and vertical separators in a web page. Based on
those separators, it builds the semantic tree of the web page
partitioned into multiple blocks. The root is the whole page.
Each block is represented as a node in the tree as shown
in Figure 3. To complete the semantic tree of the whole
page, we extended the VIPS algorithm by extracting links,
images and text for each block. As illustrated in Figure
3, each block node has additional children nodes: Links,
Images and Texts that gather respectively all hyperlinks,
pictures and text contained in the block. All nodes of the
page are uniquely identified by an ID attribute. This ID
is a hash value computed using the node’s content and its
children nodes content: if matched nodes (nodes at the same
position in two successive versions) have different ID values,
then their content has been necessarily updated. Leaf nodes
have other attributes such as the name and the address for
the hyperlink. Our extended VIPS algorithm generates, as
output, a Vi-XML document that describes the complete
hierarchical structure of the web page. The structure of
such a document is shown in Figure 3.

Bl

Bz1| B22

B3

e <xml>
{ <Page url="... ' versior="." ..»
~ <Block ref='B1" id=". 'pos=". ' >|

<Links id=">
<link name=".." ad="." />

S
,, .
o <link name="" adr="" J/x
1D D+,
Tmages S < Links = -
\ <lmages id="." >

Tot= Textl” My <img hame="_" sre=""
D [ome D ~ Amages>
Link 4IT} Imy fut » -
, " (Img N Tt o=
o = . . . ~ </Block >
g B - Name="Link2 = . N B
Alame= Ly [ames Lk Hame=Tmgl’ wome ~Imgz <Block re='82 id=""... >
L bdee L re= See= .. ¢ N
s Block ¥
--- «Page>
el >

—_ Vi-XML Document

Figure 3: The Extended VIPS Algorithm.

5.2 Changes Detection (Vi-DIFF)

As mentioned in section 4, we have decided to propose
our own change detection algorithm because existing ones
are generic-purpose. We would like to add some specific
criteria for comparing attributes nodes, such as detecting
updated links, if one of their attributes (name or address)
is modified. We want also to detect an updated text in
two matched blocks based on a textual similarity/distance
score (e.g. number of shared words). Another specificity
of our approach is that we need to detect changed elements
inside a block and moved elements from one block to an-
other, but detecting moved element inside a same block is
useless because no information has been added or deleted in
the block. Also, we would like to detect that the structure
of the page at level of blocks is changed (inserted/deleted
block, etc.) from one version to another. The proposed Vi-
DIFF algorithm detects two types of changes; structural and
content changes. The structural changes (insert, delete and
shift) typically modify the structure of XML document at
level of blocks whereas content changes (insert, delete, up-
date and move) modify the textual content at level of links,
images and texts. All detected change operations are then
described in a Vi-Delta file. If we assume that there is no
change in structure then the complexity of Vi-DIFF is log-
linear O(n*log(n)) where n is the total number of nodes. If
there are structural changes, in the worst case (all the struc-
ture is changed), the complexity is quadratic O(n?) but it is
worth to notice that n always remains small. The proposed
Vi-DIFF algorithm detects changes between two Vi-XML
pages. We intend in future work to extend this algorithm
in order to detect changes between two versions of sites in-
stead of two pages. The extended Vi-DIFF must produce,
as output, a complete Vi-Delta describing changes between
each page of the two site versions.

5.3 ChangesImportance

Based on the Vi-Delta produced by Vi-DIFF, we propose a
function that evaluates the importance of detected changes.
This function depends on three major parameters:

e Importance of updated block. Typically, the most im-
portant information is on the center and the advertisements
are on the header, etc. Thus, the importance of blocks can
be assigned according to their relative location in the page.

This can be achieved, for instance, by Song and al. method
[18]. Based on extracted spatial and content features of
blocks, they use supervised machine learning algorithms to
assign automatically importance value for each block. We
can, also, take into account other parameters to evaluate the
importance of a block with respect to the history of changes
on this block. For instance, we can consider that the more
frequent a block is changing, the less important it is. We
are currently looking for the best technique to estimate the
importance of blocks.
e Operations Importance. The importance of operations
depends on the operation type (move, insert, etc.) and the
changed element (link, image, etc.). For instance, insert or
delete operations can be considered more important than a
move. Also, inserting an image can be more important than
inserting a link or a text. Again, we plan to study machine
learning methods to choose the best parameters values for
each operation type.
e Changes Amount per Block. The amount of change
operations (delete, insert, etc.) occurred inside a block for
each element (link, image and text) is deduced from the gen-
erated Vi-Delta. This amount represents the percentage of
change operations detected for each block divided by the
total number of block’s elements.

