
Energy-Efficient Storage in Virtual Machine Environments

Lei Ye, Gen Lu, Sushanth Kumar,
Chris Gniady, John H. Hartman

Department of Computer Science, University of Arizona
{leiy, genlu, sushanth, gniady, jhh}@cs.arizona.edu

Abstract
Current trends in increasing storage capacity and virtualization of
resources combined with the need for energy efficiency put a chal-
lenging task in front of system designers. Previous studies have
suggested many approaches to reduce hard disk energy dissipation
in native OS environments; however, those mechanisms do not per-
form well in virtual machine environments because a virtual ma-
chine (VM) and the virtual machine monitor (VMM) that runs it
have different semantic contexts. This paper explores the disk I/O
activities between VMM and VMs using trace driven simulation to
understand the I/O behavior of the VM system. Subsequently, this
paper proposes three mechanisms to address the isolation between
VMM and VMs, and increase the burstiness of hard disk accesses
to increase energy efficiency of a hard disk. Compared to standard
shutdown mechanisms, with eight VMs the proposed mechanisms
reduce disk spin-ups, increase the disk sleep time, and reduce en-
ergy consumption by 14.8% with only 0.5% increase in execution
time. We implemented the proposed mechanisms in Xen and vali-
dated our simulation results.

Categories and Subject Descriptors D.4 [Operating Systems]:
Storage Management, Organization and Design, Performance

General Terms Design, Experimentation, Management, Mea-
surement, Performance

Keywords Virtual Machine, Energy Management, Storage Sys-
tem

1. Introduction
The benefit of energy management has driven new ideas for design-
ing and developing energy-efficient hard disk hardware and soft-
ware. Typically, the OS is responsible for shutting down a disk
based on an anticipated long idle period. The most common ap-
proach is based on a simple timeout that shuts down the disk when
a pre-determined amount of time has passed since the last disk I/O.
However, shutting the disk down and waking it up again is expen-
sive in both time and energy, therefore it is critical to minimize
the number of spin-ups and maximize the length of the idle periods
to maximize energy savings and minimize delays. Virtual machines

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’10, March 17–19, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-910-7/10/03. . . $10.00

(VM) make the energy management process more challenging. It is
difficult to use traditional techniques to reduce energy consumption
for disks, because a VM interacts with a virtual machine monitor
(VMM) and not the hardware directly. The guest OS in the VM ac-
cesses a virtual disk provided by the VMM; the VMM is responsi-
ble for multiplexing the underlying physical disk among the virtual
disks used by the VMs. The guest OS therefore has no knowledge
of the underlying physical disk, and the VMM has no information
about the applications running on the guest OSes. There is no sin-
gle entity that has the complete information necessary to perform
efficient energy management.

This paper explores the disk I/O activities between the VMM
and the VMs, and investigates the potential opportunities for re-
ducing disk energy consumption in virtual desktops deployed on
a VMM. Virtual desktops are used for interactive applications that
often have long idle times that can be used successfully for en-
ergy management. The challenge grows with the number of VMs
that are sharing the same hardware. More VMs implies more users,
significantly reducing the number of long idle periods that can be
efficiently used for energy management. Therefore the goal of en-
ergy management under multiple VMs is to maximize the length of
idle periods by batching and shaping requests from multiple VMs
before they are sent to the actual hardware.

In this paper, we propose and evaluate mechanisms for reducing
disk energy consumption in virtual machine environments by shap-
ing disk accesses. The approach focuses on integrating the VMM
and the VMs in managing the energy of the physical disk. The
studied mechanisms have been previously implemented in stan-
dalone operating systems that control the hardware directly, but
haven’t been investigated in a VM environment. First, we investi-
gate a buffering approach that buffers write requests from multiple
VMs before scheduling them on an actual physical disk. This is
done at the VMM level with no changes to the VM. However, ex-
tended buffering may reduce the desired data reliability in case of
system failure. Subsequently, we evaluate a second approach that
maximizes the idle periods by requesting early flushes of dirty data
from the buffer cache of each individual VM. This requires small
modifications to the VM but does not reduce data reliability in case
of system failure. Finally, we develop a trace-driven simulator to
evaluate buffering, early flushes, and the interaction between them.
We also implement a prototype of the studied mechanisms in the
Xen virtual machine [1] platform to validate our simulation.

The structure of this paper is as follows. Section 2 presents the
motivation and background for research on energy efficient hard
disk accesses in virtual machine environment. Section 3 describes
the proposed methods and design. Section 4 provides the imple-
mentation details in Xen. Section 5 discusses the methodology.
Section 6 evaluates the studied mechanisms through simulation and

75

Busy I/O Idle time Spin-up Busy I/O

Last I/O New I/O

Timeout
starts

Timeout
expires

Device is off User
delayed

Figure 1. Disk states during a timeout based shutdown.

implementation. Section 7 gives related works on energy saving for
hard disks. Finally, Section 8 concludes the paper.

2. Motivation
A VM environment allows a guest operating system and its appli-
cations to share resources by multiplexing the physical resources
between VMs in a virtual machine monitor (VMM). Virtual ma-
chines offer many advantages over physical machines, including re-
duced cost-of-ownership (by reducing the number of physical ma-
chines required to run a collection of servers, for example), strict
isolation between machines so that applications running in sepa-
rate machines cannot interact with each other in unintended ways,
increased availability (by allowing virtual machines to be migrated
to handle physical machine failures), load balancing, and snapshot
functionality that allows the state of a virtual machine to revert to a
previous snapshot to “undo” administrative errors, intrusions, and
software incompatibilities [6, 17].

The guest operating system running inside a VM interacts with
virtual resources such as a network interface, a disk drive, and a
processor. The characteristics of the virtual devices can be very
generic and quite different from the underlying physical hardware.
The virtual device abstractions remove dependencies on the phys-
ical hardware, allowing VMs to be more portable and allowing re-
source sharing, VM migration, and many other features. However,
this abstraction also makes it difficult for the guest OS to manage
the physical hardware since the underlying physical device may be
shared by several virtual devices. For example, what does it mean
for a guest OS to shut down a virtual disk if it is one of many virtual
disks that share a physical disk? Furthermore, expecting the guest
OS to manage energy without knowing the exact specifications of
the physical devices may not only significantly reduce the perfor-
mance, but can also increase energy consumption and running time
as a result of poor energy management decisions.

