
Title Mining Application-Specific Coding Patterns for
Software Maintenance

Author(s) Ishio, Takashi; Miyake, Tatsuya; Inoue, Katsuro
et al.

Citation

Version Type AM

URL https://hdl.handle.net/11094/51563

rights

© 2008 ACM. This is the author's version of the
work. It is posted here for your personal use.
Not for redistribution. The definitive Version
of Record was published in LATE '08 Proceedings
of the 2008 AOSD workshop on Linking aspect
technology and evolution, Article No. 3, 2008-
03-31,
http://dx.doi.org/10.1145/1404953.1404956.

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Mining Application-Specific Coding Patterns
for Software Maintenance

Takashi Ishio, Hironori Date, Tatsuya Miyake, Katsuro Inoue
Osaka University

1-3 Machikaneyama, Toyonaka, Osaka, Japan
{ishio, h-date, t-miyake, inoue}@ist.osaka-u.ac.jp

ABSTRACT
A crosscutting concern is often implemented based on a coding
pattern, or a particular sequence of method calls and control state-
ments. We have applied a sequential pattern mining algorithm to
capture coding patterns in Java programs. We have manually in-
vestigated the resultant patterns that involve both crosscutting con-
cerns and implementation idioms. This paper discusses the detail
of our pattern mining algorithm and reports detected crosscutting
concerns.

1. INTRODUCTION
To develop a large scale software, developers use idiomatic cod-

ing patterns to implement a particular kind of concerns that are not
modularized in the software [19]. Developers obtain coding pat-
terns from the source code of their software, the coding standard of
their team and other available resources.

Such idiomatic code fragments that spread across modules are
problematic in software maintenance. When developers modified
an instance of an idiomatic code fragment, developers should in-
spect and modify all other instances of the idiom to keep the code
fragments consistent [3, 4, 8, 10].

While Aspect-Oriented Programming (AOP) [13] and some object-
oriented design patterns such as Template Method [8, 9] are effec-
tive to refactor such an idiom to a modular unit, many idiomatic
code fragments are still involved in software. This is because de-
velopers are not interested in modularizing well-known implemen-
tation idioms, e.g. Iterator pattern, and some duplicated code frag-
ments that has variants of the original fragment (e.g. a code frag-
ment tangled with other functions).

To enable developers to understand and manage idiomatic code
fragments, we have applied a sequential pattern mining algorithm
to extract coding patterns for implementing a particular kind of
concerns. We have developed a tool named Fung that translates
a method in a Java program into a sequence of method calls and
control-flow elements, and appliesPrefixSpan , a sequential pat-
tern mining algorithm proposed in [22].

Our sequential pattern mining extracts frequent subsequences of
method calls and control statements in a program. Our sequen-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

for (Iterator it=list.iterator();
 it.hasNext();) {
 Item item = (Item)it.next();
 if (item.isActive()) {
 item.deactivate();
 }
}

Collection.iterator()
Iterator.hasNext()
LOOP
 Iterator.next()
 Item.isActive()
 IF
 Item.deactivate()
 END-IF
END-LOOP

Figure 1: A sequence extracted from source code

tial pattern mining is similar to code clone-based aspect mining
approach [6]. While code clone detection techniques extract a con-
secutive sequence of statements or a connected subgraph of a de-
pendence graph [12, 16], a sequential pattern instance may involve
disconnected method calls.

We have applied our pattern mining to six Java programs: jEdit,
JHotDraw, Azureus, Apache Tomcat, ANTLR and SableCC. We
have found several crosscutting concerns that are hard to modular-
ize using AspectJ because of their heterogeneous implementation.
Our pattern mining supports developers to investigate such cross-
cutting concerns.

The structure of the paper is following. Section 2 describes our
sequential pattern mining approach for a Java program. Section 3
shows the result of case study on six Java programs. Section 4 dis-
cusses the characteristics of the coding patterns that our approach
extracts. In Section 5, we describe related work. Section 6 summa-
rizes our current state and the future directions.

2. SEQUENTIAL PATTERN MINING
Sequential pattern mining extracts frequent subsequences from

a sequence database [2]. We use PrefixSpan algorithm [22] to a
sequence database extracted from a Java program. According to
the limited space, we omit the detail of the algorithm.

We have developed a pattern mining tool Fung. Fung first trans-
lates the source code of a program into a sequence database and
applies PrefixSpan algorithm. Then Fung filters and classifies the
extracted patterns into pattern groups.

