
Efficient k-Nearest Neighbor Searching in
Non-Ordered Discrete Data Spaces

DASHIELL KOLBE

Michigan State University

QIANG ZHU

University of Michigan

SAKTI PRAMANIK

Michigan State University

Numerous techniques have been proposed in the past for supporting efficient k-nearest neighbor
(k-NN) queries in continuous data spaces. Limited work has been reported in the literature for

k-NN queries in a non-ordered discrete data space (NDDS). Performing k-NN queries in an NDDS

raises new challenges. The Hamming distance is usually used to measure the distance between
two vectors (objects) in an NDDS. Due to the coarse granularity of the Hamming distance, a

k-NN query in an NDDS may lead to a high degree of non-determinism for the query result. We

propose a new distance measure, called Granularity-Enhanced Hamming (GEH) distance, that
effectively reduces the number of candidate solutions for a query. We have also implemented k-

NN queries using multidimensional database indexing in NDDSs. Further, we use the properties

of our multidimensional NDDS index to derive the probability of encountering new neighbors
within specific regions of the index. This probability is used to develop a new search ordering

heuristic. Our experiments on synthetic and genomic data sets demonstrate that our index-based
k-NN algorithm is efficient in finding k-NNs in both uniform and non-uniform data sets in NDDSs

and that our heuristics are effective in improving the performance of such queries.

Categories and Subject Descriptors: H.4.0 [Information Systems Applications]: General

General Terms: Similarity Search, Spatial Indexing

Additional Key Words and Phrases: Database, Non-Ordered Discrete Data Space, Distance Mea-

surement, Nearest Neighbor

1. INTRODUCTION

There is an increasing demand for similarity searches in applications such as geo-
graphical information systems [Roussopoulos et al. 1995], multimedia databases
[Seidl and Kriegel 1997], molecular biology [Badel et al. 1992], and genome se-
quence databases [Qian et al. 2003; Qian 2004]. The two most common types
of similarity searches are range searches/queries and k-nearest neighbor (k-NN)
searches/queries. The former is to find data objects that are within a tolerant
distance from a given query point/object, while the latter is to retrieve k-nearest
neighbors to the query point. An example of a range query is “find the words in
a document that differ from word ‘near’ by at most two letters”. An example of a
k-NN query is “find two service stations that are closest to the current one”.

Numerous techniques have been proposed in the literature to support efficient
similarity searches in (ordered) continuous data spaces (CDS). A majority of them

This work was supported by the National Science Foundation (under grants #IIS-0414576 and

#IIS-0414594), Michigan State University and The University of Michigan.

2 · Dashiell Kolbe et al.

utilize a multidimensional index structure such as the R-tree [Guttman 1988],
the R∗-tree [Beckmann et al. 1990], the X-tree [Berchtold et al. 1996], the K-D-B
tree [Robinson 1981], and the LSDh-tree [Henrich 1998]. These techniques rely on
some essential geometric properties/concepts such as bounding rectangles in CDSs.
Much work has centered around a filter and refinement process. Roussopoulos et
al. presented a branch-and-bound algorithm for finding k -NNs to a query point.
Korn et al. furthered this work by presenting a multi-step k -NN searching algo-
rithm, which was then optimized by Seidl and Kriegel [Seidl and Kriegel 1998].
In [Kolahdouzan and Shahabi 2004], a Voronoi based approach was presented to
address k -NN searching in spatial network databases.

Little work has been reported on supporting efficient similarity searches in so-
called non-ordered discrete data spaces (NDDS). A d-dimensional NDDS is a Carte-
sian product of d domains/alphabets consisting of finite non-ordered elements/letters.
For example, when searching genome DNA sequences, consisting of letters ‘a’, ‘g’,
‘t’, ‘c’, each sequence is often divided into intervals/strings of a fixed length d (q-
gram). These intervals can be considered as vectors from a d-dimensional NDDS
with alphabet {a, g, t, c} for each dimension. Other examples of non-ordered dis-
crete dimensions are color, gender and profession. Application areas that demand
similarity searches in NDDSs include bioinformatics, E-commerce, biometrics and
data mining.

Limited existing work on index-based similarity searches in NDDSs has utilized
either metric trees such as the M-tree [Ciaccia et al. 1997] or the ND-tree and
NSP-tree recently proposed by Qian et al. [Qian et al. 2003; Qian et al. 2006a;
Qian et al. 2006b]. Unlike the M-tree, the ND-tree and the NSP-tree indexing
techniques were designed specifically for NDDSs. It has been shown that these two
techniques outperform the linear scan and typical metric trees such as the M-tree
for range queries in NDDSs. Metric trees generally do not perform well in NDDSs
because they are too generic and do not take the special characteristics of an NDDS
into consideration. On the other hand, Qian et al.’s work in [Qian et al. 2003;
Qian et al. 2006a; Qian et al. 2006b] primarily focused on handling range queries.
Although a procedure for finding the nearest neighbor (i.e., 1-NN) to a query point
was outlined in [Qian et al. 2006a], no empirical evaluation was given.

The issue of k-NN searching in NDDSs is in fact not a trivial extension of ear-
lier work. NDDSs raise new challenges for this problem. First, we observe that
unlike a k-NN query in a CDS, a k-NN query in an NDDS based on the conven-
tional Hamming distance [Hamming 1950], often has a large number of alternative
solution sets, making the results of the k-NN query non-deterministic. This non-
determinism is mainly due to the coarse granularity of the Hamming distance and
can sharply reduce the clarity/usefulness of the query results. Second, existing
index-based k-NN searching algorithms for CDSs cannot be directly applied to an
NDDS due to a lack of relevant geometric concepts/measures. On the other hand,
the algorithms using metric trees for a CDS are suboptimal because of their generic
nature and ignorance of special characteristics of an NDDS. Third, the information
maintained by an NDDS index structure may become very misleading for tradi-
tional CDS search ordering strategies, such as those presented by Roussopoulos et
al. [Roussopoulos et al. 1995]. This scenario can occur as the distribution of data
within the index structure shifts over time.

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 3

To tackle the first challenge, we introduce a new extended Hamming distance,
called the Granularity-Enhanced Hamming (GEH) distance. The GEH distance
improves the semantics of k-NN searching in NDDS by greatly increasing the de-
terminism of the results. To address the second challenge, we propose a k-NN
searching algorithm utilizing the ND-tree. Our algorithm extends the notion of
incremental range based search [Roussopoulos et al. 1995] (generalized for metric
space by Hjaltason and Samet [Hjaltason and Samet 2000]) to NDDSs by intro-
ducing suitable pruning metrics and relevant searching heuristics based on our new
distance measure and the characteristics of NDDSs. Some preliminary results for
uniformly distributed datasets were presented in [Kolbe et al. 2007]. Our study
shows that the new GEH distance provides a greatly improved semantic discrimi-
nating power that is needed for k-NN searching in NDDSs, and that our searching
algorithm is very efficient in supporting k-NN searches in NDDSs. In this paper, we
demonstrate through additional experiments that our k-NN searching algorithm is
efficient in both uniformly distributed data sets and non-uniformly distributed data
sets using zipf distributions as an example. Further, we present a theoretical per-
formance model and demonstrate that the performance of our algorithm matches
very closely to what is predicted by this model. To address the third issue, we
introduce a method for determining the probability of a vector’s existence within
any sub-structure of an ND-tree. We demonstrate this probability information can
be used to provide a new search ordering strategy that significantly increases the
performance of our search algorithm when the information maintained by the index
structure is misleading.

The rest of this paper is organized as follows. Section 2 formally defines the
problem of k-NN searching, derives the probability of a vector existing within an
ND-tree, introduces the new GEH distance in NDDSs, and discusses its properties.
Section 3 presents our index-based k-NN searching algorithm for NDDSs, including
its pruning metrics and heuristics and theoretical performance model. Section 4
discusses experimental results. Section 5 summarizes our conclusions and gives
some future research directions.

2. K -NEAREST NEIGHBORS IN NDDS

In this section, we first review some concepts related to NDDSs, including the
ND-tree that our searching algorithm is based on. We then formally define a k -
NN search/query and identify a major problem associated with k -NN searches in
NDDSs. To overcome the problem, we propose a new extended Hamming distance
and discuss its properties. Additionally, we introduce a method for determining the
probability of a vector/record’s existence in any particular subtree of an ND-tree,
based upon the properties of NDDSs and the index tree.

2.1 The ND-Tree

The ND-tree has some similarities, in structure and function, to the R-tree [Guttman
1988] and its variants (R*-tree [Beckmann et al. 1990] in particular). As such, the
ND-tree is a balanced tree with leaf nodes containing the indexed vectors. The vec-
tors are reached by traversing a set of branches starting at the root and becoming
more refined as one traverses toward the leaves.

4 · Dashiell Kolbe et al.

The ND-tree is built using strategies similar to those for the R-tree. Each vector
is inserted into the tree after an appropriate position is found in the tree. The
relevant minimum bounding rectangle may need to be split to accommodate the
insertion.