For this work we investigated energy management strategies
that allow the VMM to make intelligent decisions on when to shut
down the physical disk. In current computer systems, hard disks
support multiple power states to reduce the energy consumption. In
the active mode, the hard disk is actively servicing I/O requests.
This is the most energy-intensive mode – a typical hard drive
consumes 10W to 12W during normal operations at full RPM [21],
which is about 20% of the total PC power consumption. In the idle
mode, the disk is not servicing requests, but the platters continue to
spin. In the sleep mode, the platters cease to spin, but the electronics
remain active and ready to respond to incoming I/O requests by
spinning up the platters and returning to active mode.

The simplest policy for determining when to shut down the disk
is based on timeouts – after each I/O request the VMM starts a
timer and the disk is shut down if the timer expires before another
I/O request is received (Figure 1). When a new I/O request arrives,
the disk returns to active mode to service the request. The VMM
bases its decision to shut down the disk only on the time since the

settimer(BUFFER_TIMEOUT, flush_buf)

flush_buf(buf):
#to deliver all writes in buffer to disk
for io in buf:

execute(io);
io_process(io):

if disk in active: #process it immediately
execute(io);
return;

If disk_io is READ:
execute(io);
flush_buf(buf);

else:
add_to_buf(io);

Figure 2. Algorithm for write buffering at the VMM level.

last I/O. This may not be indicative of the time until the next I/O
arrives, so that the VMM may shut down the disk only to have to
spin it up immediately to handle a request. This not only adds an
unnecessary delay to the next I/O, but also may increase energy
consumption. There is a break-even point on the length of sleep
interval. Energy is consumed when shutting down and spinning the
disk up again, so that if the idle period is too short it is more energy
efficient to simply leave the disk spinning than to shut it down.

To increase the length of the idle periods we introduce two
techniques for shaping disk requests: buffering and early flush.
With buffering, disk writes that occur while the disk is in sleep
mode are delayed for a finite interval before being delivered to the
disk. With early flush, pending disk writes are performed prior to
shutting the disk down. This may increase the total number of disk
I/Os (some pending writes might otherwise have been cancelled
before they occurred), but it increases the length of the idle period
and therefore the amount of energy is saved. Our results show that
both of these techniques are effective at saving energy while having
a minimal impact on system response time.

3. Design
Our proposed I/O shaping techniques focus on write requests since
they can be delayed or flushed earlier from buffers without impact-
ing the performance of the application. Subsequently, we extend
the idea of buffering and early flushes to the virtual machines.

3.1 Buffering in the VMM
The Linux kernel buffer cache stores dirty pages for up to 30
seconds before the pdflush daemon flushes them to disk. Longer
times can be set by the user to minimize the number of disk spin-
ups. However those flushes are not synchronized and can come at
random times from multiple VMs. To limit the randomness of the
write requests arriving at the physical drive, we implement another
buffering mechanism for flushes from individual VMs. The basic
algorithm is shown in Figure 2. The buffering is implemented in
the VMM and buffers the buffer flushes from the VMs only when
the disk is sleeping. The buffer is emptied when the disk becomes
active due to a read request arriving at the queue or a preset timeout
value expires.

Figure 3 shows an example of I/O requests from the VMs and
the states of the physical disk. Before time t1, the disk is in the
active or idle state continually. There are no more requests after
time t1 so when the timeout expires at time t2 the disk is shut down.

76

I/O Requests
r r w r w w w w r

Disk

Time t1 t2 t3 t4

Disk
Timeout

Buffer
Timeout

Spin-up
Delay

Figure 3. Disk behavior during sleep state with buffering at the
VMM level.

Between time t2 and t3, all incoming writes requests are buffered.
At time t3, the timeout that started at the first buffered write expires
and the buffer is processed once the disk is spun up. This example
illustrates that the writes will not be propagated to disk when the
guest OS specifies, potentially affecting the data reliability in case
of power failure. Data may be buffered in memory an additional 30
seconds after they are written by the guest OS. In addition, some of
the writes are caused by sync or fsync calls and should be written
to the disk immediately to preserve the semantics of the system
calls. Since the VMM doesn’t know what causes a write it treats
them all as standard buffer flushes from VMs and are buffered in
the VMM. This may affect the behavior of the system and therefore
this approach may not be suitable for all applications.

3.2 Early Flush
An alternative approach that does not extend the write buffering
time is to flush writes from the VMs early. Standard buffer flushes
from VMs are handled on demand and can occur at any time. A
write caused by such a buffer flush might arrive just after the disk
was shut down, triggering a disk spin-up. To reduce the chance
of this happening the VMM can force early flushes of the guest
OS buffer caches early and avoid a subsequent disk spin-up, which
in turn will prolong idle times and save energy. Figure 4 presents
the basic mechanism involved in early flushes. First, the VMM
notifies all VMs that the disk shutdown is imminent and they should
immediately flush their dirty pages. Then, all VMs with dirty data
perform buffer flushes. Finally, the VMM waits for the flushes to
complete and shuts down the disk.

Early flushes do not change system call semantics. The only dif-
ference is a trigger to the VM to trigger flushes which is a common
optimization before the disk is shut down in standalone systems.
The reliability is not affected in case of system failures while the
idle periods are extended and the disk can remain off longer. This
approach does not increase the pressure on the I/O system since it
only requests the buffer flushes from VMs when the disk has been
idle for the timeout interval. In addition, early flushes do not affect
the performance of read requests during the buffer flushes, because
read requests are always given highest priority and scheduled first,
and the buffer flushes are performed in the background. Accord-
ingly, this approach can be implemented without any adverse ef-
fects on system reliability or performance to prolong the disk idle
time.