We defined a set of rules to translate the source code of a Java
method into a sequence that comprises method call elements and
control elements to capture patterns comprising method calls and
control statements such asif andfor . Figure 1 is an example of
a sequence extracted from a source code fragment.

Method call element. A method call is translated into a call ele-
ment.

To handle crosscutting implementation and dynamic binding,
we simply ignore the class names in method calls. For exam-
ple, String.equals andList.equals are not distinguished; a
method call element “equals” is generated for each call.

If two or more methods are called in an expression, the cor-
responding method call elements are sequentially ordered by
its evaluation order according to the Java specification. The
tied (or undefined) methods are sorted by textual sequence
(left to right) in the source code.

IF/ELSE/END-IF element. An if statement is translated into a
series of IF, ELSE and END-IF elements. If the predicate of
the statement calls a method, the corresponding method call
element is inserted before the IF element since the predicate
is evaluated before the IF statement selects control-flow.

LOOP/END-LOOP element. A for orwhile statement is trans-
lated into a pair of LOOP and END-LOOP elements. A
method call in the predicate of the loop is translated into a
pair of method call elements inserted before the LOOP ele-
ment and the END-LOOP element according to control-flow
of the loop statement.

In the current implementation, we ignorebreak , continue
andreturn statements in a loop since we focus on the syn-
tactic structure of a loop instead of precise control-flow in-
formation.

Our rules described above generate a sequence for each method
in Java source code. PrefixSpan takes as input a sequence database
and two threshold parameters: pattern lengthlen and support count
s. PrefixSpan outputs patterns that satisfy the following character-
istics:

• A pattern is a sequence of method call elements and control
elements.

• A pattern comprises at leastlen elements. For example, Fig-
ure 2 shows an Undo pattern comprising four method call el-
ements: createUndoActivity, setUndoActivity, getUndoAc-
tivity and setAffectedFigures. This pattern is filtered out if
len is greater than 4.

• A pattern has at leasts instances. We use the terminstanceof
a pattern to represent a concrete code fragment correspond-
ing to the pattern. For example, Figure 2 shows three Undo
pattern instances. If the number of instances is less thans,
the pattern is filtered out.

• An instance of a pattern is defined as a list of tokens in the
source code; each token corresponding to a pattern element.

• An instance may interleave with other code fragments.

• A pattern implies its sub-patterns (shorter patterns) that have
at least the same number of instances. For example, a pattern
[a, b, c, d] implies four sub-patterns comprising 3-elements:
[a, b, c], [a, b, d], [a, c, d] and [b, c, d]. If the number of
instances of a sub-pattern is the same as its super pattern, the
sub-pattern is filtered out. This property also implies that a
method call may be involved in two or more patterns.

Our approach focuses on mining coding patterns related to method
calls. Therefore, we are not interested in patterns that comprise
only control statements. To filter out such patterns, Fung supports
two filtering rules as follows.

• If more than 70% elements of a pattern are control elements,
the pattern is filtered out. We have defined the threshold
value based on our preliminary experiment; a user of Fung
can specify another threshold if necessary.

org.jhotdraw.standard.DuplicateCommand
public void execute() {
 super.execute();
 setUndoActivity(createUndoActivity());
 FigureSelection selection = view().get...

 //create duplicate figure(s)
 FigureEnumeration figures = (Figure...
 getUndoActivity().
 setAffectedFigures(figures);
 view().clearSelection();
}

org.jhotdraw.standard.ResizeHandle

public void invokeStart(
 int x, int y,
 DrawingView view) {
 setUndoActivity(
 createUndoActivity(
 view));
 getUndoActivity().
 setAffectedFigures(...
 ((RseizeHandle.Undo...
}

org.jhotdraw.figures.BorderTool
public void action(Figure figure) {
 // Figure replacedFigure = drawing().replace(...

 setUndoActivity(createUndoActivity());
 List l = CollectionsFactory.current().create...
 l.add(figure);
 l.add(new BorderDecorator(figure));
 getUndoActivity().setAffectedFigures(new Fig ...
 ((BorderTool.UndoActivity)getUndoActivity())..
}

Undo Pattern
 (length=4)

createUndoActivity()
setUndoActivity()
getUndoActivity()
setAffectedFigures()

Subclasses of AbstractCommand

Subclasses of AbstractTool

Subclasses of AbstractHandle instanceof

Figure 2: Undo pattern in JHotDraw 5.4b1

• Since a control statement is always transformed to a pair of
the beginning and the end of a block (e.g., a pair of IF and
END-IF elements), we filtered out patterns including a con-
trol element but excluding its peer element.

