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ABSTRACT

We present a sophisticated framework to systematically ex-
plore the temporal correlation in environmental monitoring
wireless sensor networks. The presented framework opti-
mizes lossless data compression in communications given
the resource constraint of sensor nodes. The insights and
analyses obtained from the framework can directly lead to
innovative and better design of data gathering protocols for
wireless sensor networks operated in noisy environments to
dramatically reduce the energy consumptions.

Categories and Subject Descriptors

E.4 [Coding and Information Theory]: Data compaction
and compression; C.2.1 [Network Architecture and De-
sign]: Wireless communication

General Terms

Algorithms

Keywords

Wireless sensor networks, energy efficiency, lossless compres-
sion

1. INTRODUCTION
It is anticipated that wireless sensor networks (WSNs) can

fundamentally change today’s practice of numerous scientific
endeavors (e. g., [6]). Because wireless sensor nodes are typ-
ically battery-operated, and most environmental monitoring
WSNs are deployed in harsh or even hostile environments,
the replacement of batteries for sensor nodes is usually im-
possible. Consequently, the lifetime of WSNs depends on
the power consumption of individual sensor nodes. Indeed,
this severe power constraint presents one of the most critical
challenges in WSNs (e. g., [3, 5]). While several approaches
exist, including energy-aware routing, energy-efficient MAC
protocols, adaptive sampling, and source coding, our work
focuses on exploiting temporal correlation in WSN data.
Among the three sensor-node operations (i. e., transmitting
data, receiving data, and performing computation), trans-
mitting and receiving are the most energy-consuming oper-
ations. For example, it was shown that about 3000 instruc-
tions could be executed for the same energy cost as sending
a bit for 100 meters by radio [10], and in general, receiv-
ing has comparable energy cost as transmitting. To reduce
the total energy usage at sensor nodes, one should try to

minimize nodes’ transmission (and hence the correspond-
ing receiving), probably offset by a slight increase of nodes’
computing operations.

We are interested in lossless data communication in WSNs,
due to the fact that in environmental monitoring tasks, par-
ticularly for new science discoveries, the accuracy of ob-
servations is often critical in understanding the underlying
physical processes, because scientists may not have a pri-
ori knowledge about what observation errors are tolerable
without affecting their new research findings. Hence, loss-
less data gathering in WSNs is essential and desirable.

However, existing studies on exploiting temporal correla-
tion in WSNs typically focused on lossy data compression,
such as the PREMON scheme [7], Lightweight Temporal
Compression [12], and a few others (e. g., [11]).

In this work, we present a fundamental framework, called
two-modal transmission, to systematically study lossless data
compression in WSNs. Our approach exploits the principle
of predictive coding [4]. In predictive coding, an error term
(i. e., residue) is calculated at source node as the differ-
ence between the predicted message/signal and the actual
message/signal. This error is then encoded and transmitted
to the receiving node. At receiving side, with an identical
predictor as the source node, the original message can be
obtained by adding the received error term (decoded) to the
predicted message produced at the receiving node. How-
ever, the distribution of residue signals generated at sensor
node usually exhibits “long tails”. A bad shape of residue
distribution adversely impacts the entropy coding perfor-
mance. In addition, the traditional predictive coding lacks
ability to facilitate the (re)synchronization of predictors at
both sensor nodes and the sink in WSNs. Unlike a recent
independent work of lossless compression algorithm LEC [9],
our proposed two-modal transmission is aimed to effectively
overcome the above limitations of predictive coding. This
presented work significantly extends and elaborates the pre-
liminary work in [8].

2. ANALYTICAL FRAMEWORK
The idea of two-modal transmission is to encode only

those residues which fall inside a relatively small range [−R, R]
(R > 0 and is called compression radius hereafter) by en-
tropy coding (referred to as compression mode) and to trans-
mit the original raw samples uncoded (referred to as normal

mode) otherwise or for predictor (re)synchronization.
Let K be the size of one raw data sample in bits and N be

the number of samples in a packet. The original amount of
uncompressed data to be transmitted is then s = K×N bits.
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Let s′ be the size of data in bits after lossless compression,
the compression ratio γ is defined as

γ = (1− s′

s
)× 100% = (1− s′

K ×N
)× 100%. (1)

Our goal is to optimize the communication performance
while meeting the constraints of the limited resources on

wireless sensor nodes. For example, the limited memory
space available on sensor nodes demands that the alphabet
used in entropy coding should be small.

