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Abstract

Given a Euclidean graphG over a setP of n points in the plane, we are interested in verifying
whetherG is a Euclidean minimum spanning tree (EMST) ofP or G differs from it in more
thanǫn edges. We assume thatG is given in adjacency list representation and the point/vertex
setP is given in an array. We present a property testing algorithmthat accepts graphG if it
is an EMST ofP and that rejects with probability at least2

3
if G differs from every EMST of

P in more thanǫn edges. Our algorithm runs inO(
√

n/ǫ · log2(n/ǫ)) time and has a query
complexity ofO(

√
n/ǫ · log(n/ǫ)).
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1 Introduction

The minimum spanning tree problem in graphs belongs to one ofthe most fundamental problems in algo-
rithmic graph theory. In this paper we study a relaxation of the decision version of this problem for the
class of geometric (Euclidean) graphs. We investigate the problem of testing whether a given graphG is a
minimum spanning tree for a set of pointsP in the plane or it is far from any minimum spanning tree forP.

We consider a setP of n points in the Euclidean planeR2 and a geometric graphG = (P, E) with vertex
setP and edge setE. GraphG = (P, E) is called aEuclidean minimum spanning tree (EMST)of point setP
if G is a minimum spanning tree of the complete Euclidean graph ofP. The complete Euclidean graph is a
complete weighted graph, where each edgee = (p, q) ∈ P × P has weight equal to the Euclidean distance
betweenp andq. For simplicity, we make a standard assumption in computational geometry thatP is in
general position, i.e., all edge weights are distinct. In this case it is known that the EMST is unique (see,
e.g., [8]). We assume thatG is given in adjacency list representation and the setP is given in an array.

The main result of this paper is a property testing algorithmthat for a givenP andG accepts the input if
G is the EMST ofP and that rejects with probability at least2

3
every graphG that differs from the EMST of

P in more thanǫn edges. Our algorithm runs inO(
√

n/ǫ · log2(n/ǫ)) time and has query complexity of
O(
√

n/ǫ · log(n/ǫ)).
Notice that since the complexity of finding the EMST for a set of n points inR

2 is Θ(n logn) (even if
an approximate solution is sought), our result provides aÕ(

√
n)-time, thus sublinear-time approximation

procedure to test if a given geometric graph is the EMST.

1.1 Related research

Our result lies on the intersection of classical optimization and property testing. We study the Euclidean
minimum spanning tree problem and our goal is to approximately verify if a given geometric graph is
a minimum spanning tree. Our result follows the framework ofproperty testing[11, 21], which is the
computational task to decide if a given object satisfies a certain predetermined property (in our case, input
graph is a minimum spanning tree) or is far from every object having this property. If the input object
neither has the property nor is far from it, then the algorithm may answer arbitrarily. Thus, the outcome of
a property testing algorithm can be seen as an approximationof a property of the input.

The main reason of increasing popularity of property testing in recent years (see, e.g., surveys [9, 10, 20])
is that for a variety of problems the framework of property testing can lead tosublinear-timealgorithms, that
is, algorithms that can approximately verify if an object has a given property without the need to examine the
whole object. This has potential applications in massive data sets and other situations, when even reading
the input might be prohibitively expensive. In a sequence ofpapers, various property testing algorithms have
been developed for a variety of problems, starting with graph problems through string problems to problems
on matrices, see the survey works [9, 10, 20] and the references therein.

In this paper we present for the first time a property testing algorithm for theminimum spanning tree
(MST) problem. The problem of finding an MST is one of the most fundamental and most extensively
studied problems in algorithms. For arbitrary graphs, the currently fastest deterministic algorithm due to
Chazelle runs in timeO(n + mα(m,n)) [2], wheren is the size of the vertex set andm is the number of
edges in the input graph (see also [19]). Karger et al. [14] gave a linear-time randomized algorithm. The
problem ofverifying if the input graph is a minimum spanning tree of another graphin the general case has
been investigated in a series of papers [7, 15, 17], whereO(n + m)-time algorithms have been given. A
better situation is known for Euclidean graphs inR

d. In the case considered in the current paper, that is
for d = 2 (on the plane), Shamos and Hoey [22] gave anO(n logn)-time algorithm for finding an EMST
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(notice that in this casem = Θ(n2)). We are not aware of any research on the problem of verifyingif a
Euclidean graph is an EMST for its vertex set

Recently, (after publishing the preliminary version [6] ofthe current paper) three sublinear-time ap-
proximation algorithms have been presented for the problemof estimating theweightof the MST. These
algorithms are designed in a similar flavor as that in property testing. Chazelle et al. [3] presented an algo-
rithm that, given a connected graph in adjacency list representation with average degreeD, edge weights in
the range[1 . . . W], and a parameter0 < ε < 1

2
, approximates, with high probability, the weight of a MST in

time Õ(DW ε−3) within a factor of(1 + ε). Czumaj et al. [4] gave ãO(
√

n · poly(1/ε))-time for a similar
problem for geometric graphs, but this algorithm is assuming that the input graph is provided with some
additional geometric data structures. Finally, Czumaj andSohler [5] obtained añO(n · poly(1/ε))-time
algorithm that estimates the weight of the MST in any metric graph to within a factor of(1 + ε).