After filtering, we classify the patterns into groups since our se-
quential pattern mining extracts a large number of patterns that are
similar to one another. We are using a simple rule for grouping:
if two patternsp1 andp2 overlaps with each other, the two pat-
terns are included in the same group. Therefore, a pattern and its
sub-patterns are always included in the same group.

We extractsummary tokensto indicate the summary of a pattern
group. We split (tokenize) the method names in a pattern group
with capital letters, and select the top three frequent tokens as the
summary tokens of the group. For example, the pattern group in-
cluding only the undo pattern in Figure 2 has the summary tokens
[undo, activity, set]. This summary enables us to understand what
to do in the patterns.

The resultant pattern groups are listed in Fung Pattern Viewer.
Fung also exports the resultant patterns in an XML format.

3. CODING PATTERNS IN JAVA SOFTWARE
We have applied our pattern mining to the software listed in Ta-

ble 1. We extracted patterns with parameterslen = 4 ands = 10;
a pattern comprises four or more elements and a pattern has at least

Table 1: Target Software
Name Version Size(LOC) #Pattern #Group
JHotDraw 7.0.9 15104 747 37
jEdit 4.3pre10 17024 137 33
Azureus 3.0.2.2 85248 4682 128
Tomcat 6.0.14 33568 1415 85
ANTLR 3.0.1 3616 352 29
SableCC 3.2 6336 62 18

Table 2: Patterns in JHotDraw 7.0.9
Pattern Group Sup Len Type
Link action objects to menu objects 29 16 Impl
(tokens: add, get, action)
Create menu objects 28 7 Impl
(tokens: add, separator, contains)
Compare a string with string literals 24 4 Impl
(tokens: equals)
Read entries infor loop 24 6 Impl
(tokens: get, set, entry)
Create a rectangle from width and height 21 5 Impl
(tokens: get, height, width)

ten instances in the program. In this paper, we show the top five of
frequent patterns for each software according to the limited space.
Each table consists of four columns:Pattern Group, Sup, Lenand
Type. Pattern Grouprepresents the function of a pattern group
(what to do). The “tokens” of a group indicate the frequent to-
kens in the method call elements included in the pattern group.Sup
is the number of instances of the most frequent pattern in the group.
Len is the number of elements of the longest pattern in the group.
Typeis a category we have manually assigned.Impl indicates that
the pattern is an implementation idiom using only library classes
andApp indicates that the pattern contributes to a particular func-
tion in the program, respectively. We assigned the typeImpl to
a pattern if the pattern represents a general purpose code fragment
so that we can reuse its instance to another Java program without
any knowledge on the program including the pattern. Otherwise,
we assigned the typeApp.

Table 2 shows the top five frequent patterns in JHotDraw 7.0.9.
JHotDraw 7.0.9 is well modularized, e.g., the undo coding pattern
in JHotDraw 5.4b1 (Figure 2) is already refactored. All the five
patterns are implementation idioms for typical operations in JHot-
Draw rather than application-specific concerns. This table does not
mean that JHotDraw 7.0.9 has no crosscutting concerns; a pair of
willChange andchanged methods form a (less frequent) pat-
tern to fire events before and after figures are manipulated.

Table 3 shows the patterns in jEdit. The top pattern group calls
openNodeScope andcloseNodeScope at the beginning and
the end of methods in various classes used bybsh.Parser . This
seems a typical crosscutting concern that may be refactored using
the before and after advices in AspectJ. The third pattern is an in-
teresting pattern because the methodbeep is called from various
locations where jEdit executes some ext editing function to a text
buffer. While capturing method calls tobeep is easy, this pattern
is difficult to directly refactor to an aspect because capturing all text
editing functions using AspectJ pointcut designators is difficult.