Based on these parameters, we propose the following func-

tion F(v1,v2) to estimates the importance of changes be-
tween versions v1 and vz, each composed of blocks Bk; :

NBk Nop Ng;
1 N(Opj, Ely)
E = I(Bk;) * | I(Opj;) x — — 7]
; Nop JZ::I 7 N ,; N (Ely, bk;)

where:

- Op;j={insert, delete, update, move}

- Elp={link, image, text}

- Ngi, Nop, Ny, are respectively the number of elements type,
operation type and blocks in the page.

- I(z) denotes the importance value of x which can be a block or
a change operation. In order to normalize the result of function
E(), we add the following constraint on the importance of blocks
: SONBRI(Bk;) =1;0 < I(Op) < 1

- N(Opj, Ely;) denotes the number of change operation j that
occurred on the element k.

- N(El, Bk;) denotes the total number of elements k inside the
block 1.

The function E() is computed by multiplying the percent-
age of changes, for each operation (Op;) and block Bk;, by
the importance of operations I(Op;) and blocks I(Bk;). It
returns a normalized value between 0 and 1.

Example 1.

Given the blocks importance as shown in Figure 4, the
change operations, detected in a delta between two versions
of pages, are: (i) an update of a text in block By; (ii) an in-
sertion of 4 links in block Ba.2; (iii) a deletion of 2 images in
block Bs. In this example, the operations insert and update
are considered more important (I(ins) = I(upd) = 1) than
a delete (I(del) = 0.8). In the old version of the page, the
block Bi has one text element, B2 2 has 2 links and B3 has
4 images. The importance of changes is computed as follows:
E = I(Bk1)*I(upd)*[N (upd, text) /N (text, Bk1)]4+1(Bkz.2)*
I(ins) * [N (ins, link) /N (link, Bkz2)] + I(Bks) * I(del)

* [N (del, image) /N (image, Bks)] = 0.1 ¥ 1 * (1/1) + 04 *
1*(4/(244)) + 0.2 * 0.8 * (2 /4) = 0.44

In future work, we hope to extend this function to eval-
uate the importance of changes between two site versions

Figure 4: Changes Importance Example.

by considering others parameters such as the page rank, the
page depth in a site, etc.

54 Web Crawl Scheduling

One of the goals of our approach is to optimize web crawl-
ing through scheduling. The task of the scheduler is to
choose the most urgent document to be refreshed according
to the history of changes. As mentioned in Section 3, the
scheduler manages a list of documents ordered by a fresh-
ness urgency function. This function estimates, for each
page, how urgent it is to refresh it at a given date. It takes
into account the importance of changes (estimated by func-
tion E()) that have occurred between the original version
and the last one archived. We define the following freshness
urgency function for the scheduler.

Avgg

U(doc, date) = px *(date—dateqstipd)

datelastUpd - dateOrigDoc

where:

- p: priority of the page

- Avgp: average of estimated changes importance between two
versions of documents

- datejqstpq: date of the last refreshed version

- dateorigpoc: date of the first version of documents

This function depends on (i) the priority of the page, (ii)
the importance of changes of already archived versions and
(iii) the date of last refresh. We built a simulator to gener-
ate synthesized updates (with different changes importance)
on simulated documents. Then, a scheduling strategy using
the urgency function is developed and compared with two
existing crawl policies (Round Robin ', Cho [9] 2). The
preliminary results are promising. In fact, the strategy us-
ing the urgency function enables the event-driven crawler
to retrieve more urgent/important version than the other
policies. We hope also to use the importance of changes to
assign an appropriate frequency for the first type of crawler
(the frequency crawler).