1.2 Outline

After we introduce some basic notation in Section 2, in Section 2.1 we develop a property tester for disjoint-
ness of geometric objects, which is used as a subroutine in the EMST tester. Next, in Section 3, we present
our property testing algorithm for the EMST problem. Section 4 gives another property testing algorithm
which is slightly faster for large values of1/ǫ.

2 Preliminaries

We begin with some basic definitions needed in this section before we discuss the input representation:

Definition 2.1 A geometric graphfor P is a weighted graphG = (P, E) with vertex setP and edge set
E ⊆ P × P (the edges can be interpreted as straight-line segments connecting the endpoints). The weight of
an edge(p, q) is implicitly given by the Euclidean distance betweenp andq in R

2.

Definition 2.2 A minimum spanning tree of the complete geometric graph forP is called theEuclidean
minimum spanning tree (EMST)of P.

Next we define when a graph is “far” from the EMST. Typically, adistance measure for graph properties
depends on the number of entries in the graph representationthat must be changed to obtain a graph that has
the tested property.

Definition 2.3 Let G = (P, E) be a geometric graph forP and letT = (P, E) be the Euclidean minimum
spanning tree ofP. We sayG is ǫ-far from being the Euclidean minimum spanning tree ofP (or, in short,
ǫ-far from EMST) if one has to modify (insert or delete) more thanǫn edges inG to obtainT, that is :

|E \ E| + |E \ E| > ǫn .

Input representation. We assume that both the point set and the graph are given as an oracle, and the
point set is represented by a functionf : [n] → R

2 (here and throughout the paper we will use the notation
[n] := {1, . . . , n} for the set of integer numbers between1 andn). The algorithm may query the oracle for
the value off(i) for somei ∈ [n]; the returned value is the position of theith point ofP.

The geometric graph is given in theunbounded length adjacency list representationintroduced in [18].
The unbounded length adjacency list model is a general modelfor sparse graphs. The graph structure is
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represented by adjacency lists of varying length. Our property tester may query the degreedeg(p) of a
vertexp and for eachi ≤ deg(p), it may query theith neighbor ofp.

The goal of property testing is to develop efficientproperty testers. A property tester for EMSTs is an
algorithm that takes a distance parameterǫ and the sizen of the input point setP (which equals the number
of nodes ofG). The property tester hasoracle accessto the functionf representing the point set and to the
graphG. A property tester is an algorithm that:

• acceptsG, if G is the EMST ofP, and

• rejectsG with probability at least2
3
, if G is ǫ-far from EMST.

If G is neither the EMST norǫ-far from it, then the outcome of the algorithm can go either way.1

Complexity of property testers. In this paper we study two types of complexity measures for property
testers: thequery complexityand therunning time. The query complexity measures the number of queries to
the oracle asked by a property testing algorithm. If one counts also the time the algorithm needs to perform
other tasks than querying the input function values, then the obtained complexity is called therunning time
of the property tester.

2.1 Disjointness of a set of objects

Before we start working on the EMST problem we first consider asimpler problem of disjointness of a set of
objects, which will be useful in our analysis of the EMST problem. A setO = {O1, . . . , On} of n arbitrary
objects ispairwise disjointif each pair of objectsOi andOj is disjoint,1 ≤ i < j ≤ n.

Definition 2.4 A setO of n objects isǫ-far from being pairwise disjointif one has to remove more thanǫn

objects fromO to obtain a pairwise disjoint set of objects.

We prove a simple fact that the following is a property testerfor pairwise disjointness of a set of objects.

DISJOINTNESSTESTER(set of arbitrary objectsO)
Choose a setS ⊆ O of sizeO(

√
n/ǫ) uniformly at random

if S is disjoint then accept
elsereject

Theorem 1 Algorithm DISJOINTNESSTESTER is a property tester for disjointness of a set of objects. Its
query complexity isO(

√
n/ǫ) and its running time isT(O(

√
n/ǫ)) + O(1), whereT(m) is the time to

decide whether a set ofm input objects is disjoint.

Proof : We have to prove that (1) algorithm DISJOINTNESSTESTER accepts every set of disjoint objects
and (2) that it rejects every set of objects that isǫ-far from disjoint with probability at least2

3
.