A key difference between the ND-tree and its continuous cousins is the way
in which a minimum bounding rectangle is defined and utilized. In the ND-tree,
minimum bounding rectangles are discrete. A discrete minimum bounding rectangle
(DMBR) for a set G = {R1, R2, . . . , Rn} of discrete rectangles Ri = {Si1 × Si2 ×
. . .× Sid} (1 ≤ i ≤ n) is defined as follows:

DMBR(G) = (∪ni=1Si1)× (∪ni=1Si2)× . . .× (∪ni=1Sid), (1)

where Sij (1 ≤ j ≤ d) is a set of elements/letters from the alphabet of the j-th
dimension of the given d-dimensional NDDS. Such a DMBR allows the ND-tree to
utilize a non-Euclidean method of measurement for calculating the distance between
a vector α = (α[1], α[2], . . . , α[d]) and DMBR R = {S1 × S2 × . . .× Sd}:

dist(α,R) =
d∑
i=1

{
0 if α[i] ∈ Si
1 otherwise

}
. (2)

This distance can be interpreted as saying that, for each dimension in a query
vector α, if the element represented therein occurs anywhere in the subtree associ-
ated with DMBR R, then nothing will be added to the current distance, otherwise
a 1 will be added.

2.2 Definition of k-NN in NDDS

When considering a query in an NDDS, the data set may be depicted as a set of
concentric spheres with the query point located at the center (as shown in Figure
2.2). Each sphere contains all data points that have r mismatching dimensions
with the query point, where r represents the layer/radius of the particular sphere.
A straight forward approach to determining the minimal radius r, where a sphere
of this radius will contain at least k data points/neighbors, is to find r such that
a sphere of radius r contains at least k neighbors while a sphere of radius r − 1
contains less than k neighbors. In general, the solution set of k -nearest neighbors
for a given query point may not be unique due to multiple objects having the same
distance to the query point. Thus, there may be multiple candidate solution sets
for a given query point and k value. We define a candidate solution set of k -nearest
neighbors for a query point as follows:

Definition 2.2.1. Candidate k-Nearest-Neighbors Let the universe of dis-
course for variables Ai and Bi (1 ≤ i ≤ k) be the set of all objects in the database.
Let kNNS denote a candidate solution set of k-nearest neighbors in the database for
a query point q and D(x, y) denote the distance between the objects x and y. Then

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 5

Fig. 1. NDDS data points distributed by distance example

kNNS is defined as follows:

kNNS ∈
{
{A1, A2, ..., Ak} : ∀B1,B2,...,Bk

[
Σki=1D(q,Ai) ≤ Σkj=1D(q,Bj)

]
∧

∀m,n∈{1,2,...,k} [(m 6= n)→ (Am 6= An)]

}
.

(3)

Equation 3 essentially says that k objects/neighbors A1, A2, . . . , Ak in kNNS have
the minimum total distance to q out of all possible sets of k objects in the database.
This definition is in fact valid for both continuous and discrete data spaces. Con-
sider Figure 2.2, if k = 3, there are three possible sets of neighbors that satisfy
Equation 3: {α1, α2, α3}, {α1, α2, α4}, & {α1, α3, α4}. Each candidate solution set
is found within a range of r when a range of r−1 would yield less than k neighbors
(here, r = 3). Thus, each candidate solution set is a subset of the set of neighbors
that would be found using the straight forward search approach described above.

Since kNNS is a set of neighbors, there is no ordering implied among the neigh-
bors. In the following recursive definition we provide a procedural semantic of a
candidate k th-nearest neighbor, which is based on an ordered ranking of the neigh-
bors in the database for a query point q.

Definition 2.2.2. Candidate k th-Nearest-Neighbor: Let the universe of dis-
course for variables A and B be the set of all objects in the database. Let Ak
denote a candidate k th-nearest neighbor in the database for a query point q. We

6 · Dashiell Kolbe et al.

recursively define Ak as follows:

A1 ∈ {A : ∀B (D(q, A) ≤ D(q,B))} ,

Ak ∈

A : ∀B

 B /∈ {A1, A2, . . . , Ak−1}∧
A /∈ {A1, A2, . . . , Ak−1} →
D(q, A) ≤ D(q,B)

 for k ≥ 2. (4)

Definition 2.2.2 can be used to produce all the candidate kNNSs given by Defini-
tion 2.2.1, as stated in the following proposition.

Proposition 2.2.3. The set of candidate kNNSs given by Definition 2.2.1 can
be produced by Definition 2.2.2.

PROOF. See Appendix A.

From the above definitions (and Figure 2.2), we can see that there may be mul-
tiple possible kNNSs for a given query. Therefore, kNNS is generally not unique.
The non-uniqueness/non-determinism of kNNS has an impact on the semantics of
the k -nearest neighbors. We define the degree of non-determinism of k -nearest
neighbors by the number of possible kNNSs that exist for the query. This degree of
non-determinism is computed by the following proposition.

Proposition 2.2.4. The number ∆k of candidate kNNSs is given by

∆k =
N
′
!

t!(N ′ − t)!
, (5)

where t is defined by D(q, Ak−t) 6= D(q, Ak−t+1) = D(q, Ak−t+2) = . . . = D(q, Ak);
Aj(1 ≤ j ≤ k) denotes the jth-nearest neighbor; N

′
is the number of nearest neigh-

bors in the database that have the same distance as D(q, Ak).

PROOF. See Appendix B.

Note that t denotes the number of objects with distance D(q, Ak) that have to be
included in a kNNS: if t = k, all the neighbors in a kNNS are of the same distance as
D(q, Ak). The values of N

′
and t depend on parameters such as the dimensionality,

database size, and the query point.
For a k -NN query on a database in a continuous data space based on the Eu-

clidean distance, kNNS is typically unique (i.e. ∆k = 1) since the chance for two
objects having the same distance to the query point is usually very small. As a
result, the non-determinism is usually not an issue for k -NN searches in continuous
data spaces.

However, non-determinism is a common occurrence in an NDDS. As pointed out
in [Qian et al. 2003; Qian et al. 2006a], the Hamming distance is typically used for
NDDSs. Due to the insufficient semantic discrimination between objects provided
by the Hamming distance and the limited number of elements available for each

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 7

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

4 8 12 16 20

Number of Vectors in Database x 10^5

N
u
m
b
e
r
o
f
S
o
lu
ti
o
n
 S
e
ts

k = 1

k = 5

k = 10

Fig. 2. Comparison of ∆k values for the Hamming distance

dimension in an NDDS, ∆k for a k -NN query in an NDDS is usually large. For
example, for a data set of 2M vectors in a 10-dimensional NDDS with uniform
distribution, the average ∆k values for 100 random k -NN queries with k = 1, 5, 10
are about 8.0, 19.0K, 45.5M respectively, as shown in Figure 1. This demonstrates a
high degree of non-determinism for k -NN searches based on the Hamming distance
in an NDDS, especially for large k values. To mitigate the problem, we extend the
Hamming distance to provide more semantic discrimination between the neighbors
of a k -NN query point in an NDDS.

2.3 Extended Hamming Distance

The Hamming distance (generalized in [Bookstein et al. 2002]) between two vectors
α = (α[1], α[2], . . . , α[d]) and β = (β[1], β[2], . . . , β[d]) is defined as follows:

DHamm(α, β) =
d∑
i=1

{
1 if α[i] 6= β[i]
0 otherwise

}
. (6)

Intuitively, the Hamming distance indicates the number of dimensions on which the
corresponding components of α and β differ.

Although the Hamming distance is very useful for exact matches and range
queries in NDDSs, it does not provide an effective semantic for k -NN queries in
NDDSs due to the high degree of non-determinism, as mentioned previously. We
notice that the Hamming distance does not distinguish equalities for different el-
ements. For example, it treats element a = a as the same as element b = b by
assigning 0 to the distance measure in both cases. In many applications such as
genome sequence searches, some matches (equalities) may be considered to be more

8 · Dashiell Kolbe et al.

important than others. Based on this observation, we extend the Hamming distance
to capture the semantics of different equalities in the distance measure.

Several constraints have to be considered for such an extension. First, the ex-
tended distance should enhance the granularity level of the Hamming distance so
that its semantic discriminating power is increased. Second, the semantic of the
traditional Hamming distance needs to be preserved. For example, from a given
distance value, one should be able to tell how many dimensions are distinct (and
how many dimensions are equal) between two vectors. Third, the extended distance
should possess a triangular property so that pruning during an index-based search
is possible.

We observe that matching two vectors on a dimension with a frequently-occurred
element is usually more important than matching the two vectors on the dimension
with an uncommon (infrequent) element. Based on this observation, we utilize the
frequencies of the elements to extend the Hamming distance as follows:

DGEH(α, β) =
d∑
i=1

{
1 if α[i] 6= β[i]
1
df(α[i]) otherwise

}
, (7)

where

f(α[i]) = 1− frequency(α[i]).