3.3 Early Flushes with Buffering
The buffering and early flush mechanisms are two orthogonal ap-
proaches that attempt to maximize the idle time between write re-
quests. The buffering mechanism buffers writes when disk is in
sleep mode while the early flush prevents the dirty data from wak-
ing up the disk immediately after it is shut down. The early flush

Disk

VMM

VM 1 VM 2 VM 3 VM 4

dirty pages

flush
flush

notification

dirty pages dirty pages dirty pages

Figure 4. Early flush mechanisms communication between the
VMM level and individual VMs.

mechanism can delay a disk spin-up by 30 seconds since this is the
amount of time the dirty data is buffered in the cache. Buffering, on
the other hand, can extend an idle period by 30 seconds. Therefore,
even in a fairly active system the idle times for write activity can be
extended to 60 seconds when both early flushes and buffering are
combined, assuming sync or fsync calls in VMs are not present. If
sync or fsync calls are present then buffering may not be feasible
and early flushes may be less effective since the guest OS cannot
buffer writes that are forced to disk because of a sync or fsync.

4. Implementation
We implement the discussed mechanisms in Xen 3.3.1 running
Linux 2.6.18.8 as the platform. Xen is an open-source virtual ma-
chine monitor(VMM) or “hypervisor” for the x86 architecture. Xen
can support multiple virtual machines (domains) concurrently on a
single physical machine. Domain 0 (Dom0) is privileged and has
direct access to the physical devices. The guest OS in Dom0 con-
tains the device drivers for these devices. The rest of the domains
are unprivileged (DomU) and access virtual devices. The device
drivers for these virtual devices communicate with Dom0, which
maps accesses to the virtual devices into accesses to the appropri-
ate physical devices. The device drivers communicate with Dom0
using ring buffers that are shared between DomU and Dom0 [3, 20].

4.1 Buffer Implementation
In normal operation, Dom0 continually removes I/O requests from
the ring buffers and processes them. To improve disk scheduling,
Dom0 uses a queue of I/O requests to optimize scheduling of disk
I/O under heavy load. When an I/O request is received and the
queue is empty, Dom0 does not process the request immediately.
Instead, it sets a timer with a 4ms timeout. When the timer ex-
pires, it sorts the requests in the queue and begins to service them.
The idea is that postponing the first request by 4ms allows multi-
ple requests to build up in the queue, improving the effectiveness of
sorting the requests. The first request is delayed by 4ms, but this in-
creased latency is considered acceptable relative to the performance
improvements gained by sorting the requests.

This behavior is implemented using a flag to indicate whether
the queue is “plugged” or “unplugged” (which are equivalent to
“deactivated” and “activated”, respectively). If a request arrives
when the queue is empty, then the queue is “plugged” by func-
tion blk plug device() and a 4ms timer is started. Any request that
arrives before the timer expires is combined with the requests al-
ready in the queue, using one of the I/O scheduling algorithms im-

77

VM 1 VM 2 VM 3 VM 4

dirty pages

Xenstore

Request Queue

Idleness Detector
Buffer Controller

Disk

flushd

dirty pages dirty pages dirty pages

flushd flushd flushd

Figure 5. Implementation of buffering and early flushing.

plemented in Linux. The timer will eventually trigger the function
blk remove plug(), which “unplugs” the queue, initiates the pro-
cessing of requests in the sorted order, and clears the timer.

We modified the request queue to allow buffering of write re-
quests when the disk is in sleep mode. The queue operates nor-
mally when the disk is active, but when the disk is in sleep mode
the queue is “plugged”, causing write requests to be buffered. If
a write request is received while the queue is plugged a timer
is started so that write requests are not buffered indefinitely. The
queue is unplugged and the write requests are processed when the
timer expires, or a read request is received, whichever comes first.
This is accomplished through the function blk disk up() which in-
vokes blk remove plug() and causes the buffered requests to be
processed.

4.2 Shutting Down the Disk
In Linux, several utilities control the state of the disk, e.g. hdparm
and noflushd, and can be used by normal users without any mod-
ification of the system. In general, these utilities will put the disk
into a lower power mode if the idle time exceeds a specified thresh-
old. Our idleness detector is similar to those utilities but it provides
additional support for the buffering and early flush mechanisms.
The disk idleness detector monitors the incoming requests from the
block I/O layer in Dom0 when the disk is active. The detector sets
a timer after each request is processed. The disk is declared idle
if the timer expires before another request is received. The over-
head of setting a timer for each request is negligible, as once the
timer is active setting it again consists only of changing its timeout
value. The overhead of this operation is insignificant compared to
the overhead of performing a disk access. By default, the timeout
is set to 19 seconds, which is the break-even time for the disk used
in our experiments. When the timer expires, the disk is considered
idle and put into the sleep mode after notifying the DomUs that the
disk is about to be put to sleep so that they can perform early flush,
as described in the next section.

4.3 Early Flush
During normal operation the Linux OSes running in the DomUs
periodically flush their dirty blocks using the pdflush kernel thread.

VM Number Number Number of Total Idle
ID of Reads of Writes Idle Periods Time [s]
1 62951 1339 255 40071
2 1935 15692 299 41138
3 11438 18754 283 40330
4 6726 23622 252 41136
5 40164 2153 226 40719
6 7055 20159 318 40275
7 15753 3008 155 42109
8 14027 19113 264 40449

2 VMs 64886 17031 435 37470
4 VMs 83050 59407 601 31263
8 VMs 160049 103840 566 20450

Table 1. Disk I/O trace statistics for arriving at the VMM level.

Pdflush is triggered by the kernel in two ways. First, it is triggered
periodically (default 5 sec) by the kernel. Second, it is triggered
when the ratio of dirty pages in the buffer cache exceeds some
threshold (default 10%). Pdflush checks the dirty pages in the buffer
cache and flushes those dirty pages that are older than a threshold
(default 30 sec). These values are tunable in the proc file system
under /proc/sys/vm. To trigger the buffer cache flushes from VMM,
Dom0 has to notify each DomUs to invoke pdflush and flush all
dirty pages immediately. This type of inter-domain communication
in Xen can be accomplished using xenbus. Xenbus is typically
used to exchange configuration information between domains. The
configuration information is stored in a file-system-like database
called xenstore. All domains can read and write xenstore, making
it a natural place to implement the early flush mechanism.

We added a xenstore variable called flush dirty pages to let
Dom0 notify each DomU that it should flush its dirty pages, and
to notify Dom0 when the flushes are complete. We modified the
Dom0 kernel to set flush dirty pages for each DomU before putting
the disk to sleep. The kernel then waits for all the flush dirty pages
variables to be cleared before putting the disk to sleep. Each DomU
kernel monitors its flush dirty pages variable by polling xenstore
at periodical time and invokes pdflush when it is set. Once the
dirty pages have been flushed the kernel clears flush dirty pages,
notifying Dom0 that the flush is complete, and resets the pdflush
timeout.