To address the stringent resource constraints, we pro-
pose a flexible family of alphabets called M-based alpha-

bet system to represent residues for entropy coding. With
an M -based alphabet, a residue is represented using base
M , where M (M > 1) is an integer. A typical exam-
ple is the decimal alphabet (i. e., M = 10), in which, for
instance, 13 is represented as S(1)S(3). A special sym-
bol S(plh) named placeholder is introduced to flag the use
of normal mode in our two-modal transmission. For in-
stance, with the decimal alphabet and R = 9, a residue
sequence of (5, 10, 6, 12, 7, . . .) would produce a symbol se-
quence (S(5), S(plh), S(6), S(plh), S(7), . . .) subject to en-
tropy coding, with the original raw samples corresponding
to the residues 10 and 12 attached in order after the se-
quence. At the sink, when encountering a S(plh), the de-
coder would put the next attached original raw sample in
the place of the placeholder. Thus, the size of an M -based
alphabet ({S(0), . . . , S(M − 1), S(−), S(plh)}) is M + 2, re-
gardless of R. The size of an M -based alphabet can be very
compact when M ≪ R.

Thus, we formulate the two-modal transmission with an

M-based alphabet as the following optimization problem:
Given the constraint M ≤ M ′ for some fixed integer M ′

(M ′ specifying the resource constraints), find a combination
(M, R) which maximize the compression ratio γ.

2.1 Residue Distribution
While some studies suggested using Gaussian distribution

representing residues, our experiments on real-world data
showed a much narrower residue distribution than Gaussian
distribution. Hence, Laplacian distribution, which is more
spiky than Gaussian distribution with the same variance, is
adopted in this paper.

In the following discussion, f stands for the cumulative

distribution function of a Laplacian distribution with zero
mean. We have

f(x) =
1

2
(1 + sgn(x)(1− exp(

−|x|
b

))), (2)

in which b =
√

2
2

σ and σ is the standard deviation.

2.2 Entropy Computation
In information theory, entropy is defiend as

H = −
X

s∈S

P (s) log(P (s)), (3)

in which S is the alphabet and P (s) is the probability model
for S. The significance of entropy is that it is the lower bound

of average bits per symbol for any lossless compression algo-
rithm, assuming that occurrence of symbol in the sequence
is independent.

The exact representation of a residue r in an M -based al-
phabet rep(r) depends on the choice of compression radius
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Figure 1: Compression ratio for Laplacian distribu-
tion with zero mean under different standard devia-
tion σ. (a) 10-based alphabet; (b) 16-based alphabet.

R. Let l denote the number of symbols for the numerical
part (excluding the possible sign symbol S(−)) of the rep-
resentation. We have

l = ⌊logM R⌋+ 1. (4)

Thus, rep(r) for a residue r has length of l when r ≥ 0 and
length of l + 1 when r < 0. For example, if M = 10 and
R = 20, then l = ⌊log10 20⌋+1 = 2, and rep(5) = S(0)S(5),
rep(0) = S(0)S(0), and rep(−1) = S(−)S(0)S(1).

Next, we compute the expected number of occurrences of
symbol s due to residue r as follows,

cr
s = (f(r + 0.5) − f(r − 0.5))Ns(rep(r)), (5)

in which Ns(q) is the number of occurrence of the symbol s in
a symbol sequence q. For example, NS(1)(S(−)S(1)S(1)) =
2 while NS(−)(S(−)S(1)S(1)) = 1.