This extension starts with the traditional Hamming distance; adding one to the
total distance for each dimension that does not match between the two vectors.
The difference is that, when the two vectors match on a particular dimension,
the frequency of the common element (i.e. α[i] = β[i]) occurring in the underlying
database on the dimension is obtained from a lookup table generated by performing
an initial scan of the dataset. This frequency value is then subtracted from one
and then added to the distance measure. Thus, the more frequently an element
occurs, the more it will subtract from one and thus the less it will add to the
distance measure, thereby indicating that the two vectors are closer than if they
had matched on a very uncommon element.

The factor of 1
d is used to ensure that the frequency-based adjustments to the

distance measure do not end up becoming more significant than the original Ham-
ming distance. This is a key factor in maintaining the triangular distance property.
Additionally, this guarantees that the solution set (kNNS) returned using this dis-
tance will be a subset of the solution set returned if the Hamming distance were
used instead.

From the distance definition, we can see that, if m ≤ DGEH(α, β) < m + 1
(m = 0, 1, . . . , d), then vectors α and β mis-match on m dimensions (i.e., match
on d − m dimensions). Within each interval, the smaller the distance value, the
larger the frequency(ies) of the element(s) shared by α and β on the matching
dimension(s). Clearly, unlike the traditional Hamming distance, which has at most
d + 1 (integer) values – resulting in a quite coarse granularity, this new extended
distance allows many more possible values – leading to a refined granularity. We
call this extended Hamming distance the Granularity-Enhanced Hamming (GEH)
distance. Due to its enhanced granularity, the GEH distance can dramatically

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 9

reduce ∆k in Proposition 2.2.4, leading to more deterministic k -NN searches in
NDDSs. For example for the aforementioned data set of 2M vectors in a 10-
dimensional NDDS under the uniform distribution, the average ∆k values for 100
random k -NN queries with k = 1, 5, 10 are about 1.09, 1.11, 1.06, respectively (see
Figure 3 in Section 4.1).

In fact, the Euclidean distance measurement can be considered to have the finest
(continuous) granularity at one end, while the Hamming distance measurement has
a very coarse (discrete integers) granularity at the other end. The GEH distance
measurement provides an advantage in bringing discrete and continuous distance
measurements closer to each other. Additionally, the GEH distance may be used
in the pruning step in index-based searches due to its possession of the triangular
property. Proof of this property is presented in Appendix C.

2.4 Probability of New Neighbors

In many scenarios, it is useful to know the probability/likelihood of encountering
vectors within an index structure that are within the current search radius to a given
query vector. For the purposes of our discussion we label each such encountered
vector as a new neighbor α; where ∀αd(q, α) < r, where q is the query vector and
r is the current search radius. To derive this probability, we first consider the
Hamming distance and then extend our solutions to benefit from the enhancements
provided by the GEH distance.

For an initial case, we can assume that our index structure has maintained a rela-
tively uniform distribution of elements within its substructures. In a well balanced
tree (ND-Tree, M-Tree, etc...), this may prove to be a very reasonable assumption,
as most indexing methods will attempt to evenly distribute elements within their
substructures. When we consider an ND-Tree as our indexing method, the proba-
bility that accessing a subtree with associated DMBR R = {S1×S2× . . .×Sd} will
yield a particular element a in any dimension may be estimated as the reciprocal of
the magnitude of the alphabet set on that dimension represented by R. Therefore,
the probability of a specific element a occurring in dimension i is estimated as:

p (a)R,i =
1
|Si|

.

This calculation proves to be fairly accurate so long as the assumption of uniform
distribution holds. The accuracy, and therefore effectiveness, of this calculation
begins to degrade as the distribution of elements per dimension within a subtree
becomes non-uniform.

The true probability may be estimated far more accurately by determining the
local ratio of element a within a subtree, with associated DMBR R, on dimension
i as follows:

p (a)R,i = fl (a)R,i , (8)

where

fl(a)R,i =
of vectors α in R’s subtree where α[i] = a

total # of vectors in R’s subtree
.

10 · Dashiell Kolbe et al.

This method is not reliant upon the indexing method to provide an even distribu-
tion: Equation 8 remains accurate even in indexes with heavily skewed distributions.

The probability of encountering new neighbors when examining any particular
subtree of an ND-tree is analogous to the probability of such neighbors existing in
that subtree. Each dimension in an NDDS is assumed to be independent, therefore,
the probability value of encountering specific elements over all dimensions may
be determined by the product of the probability values of encountering a specific
element in each dimension. Thus the probability of selecting any particular vector
α = (α[1], α[2], . . . , α[d]), at random from the subtree with associated DMBR R is
the following:

PE (α,R) =
d∏
i=1

p (α[i])R,i . (9)

As defined in Section 2.3, the Hamming distance represents the number of non-
matching dimensions between any two vectors. The probability of a subtree con-
taining a vector α where DHamm(q, α) = 0 may be determined using Equation
9. However, because at most, only one vector within an ND-Tree will satisfy
DHamm(q, α) = 0, we must also consider the probability of a subtree containing
vectors β = (β[q], β[2], . . . , β[d]), where DHamm(q, β) = z : z ∈ {1, 2, . . . , d}.

Proposition 2.4.1. Let Y represent the set of dimensions where β[Yj] 6= q[Yj]
and let X represent the set of dimensions where β[Xj] = q[Xj]. We then define
the probability of selecting a particular vector β from the subtree with associated
DMBR R, where DHamm(q, β) = z, (0 ≤ z ≤ d), at random as the following (note
that z = |Y |):

PNE(β,R) =
|X|∏
j=1

p(β[Xj])R,Xj
∗
|Y |∏
j=1

(1− p(β[Yj])R,Yj
). (10)

PROOF: As described in Equation 9, the probability of a specific vector existing
in a subtree, represented by R, is the product of the probabilities of each element
of the vector in the corresponding dimension of the subtree: the probability of the
element is defined by PE (α,R) (Equation 8). The probability of anything except
the specified element is 1 − PE (α,R). Thus, the probability of a specific vector,
that does not match the query vector in z dimensions, existing in a subtree/R is
the product of two terms; the product of PE (α,R) in the matching dimensions
and the product of 1− PE (α,R) in the non-matching dimensions.

Proposition 2.4.1 describes the method for determining the probability of en-
countering a vector that matches the query vector on a particular set of dimensions
X. An example would be determining the probability of encountering a vector
β in a 10-dimensional data set that matched a query vector q in dimensions 1,
3, 8, & 9. In this example, X = {1, 3, 8, 9} and Y = {0, 2, 4, 5, 6, 7}, resulting
in z = DHamm(q, β) = 6. However, to determine the probability of encountering
a vector at a distance z, we are not only interested in this one particular partial-

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 11

matching vector, but rather all possible partial-matching vectors that may be found
at a distance z from the query vector.

Proposition 2.4.2. Let B represent all vectors from the set of all objects in
the data space where β ∈ B : [DHamm(q, β) = z]. The probability that a subtree
with associated DMBR R = {S1 × S2 × . . . × Sd} will contain a vector β where
DHamm(q, β) = z is defined as the following:

PSz(q,R) =
∑
β∈B

PNE(β,R). (11)

PROOF: The probability of a subset of independent objects existing in a set, is the
summation of the probabilities of each of the individual objects within the subset
existing in the set. Thus, the probability of a subset of vectors existing within a
subtree, that each have a specified number of dimensions matching a query vector,
is the summation of the probabilities of each vector within that subset existing in
the subtree.

For example, the probability of selecting a vector β at random from a subtree with
associated DMBR R, where DHamm(q, β) = 1, is shown as follows:1

PS1 (q,R) = p(q[1])p(q[2]) . . . p(q[d− 1]) (1− p (q[d]))
+p(q[1])p(q[2]) . . . (1− p (q[d− 1])) p(q[d])

...
+ (1− p (q[1])) p(q[2]) . . . p(q[d− 1])p(q[d])

.

The probability of a subtree with associated DMBR R containing a vector β
where DHamm(q, β) ≤ brc is expressed as the summation of the probability of the
subtree containing a vector for each integer distance z : z ∈ {0, 1, . . . , brc}. This is
expressed formally as follows:

PNNH (q,R) =
brc∑
z=0

PSz (q,R) . (12)

Equation 12 may therefore be used to give an accurate measure as to the like-
lihood that searching within any subtree will update a solution set when using
the Hamming distance. Enhancing the granularity of the Hamming distance leads
to an enhancement of the neighbor probability calculated in Equation 12. When
using the GEH distance, it is possible for a new neighbor to exist at a distance
brc < DGEH(q, β) ≤ r. An adjustment to Equation 11 is needed to properly
account for possible neighbors within this range.

Proposition 2.4.3. Let B′ represent all vectors from the set of all objects in the
data space where β ∈ B′ : [DHamm(q, β) = brc]. The probability that a subtree with

1As the dimensionality of the dataset increases, this calculation can become costly as it is on the
order of O(d ∗

(d
d−z

)
). However, much of this cost can be avoided by calculating the vectors in

each set B and storing them as binary arrays in a pre-processing step.