Table 4 shows the patterns in Azureus. Azureus uses a pair of
enter andexit methods to synchronize a packet buffer. Log-

Table 3: Patterns in jEdit 4.3pre10

Pattern Group Sup Len Type
Open and close “scope” before and 55 13 App
after visiting a node, respectively
(tokens: node, scope, close)
A for loop usingsize andget methods 35 4 Impl
(tokens: get, size, property)
Beep if buffer is not editable 34 6 App
(tokens: beep, get, toolkit)
Read and update a Hashtable 29 5 Impl
(tokens: put, get, set)
Create GUI components from properties 28 12 Impl
(tokens: add, get, property)

Table 4: Patterns in Azureus 3.0.2.2
Pattern Group Sup Len Type

A loop for an array of objects 320 10 Impl
(tokens: get, size, add)
Enter and exit a monitor before 151 10 App
and after a loop, respectively
(tokens: next, iterator, enter)
A loop using an Iterator 151 9 Impl
(tokens: next, has, iterator)
Print stack trace if error 140 7 Impl
(tokens: print, stack, trace)
Logging if enabled 119 13 App
(tokens: log, is, enabled)

ging is also a crosscutting concern spread across the modules. Al-
though a textual search can easily capture the code, the logging
concern is difficult to modularize since Azureus records various
messages such as "ping ok", "ping failed" and "add store ok", for
each logging method call. We found 51 distinct messages in 55 call
sites that callDHTLog.log , and 148 distinct messages in 200 call
sites that callLogger.log .

Table 5 shows the patterns in Apache Tomcat. Logging is the
largest pattern group in this experiment; the most frequent pattern
has 304 instances and there are 442 variant patterns in the group
(6192 instances in total). This logging code is also hard to refactor
because there are various messages for each location where Tomcat
executes an important action. Executing a function in the privileged
mode is also a difficult crosscutting concern to refactor since the
concern requires appropriate implementation for each function as
shown in Figure 3.

Table 6 shows the patterns in ANTLR. The top two patterns are
unit testing patterns working with JUnit. Although JUnit provides
setUp andtearDown methods for modularizing a common pro-
cedure for test cases, ANTLR has to create parsers with various
configurations for each test case. ANTLR also includes several
coding patterns to process the nodes of an abstract syntax tree.

Table 7 shows the patterns extracted from SableCC. All the pat-
terns extracted from SableCC are to process a tree or a list. All
patterns are not crosscutting concerns and short enough to under-
stand what the patterns do.

Table 5: Patterns in Apache Tomcat 6.0.14
Pattern Group Sup Len Type
Logging if debugging mode 304 24 App
(tokens: debug, is, enabled)
Compare a string with string literals 77 23 Impl
(tokens: equals, substring, println)
A for loop using Iterator 64 7 Impl
(tokens: next, has, iterator)
Create a string from objects 60 4 Impl
(tokens: append, length)
Execute a function in privileged mode 46 4 App
if protection is enabled
(tokens: protection, is, enabled)

public void getServletContextName() {
if (SecurityUtil.isPackageProtectionEnabled()) {

doPrivileged("getServletContextName", null);
} else {

return contet.getServletContetName();
}

}

public String getLocalizedMessage(
final String message) {

if (SecurityUtil.isPackageProtectionEnabled()) {
return (String)AccessController.doPrivileged(

new PrivilegedAction() {
public Object run() {

return Localizer.getMessage(message);
} });

} else {
return Localizer.getMessage(message);

}
}

Figure 3: Privileged execution pattern in Apache Tomcat

4. DISCUSSION
Our technique does cover all code related to a concern if the

concern is implemented using only one idiom.Our technique
identifies sequential patterns that comprise a sequence of method
calls and control statements. Sequential patterns involve idioms
interleaving with other code fragments while sequential patterns
may exclude some patterns that are not strictly ordered [1, 16].

Our approach easily identifies all code fragments related to a
concern if the concern is implemented using the one idiom, e.g.,
the undo pattern in JHotDraw 5.4b1. In the case of the undo im-
plementation, various method calls are inserted to the basic idiom
to achieve undo actions for each command while the basic idiom is
not changed.

Our approach detects implementation idioms as false posi-
tives. We regard well-known patterns, e.g. afor loop using Itera-
tor, as false positives. We are investigating a way to automatically
distinguish the well-known patterns from other patterns. Filtering
the JDK classes might be a simple but effective approach since we
have found few functional patterns using the JDK library.