By Equation (5), the expected number of occurrences of
symbol s ∈ {S(0), . . . , S(M − 1), S(−)} can be obtained by

E(s) =

R
X

r=−R

cr
s. (6)

The expected number of occurrences of symbol S(plh) is

E(S(plh)) = 1−
R

X

i=−R

(f(i + 0.5) − f(i− 0.5))

= 1− (f(R + 0.5) − f(−R− 0.5)). (7)

Hence, given a residue distribution f(r), the alphabet
S = {S(0), . . . , S(M − 1), S(−), S(plh)} and R, we have the
following probability model for entropy computation:

P (s) =
E(s)

P

s∈S
E(s)

. (8)
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2.3 Compression Ratio
To establish the performance envelope of our approach, we

assume the availablity of an ideal encoder which can gener-
ate the perfect lossless compression indicated by entropy.
To compute γ by Equation (1), we need to first obtain the
after-compression size s′. Note that s′ can be divided into
the following three components:

• Size of compressed data (i. e., those whose residues
falling inside [−R, R]) sdat;
• Size of overhead (i. e., placeholders) sovh;
• Size of data transmitted as original raw samples (i. e.,

those whose residues falling outside [−R, R]) sori.

Thus, we have

s′ = sdat + sovh + sori. (9)

Let N be the number of data samples in a packet to be
transmitted (as in Equation (1)). We have the following:

• The number of negative compressed data is N<0 =
N ×P−1

r=−R
(f(r +0.5)− f(r−0.5)) = N × (f(−0.5)−

f(−R− 0.5));
• The number of nonnegative compressed data is N≥0 =

N×PR

r=0(f(r+0.5)−f(r−0.5)) = N× (f(R+0.5)−
f(−0.5));
• The number of overhead symbol is Novh = N × (1 −

(f(R + 0.5) − f(−R− 0.5)));
• The number of uncompressed data is Nori = N × (1−

(f(R + 0.5) − f(−R− 0.5))).

As mentioned before, nonnegative residues are represented
by l symbols and negative residues are represented by l + 1
symbols; A placeholder requires only 1 symbol. Hence, by
Equations (4) and (3), we have

sdat = H × l ×N≥0 + H × (l + 1) ×N<0, (10)

sovh = H × 1×Novh, (11)

sori = K ×Nori. (12)

By Equations (9), (10), (11) and (12), we have

s′ = H × l ×N≥0 + H × (l + 1)×N<0

+H × 1×Novh + K ×Nori. (13)

In Equation (13), l and H depend on both M and R; N≥0,
N<0, Novh and Nori depend on R. Hence, s′ can be seen
as a function s′(M, R) over M and R. Thus, by Equation
(1), we get γ as a function γ(M, R) over M and R. With
Equations (1) and (13), we can now compute the theoretical
compression ratio γ(M, R) of our two-modal transmission
approach for any residue distribution with zero mean.

For illustration, Figure 1 depicts γ(M, R) for M = 10 in
(a) and M = 16 in (b), respectively, for a group of different
values of σ. We note the following important points.

• All curves exhibit sudden drops at R = 10 and R = 100
in (a) and at R = 16 and R = 256 in (b), respectively.
The drops are a direct result of the residue represen-
tation adopted in the M -based alphabet system. For
example, for 16-based alphabet, while the numerical
part of each residue can be represented by 1 symbol
when R = 15, it requires 2 symbols to be represented
when 16 ≤ R ≤ 255, and so on. This has a direct im-
pact on the length of symbol sequence to be encoded
and hence on the size after compression.

• For a Laplacian distribution with zero mean, almost
all (98.56%) samples fall inside the range [−3σ, 3σ].
For example, when σ = 15 (the red curves in (a)
and (b)), almost all residues fall inside [−45, 45]. This
corresponds to the rapid growth in compression gain
(with the exception of those sudden drop points) when
R ≤ 45 and gradual flattening out when R > 45.
• Both (a) and (b) indicate a reciprocal relation be-

tween compression ratio and the standard deviation
of residue distribution. This can be understood by re-
alizing that larger standard deviation corresponds to
a “flatter” distribution. This in turn would result in a
less skewed probability statistics among symbols and
hence a larger entropy.

A key observation is that the drops of compression ratio
γ for the two-modal transmission can only occur at points
R = Mk (k is an integrer and k ≥ 1). On each segment of R
divided by those Mk (i. e., [0, M − 1], and [Mk, Mk+1 − 1]
(k ≥ 1) ), γ is piecewisely monotonically increasing. This
is because that each segment of R induces the same num-
ber of symbols to represent the numerical part (e. g., [0, 9],
[10, 99] for base 10) and thus larger R in the same seg-

ment would produce better γ (or at least as good when
R ≫ 3σ). This leads to the following important assertion:
For a given M , there exists a global maximal γ(M, R) (de-
noted by γmax(M)) over the whole range of R. Moreover,
all local maxima of γ(M, R) are obtained at R = Mk − 1 (k
is an integer and 1 ≤ k ≤ ⌊logM 2K⌋) and at the boundary
point R = 2K − 1.