12 · Dashiell Kolbe et al.

DMBR R = {S1×S2× . . .×Sd} will contain a record β where (brc < DGEH(q, β) ≤
r) is defined as the following:

PR(q,R, r) =
∑
β∈B′

PNE(β,R)δ (r − brc, β, q) , (13)

where

δ (r − brc, β, q) =
{

1 if Radj(β, q) < r − brc
0 otherwise

}
,

Radj (β, q) =
1
d

d∑
j=1

{
f(q[j]) if β[j] = q[j]

0 otherwise

}
.

PROOF: The proof for Proposition 2.4.2 shows that Equation 11 yields the proba-
bility of a vector, that has z mismatching dimensions with the query vector, existing
in a particular subtree. If z = brc, this equation will determine the probabil-
ity of a vector with brc mismatching dimensions with the query vector existing
in the subtree. The set of these vectors is represented by B

′
. Function δ cre-

ates a subset of these vectors by removing all vectors v, from the set B
′
, where

DGEH(v, q) > r. Equation 13 is the summation of each of the remaining vectors
v
′
, where ∀v′∈B′ : DGEH(v

′
, q) < r. Thus Equation 13 yields the probability of a

vector, whose distance to the query vector is between brc and r to the query vector,
existing in a particular subtree.

The additional granularity provided by Equation 13 allows us to refine Equation
12 to make use of our GEH distance as follows:

PNNGEH (q,R, r) = PR(q,R, r) +
brc−1∑
z=0

PSz (q,R) . (14)

Equation 14 may be used to give an accurate measure of the likelihood that search-
ing within any subtree will update a solution set when our enhanced distance mea-
sure is used. We use this measure in section 3.2 to develop an ordering heuristic that
provides a conservative assessment of whether or not to visit a particular subtree
that is beneficial to search performance in non-uniformly distributed databases.

3. A K-NN ALGORITHM FOR NDDS

To efficiently process k -NN queries in NDDSs, we introduce an index-based k -NN
searching algorithm. This algorithm utilizes properties of the ND-tree recently pro-
posed by Qian, et al. [Qian et al. 2003; Qian et al. 2006a] for NDDSs. The basic
idea of this algorithm is as follows. It descends the ND-tree from the root fol-
lowing a depth-first search strategy. When k possible neighbors are retrieved, the
searching algorithm uses the distance information about the neighbors already col-
lected to start pruning search paths that can be proven to not include any vectors
that are closer to the query vector than any of the current neighbors. Our algo-
rithm is based upon earlier incremental ranged based implementations presented

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 13

for CDS by Roussopoulos et al. [Roussopoulos et al. 1995] and Hjaltason and
Samet [Hjaltason and Samet 2000] (generalized for metric space). Our algorithm
extends these implementations to NDDS by introducing metrics and heuristics suit-
able for such a space. The details of this algorithm are discussed in the following
subsections.

3.1 Heuristics

In the worst case scenario, this search would encompass the entire tree structure.
However, our extensive experiments have shown that the use of the following heuris-
tics is able to eliminate most search paths before they need to be traversed.

MINDIST Pruning: Similar to [Roussopoulos et al. 1995], we utilize the min-
imum distance (MINDIST) between a query vector q and a DMBR R = {S1 ×
S2× . . .×Sd}, denoted by mdist(q,R), to prune useless paths. Based on the GEH
distance, MINDIST is formally defined as follows:

mdist(q,R) =
d∑
i=1

{
1 if q[i] /∈ Si
1
df(q[i]) otherwise

}
(15)

where

f(q[i]) = 1− frequency(q[i]).

This calculation is then used with the Range of the current k -nearest neighbors
(with respect to the query vector) to prune subtrees. Specifically, the heuristic for
pruning subtrees is:

H1: If mdist(q,R) ≥ Range, then prune the subtree associated with R.

By taking the closest distance between a DMBR and q, we are guaranteeing that
no vectors that are included in the DMBR’s subtree are closer than the current
Range and thus need not be included in the continuing search.

MINMAXDIST Pruning: We also utilize the minimum value (MINMAXDIST)
of all the maximum distances between a query vector q and a DMBR R along
each dimension, denoted by mmdist(q,R), for pruning useless paths. In simple
terms, mmdist(q,R) represents the shortest distance from the vector q that can
guarantee another vector in R/subtree can be found. For a vector q and DMBR
R = {S1 × S2 × . . .× Sd}, MINMAXDIST is formally defined as follows:

mmdist(q,R) = min
1≤k≤d

fm (q[k], Sk) +
d∑

i=1,i6=k

fM (q[i], Si)

 (16)

where

14 · Dashiell Kolbe et al.

fm (q[k], Sk) =
{

1
df(q[k]) if q[k] ∈ Sk
1 otherwise

}
,

fM (q[j], Sk) =
{

1
df(q[j]) if {q[j]} = Sj
1 otherwise

}
.

where f() on the right hand side of the last two Equations is defined in Equation
15.

In general terms, the summation of fM determines the number of dimensions
where every vector in the associated subtree is guaranteed to have a matching
element with the query vector. In these cases, a value of 1

df(q[j]) is added to the
distance. The value of fm determines if there is another dimension (not in those
checked for fM) that some subset of the vectors in the associated subtree will match
the query vector in that dimension. In this case, a value of 1

df(q[k]) is added to the
distance. A value of 1 is added for all other cases in fM and fm. The summation of
these values yields the minimum distance (adjusted for GEH) it can be guaranteed
a vector will be located from the query vector in the associated subtree, based upon
the information in the DMBR.

To process k -NN searches in our algorithm, mmdist() is calculated for each non-
leaf node of the ND-tree using query vector q and all the DMBRs (for subtrees)
contained in the current node. Once each of these MINMAXDIST values (for
subtrees) have been calculated, they are sorted in ascending order and the k th

value is selected as MINMAXDISTk for the current node.
The k th value is selected to guarantee that at least k vectors will be found in

searching the current node. This selected MINMAXDISTk is then used in the
following heuristic:

H2: If MINMAXDISTk(node)< Range, then let Range = MINMAXDISTk(node)

Optimistic Search Ordering: For those subtrees that are not pruned by heuris-
tic H1 or H2, we need to decide an order to access them. Two search orders were
suggested in [Roussopoulos et al. 1995]: one is based on the ordering of MINDIST
values, and the other is based on the ordering of MINMAXDIST values. The
MINMAXDIST ordering is too pessimistic to be practically useful. Accessing the
subtrees based on such an ordering is almost the same as a random access in NDDSs.
From an extensive empirical study, we found that accessing subtrees in the opti-
mistic order of MINDIST values during a k-NN search in an NDDS provided the
more promising results. This study was performed with the assumption that the
ND-tree is well structured. This access order is shown formally as follows:

H3: Access subtrees ordered in ascending value of mdist(q,R). In the event of a
tie, choose a subtree at random.

Conservative Search Ordering: A problem associated with search ordering
heuristic H3 is that it optimistically assumes that a vector with a distance of the
MINDIST value exists in the subtree associated with the relevant DMBR. Typi-
cally this is not the case in an NDDS: the set of elements on each dimension from

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 15

different vectors often yields a combination that is not an indexed vector in the
corresponding subtree. In some instances, the actual distribution of elements per
dimension within a subtree may be significantly different than what is expressed
in the representing DMBR. As discussed in Section 2.4, this can be estimated by
calculating the difference between the assumed uniform distribution, 1

|Si| , and the
actual distribution, estimated by frequency in Equation 8.

When the difference between the assumed distribution and the actual distribu-
tion becomes large for multiple elements or multiple dimensions for a query, the
likelihood of a vector with a distance of MINDIST existing in the relevant DMBR
greatly decreases. When this occurs, it is more appropriate to order the access
of subtrees by the calculated probability of the subtree containing a vector whose
distance to the query vector is lessthan the current range, as shown in Equation
14. This access order is given formally as follows:

H4: Access subtrees in the descending order of the probability of containing a vector
α, where D(q, α) < r. This probability is calculated by PNNGEH

Heuristic H4 may be considered as a conservative approach to ordering while heuris-
tic H3 may be seen as an optimistic approach to ordering.

3.2 Algorithm Description

Our k-NN algorithm adopts a depth first traversal of the ND-tree and applies
the aforementioned heuristics to prune non-productive subtrees and determine the
access order of the subtrees. The description of the algorithm is given in the
following subsections.