Figure 5 presents the entire implementation. The buffer con-
troller is responsible for controlling and monitoring the request
queue using the buffer timer and the disk shutdown timer. Before
putting the disk to sleep the idleness detector will notify the VMs
via xenstore. The designed flushd daemon in each VM kernel space
flushes all dirty pages in its buffer cache through the normal I/O
path.

5. Methodology
In order to analyze and evaluate the proposed mechanisms, we col-
lected disk I/O traces on a modified Xen-enabled Linux kernel.
The measurement platform was Xen 3.3.1 and Xen Linux kernel
2.6.18.8 running on an AMD Phenom II X4 940 with 4GB RAM.
To avoid recording traces to the local disk and disturbing the I/O be-
havior of the system we recorded I/O traces on a remote machine.
Each VM is traced individually and the system records the follow-
ing information about each I/O operation: timestamp, access type,
access size, domain identifier, process identifier, process name, and
file inode. To simulate a remote desktop environment we deployed
8 VMs and installed the X window system in each VM along

78

0

100

200

300

400

500

600

700

2 4 8 16 32 64 128

VM1 VM2 VM3 VM4
VM5 VM6 VM7 VM8
2 VMs 4 VMs 8 VMs

Time [Break-Even Period]

N
um

be
r o

f I
dl

e
Pe

rio
ds

Figure 6. Distribution of Idle Periods that are presented at the
VMM level.

with several common desktop applications: firefox, evince, gedit,
gthumb, calc, xemacs, and evolution. Firefox is a web browser.
Evince is a document viewer supporting multiple document for-
mats. XEmacs and gedit are powerful general purpose text editors.
Gthumb is an image viewer and browser for the GNOME desktop.
Calc is a small GUI calculator, and Evolution provides integrated
mail, address book, and calendar functionality to users.

We selected eight users to interact with eight individual VMs
remotely via VNC connections. We traced the eight users concur-
rently for 12 hours in several separate sessions. The users per-
formed typical daily computing activities utilizing our server and
the trace statistics are listed in Table 1. The table lists the details
of the trace from each VM, such as the number of read operations,
the number of write operations, the number of idle periods greater
than the break-even time, and the total idle time greater than the
break-even time. It also presents the statistics of trace in multiple
VMs environment. The two VMs scenario contains VM1 and VM2;
the four VMs scenario contains VM1, VM2, VM3 and VM4; and
the eight VMs scenario contains all the eight VMs. As the num-
ber of VMs increases the idle periods become shorter, since each
additional VM generates disk requests. The number of idle peri-
ods initially increases with the number of VMs because longer idle
periods are split into multiple shorter idle periods, but once there
are eight VMs the number of idle periods decreases because of the
volume of disk requests.

Figure 6 shows the cumulative distribution of the number of idle
periods greater than the break-even time (BE) for each individual
domain. The x-axis indicates the length of the idle period in BE
units, and the y-axis indicates the cumulative number of idle peri-
ods. For all VMs, most of the idle periods are between 1 BE and
16 BEs. Combination of the traces will subsequently result in some
subset of the original idle periods. As the number of concurrent
VMs increases, the longer idle periods are converted into shorter
periods resulting in fewer energy saving opportunities.

We developed a trace-driven simulator to simulate multiple
VMs and generate the final I/O traffic at the VMM. We used the
simulator to compare the mechanisms and evaluate the energy ef-
ficiency of each mechanism. To obtain the encountered delays and
energy calculations from the simulator we used specifications for

State Power
Read/Write 10.6W
Seek 13.3W
Idle 10.0W
Standby 1.8W
State Transition Energy
Spin-up 148.5J
Shutdown 6.4J
State Transition Time
Spin-up 9.0 sec.
Shutdown 4.0 sec.

Table 2. Energy consumption and delay specifications for
WD2500JD.

Western Digital Drive Model WD2500JD as shown in Table 2 [7].
The disk has significant energy consumption and latency associ-
ated with the spin-up after sleep, which is common for high per-
formance desktop drives. The corresponding break-even time, is
approximately 19 seconds and we set the timeout before putting
the disk to sleep to the break-even time. The number of traces sup-
plied to the simulator can be varied and the simulator emulates the
I/O traffic generated by the specified number of domains.

6. Evaluation
In this section, we examine how the performance and energy effi-
ciency of the studied mechanisms changes when we increase the
number of virtual machines.

6.1 Reducing Spin-ups
Figure 7 presents the distributions of causes for disk spin-ups for
different mechanisms and different number of concurrent virtual
machines. Three factors can cause a disk spin-up: (1) disk read
will result in immediate disk spin-up in all mechanisms; (2) disk
write will result in disk spin-up when the VMM is not buffering
writes; (3) buffer flush will spin-up the disk when a write has been
buffered for the maximum buffering time. Therefore, we have only
two causes for disk spin-ups in the studied mechanisms. The case
of one VM is comparable to the studied mechanisms running in a
standalone operating system. In this case, the idle times are long
and the number of spin-ups is lower. The majority of the spin-
ups are due to reads since most of the writes that follow previous
I/O activity are already flushed. In this scenario, the buffer cache
flush time in the guest operating system is set to 30 seconds. Some
flushes may still occur if they are not performed before the disk is
shut down. Buffering does not offer much benefit since it can at
most prolong the pending write by additional 30 seconds and the
idle times in the case of only one VM are significantly longer. As
a result, almost all write flushes from the VM result in a buffer
flush in the VMM. Early flushes eliminate most disk spin-ups that
were generated by the pending flushes from the VM, eliminating
a significant fraction of spin-ups. The combination of the two
techniques flushes pending writes before shutting down the disk,
and delays the disk spin-up by up to 30 seconds by buffering any
writes that occur while the disk is in the sleep mode.