Based on this structure of local maxima, instead of search-
ing over every combination of (M, R) for the maximal γ
given M ′, we only need to check those local maxima γ(M, R)
to obtain all γmax(M) for M ≤M ′ and then select the max-
imal γmax among γmax(M). This greatly reduces the size of
searching space.

3. HEURISTIC METHOD
We now study γmax(M) to further simplify the computa-

tion of the overall maximal γ(M, R) and its corresponding
M , given constraint M ′. Figure 2 illustrates the relationship
between M and γmax(M).

Note that before certain point, greater M (hence a larger
alphabet) does not always produce a better compression ra-
tio. For example, when σ = 45, in the range of 2 to 40, the
M with maximal γmax(M) is 11 rather than either 2 or 40.

Figure 3 is given to help in understanding this non-mono-
tonic relationship. M corresponding to local minima and
maxima in Figure 2 (d) (σ = 45) are chosen. In particular,
almost all residues fall inside [−135, 135] (i. e., [−3σ, 3σ])
in this very case. The first local maximum (M = 5) cor-
responds to the M which has its cubic (M3 = 125) closest
to 135. This means that the R corresponds to γmax(M) is
M3 − 1 = 125 − 1 = 124 and that the 3-symbol representa-
tion of the numerical part is fully used. In contrast, at the
first local minimum (M = 6), the repesentation is seriously
wasted (M3 = 216 is much larger than 135). In the same
way, the second local maximum (M = 11) makes full use of
the 2-symbol (M2 = 121) representation while the second
local minimum (M = 30) does not.

Thus, we propose the following heuristic for choosing an
M from a given range to maximize γmax(M), subject to
M ≤ M ′ for some given integer M ′, by making use of the
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Figure 2: γmax(M) for different M . Residues com-
form to a Laplacian distribution with zero mean and
standard deviation σ of (a) 15; (b) 25; (c) 35; (d) 45.
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Figure 3: Compression ratio for Laplacian distribu-
tion with zero mean and standard deviation σ = 45.
M corresponding to local minima and maxima in
Figure 2 (d) are chosen (5, 6, 11 and 30).

fact that almost all (98.56%) residues fall inside [−3σ, 3σ]
for a Laplacian distribution with zero mean.

1. k ← ⌈logM′ 3σ⌉. This ensures M ′k−1 ≤ 3σ ≤M ′k;
2. L← ⌊ k

√
3σ⌋;

3. Obtain γmax(L) = γ(L, Lk − 1);
4. Obtain γmax(L + 1) = γ(L + 1, (L + 1)k − 1));
5. Let γmax|M≤M′ = max{γmax(L), γmax(L +1)}. M ←

L if γmax|M≤M′ = γmax(L) and M ← L+1 otherwise.

As an illustration, in the σ = 45 case, suppose we require
M ′ = 30. k = ⌈log30 3σ⌉ = ⌈log30 135⌉ = 2. L = ⌊

√
135⌋ =

11. Then we compare γ(11, 120) and γ(12, 143) and find
that γ(11, 120) is larger. Thus, we let M = 11, which is
indeed the optimal choice of M for all M ≤M ′ = 30.

4. EMPIRICAL STUDY
We use a set of one-year real-world publicly-accessible en-

vironmental monitoring data[2], collected in year 2000, to
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Figure 4: Sensor measurement for the temperature
data set.

illustrate the effectiveness of the two-modal transmission
scheme. These samples were taken at an interval of 30 min-
utes. To simulate real-world sensor communications with
fidelity, we first converted the physical data into sensor mea-

surement, with the assumption of the A/D conversion pre-
cision being 12 bits (i. e., K = 12).

Figure 4 shows the sensor measurement for the tempera-
ture data set.