6. PRELIMINARY RESULTS

Visual segmentation experiments have been conducted over
HTML web pages by using our extended VIPS algorithm.
We measured the performance of the visual segmentation in
terms of execution time and output size. The execution time
seems to be a little bit costly but is counterbalanced by the
richness of the Vi-XML file that really simulates the visual
aspect of web pages. Nevertheless, this time cost must be
optimized. The main idea for that purpose is to avoid re-
building the blocks structure for a page version if no struc-
tural change has occurred since the former version. The

!The documents are selected in circular order.

2The urgent document to be refreshed is the one which has
Minimum(date;qstt7pa + Toro).- Toro [9] is the estimated pe-
riod of updates.

experiment of output size files shows that the Vi-XML doc-
ument size is usually about 30 to 50 percent less than the
size of the original HTML document (for those sized more
than 100 KB). This is interesting for the comparison of two
Vi-XML documents since it can help to reduce the time cost
of changes detection algorithm.

Experiments were conducted to analyze the performance
of our proposed Vi-DIFF algorithm in terms of execution
time and delta size. The total execution time is satisfying
as it allows to process more than one hundred (currently
sized) pages per seconds and per processor (requirements of
CARTEC project). Others tests have been realized to mea-
sure the size of outputted delta. Results show that the size
of the delta is always less than the size of one version of
Vi-XML document, which is reasonable. To check the cor-
rectness of the delta, we build a simulator that generates
synthesized changes on given Vi-XML documents. The sim-
ulator takes a Vi-XML file and it generates a new version
according to the parameters given as input (proportion of
blocks to be changed, for each operation type). It also gen-
erates the corresponding delta file that helps checking if the
result of the Vi-DIFF is correct. We manually compared the
delta generated by the simulator with the delta produced by
our Vi-DIFF, with success.

The experiment of crawl simulation shows that the strat-
egy (using freshness urgency function) that takes into ac-
count the importance of changes between versions improves
considerably the web crawler. In fact, it enables to retrieve
more important versions than other existing strategies. This
preliminary result is very promising but further experiment
must be conducted on real web pages and on complete sites.

7. CONCLUSION AND FUTURE WORKS

This thesis points out the issues of efficiently archiving
web pages. Web archiving can waste time and space for in-
dexing and storing unimportant changes on page versions.
To address this issue, we propose an approach which com-
bines three concepts; the visual page segmentation, the change
detection and the importance of web pages’ blocks in order
to better detect important changes between versions. Other
existing approaches for Web archiving are based only on the
frequency of changes. The first step of our approach consists
in constructing the visual structure of document based on
semantic blocks by extending an existing algorithm VIPS [5].
The second step consists in detecting changes between the
last version archived of a page and the former one. The Vi-
Diff algorithm we designed for this phase is more adequate
to the visual layout structure of documents than existing
generic methods. Then, we study issues related to evaluat-
ing the importance of changes. This allows us designing a
crawl scheduling strategy which uses the analysis of changes
importance to optimize web crawling.

Preliminary tests on the segmentation and diff phases
show that the execution time is promising. However, the
time for segmentation is much higher than the time for com-
paring. In order to further optimize the system, we must
focus on reducing the segmentation time. One idea is to as-
sume that the block structure is evolving very rarely and to
process the segmentation only when a change in the struc-
ture is detected. Another on-going work is to detect a move,
separation and fusion of blocks as structural changes. Also,
we intend to extend our approach in order to detect/analyze
changes between two versions of sites instead of two pages

which raises the issue of temporal consistency of page ver-
sions. In fact, further study is necessary to know what doc-
uments should be compared according to their depth and
their changes in the site. The extended Vi-DIFF must pro-
duce, as output, a complete format of the Vi-Delta describ-
ing changes between the two site versions. Then, issues re-
lated to evaluating the importance of changes between two
sites must be addressed. We intend, in a future step, to learn
the appropriate change importance threshold to be fixed in
order to decide indexing/storing the most useful site ver-
sions. In addition, some studies must be done to choose
the best strategies to store the Vi-XML versions and the
Vi-Delta. For instance, (i) storing only the latest version
of the document and all the Vi-Deltas for previous versions
or (ii) storing all versions of the documents and computing
Vi-Deltas only when necessary.