The I/O activity in the VMM increases as the number of VMs
increases. There are two potential outcomes: (1) the idle periods are
shorter due to interleaving of I/O from different VMs, which results
in more spin-ups; or (2) the I/O activity and idle times have some
overlap that can result in longer active times and as a result fewer
idle periods that are longer than the break-even time. It is important

79

0

100

200

300

400

500

600

S B FBF S B FBF S B FBF S B FBF

1 VM 2 VMs 4 VMs 8 VMs

Flush
Write
Read

S-Standard, B-Buffering, F-Early Flush, BF-B&F
N

um
be

r o
f S

pi
nu

ps

Figure 7. Breakdown of the disk spin-ups triggers for studied
mechanisms.

to note that results from the single VM cannot be extrapolated to
other experiments as we include more user traces that have differ-
ent behaviors. Therefore, we can only make general comparisons
between results for different number of VMs and detailed compar-
isons between the mechanisms for the given number of VMs.

When two VMs run concurrently, there is a significant increase
in spin-ups due to write activity, for the reasons noted above.
Buffering can help in reducing spin-ups and early flushes offer a
larger benefit. In this case, early flush is preferred since it reduces
the spin-ups and does not delay writes, which may impact reliabil-
ity in case of failures. The trends are similar for four VMs. In this
case, buffering reduces larger fraction of spin-ups. The reason is
that the delayed writes resulted in some aggregation of I/O activity.
There is also a small increase in number of spin-ups due to reads.
This is expected since buffering and early writes cause fewer writes
to spin-up the disk. Therefore, the side effect is a potential increase
in read latencies. However, these latencies are spread across all the
users, so when there are four VMs each user will experience on
average 1/4 of the delays. Finally, with eight VMs the number of
spin-ups decreases since increased rate of I/O requests keeps the
disk active longer resulting in fewer shutdowns.

6.2 Execution Time
Figure 8 presents the breakdown of total execution time in different
scenarios. The execution time is composed of the time the disk is
servicing I/O requests, idle time (less than break-even time) when
the disk is waiting for I/Os to arrive during timeouts, the spin-up
time required to return the disk to active mode after it has been
in sleep mode, and disk idle time that is greater than break-even
time and will result in a shutdown. The time spent servicing I/O
requests is a relatively small portion of the overall execution time
so we combined it with the disk idle time and refer the combination
as the “disk active time”. The shutdown time is part of idle time
greater than break-even time since in the majority of cases it is
hidden from the execution. In some cases, the shutdown results in
delays because the disk has to be completely shut down before it
can spin up again. Therefore, a read request that arrives during
shutdown must wait for the shutdown to complete followed by a
spin-up before it can be serviced and include these exposed delays
in the spin-up time.

0

2

4

6

8

10

12

14

S B F BF S B F BF S B F BF S B F BF

1 VM 2 VMs 4 VMs 8 VMs

Spin-up Idle > BE Active
S-Standard, B-Buffering, F-Early Flush, BF-B&F

Ex
ec

ut
io

n
Ti

m
e

(H
ou

rs
)

Figure 8. Breakdowns of execution time for studied mechanisms.

When only one VM is running, the majority of the execution
time is occupied by the long periods of idleness. There are 199
spin-ups caused by reads, each of which is delayed nine seconds
while the disk spins up. These delays increase the nominal 12 hour
execution time by 31 minutes, or less than 5%. We will consider
delay-hiding techniques in our future work with the hope of sig-
nificantly reducing or eliminating these delays. As the number of
VMs increases the total execution time decreases. This is because
the disk is in the active mode more, which reduces the number of
spin-ups. Energy savings correspondingly decrease.

Write buffering is effective at increasing long idle times as
the number of VMs increases. Write buffering can extend idle
periods by up to 30 seconds, unless a read request arrives, which
can potentially translate into longer sleep times and higher energy
savings. Early flushes show better improvement in extending the
length of idle periods by significantly reducing the number of
required spin-ups. There is a clear benefit when buffering and early
flushes are combined. With eight VMs the combined mechanism
extends the sleep time by 6.8% as compare to early flushes alone,
and by 36.3% when compare to standard shutdown mechanisms in
the VMM.

6.3 Energy Consumption
Figure 9 presents the breakdown of total energy consumption in
different scenarios. The energy consumption is composed of the
energy consumed while servicing I/Os, energy consumed in the ac-
tive mode while waiting for I/Os to arrive, the power-cycle energy
to spin down and spin up the disk, and the disk sleeping energy. The
energy consumed to perform I/Os is relatively small in the studied
applications and similarly to I/O time we include it as a part of idle-
active energy and call the combined value “disk active energy”. The
energy closely follows the execution time breakdown as shown in
Figure 8. The longer the disk sleeps, the larger the energy savings.
Furthermore, fewer disk spin-ups reduce the power-cycle energy.

Similarly to the improvements in idle time that is greater than
break-even time, the best energy efficiency is presented by a com-
bination of buffering and early flushes. With four VMs buffering
and early flushes reduce energy consumption by 18.3% as com-
pared to the standard shutdown mechanism in VMM and by 4.2%
when only early flushes are present. With eight VMs buffering and

80

0

100

200

300

400

500

S B FBF S B FBF S B FBF S B FBF

1 VM 2 VMs 4 VMs 8 VMs

Sleep
Power-Cycle
Active

En
er

gy
 C

on
su

m
pt

io
n

(K
Jo

ul
es

)
S-Standard, B-Buffering, F-Early Flush, BF-B&F

Figure 9. Breakdowns of energy consumption for studied mecha-
nisms.

early flushes reduce energy consumption by 13.3% as compared to
the standard shutdown mechanism in the VMM and by 3.1% when
only early flushes are present. While buffering offers some addi-
tional energy savings to early flushes, the additional benefit may
be offset by reduced reliability in case of crashes. Therefore, using
early flushes may be the best option that does not sacrifice reliabil-
ity and still offers high energy savings.

6.4 Energy Delay Product
Energy saving and performance are competing optimizations. Shut-
ting down the disk saves energy but at the same time it introduces
spin-up delays that increase the execution time. One way of quanti-
fying both the performance and energy impact is the energy-delay
product [10]. A lower energy-delay product indicates better combi-
nation of performance and energy optimizations. Figure 10 presents
the energy-delay product for the system configurations we studied.
The results are normalized to the standard timeout mechanism for
each configuration. Figure 8 shows a limited impact on the execu-
tion time; as a result, improvements in energy savings dominate the
energy-delay product and the trends in Figure 10 are similar to the
energy saving trends in Figure 9. The combination of buffering and
early flushes has the lowest energy-delay product. When extension
in buffering times is problematic due to impact on reliability, the
early flush mechanism is a promising alternative.