4.1 Predictor
Linear predictor was chosen both for its simplicity. In par-

ticular, we used second-order linear predictor. For a sample
x(k) (k > 2), its prediction x̂(k) is computed as

x̂(k) = c1x(k − 1) + c2x(k − 2) + c0, (14)

where coefficients c1, c2 and bias term c0 were determined
by minimizing the mean square error (MSE) of predictor on
a training data set as

MSE =
1

m

m
X

k=1

(x(k)− x̂(k))2 =
1

m

m
X

k=1

r(k)2, (15)

in which m is the number of training samples. r(k) = x(k)−
x̂(k) is called residue, or prediction error.

In our experiments, the first 15 days’ data were used in
predictor training, and another 15 days’ data were used in
generating symbol statistics for entropy coding. The rest of
11 month data were then used for testing.

Figure 5 shows the residue distribution generated by the
predictor in our simulation. Note that σ = 17.65 and there
was a small deviation of the peak from zero. Laplacian and
Gaussian distributions with the same variance and mean of
zero are drawn in Figure 5 for comparison.

4.2 Simulation Results
Arithmetic Coding (AC) algorithm was chosen as our en-

tropy coding scheme due to its near-optimal performance.
Because of the daily periodicity of the physical data, the
size of data payload per packet is chosen as 48 × 12 = 576
bits (72 bytes).

In our simulation, M ′ = 16 was chosen as sensor nodes’
resource constraint. Solving this constrained optimization
problem based on our formal approach, we obtained those
local maxima for all M ≤ 16. The results are shown in
Figure 6 in terms of γmax(M). On the other hand, based
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data set.

on our heuristic method, we quickly got k = 2, and either
7 or 8 being the optimal M because ⌊log20 3σ⌋+ 1 = 2 and
72 ≤ 3σ ≤ 82. As clearly shown in Figure 6, M = 7 was the
best among all M ≤M ′ in terms of γmax(M) achieved.

Moreover, a comparison between theoretical and empiri-
cal results is shown in Figure 7 in which M = 7. We can
see that the performance derived from our theoretical frame-
work matches the empirical results obtained using real-world
data set favorably.

5. ENERGY CONSUMPTION MODEL

5.1 Radio Transceiver Model
Let ITX and IRX be the current draw of sending and

receiving by the radio respectively; TTX and TRX be the
corresponding operating time over 1 byte; V be the volt-
age supply, which we assume to be constant throughout the
transmission. Therefore, transmitting k bytes per hop re-
quires Eradio(k) = kITXV TTX + kIRXV TRX .

5.2 Algorithm Complexity Model
A simplified energy consumption model on source sensor

nodes for the proposed two-model transmission can be ob-
tained by counting the number of basic operations (e. g.,
shifts, additions) conducted in the following outlined logic.
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Figure 7: Empirical versus theoretical (with same
standard deviation) compression ratio in 7-based al-
phabet.

It is worth mentioning that the optimal M and R in our
scheme as well as predictor training are computed at the
WSN sink which is not energy-limited. A source sensor node
receives its symbol table, R, and predictor coefficients from
the sink after the initial training and validation phases, dur-
ing which samples could be transmitted uncompressed.

i f ( not ( p r ed i c t o r r e syn ch ron i z a t i o n ) )
pred = pr ed i c t o r ( ) ;
r e s i du e = x − pred ;

else
r e s i du e = R+1;

i f ( ( r e s idue<=R) and ( re s idue>=−R)
encode and send ( r e s i du e ) ;

else
encode and send ( p l a c eho ld e r ) ;
send (x ) ;

Since predictor is simply a linear predictor, the computa-
tion cost mainly rests on the entropy encoder adopted.

5.2.1 AC encoder

AC encoder was employed. Based on the implementa-
tion of AC encoder described in [1], except for the interval
updating and checking (4 additions, 2 integer multiplica-
tions, 2 shifts, 2 comparisons) performed on every symbol
fed into the encoder, the coding cost depends on the num-
ber of E1, E2 and E3 scalings performed [1]. These scalings
have a uniform cost of 3 additions and 2 shifts. Let P (S)
be the probability of a symbol S, N(S) = ⌈− log2 P (S)⌉ is
an adequate estimate for the number of scalings once S is
encountered.