Some of crosscutting concerns that are difficult to modularize
may be false positives for developers who would like to modularize
them using AspectJ. However, many industrial developers working
without aspects are interested in these information for their soft-
ware maintenance because developers who modify an idiomatic
code fragment have to investigate the change impact and apply the

Table 6: Patterns in ANTLR 3.0.1

Pattern Group Sup Len Type
Create code generators for unit testing 107 8 App
(tokens: set, tool, code)
Parse the result for unit testing 69 5 Impl
(tokens: equals, assert, error)
Loop for a list of objects 48 4 Impl
(tokens: get, size)
Parse AST and report an error if necessary 38 11 App
(tokens: LT, match, report)
Visit tree nodes for textual output 29 8 App
(tokens: match, get, text)

Table 7: Patterns in SableCC 3.2
Pattern Group Sup Len Type
Apply a function to an array of objects 72 7 Impl
(tokens: apply, to, array)
Apply a function to a tree of objects 42 9 Impl
(tokens: apply)
Read textual data and ID from nodes 41 8 Impl
(tokens: get, id, text)
Add a node to a list 33 4 Impl
(tokens: add)
Register the name of node to a map 27 6 Impl
(tokens: get, text, put)

same change to the other instances of a pattern if necessary. We
are planning to generate documentation for such patterns from the
result of our pattern mining. A promising tool is a set of predicates
provided by SoQueT [20].

We have analyzed various programs in different domains.
The programs upon which we validated our technique are suitable
as a part of a common benchmark, because the target programs are
selected from different domains and maintained by different devel-
opment groups. JBoss, Eclipse, Apache Ant, WALA and Soot are
candidates for our analysis in the future work. We are also inter-
ested in analyzing how the patterns are evolved in a development
process.

5. RELATED WORK
Aspect mining techniques [5, 6, 17, 18] employ some heuristic

functions to detect typical implementation of crosscutting concerns
and apply refactoring to aspect candidates. We adopted a sequen-
tial pattern mining technique, which is not applied in aspect mining
area yet. Although idiom-based code has variations [7], sequential
pattern mining can detect idioms interleaving with other code frag-
ments. Our approach may detect a partially ordered API usage [1]
as several distinct sequential patterns. Instead, our approach can
recognize the control structure such as IF and LOOP in patterns.

Some of crosscutting concerns we have detected are also de-
tected by the fan-in analysis [18]. The difference is that our ap-
proach detects control structure in addition to method calls. Our
approach also detects several patterns including co-located meth-
ods, e.g., open/close and enter/exit. Breu’s history-based aspect
mining focuses on extracting such co-located methods in a program
from its software repository [5].

Since idiomatic code fragments are not explicitly modularized,
developers often copy-and-paste a code block [14]. Such copy-
and-pasted code fragments are known as code clones [3, 4, 10,
12, 16]. However, most of code clone detection tools cannot de-
tect code fragments modified after copy-and-pasted. For example,
CCFinder, an efficient code clone detection tool, detects consecu-
tive sequences of tokens [12]. Therefore, if a new statement is in-
serted to a copy-and-pasted code fragment, the modified code frag-
ment is no longer a code clone of the original one. Our sequential
pattern mining can detect such modified code fragments until the
sequential order of method calls are modified.

As some long-lived code clones areunfactorable[15], some pat-
terns we have extracted are unfactorable. The pattern informa-
tion can be used in the documentation approach of SoQueT [20],
FluidAOP-based code maintenance [11] and simultaneous modifi-
cation [10] for maintenance of the patterns.

6. SUMMARY
We have adopted a sequential pattern mining algorithm to de-

tect coding patterns that implement crosscutting concerns. We have
developed a pattern mining tool named Fung and applied the tool
to six open-source Java programs. As a result, we have detected
both crosscutting concerns and implementation idioms. In the fu-
ture work, we will investigate a way to automatically categorize the
detected patterns, and to generate documentation for developers to
understand coding patterns.

7. REFERENCES
[1] Acharya, M., Xie, T., Pei, J. and Xu, J.: Mining API Patterns

as Partial Orders from Source Code: From Usage Scenarios
to Specifications. In Proc. of the Joint Meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), pp.25-34, 2007.

[2] Agrawal, R. and Srikant, R.: Mining Sequential Patterns, In
Proc. of the International Conference on Data Engineering
(ICDE), pp.3-14, 1995.

[3] Baker, B. S.: A Program for Identifying Duplicated Code.
Computing Science and Statistics, Vol.6, pp.49-57, 1992.