6.5 Optimizing Buffer Flush Time
The results so far use a uniform timeout period before the disk
is shut down which does not consider the source of the I/Os.
In this section we do not wait for a timeout before putting the
disk to sleep after a buffer flush; instead, the disk is put to sleep
immediately. Other spin-ups due to reads from the application
indicate application I/O activity and the disk is kept active for a
full timeout interval. This change only impacts shutdowns in those
configurations that use buffering. The early flush mechanism is not
affected since there is no additional buffering in the VMM.

Figure 11 compares the disk spin-ups for the regular timeout(T)
and immediate shutdown(I) for the buffering mechanisms. In gen-
eral, there is very little change in number of spin-ups due to reads
when the timeout period after a disk flush is eliminated. This leads
to several conclusions. First, disk flushes have low correlation to

0

0.2

0.4

0.6

0.8

1

1.2

S B F BF S B F BF S B F BF S B F BF

1 VM 2 VMs 4 VMs 8 VMs

N
or

m
al

iz
ed

 E
ne

rg
y

D
el

ay
 P

ro
du

ct

S-Standard, B-Buffering, F-Early Flush, BF-B&F

Figure 10. Normalized Energy-Delay Product for studied mecha-
nisms.

the actual disk I/O activity. Second, the users will experience sim-
ilar numbers of spin-up delays. Finally, there is an increase (max
10.4%) in the number of spin-ups due to writes when using the
buffering mechanism only. When buffering is combined with early
flushes the number of spin-ups is almost the same. Furthermore,
the additional write spin-ups will not result in any increases in ap-
plication execution time; however the additional power-cycles may
increase energy consumption.

Figure 12 compares the execution time breakdown for the regu-
lar timeout(T) and immediate shutdown(I) for the buffering mech-
anisms. As expected, the minor differences in the number of spin-
ups caused by reads in Figure 11 have limited impact on the delays
due to spin-ups, with 5.5% in case of two VMs and negligible dif-
ferences for four and eight VMs. The elimination of timeout inter-
val for shutdown after the buffer flush results in shorter active times
and longer idle times, which translates into higher energy savings.

Finally, Figure 13 shows the energy consumption breakdown for
the regular timeout(T) and immediate shutdown(I) for the buffering
mechanisms. The increase in idle time available for shutdowns re-
sults in longer sleep times and higher energy savings. However,
Figure 11 shows more disk spin-ups, mainly due to reads, that
will translate into increase in energy consumption to perform the
additional power-cycles. On average, immediate shutdown during
buffer flushes in the VMM results in a 3.3% improvement in energy
consumption for buffering only, and a 2.8% improvement for com-
bined buffering and early flushes. Therefore, if buffering is done
in the VMM, the disk should be shut down immediately follow-
ing the buffer flushes since this improves in energy savings without
significantly increasing delay.

6.6 Writes in Buffering and Early Flush
Buffering of writes in the VMM can result in additional delays
before the writes are committed to the disk. This in turn may
affect reliability of the system in case of power failures or system
crashes. The longer the write resides the buffer, the higher the
impact on reliability. Table 3 presents the average number of writes
and their delay in the buffer before the buffer flush. The average
varies between 10.6 to 15.5 seconds. The average number of writes
operations in the buffer is relatively small varying between 3.5
for one VM and 16.1 for eight VMs. With eight VMs there are

81

0

100

200

300

400

500

600

T I T I T I T I T I T I T I T I

B BF B BF B BF B BF

1 VM 2 VMs 4 VMs 8 VMs

Flush

Read

B-Buffering, BF-B&F, T-Timeout, I-Immediate

N
um

be
ro

f S
pi

nu
ps

Figure 11. Comparison of disk spin-ups under immediate shut-
down following the buffer flush.

slightly more than two pending writes per VM. Therefore, very few
writes would be affected by a crash, and the impact on reliability
is limited. In addition, Table 3 shows the number of VM that are
involved in buffer cache flushes triggered by early flushes from the
VMM, which is little more than one. This is not a surprising result
since the timeout mechanism will wait for the last VM to finish the
I/O before waiting an additional timeout period and shutting down
the disk. During that time, other VMs have finished I/O activity
earlier and flushed the buffer cache; therefore, most of the time
only the last VM that has I/O activity has to be flushed.

6.7 Implementation Measurement
In order to evaluate our implementation we replayed the traces used
in the simulations on a Xen platform with a kernel modified to
buffer writes in the VMM and to flush the guest OS buffer caches
early. A replay driver in each guest OS reads the entire trace into
the memory and replays the I/O operations at the proper times. The
entire trace is read into memory to eliminate any additional I/O
operations due to reading the trace during the replay. Due to time
constraints, we omitted buffering only implementation and only
replayed first six hours of the traces for four concurrent VMs.

Figure 14 presents the time the disk spends in three states: ac-
tive, power-cycle, and sleep. This is not the same as the applica-
tion execution time shown in Figure 8, but the actual time the disk
spends in each state. In the case of standard shutdown mechanism,
the disk spent 35% of the total disk time in the sleep state. When
early flushes are introduced into the execution the sleep time in-
creases to 45% of total disk time. Finally, when we combine early
flushes with buffering the sleep time increases to 56% of the total
disk time . The power-cycle time is significant, however this time
is not directly exposed to the applications and only a few spin-ups
result in delays as shown in Figure 8. Finally, the disk time from
Figure 14 can be directly translated to energy consumption by mul-
tiplying the time in each state by the corresponding power demand.

0

2

4

6

8

10

12

14

T I T I T I T I T I T I T I T I

B BF B BF B BF B BF

1 VM 2 VMs 4 VMs 8 VMs

Spin-up Idle > BE Active

B-Buffering, BF-B&F, T-Timeout, I-Immediate

Ex
ec

ut
io

n
Ti

m
e

(H
ou

rs
)

Figure 12. Comparison of execution time breakdown under imme-
diate shutdown following the buffer flush.