For the optimal parameter setting (M = 7 and R =
48) in our empirical study, the frequency of the symbols
is summarized in table 1. From these statistics, we can
estimate the number of scalings for each symbol. For in-
stance, we estimate the number of scalings for S(6) to be
⌈− log2(

105
1779

)⌉×2175 = 10875. Hence, we estimate the total
number of scalings being 124049 by adding up the estimates
for each symbol.

Thus, in our empirical study, the energy consumption for
AC coding process on the entire testing data can be obtained
by EAC = 36406×(4ǫadd +2ǫmul)+2ǫsht +2ǫcmp)+124049×
(3ǫadd + 2ǫsht) = 517771ǫadd + 72812ǫmul + 320910ǫsht +
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Table 1: Frequency of Symbols for 15 Days’ Validation and 11 Months’ Testing Data for M = 7 and R = 48
S(0) S(1) S(2) S(3) S(4) S(5) S(6) S(−) S(plh) Total

Valid. 388 317 219 153 118 104 105 359 16 1779
Test 8274 6912 4818 3605 2956 2432 2175 4862 372 36406

Table 2: Parameters of the Energy Models
Parameter Value Parameter Value
ITX 17.4 mA fcpu 48 MHz
IRX 19.7 mA ǫadd 2.13 nJ
TTX 3.2 × 10−5 s ǫmul 6.39 nJ
TRX 3.2 × 10−5 s ǫcmp 2.13 nJ
V 3.3 V ǫsht 4.26 nJ
Icpu 31 mA

72812ǫcmp, with ǫadd, ǫmul, ǫcmp and ǫsht being the energy
consumption of addition, multiplication, comparison and
shift instruction respectively.

5.2.2 Two-Modal Transmission

In our empirical study, the total number of 11 months’
testing samples was 15958. Apart from AC coding, the
rest computing of the two-modal transmission including the
second order linear predictor operations requires at most 4
additions, 2 multiplications and 3 comparisons per sample.
Thus, the total energy consumption for this part is simply
15958 ∗ (4ǫadd + 2ǫmul + 3ǫcmp) = 63832ǫadd + 31916ǫmul +
47874ǫcmp. Adding this part with EAC above, we have an
estimation of the total computation energy consumption
Ecomp = 581603ǫadd +104728ǫmul +320910ǫsht +120686ǫcmp .

5.3 Numerical Result
Consider the widely used CC2420 radio transceiver and

ARM7TDMI microprocessor of motes. Table 2 summarizes
the parameters obtained based on their data sheet and re-
ported experience.

We first evaluated the consumed energy (per hop) by
transmitting all the testing data uncompressed (the baseline
scenario). The energy was Ebaseline = Eradio(15958× 1.5) =
23937ITXV TTX + 23937IRXV TRX = 93.7 mJ.

In the two-modal transmission, total 14417 bytes were
transmitted in the simulation. So the total energy consump-
tion of per-hop transmission is Eradio,2m = Eradio(14417) =
14417ITXV TTX + 14417IRXV TRX = 56.5 mJ.

The total energy consumed by mote computation in our
approach was Ecomp = 581603ǫadd+104728ǫmul+320910ǫsht+
120686ǫcmp = 3.5 mJ.

Therefore, for the total testing data, the energy saved by
our approach in an n-hop WSN is n×(Ebaseline−Eradio,2m)−
Ecomp = (37.2n−3.5) mJ. Clearly, the larger n of WSN, the
higher energy gain. Even in a 1-hop WSN, the computation
energy cost is less than 1/10 of the communication energy
gain, and the pure saving would be 33.7 mJ per hop. This
energy saving is sufficient to transmit extra 8594 bytes over
a wireless link.

6. CONCLUSIONS
A major contribution of this paper is the rigorous de-

velopment of a sophisticated formulation of the two-modal
transmission as a constrained optimization problem γ(M, R)

subject to M ≤ M ′ (M ′ representing resource constraint).
We then study the structure of local maxima in the solution
space and enable significantly reducing the size of searching
space for the optimal solution. Furthermore, we propose a
simple heuristic method to solve the constrained optimiza-
tion easily. Empirical study with real-world data and energy
consumption analysis are provided. The implementation of
the two-modal transmission is ongoing. Our future work
includes developing an adaptive framework to address the
nonstationary characteristic of sensed data in WSNs.
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