3.2.1 k-NN Query Algorithm. Given an ND-tree with root node T , Algorithm
3.2.1 finds a set of k -nearest neighbors to query vector q that satisfies Equation 3 in
Definition 2.2.1. It invokes two functions: ChooseSubtree and RetrieveNeighbors.
The former chooses a subtree of a non-leaf node to descend, while the latter updates
a list of k-nearest neighbors using vectors in a leaf node.
In the algorithm, step 1 initializes relevant variables. Steps 2 - 15 traverse the
ND-tree. Steps 3 - 10 deal with non-leaf nodes by either invoking ChooseSubtree
to decide a descending path or backtracking to the ancestors when no more subtree
to explore. Steps 11 - 14 deal with leaf nodes by invoking RetrieveNeighbors to
update the list of current k-nearest neighbors. Step 16 returns the result. Note
that ChooseSubtree not only returns a chosen subtree but also may update Range
using heuristic H2. If no more subtree to choose, it returns NULL for NN at
step 4. Similarly, RetrieveNeighbors not only updates kNNS but also may update
Range if a closer neighbor(s) is found.

3.2.2 Function ChooseSubtree. The effective use of pruning is the most efficient
way to reduce the I/O cost for finding a set of k -nearest neighbors. To this end,
the heuristics discussed in Section 3.1 are employed in function ChooseSubtree.
In this function, steps 1 - 4 handle the case in which the non-leaf is visited for
the first time. In this case, the function applies heuristics H1 - H4 to update
Range, prune useless subtrees, and order the remaining subtrees (their root nodes)

16 · Dashiell Kolbe et al.

Algorithm 3.2.1 k-NNQuery
Input: (1) query vector q; (2) the desired number k of nearest neighbors;
(3) an ND-tree with root node T for a given database.
Output: a set kNNS of k-nearest neighbors to query vector q.

1: let kNNS = ∅, N = T , Range =∞, Parent = NULL
2: while N 6= NULL do
3: if N is a non-leaf node then
4: [NN , Range] = ChooseSubtree(N, q, k,Range)
5: if NN 6= NULL then
6: Parent = N
7: N = NN
8: else
9: N = Parent

10: end if
11: else
12: [kNNS, Range] = RetrieveNeighbors(N, q, k,Range, kNNS)
13: N = Parent
14: end if
15: end while
16: return kNNS

Function 3.2.2 ChooseSubtree(N, q, k,Range)
1: if list L for not yet visited subtrees of N not exist then
2: use heuristic H2 to update Range
3: use heuristic H1 to prune subtrees of N
4: use heuristic H3 or H4 based upon user criteria to sort the remaining subtrees

not pruned by H1 and create a list L to hold them
5: else
6: use heuristic H1 to prune subtrees from list L
7: end if
8: if L 6= ∅ then
9: remove the 1st subtree NN from L

10: return [NN , Range]
11: else
12: return [NULL, Range]
13: end if

in a list.2 The list, L, is maintained in memory for each node N until the search
is terminated. Step 6 applies heuristic H1 and current Range to prune useless
subtrees for a non-leaf node that was visited before. Steps 8 - 12 return a chosen
subtree (if any) and the updated Range.

3.2.3 Function RetreiveNeighbors. The main task of RetrieveNeighbor is to
examine the vectors in a given leaf node and update the current k-nearest neighbors

2The use of H3 or H4 is set at the integrators discretion, based upon their knowledge of the data
set. Our criteria for selection is discussed in Section 4.4.

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 17

and Range.

Function 3.2.3 RetrieveNeighbors(N, q, k,Range, kNNS)
1: for each vector v in N do
2: if DGEH(q, v) < Range then
3: kNNS = kNNS ∪ {v}
4: if |kNNS| > k then
5: remove vector v′ from kNNS such that v′ has the largest DGEH(q, v′) in

kNNS
6: Range = DGEH(q, v′′) such that v′′ has the largest DGEH(q, v′′) in kNNS
7: end if
8: end if
9: end for

10: return [kNNS, Range]

A vector is collected in kNNS only if its distance to the query vector is smaller than
current Range (steps 2 - 3). A vector has to be removed from kNNS if it has more
than k neighbors after a new one is added (steps 4 - 7). The vector to be removed
has the largest distance to the query vector. If there is a tie, a random furthest
vector is chosen.

3.3 Performance Model

To analyze the performance of our k -NN search algorithm, presented in Section 3.2,
we conducted both empirical and theoretical studies. The results of our empirical
studies are presented in Section 4. In this section, we present a theoretical model
for estimating the performance of our search algorithm. For our presentation, we
assume that our algorithm employs both heuristics H1 and H2. We also assume
an optimistic ND-tree structure, where a subtree’s associated DMBR is reasonably
representative of the vectors within the subtree; that is ∀a,i∈{1,2,...,d} : fl(a)R,i ∼

1
|Si| . With this assumption, our search algorithm employs H3 as its search ordering
heuristic.3

Because of the unique properties of an NDDS, there is no defined center for the
data space. This may also be interpreted as any point may be considered to be at
the center. Thus, we can define a bounding hyper-sphere around any point within
the data space and determine the likely number of objects contained within.

Definition 3.3.1. The area within a distance z from point p in a d-dimensional
NDDS with alphabet set A for each dimension is the total number of possible
unique points contained within the hyper sphere of radius z centered at point p.
This value is formally calculated as the summation of the number of points existing
in spherical layers as follows:

3The assumption of a reasonably optimistic tree structure covers the majority of ND-Tree’s gen-
erated in our empirical studies. Non optimistic tree structures, where H4 would provide a more
beneficial ordering method, are considered empirically in Section 4.4.

18 · Dashiell Kolbe et al.

Area(z) =
z∑
i=0

(
d

i

)
(|A| − 1)i. (17)

Note that Area(z) is independent of point p under the uniform distribution as-
sumption. Equation 17 may be used to calculate the total area of the data space
by setting z = d. However, this value may be calculated directly as follows:

Area(d) = |A|d. (18)

The probability of an object existing within a distance of z from any point p is
the quotient of Equations 17 and 18, as follows:

Pexists(z) =
Area(z)
Area(d)

. (19)

Definition 3.3.2. The number of likely points contained within a distance z from
any point p is the product of the number of points within the data set N and the
probability of a point existing within a distance of z from p. This is shown formally
as follows:

L(z) = Pexists(z) ∗N. (20)

The lower/optimal search bound for our performance model is determined as
a reasonable distance to assure a specific number of objects. It is reasonable to
assume that a minimum distance that needs to be searched is one that is likely to
yield at least k neighbors. Thus a lower bound dl = z, is found by solving Equation
20 such that L(dl) ≥ k and L(dl − 1) < k. The lower bound for performance I/O
may then be estimated as the number of pages that are touched by a range query of
radius dl. The range query performance is derived similarly to the model provided
by Qian et el, [Qian et al. 2006a].

IOr = 1 +
H−1∑
i=0

(ni ∗ Pi,z). (21)

Where ni represents the estimated number of nodes within the ND-tree at a height
of i, Pi,z represents the probability a node at height i will be accessed in the ND-tree
with a search range of z, H denotes the height of the index tree.

However, because a k -NN query generally begins with a search range equal to the
theoretical upper search bound, an adjustment must be made to account for the
I/O incurred while searching with a non-optimal search range. We have estimated
this value as the number of nodes within each level of the ND-tree raised to a power
inversely proportional to their height:

Adj =
H−1∑
i=1

n
(1

H−1)
i−1 . (22)

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 19

Adding this adjustment to the range query performance model yields the following:

IONN = 1 + (n0 ∗ P0,z) +
H−1∑
i=1

[
(ni ∗ Pi,z) + n

(1
H−1)
i−1

]
. (23)

The performance of our search algorithm can be estimated by using Equation 23
setting z to dl.

4. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our GEH distance and the efficiency of our k-NN
searching algorithm, we conducted extensive experiments. The experimental results
are presented in this section. Our k-NN searching algorithm was implemented on
an ND-Tree in the C++ programming language. For comparison purposes, we also
implemented the algorithm on an M-Tree in the C++ programming language for
one set of experiments. All experiments were ran on a PC under OS Windows
XP. The I/O block size was set at 4K bytes for both trees. Both synthetic and
genomic data sets were used in our experiments. The synthetic data sets consist
of uniformly distributed 10-dimensional vectors with values in each dimension of a
vector drawn from an alphabet of size 6; other special case synthetic data sets are
listed in the following sub sections. The genomic data sets were created from the
Ecoli DNA data (with alphabet: {a, g, t, c}) extracted from the GenBank. Each
experimental data reported here is the average over 100 random queries.

4.1 Effectiveness of GEH Distance

The first set of experiments was conducted to show the effectiveness of the GEH
distance over the Hamming distance, by comparing their values of ∆k as defined
in Proposition 2.2.4 in Section 2.2.

Figure 3 gives the relationship between ∆k and database sizes for both the GEH
and Hamming distances, when k=1, 5 and 10. The figure shows a significant
decrease in the values of ∆k using the GEH distance over those using the Hamming
distance. This significant improvement in performance for the GEH distance is
observed for all the database sizes and k values considered. Figure 3 shows that
when the GEH distance is used, ∆k values are very close to 1, indicating a promising
behavior close to that in CDSs.

4.2 Efficiency of k-NN Algorithm on Uniform Data

One set of experiments was conducted to examine the effects of heuristics H1 -
H3, presented in Section 3.1, on the performance of our k -NN searching algorithm
presented in Section 3.2 on uniform data. We considered the following three versions
of our pruning strategies in the experiments.