7. Related Work
Energy management for hard disks has been extensively studied
on standalone platforms. There have been considerable research
achievements in saving energy for disks within the context of oper-
ating systems and applications. Zedlewski et al. [22] model the hard
disk power consumption, and propose an approach to accurately es-
timate the energy consumed by each of several sub-components of
a disk request. They point out the analysis of the power mode tran-
sition is important. In our simulation experiment, we also consider
different power modes and mode transitions, like spin-up and spin-
down. Li et al. perform a quantitative analysis of the pros and cons
of spinning down disks, and address when the disk should be put to
sleep to minimize energy consumption [12]. They find the optimal
spin-down delay time is 2 seconds. This result is very similar to our
experiment on Section 6.5, in which immediate shutting down im-
proves energy saving. Chung et al. [4] propose adaptive approach
based on sliding windows and two-dimensional linear interpolation
to address the problem of power managing a single disk.

Zhu et al. propose many power-aware storage cache manage-
ment policies which can significantly reduce disk energy consump-
tion [23]. Their approach focuses on cache layer, and studies of-
fline power-aware greedy (OPG) algorithm, PA-LRU, and differ-
ent cache write policies on disk energy consumption. Our proposed
mechanisms also improve energy dissipation of disk accesses by
controlling buffer cache flush. Early flush is useful to save disk en-
ergy in that it signals each VM to trigger buffer cache flush before
shutting down disk. Buffering saves disk energy by holding flushed
dirty pages for a preset timeout. The idea of buffering writes and
performing periodic updates has already been studied [2, 14] and
this approach has been implemented in many operating systems.
The operating system could defer writing dirty pages to disk within
the predefined time period and put disk into low power mode, thus
reducing disk traffic and overhead and reducing disk energy con-
sumption.

In addition, the timeout mechanism has gained wide popularity
due to its simplicity. After the last request, a timer is started and the

82

0

100

200

300

400

T I T I T I T I T I T I T I T I

B BF B BF B BF B BF

1 VM 2 VMs 4 VMs 8 VMs

Sleep

Power-Cycle

Active

En
er

gy
 C

on
su

m
pt

io
n

(K
Jo

ul
es

)
B-Buffering, BF-B&F, T-Timeout, I-Immediate

Figure 13. Comparison of energy consumption breakdown under
immediate shutdown following the buffer flush.

hard disk is shut down once the timer expires unless additional disk
activity occurs during the timeout period. Once the new request
arrives, the disk platters have to be accelerated before the request
is served. Douglis et al. [8] describe a method for varying the
spin-down threshold dynamically by adapting to the user’s access
patterns, which results in up to a 50% reduction in disk spin-ups.
Golding et al. [9] show that there are many opportunities to power
down the disk during idle periods. They construct several idle-time
detection algorithms, which can be used to decrease disk energy
consumption. They point out that power consumption will decrease
if the savings from the powered-down mode outweigh the power
cost of spinning it up again. Similarly, we use the break-even time
as the uniform timeout period to determine whether or not to shut
down the disk in our experiment. The break-even time decreases
unnecessary power transitions and ensures that spinning the disk
down will benefit energy saving.

Additional characteristics about application execution can lead
to more aggressive dynamic predictors, which shut down the hard
disks much earlier than the timeout mechanisms. Dynamic predic-
tors observe recent history of application behavior and use that in-
formation to predict the length of the idle period and shut down
the disk accordingly [5, 11, 18]. Papathanasiou et al. describe an
automatic system that monitors the past application behavior in or-
der to generate appropriate prefetching hints, and a general sys-
tem of kernel enhancements that coordinate I/O activity across all
running applications. They report that this method could save disk
energy about 60-80% [16]. A detailed study and evaluation of pre-
dictors is presented by Lu et al. [13] who come to the following
conclusions: (1) Timeout predictors offer good accuracy, but wait-
ing for the timeout to expire consumes energy; (2) Dynamic predic-
tors shut down the device immediately, but until recently, they have
had much lower accuracies than the simple timeout prediction; (3)
Stochastic methods usually require off-line preprocessing, which
are more difficult to implement, and may run into problems when
the workload changes.

Recent research on energy management for hard disks has fo-
cused on the virtualized computing platforms. Stoess et al. [19] de-
signed a hierarchical framework to partition energy and account

Average Average Average
VMs Policy Time of Number of Number of

Writes in Writes in VMs in
Buffering Buffering Early Flush

1 B 14.5s 3.5 0.0
F 0.0s 0.0 1.0
BF 10.6s 1.9 1.0

2 B 13.8s 8.3 0.0
F 0.0s 0.0 1.1
BF 14.0s 9.2 1.0

4 B 13.8s 11.3 0.0
F 0.0s 0.0 1.2
BF 15.5s 9.8 1.2

8 B 13.9s 14.1 0.0
F 0.0s 0.0 1.4
BF 13.2s 16.1 1.5

Table 3. Detailed statistics for buffering and early flush mecha-
nisms.

energy-aware resources. Their disk energy model distinguishes two
different power states, namely active and idle, and their prototype is
capable of enforcing power limits for guest OSes. Nathuji et al. im-
plement VirtualPower Management for Xen hypervisor to support
online power management, which provides up to 34% improve-
ments in power consumption [15]. Compared with their works, our
proposed mechanisms explore the existing buffer flush approaches
to reduce the energy consumption for hard disks in virtual machine
environments.

8. Conclusions
Energy management in virtualized computing environment re-
quires the cooperation between VMM and VMs. VMs reflect the
usage information of virtual devices and VMM keeps a global view
to control the physical hardware. In this paper, we have presented
an energy-efficient design for accessing a hard disk in multi-VMs
environment. The energy-efficient storage maximizes the length
of disk idle periods through batching and shaping requests from
multiple VMs, effectively reducing energy consumption.

We have explored techniques for reducing the energy dissipa-
tion of a hard disk and proposed three mechanisms to increase the
burstiness of hard disk accesses which increases the length of disk
idle periods and therefore decreases the energy consumption. These
mechanisms include: (1) a buffering mechanism in the VMM that
buffers writes from the VMs to improve scheduling and enhance
burstiness; (2) an early flush mechanism that flushes the dirty pages
from the guest OS buffer caches prior to putting the disk to sleep;
and (3) a combined buffering and early flush mechanism that max-
imizes burstiness and increases the length of idle times.