Future works are related to the blocks importance. We are
currently looking for the best machine learning technique to
get automatically the relative importance of blocks and of
change operations. For instance, we can assume that the
more frequent a block is changing, the less important it is.
For web crawl scheduling, we intend to perform experiments
on real web pages and sites. We hope also to use the change
importance between versions to assign an appropriate fre-
quencies to the first type of web crawlers. The final goal
of the web archiving is the consultation of web pages ver-
sions. Thus, further work must be done to temporally query
the archive about the different web page versions and also
about the visual/structural changes occurred between them.
Querying visual/structural changes is important because it
gives relevant information for understanding the dynamics
of the web sites.

8. REFERENCES

[1] The Web archive bibliography,
http://www.ifs.tuwien.ac.at/ aola/links/webarchiving.html.

[2] S. Abiteboul, G. Cobena, J. Masanes, and G. Sedrati. A

First Experience in Archiving the French Web. In ECDL

’02: Proceedings of the 6th European Conference on

Research and Advanced Technology for Digital Libraries,

2002.

H. Artail and K. Fawaz. A fast HTML web page change

detection approach based on hashing and reducing the

number of similarity computations. Data Knowl. Eng.,

66(2):326-337, 2008.

[4] D. J. C. Lampos, M. Eirinaki and M. Vazirgiannis.
Archiving the greek web. In 4th International Web
Archiving Workshop (IWAW04), Bath, UK, 2004.

[5] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. VIPS: a

Vision-based Page Segmentation Algorithm. Technical

report, Microsoft Research, 2003.

C. Castillo and B. Sp. Scheduling algorithms for web

crawling, 2004.

[7] W. Cathro. Development of a digital services architecture
at the national library of Australia. EduCause, 2003.

[8] J. Cho and H. Garcia-Molina. The Evolution of the Web
and Implications for an Incremental Crawler. In VLDB ’00:
Proceedings of the 26th International Conference on Very
Large Data Bases, 2000.

[9] J. Cho and H. Garcia-Molina. Estimating frequency of
change. ACM Trans. Interet Technol., 3(3), 2003.

[10] G. Cobena, S. Abiteboul, and A. Marian. Detecting
changes in XML documents. In ICDE ’02: Proceedings of
18th International Conference on Data Engineering, 2002.

[11] C. N. Cosulschi M. and G. M. Classification and
comparison of information structures from a web page. In
The Annals of the University of Craiova, 2004.

(3

(6

(12]

(13]

14]

(15]

[16]

(17]

(18]

19]

M. K. Evi, M. Diligenti, M. Gori, M. Maggini, and

V. Milutinovi. Recognition of Common Areas in a Web
Page Using Visual Information: a possible application in a
page classification. In the proceedings of 2002 IEEE
International Conference on Data Mining ICDM’02, 2002.
D. Gomes, A. L. Santos, and M. J. Silva. Managing
duplicates in a web archive. In SAC ’06: Proceedings of the
2006 ACM symposium on Applied computing, 2006.

X.-D. Gu, J. Chen, W.-Y. Ma, and G.-L. Chen. Visual
Based Content Understanding towards Web Adaptation. In
Second International Conference on Adaptive Hypermedia
and Adaptive Web-based Systems (AH2002), 2002.

R. La-Fontaine. A Delta Format for XML: Identifying
Changes in XML Files and Representing the Changes in
XML. In XML Europe, 2001.

E. Leonardi, T. T. Hoai, S. S. Bhowmick, and S. Madria.
DTD-Diff: A change detection algorithm for DTDs. Data
Knowl. Eng., 61(2), 2007.

C. Olston and S. Pandey. Recrawl scheduling based on
information longevity. In WWW ’08: Proceeding of the
17th international conference on World Wide Web, pages
437-446, New York, NY, USA, 2008. ACM.

R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma. Learning block
importance models for web pages. In WWW ’04:
Proceedings of the 13th international conference on World
Wide Web, 2004.

Y. Wang, D. DeWitt, and J.-Y. Cai. X-Diff: an effective
change detection algorithm for XML documents. In ICDE
’03: Proceedings of 19th International Conference on Data
Engineering, March 2003.