[4] Baxter, I., Yahin, A., Moura, L., Anna, M. and Bier, L.:
Clone Detection Using Abstract Syntax Trees. In Proc. of the
International Conference on Software Maintenance (ICSM),
pp.368-377, 1998.

[5] Breu, S. and Zimmermann, T.: Mining Aspects from Version
History. In Proc. of the International Conference on
Automated Software Engineering (ASE), pp.221-230, 2006.

[6] Bruntink, M., van Deursen, A., van Engelen, R. and Tourwe,
T.: On the Use of Clone Detection for Identifying
Crosscutting Concern Code. IEEE Transactions on Software
Engineering, Vol.31, No.10, pp.804-818, 2005.

[7] Bruntink, M., van Deursen, A., D’Hondt, M. and Tourwé, T.:
Simple crosscutting concerns are not so simple - analysing
variability in large-scale idioms-based implementations. In
Proc. of the International Conference on Aspect-Oriented
Software Development (AOSD), pp.199-211, 2007.

[8] Fowler, M.: Refactoring: improving the design of existing
code. Addison-Wesley, 1999.

[9] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[10] Higo, Y., Ueda, Y., Kusumoto, S. and Inoue, K.:
Simultaneous Modification Support based on Code Clone

Analysis. In Proc. of the Asia-Pacific Software Engineering
Conference (APSEC), pp.262-269, 2007.

[11] Hon, T. and Kiczales, G.: Fluid AOP Join Point Models. In
Proc. of the Asian Workshop on Aspect-Oriented Software
Development (AOAsia), pp.14-17, 2006.

[12] Kamiya, T., Kusumoto, S. and Inoue, K.: CCFinder: A
Multi-Linguistic Token-based Code Clone Detection System
for Large Scale Source Code. IEEE Transactions on
Software Engineering, Vol.28, No.7, pp.654-670, 2002.

[13] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C.V., Loingtier, J. and Irwin, J.: Aspect Oriented
Programming. In Proc. of the European Conference on
Object-Oriented Programming (ECOOP), pp.220-242, 1997.

[14] Kim, M. Bergman, L., Lau, T. and Notkin, D.: An
Ethnographic Study of Copy and Paste Programming
Practices in OOPL. In Proc. of the International Symposium
on Empirical Software Engineering (ISESE), pp.83-92, 2004.

[15] Kim, M., Sazawal, V., Notkin, D., and Murphy, G. C.: An
Empirical Study of Code Clone Genealogies. In Proc. of the
Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE),
pp.187-196, 2005.

[16] J. Krinke: Identifying Similar Code with Program
Dependence Graphs. In Proc. of the Working Conference on
Reverse Engineering (WCRE), pp.301-309, 2001.

[17] Krinke, J.: Mining Control Flow Graphs for Crosscutting
Concerns. In Proc. of the Working Conference on Reverse
Engineering (WCRE), pp.334-342, 2006.

[18] Marin, M., van Deursen, A. and Moonen, L.: Identifying
Aspects using Fan-in Analysis. In Proc. of the Working
Conference on Reverse Engineering (WCRE), pp.132-141,
2004.

[19] Marin, M.: Reasoning about Assessing and Improving the
Seed Quality of a Generative Aspect Mining Technique. In
Proc. of the International Linking Aspect Technology and
Evolution Workshop (LATE),
http://aosd.net/workshops/late/2006/ , 2006.

[20] Marin, M., Moonen, L. and van Deursen, A.: SoQueT:
Query-Based Documentation of Crosscutting Concerns. In
Proc. of the International Conference on Software
Engineering (ICSE), pp.758-761, 2007.

[21] Marin, M., Moonen, L. and van Deursen, A.: An Integrated
Crosscutting Concern Migration Strategy and its Application
to JHOTDRAW. In Proc. of the International Working
Conference on Source Code Analysis and Manipulation
(SCAM), pp.101-110, 2007.

[22] Pei, J., Han. J, Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal,
U. and Hsu, M.: PrefixSpan: Mining Sequential Patterns by
Prefix-Projected Growth. In Proc. of the International
Conference on Data Engineering (ICDE), pp.215-224, 2001.

[23] Roy, C. K., Uddin, M. G., Roy, B. and Dean, T. R.:
Evaluating Aspect Mining Techniques: A Case Study. In
Proc. of the International Conference on Program
Comprehension (ICPC), pp.167-176, 2007.