Our evaluation of these mechanisms, using desktop interactive
applications, showed significant improvements in the energy effi-
ciency. These gains come from prolonging the disk sleeping time,
which can be translated into less energy consumption. We also
showed that these mechanisms can perform very well with the in-
creasing number of VMs. By using our developed trace-driven sim-
ulator, different mechanisms under different configurations have
been compared. With eight VMs, the combined buffering and early
flushes mechanism, based on uniform timeout shutdown, improves
energy savings by 13.3% compared with standard disk shutdown
techniques. With further optimization provided by immediate shut-
down, the combined mechanism improves energy savings by 14.8%

83

0%

20%

40%

60%

80%

100%

S F BF

Sleep Power-Cycle Active

S-Standard, F-Early Flush, BF-B&F
D

isk
 T

im
e

Figure 14. Disk time distribution measurements in the implemen-
tation.

and reduces the number of spin-ups by 19.7% as compared to stan-
dard disk shutdown techniques in case of eight VMs. The prototype
implementation on Xen shows the effectiveness of our proposed
mechanisms.

Future research will consider the use of sophisticated prediction
techniques to improve the accuracy and timeliness of shutdown
prediction in virtual machine environments. Our research will also
focus on multiple disks used by multiple virtual machines at the
same time. The different energy saving policies and algorithms
would be studied and implemented. We also plan to research energy
saving for hard disks in IO-intensive scenarios, such as database
systems running in VMs, and SANs shared by VMs.

Acknowledgments
We would like to thank the anonymous reviewers for their insight-
ful comments, which help us to improve the final version of this
paper. This research was funded by the National Science Founda-
tion under Grant No. 0834179.

References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtualiza-
tion. In SOSP ’03: Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, pages 164–177, New York, NY, USA,
2003. ACM.

[2] S. D. Carson and S. Setia. Analysis of the periodic update write policy
for disk cache. IEEE Transactions on Software Engineering, 18(1):44–
54, 1992.

[3] D. Chisnall. The Definitive Guide to the Xen Hypervisor (Prentice
Hall Open Source Software Development Series). Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2007.

[4] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G. De Micheli.
Dynamic power management for nonstationary service requests. IEEE
Transactions on Compututing, 51(11):1345–1361, 2002.

[5] E.-Y. Chung, L. Benini, and G. De Micheli. Dynamic power man-
agement using adaptive learning tree. In ICCAD ’99: Proceedings
of the 1999 IEEE/ACM International Conference on Computer-Aided
Design, pages 274–279, Piscataway, NJ, USA, 1999. IEEE Press.

[6] I. D. Craig. Virtual Machines. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[7] I. Crk and C. Gniady. Network-aware program-counter-based disk
energy management. In Software Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing, SCI 209,
pages 1860–949X. Springer Berlin, 2009.

[8] F. Douglis, P. Krishnan, and B. N. Bershad. Adaptive disk spin-down
policies for mobile computers. In MLICS ’95: Proceedings of the 2nd
Symposium on Mobile and Location-Independent Computing, pages
121–137, Berkeley, CA, USA, 1995. USENIX Association.

[9] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes. Idleness is
not sloth. In UWTC’ 95: Proceedings of the USENIX Winter Technical
Conference, pages 201–212, 1995.

[10] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose
microprocessors. IEEE Journal of Solid-State Circuits, 31(9):1277–
1284, 1996.

[11] C.-H. Hwang and A. C.-H. Wu. A predictive system shutdown method
for energy saving of event-driven computation. ACM Transactions on
Design Automation of Electronic Systems, 5(2):226–241, 2000.

[12] K. Li, R. Kumpf, P. Horton, and T. Anderson. A quantitative analysis
of disk drive power management in portable computers. In WTEC’94:
Proceedings of the USENIX Winter Technical Conference, pages 279–
291, 1994.

[13] Y.-H. Lu, E.-Y. Chung, T. Šimunić, L. Benini, and G. De Micheli.
Quantitative comparison of power management algorithms. In DATE
’00: Proceedings of the conference on Design, automation and test in
Europe, pages 20–26, New York, NY, USA, 2000. ACM.

[14] J. C. Mogul. A better update policy. In USTC ’94: Proceedings of the
USENIX Summer Technical Conference, pages 99–111, 1994.

[15] R. Nathuji and K. Schwan. Virtualpower: coordinated power manage-
ment in virtualized enterprise systems. In SOSP ’07: Proceedings of
Twenty-First ACM SIGOPS Symposium on Operating Systems Princi-
ples, pages 265–278, New York, NY, USA, 2007. ACM.

[16] A. E. Papathanasiou and M. L. Scott. Energy efficient prefetching and
caching. In ATC ’04:Proceedings of the USENIX Annual Technical
Conference, pages 255–268, 2004.

[17] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for
Systems and Processes (The Morgan Kaufmann Series in Computer
Architecture and Design). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005.

[18] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen. Predic-
tive system shutdown and other architectural techniques for energy ef-
ficient programmable computation. IEEE Transactions on Very Large
Scale Integration Systems, 4(1):42–55, 1996.

[19] J. Stoess, C. Lang, and F. Bellosa. Energy management for hypervisor-
based virtual machines. In ATC’07: 2007 USENIX Annual Technical
Conference on Proceedings of the USENIX Annual Technical Confer-
ence, pages 1–14, Berkeley, CA, USA, 2007. USENIX Association.

[20] W. von Hagen. Professional Xen Virtualization. Wrox Press Ltd.,
Birmingham, UK, 2008.

[21] William Van Winkle. Reseller advocate magazine issue 84.
http://www.reselleradvocate.com/public/ram/eram/84/
feature1.html, 2009.

[22] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and
R. Wang. Modeling hard-disk power consumption. In FAST ’03:
Proceedings of the 2nd USENIX Conference on File and Storage
Technologies, pages 217–230, Berkeley, CA, USA, 2003. USENIX
Association.

[23] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and P. Cao. Re-
ducing energy consumption of disk storage using power-aware cache
management. In HPCA ’04: Proceedings of the 10th International
Symposium on High Performance Computer Architecture, pages 118–
129, Washington, DC, USA, 2004. IEEE Computer Society.

84