Version V 1: only heuristic H1 is used.
Version V 2: heuristics H1 and H2 are used.
Version V 3: three heuristics H1, H2, and H3 are used.
Figure 4 shows that V 2 provides a little improvement in the number of disk

accesses over V 1. However, V 2 does make good performance improvements over
V 1 for some of the queries. Thus, we have included H2 in version V 3. As seen
from the figure, V 3 provides the best performance improvement among the three

20 · Dashiell Kolbe et al.

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

4 8 12 16 20

Number of Vectors in Database x 10^5

N
u
m
b
e
r
o
f
S
o
lu
ti
o
n
 S
e
ts

Hamm(k=1)

Hamm(k=5)

Hamm(k=10)

GEH(k=1)

GEH(k=5)

GEH(k=10)

Fig. 3. Comparison of ∆k values for the GEH and Hamming distances (ND-Tree)

200

220

240

260

280

300

320

340

4 8 12 16 20

Number of Vectors in Database x 10^5

D
is
k
 A
c
c
e
s
s
e
s

V1

V2

V3

Fig. 4. Effects of heuristics in the k-NN algorithm with k = 10 (ND-Tree)

versions for all database sizes tested. Hence V 3 is adopted in our k-NN searching
algorithm and used in all the remaining experiments, except where noted.

Another set of experiments was conducted to compare the disk I/O performance
of our index-based k -NN searching algorithm, implemented on both an ND-Tree

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 21

and an M-Tree, with that of the linear scan for databases of various sizes. Figure
5 shows the performance comparison for the three methods on synthetic data sets.
From the figure, we can see a significant reduction in the number of disk accesses
for our k -NN searching algorithm over the linear scan for both tree implementa-
tions. Additionally, the results for our ND-Tree implementation agree with the re-
lationship between performance and intrinsic dimensionality [Chávez et al. 2001],
whereby as the number of points in the dataset grows larger, the performance im-
provement gets larger as well. This is due to the likely increase in variance of
distances between points in the dataset.4 Figure 5 also shows that, for all database
sizes tested, our algorithm, implemented upon an ND-Tree, always used less than
25% (10% for database sizes greater than 1M vectors) of the disk accesses than the
linear scan. Our algorithm implemented upon an M-Tree always used less than 10%
of the disk accesses of a linear scan. Further, we note that although our M-Tree
implementation shows strong performance for smaller database sizes, our ND-Tree
implementation performs less disk accesses as the number of vectors in the database
increases; 800K for k = 1, 1.6M for k = 5, and 2.0M for k = 10.

Figure 6 shows the performance comparison for the two methods on genomic
data sets. Since a genome sequence is typically divided into intervals of length
(i.e., the number of dimensions) 11 or 15, both scenarios are included in the figure
(for k=10). This figure demonstrates that the performance behavior of our k-NN
searching algorithm on real-world genomic data sets is comparable with that we
observed for the synthetic data sets.

To observe the performance improvement of our k -NN searching algorithm over
various dimensions, we ran random k-NN queries (with k = 10) on two series of
genomic data sets: one contains 250K vectors for each set and the other contains 1
million vectors for each set. As seen from Figure 7, the performance gain of our al-
gorithm over the linear scan is quite significant for lower dimensions. However, the
amount of this improvement decreases with an increasing number of dimensions.
This phenomenon of deteriorating performance with an increasing number of dimen-
sions is also true in continuous data spaces due to the well-known dimensionality
curse problem. Additionally, we have observed the performance improvement of
our k-NN searching algorithm over various alphabet sizes. We performed random
k-NN queries (with k = 10 and d = 10) on databases of 2M vectors. Figure 8
shows that the affects of increasing alphabet size are similar to those seen when
increasing the dimensionality.

Further, we have compared the disk I/O performance of the k-NN searching
algorithm using the GEH distance with that for the k-NN searching algorithm
using the Hamming distance. Figure 9 shows the percentage I/Os for the GEH
distance versus the Hamming distance for various database sizes and k values.
From the figure, we can see that the number of disk accesses decreases for all test
cases when the GEH distance is used as opposed to the Hamming distance. In
fact, the algorithm using the GEH distance needs only 50% ∼ 70% of I/Os that the
algorithm using the Hamming distance needs for all test cases. We feel this is due

4As the variance in distances between points in the dataset increases, the pruning power of H1

is likely to increase due to the growing percentage of datapoints whose distance from the query
point falls outside the current search radius.

22 · Dashiell Kolbe et al.

0.0%

4.0%

8.0%

12.0%

16.0%

20.0%

4 8 12 16 20

Number of Vectors in Database x 10^5

P
e
rc
e
n
ta
g
e
 o
f
D
is
k
 A
c
c
e
s
s
e
s

ND-Tree (k=1)
ND-Tree (k=5)
ND-Tree (k=10)
M-Tree (k=1)
M-Tree (k=5)
M-Tree (k=10)

Fig. 5. Performance of the k -NN algorithm vs. the linear scan on synthetic data sets with various

sizes

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

2.5 5 7.5 10 12.5 15 17.5 20

Database Size x 10^5

P
e
rc
e
n
ta
g
e
 o
f
D
is
k
 A
c
c
e
s
s
e
s 15 Dimensions

11 Dimensions

Fig. 6. Performance of the k -NN algorithm vs. the linear scan on genomic data sets with various
sizes for k=10 (ND-Tree)

to an increase in the pruning power of heuristic H1 for the GEH distance. These
results indicate that the use of the GEH distance will cost less in disk accesses while

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 23

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of Dimensions

P
e
rc
e
n
ta
g
e
 o
f
D
is
k
 A
c
c
e
s
s
e
s

250K Vectors

1.0M Vectors

Fig. 7. Performance of the k -NN algorithm vs. the linear scan on genomic data sets with various

dimensions for k=10 (ND-Tree)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

4 6 8 10 12

Alphabet Size

P
e
rc
e
n
ta
g
e
 o
f
D
is
k
 A
c
c
e
s
s
e
s
s k=1

k=5

k=10

Fig. 8. Performance of the k -NN algorithm vs. the linear scan on synthetic data sets with various

dimensions for k=10 and d = 10 (ND-Tree)

providing a far more deterministic result than that using the Hamming distance for
a k -NN query.

24 · Dashiell Kolbe et al.

50.0%

54.0%

58.0%

62.0%

66.0%

70.0%

4 8 12 16 20

Number of Vectors in Database x 10^5

P
e
rc
e
n
ta
g
e
 G
E
H
 v
s
.
H
a
m
m
in
g
 I
/O
s

k = 1

k = 5

k = 10

Fig. 9. Performance comparison for the GEH and Hamming distances (ND-Tree)

4.3 Efficiency of k-NN Algorithm on Skewed Data

Experiments also were conducted to examine the I/O performance of our algorithm
upon data sets of varying levels of skewness as compared to that of a linear scan.
We applied our algorithm, with heuristic version V3 from Section 4.2, to ND-trees
constructed from data sets with zipf distributions of 0.0, 0.5, 1.0, and 1.5.

Figure 10 shows significant reduction in the number of disk accesses for our k -
NN searching algorithm over the linear scan for all database sizes tested. Similar
to the performance gains for uniform data (see section 4.2), our k -NN searching
algorithm provides an increased reduction of disk accesses as the database size in-
creases. Figure 10 also shows that our k -NN searching algorithm provides increased
performance gains as the level of skewness increases (i.e. the zipf distribution level
increases). These results indicate that our searching heuristics (see Section 3.1)
are able to identify and prune more useless search paths as the data becomes more
skewed.

4.4 Efficiency of k-NN Algorithm on Non-Homogeneous Data

Experiments were conducted to show the effectiveness of our heuristic using the
probability equations presented in Section 2.4. We compared the I/O performance
between the k -NN algorithm using our probability-based subtree ordering heuris-
tic H4 against the k -NN algorithm using our traditional MINDIST subtree or-
dering heuristic H3. We observed that, although the two heuristics often yield a
comparable performance, there are cases in which our probability-based heuristic
significantly outperformed the MINDIST one. These cases can occur when the dis-
tribution of the dataset shifts over time. For instance, dimensions that are highly
relevant to the partitioning of records into subtrees early in the construction of

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 25

0.0%

4.0%

8.0%

12.0%

16.0%

20.0%

4 8 12 16 20

Number of Vectors in Database x 10^5

IO
 v
s
.
L
in
e
a
r
S
c
a
n

z0.0

z0.5

z1.0

z1.5

Fig. 10. Performance of the k -NN algorithm vs. the linear scan on synthetic data sets with various

sizes and zipf distributions

an ND-tree, may no longer be relevant at later stages of the construction. These
dimensions may become misleading when searching for the records inserted into
the tree during these later stages. Figures 11, 12, and 13 show our results when
searching for 1, 5, and 10 neighbors respectively. Each search was performed on an
ND-tree containing 5M vectors using each of the following heuristic combinations:

Version S1: heuristics H1, H2, and H3 are used;
Version S2: heuristics H1, H2, and H4 are used.

The ND-trees constructed from these data sets are known to contain misleading
DMBRs in regards to what vectors are present in the relevant subtrees. For our
selection of heuristic H4, we compared the values of 1

|Si| and f1(a)R,i for each node
one level below the root node and labeled a misleading dimension as one in which
there was a discrepancy greater than 3 : 1 between the two values compared. The
number of misleading dimensions indicates the known number of dimensions in each
of the DMBRs one level below the root node that meet this criteria; that is, for a
particular dimension i, 1

|Si| > 3 ∗ fl(a)R,i.
The results in Figure 11 show that the use of heuristic version S2 provides benefits

for most cases tested when searching for only a single neighbor. The cases where
the number of misleading dimensions was either very large or very small still show
better I/O performance when using heuristic version S1. The results in Figure 12
show that the reduction of I/O when heuristic version S2 is used is much larger
for all cases tested when searching for five neighbors rather than a single neighbor.
The results in Figure 13 show that the reduction of I/O continues to grow when
searching for ten neighbors when using heuristic version S2. These results show that
in general, as the number of neighbors being searched for increases, the performance

26 · Dashiell Kolbe et al.

0

300

600

900

1200

2 4 6 8 10
Number of Misleading Dimensions

N
u
m
b
e
r
o
f
I/
O
s

S1

S2

Fig. 11. Performance of the k -NN algorithm on data sets with various misleading dimensions

(k = 1)

0

400

800

1200

1600

2000

2 4 6 8 10
Number of Misleading Dimensions

N
u
m
b
e
r
o
f
I/
O
s

S1

S2

Fig. 12. Performance of the k -NN algorithm on data sets with various misleading dimensions

(k = 5)

benefits when using heuristic version S2 increase as well.

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 27

0

1200

2400

3600

4800

2 4 6 8 10
Number of Misleading Dimensions

N
u
m
b
e
r
o
f
I/
O
s

S1
S2

Fig. 13. Performance of the k -NN algorithm on data sets with various misleading dimensions

(k = 10)

4.5 Verification of Performance Model

Our theoretical performance estimation model was also verified against our uniform
synthetic experimental data. We conducted experiments using 10 dimensional data
with an alphabet size of 6. The minimum leaf node utilization of our ND-tree was
set at 0.4 and the minimum non-leaf node utilization was set at 0.3. We compared
our theoretical values to the observed ND-tree performances for databases varying
in size from 400K vectors to 2.0M vectors in 400K increments. We also varied the
value of k to observe its effects upon the results.

Figures 14 through 16 show the estimated number of I/Os predicted by our
performance model, with the actual I/O. The results indicate that our model is
quite accurate, estimating the performance within 2% of the actual performance for
most test cases. The greatest disparity between estimated and actual performance
values occurs in the test cases with small datasets, particularly when searching
for only a single neighbor. However, as the size of the dataset increases or as the
number of neighbors searched for increases, the performance estimation becomes
increasingly accurate.

The above results show that, for both synthetic and genomic uniform data, our k -
NN searching algorithm based on the GEH distance far outperforms the linear scan.
Additionally, our algorithm outperforms the linear scan for synthetic skewed data.
Only when the dimensionality of the underlying NDDS begins to grow excessively,
does the benefits of our algorithm start to become less significant. This is a result
of the well-known dimensionality curse problem. Further, our performance model
provides an accurate estimation of the number of I/Os incurred while performing
a k -NN search.

28 · Dashiell Kolbe et al.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

4 8 12 16 20

Number of Vectors in Database x 10^5

P
e
rc
e
n
ta
g
e
 o
f
D
is
k
 A
c
c
e
s
s
e
s

Estimated

Actual

Fig. 14. Estimated and Actual performance of the k -NN algorithm vs. the linear scan on synthetic

data sets with various sizes (k = 1)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

4 8 12 16 20

Number of Vectors in Database x 10^5

P
e
rc
e
n
ta
g
e
 o
f
D
is
k
 A
c
c
e
s
s
e
s

Estimated

Actual

Fig. 15. Estimated and Actual performance of the k -NN algorithm vs. the linear scan on synthetic
data sets with various sizes (k = 5)

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 29

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

4 8 12 16 20

Number of Vectors in Database x 10^5

P
e
rc
e
n
ta
g
e
 o
f
D
is
k
 A
c
c
e
s
s
e
s

Estimated

Actual

Fig. 16. Estimated and Actual performance of the k -NN algorithm vs. the linear scan on synthetic

data sets with various sizes (k = 10)

5. CONCLUSIONS

We observe that the issue of k-NN searching in NDDSs is not a simple extension of
its counterpart in CDSs and is still an open issue. A major problem with a k-NN
search in NDDSs using the conventional Hamming distance is the non-determinism
of its solution. That is, there usually is a large number of candidate solutions
available. This is mainly caused by the coarse granularity of measurement offered
by the Hamming distance. To tackle this problem, we introduce a new extended
Hamming distance, i.e., the GEH distance. This new distance takes the semantics
of matching scenarios into account, resulting in an enhanced granularity for its
measurement. Further, it is proven that the GEH distance possesses the triangular
property and therefore may be used in index based pruning heuristics.

To support efficient k-NN searches in NDDSs, we propose a searching algorithm
utilizing the ND-tree [Qian et al. 2003; Qian et al. 2006a]. Based on the charac-
teristics of NDDSs, three effective searching heuristics are incorporated into the
algorithm. A fourth heuristic is provided that implements a new strategy for prob-
ability based search ordering in conservative search scenarios. Further, we provide
a performance model to predict the number of I/Os incurred during a k-NN search,
using our algorithm, that is based upon the number of neighbors desired and the
dimensionality and alphabet size of the data set.

Our extensive experiments demonstrate that our GEH distance measure provides
an effective semantic discriminating power among the vectors to mitigate the non-
determinism for k-NN searches in NDDSs. Experiments also show that the k-
NN searching algorithm is efficient in finding k-NNs in NDDSs, compared to the
linear scan method. An implementation of our algorithm, utilizing an M-Tree,

30 · Dashiell Kolbe et al.

also performed well compared to the linear scan method, but was outperformed by
our ND-Tree implementation as the database size grew larger. The algorithm is
scalable with respect to the database size and also performs well over non-uniform
data distributions. However, when the number of dimensions is high, our algorithm
seems to suffer the same dimensionality curse problem as the similar techniques in
continuous data spaces.

Our future work involves further performance enhancements for k -NN searches
in NDDSs. This includes investigating other useful extensions of the Hamming
distance, such as capturing the semantics of mismatching scenarios and apply-
ing dynamic semantics to matching scenarios. Additionally, we will continue to
investigate the underlying characteristics of NDDSs, such as alphabet size and di-
mensionality, that can be used in future search heuristics and explore how these
techniques may be applied to k -NN searches in hybrid data spaces, which include
both continuous and discrete dimensions.

ACKNOWLEDGMENTS

The authors of this paper wish to extend their gratitude towards Gang Qian for his
help in developing experimental programs. The preliminary work of this paper was
presented at the 23rd International Conference on Data Engineering {ICDE’07},
Istanbul, Turkey, April 15-20, 2007 [Kolbe et al. 2007].

REFERENCES

Badel, A., Mornon, J., and Hazout, S. 1992. Searching for geometric molecular shape comple-
mentarity using bidimensional surface profiles. Journal of Molecular Graphics 10, 4, 205–211.

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. 1990. The r*-tree: An efficient

and robust access method for points and rectangles. In Proceedings of the 1990 ACM SIG-
MOD International Conference on Management of Data, Atlantic City, NJ, May 23-25, 1990,

H. Garcia-Molina and H. V. Jagadish, Eds. ACM Press, Atlantic City, NJ, U.S.A, 322–331.

Berchtold, S., Keim, D. A., and Kriegel, H.-P. 1996. The X-tree: An index structure for

high-dimensional data. In Proceedings of the 22nd International Conference on Very Large
Databases, T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, Eds. Morgan

Kaufmann Publishers, San Francisco, U.S.A., 28–39.

Bookstein, A., Kulyukin, V. A., and Raita, T. 2002. Generalized hamming distance. Infor-
mation Retrieval 5, 4, 353–375.

Chávez, E., Navarro, B., Baeza-Yates, R., and Marroqúın, J. L. 2001. Searching in metric

spaces. ACM Computing Surveys 33, 3, 273–321.

Ciaccia, P., Patella, M., and Zezula, P. 1997. M-tree: An efficient access method for similarity
search in metric spaces. In VLDB ’97: Proceedings of the 23rd International Conference on

Very Large Data Bases. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 426–435.

Guttman, A. 1988. R-trees: a dynamic index structure for spatial searching. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

Hamming, R. 1950. Error-detecting and error-correcting codes. Bell System Technical Jour-
nal 29, 2, 147–160.

Henrich, A. 1998. The lsdh-tree: An access structure for feature vectors. In ICDE ’98: Proceedings

of the Fourteenth International Conference on Data Engineering. IEEE Computer Society,
Washington, DC, USA, 362–369.

Hjaltason, G. and Samet, H. 2000. Incremental similarity search in multimedia databases.

Kolahdouzan, M. and Shahabi, C. 2004. Voronoi-based k nearest neighbor search for spatial

network databases. In VLDB ’04: Proceedings of the Thirtieth international conference on
Very large data bases. VLDB Endowment, Toronto, Canada, 840–851.

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 31

Kolbe, D., Zhu, Q., and Pramanik, S. 2007. On k-nearest neighbor searching in non-ordered

discrete data spaces. In ICDE. IEEE, Istanbul, Turkey, 426–435.

Qian, G. 2004. Principles and applications for supporting similarity queries in non-ordered-discrete
and continuous data spaces. Ph.D. thesis, Michigan State University, East Lansing, Michigan,

United States.

Qian, G., Zhu, Q., Xue, Q., and Pramanik, S. 2003. The nd-tree: a dynamic indexing technique
for multidimensional non-ordered discrete data spaces. In vldb’2003: Proceedings of the 29th

international conference on Very large data bases. VLDB Endowment, Berlin, Germany, 620–

631.

Qian, G., Zhu, Q., Xue, Q., and Pramanik, S. 2006a. Dynamic indexing for multidimensional
non-ordered discrete data spaces using a data-partitioning approach. ACM Trans. Database

Syst. 31, 2, 439–484.

Qian, G., Zhu, Q., Xue, Q., and Pramanik, S. 2006b. A space-partitioning-based indexing
method for multidimensional non-ordered discrete data spaces. ACM Trans. Inf. Syst. 24, 1,

79–110.

Robinson, J. T. 1981. The k-d-b-tree: a search structure for large multidimensional dynamic

indexes. In SIGMOD ’81: Proceedings of the 1981 ACM SIGMOD international conference on
Management of data. ACM, New York, NY, USA, 10–18.

Roussopoulos, N., Kelley, S., and Vincent, F. 1995. Nearest neighbor queries. In Proceedings

of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose,
California, May 22-25, 1995, M. J. Carey and D. A. Schneider, Eds. ACM Press, San Jose,

California, U.S.A., 71–79.

Seidl, T. and Kriegel, H.-P. 1997. Efficient user-adaptable similarity search in large multimedia

databases. In VLDB ’97: Proceedings of the 23rd International Conference on Very Large Data
Bases. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 506–515.

Seidl, T. and Kriegel, H.-P. 1998. Optimal multi-step k-nearest neighbor search. SIGMOD

Rec. 27, 2, 154–165.

A. RECURSIVE GENERATION OF A SOLUTION SET

Proposition 2.2.3 states that the set of candidate kNNS s given by Definition 2.2.1
can be produced by Definition 2.2.2. This leads to the hypothesis that if a solution
set NN = {A1, A2, . . . , Ak−1} satisfies Equation 3 for k− 1 objects, then Equation
4 will select a kth neighbor Ak such that NN ∪ Ak will satisfy Equation 3 for k
objects and thus be consistent with Definition 2.2.1.

We first consider a base case where k = 1. Equation 4 yields the following
neighbor A1:

A1 ∈ {A : ∀B (D(q, A) ≤ D(q,B))} .
The solution set {A1} satisfies Equation 3 for k = 1 and thus is consistent with
Definition 2.2.1. Equation 4 may then be used again to yield neighbor Ak:

Ak ∈

A : ∀B

 D(q, A) ≤ D(q,B)∧
B /∈ {A1, A2, . . . , Ak−1}∧
A /∈ {A1, A2, . . . , Ak−1}

 for k ≥ 2 .

The above function returns the object in the dataset that has a minimum distance
from the query object out of all objects in the dataset not currently included in
the solution set. Thus the addition of a kth neighbor for k ≥ 2 will result in a
minimal distance to the query point for k objects if the set of neighbors A1 - Ak−1

has a minimal distance for k − 1 objects. Our base case shows that this is true for
1 object, thus the hypothesis is true for all values of k.

32 · Dashiell Kolbe et al.

B. DERIVATION OF THE NUMBER OF CANDIDATE SOLUTION SETS

This section provides the derivation of the number ∆k of candidate kNNS s. This
may be interpreted as the number of possible solution sets from a dataset that
satisfy Equation 3 for k objects. The value of ∆k is largely influenced by the
number of objects within a given solution set that have the same distance to the
query object as the kth neighbor. This value, represented by t, is formally defined
as follows:

D(q, Ak−t) 6= D(q, Ak−t+1) = D(q, Ak−t+2) = . . . = D(q, Ak).

Each neighbor Ak−t - Ak may be replaced by any other potential neighbor from
the dataset α, where D(q, α) = D(q, Ak), and the solution set will still satisfy
Equation 3. We denote the set of all potential neighbors as N

′
. Thus, ∆k is the

number of t-element subsets that can be composed from the set of N
′
. This can be

represented as the binomial coefficient of t and N
′

which decomposes into Equation
5:

∆k =
(
N
′

t

)
=

N
′
!

t!(N ′ − t)!
.

C. TRIANGULAR PROPERTY OF GEH

Section 2.3 proposed that the GEH distance possessed the triangular inequality
property. The proof of this proposition is divided into two steps. First, a base case
is established where the property holds. Second, the base case is evolved into the
generic case where the property still holds.

Step 1: Assume that DGEH(VA, VC) is maximum (i.e. ∀x : DGEH(VA, VC) ≥
DGEH(VA, Vx), thus every element in VA and VC must be different. From Equation
7, we have:

DGEH(VA, VC) = d.

where d is the number of dimensions of the underlying NDDS. Now assume that
Dist(VA, VB) is minimal (i.e. ∀x : DGEH(VA, VC) ≤ DGEH(VA, Vx), thus every
element in VB must equal the corresponding element in VA, i.e. VA = VB . From
Equation 7, we have:

DGEH(VA, VB) = x, where 0 ≤ x < 1.

The term x represents the summation of each of the frequency values obtained
using Equation 7 and then dividing by d. Since VA = VB and DGEH(VA, VC) = d,
we have:

DGEH(VB , VC) = d.

Since x+ d ≥ d, we have the following inequality:

Efficient k-Nearest Neighbor Searching in Non-Ordered Discrete Data Spaces · 33

DGEH(VA, BV) +DGEH(VB , VC) ≥ DGEH(VA, VC).
Step 2: The second step involves three sub-steps; one for each vector that needs
to become generic.

Step 2.1: The first step is to evolve VB into a generic vector, starting with the
initial vectors from Step 1: DGEH(VA, VB) = x where x ≤ x < 1; DGEH(VB , VC) =
d; DGEH(VA, VC) = d.

To make VB generic, we apply n changes. Each change is represented by switching
an element in VB away from its original element. After these n have been done, we
are left with the following distances:

DGEH(VA, VB) = x+ n− c1,
DGEH(VB , VC) = d− n∗1 + c2,
DGEH(VA, VC) = d,

where c1 represents the culmination of adjustment values from each of the n el-
ements switched; n∗1 represents the number of elements switched that now equal
their corresponding element in VC ; c2 represents the culmination of the adjustment
values to be added due to these newly matching elements.

Here, we know that n ≥ n∗1, x ≥ c1, and c2 ≥ 0. Using these inequalities it can
be shown that the distance measures still satisfy the triangular inequality property.

Step 2.2: The next step is to evolve VC into a generic vector, starting with the
final vectors from Step 2.1 and applying j changes to VC . This leaves us with the
following distances:

DGEH(VA, VB) = x+ n− c1,
DGEH(VB , VC) = d− n∗1 + c2 + (j∗1 − c3)− (j∗2 − c4),
DGEH(VA, VC) = d− j∗3 + c5,

where j∗1 and j∗2 represent the integer values that DGEH(VB , VC) increases and
decreases, respectively, as elements are switched; c3 and c4 represent the adjust-
ment values due to those changes; j∗3 and c5 represent the integer and adjustment
changes to DGEH(VA, VC) due to the element changes. Note that every time j∗2
is incremented there are two possibilities: either the element being switched in VC
becomes a value in VB that still matches VA, in which case j∗3 is incremented by
one and both c4 and c5 are incremented by the same amount; or it becomes a value
in VB that does not match VA, which means that n ≥ n∗1 − 1. This leaves us to
note that j∗2 +n∗1 ≤ j∗3 +n and that c4 ≥ c5. Finally, with j∗1 ≥ c3, it can be shown
that these distance measures still satisfy the triangular inequality property.

Step 2.3: The final step is to evolve VA into a generic vector. This is actually a
trivial step, because VA was only defined in relation to the original vectors VC and
VB , and because VC and VB can be transformed into any general vectors from their
starting points, we can start VA as any vector we wish. Thus VA is a generic vector
and the triangular inequality property holds true for any three vectors VA, VB , and
VC .