Part (1) is immediate and thus let us suppose thatO is ǫ-far from disjoint and prove part (2). It is easy to
see that we can applyk = ǫn

2
times the following procedure toO: pick a pair of intersecting objectsai and

bi, i ∈ [k], and remove it fromO. Now, in order to prove that DISJOINTNESSTESTER is a property tester it
is sufficient to show that with probability at least2

3
at least one of these pairs is inS. We will show only the

1We consider aone-sided errormodel, though in the literature also atwo-sided errormodel has been considered, see [9, 10, 20].

3



bound for the probability of1
4
; standard amplification techniques can be used to increase the probability to

2
3

(for example, by increasing the size ofS four times).
Using Boole-Bonferroni inequality, straightforward calculations give the following:

Pr [∃i ∈ [k] : {ai, bi} ⊆ S)] ≥
k∑

i=1

Pr [{ai, bi} ⊆ S)] −
∑

1≤i<j≤k

Pr [{ai, bi, aj, bj} ⊆ S)]

=

k∑

i=1

(
n−2
s−2

)
(
n
s

) −
∑

1≤i<j≤k

(
n−4
s−4

)
(
n
s

) ≥ k

(
s − 1

n − 1

)2
(

1 − k

(
s − 1

n − 1

)2
)

.

Hence,Pr [∃i ∈ [k] : {ai, bi} ⊆ S)] ≥ 1
4

for somes = Θ(
√

n/ǫ). 2

3 Testing Euclidean minimum spanning trees

We begin with discussion about some basic properties of Euclidean minimum spanning trees. Astraight-
line embeddingof a geometric graph is a drawing of the graph on the plane suchthat all edges are drawn as
straight lines; it iscrossing-freeif its edges do not cross. The following simple claim is well known (see,
e.g., [8, 16]):

Claim 3.1 Every Euclidean minimum spanning tree of a point set in general position inR
2 is connected, its

straight-line embedding is crossing-free and it has maximum degree less than or equal to five. 2

Now we want to introduce some additional notation that will be useful to simplify the description of the
algorithm and its analysis.

Definition 3.2 For a given point setP, a geometric graphG = (P, E), and the Euclidean minimum spanning
treeT = (P, E) of P, theEMST-completionof G is the geometric graphGC = (P, E ∪ E) that contains all
edges that are inG or in T.

In the next subsection we will present a property tester for EMST that works for a special class of
input graphs which we callwell-shaped. The restriction to well-shaped graphs simplifies the analysis of the
algorithm and it allows a clear view on the important features of the property tester.

Definition 3.3 We call a geometric graphG well-shapedif

• it is connected,

• the straight-line embedding of its EMST-completion is crossing-free, and

• it has maximum degree at most five.

Notice that by Claim 3.1, if a geometric graphG is the EMST ofP then it is well-shaped. Of course, the
opposite is not true. Still, however, we can first test if the input graphG is well-shaped and only if it is,
we can test if it is the EMST ofP. This suggests the following line of the attack: We first testif the input
graph is far from a well-shaped graph. If this is the case thenwe can reject the graph by Claim 3.1. If the
input graph passes the test, then we know that (with constantprobability) it is either close to a well-shaped
graph or it is well-shaped. If the graph is well-shaped we canuse the testing algorithm for the special case
of well-shaped graphs that will be presented in Sections 3.1–4.1. Then, in Sections 3.3–3.5, we show that
we can relax the assumption that the graph is well-shaped andthe algorithm will work also for graphs close
to well-shaped. This will establish our algorithm.
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3.1 Properties of EMSTs in well-shaped graphs

We now design a property tester for EMST when the input graph is well-shaped. First, we give an overview
of the algorithm.

Let G be a well-shaped geometric graph with vertex setP. We first pick a sample setS ⊆ P using a
randomized scheme to be described later. Next, we find the subgraphGS of G that is induced by the vertex
setS. Then we compute the EMST-completion ofGS. If the EMST-completion ofG has a cycle then we
reject the input; otherwise we accept.

Now, we proceed with the details. We first show that if the EMST-completion ofGS contains a cycle
then we can always reject the input graph. We use the following lemma which follows easily from standard
theory of minimum spanning trees (see, e.g., [23, Chapter 6]). (This lemma uses the fact that the EMST of
P is unique.)

Lemma 3.4 Let S ⊆ P be a subset ofP and letp, q ∈ S. If the edgee = (p, q) does not belong to the
EMST ofS, thene does not belong to the EMST ofP.

Proof : The proof is by contradiction. Let us suppose thate does not belong to the EMST ofS ande

belongs to the EMSTT of P. The removal ofe in T splits T into two trees. These two trees induce a
partition ofP into two subsetsP1 andP2. Sincee belongs to the EMST ofP, e must also be the shortest
edge between these two subsets. LetS1 = P1 ∩ S andS2 = P2 ∩ S. P1 andP2 are not empty since one
vertex ofe is in each of the sets. Thene is also the shortest edge betweenS1 andS2 and therefore it belongs
to the EMST ofS; contradiction. 2

The following are two immediate consequences of Lemma 3.4 that we will use later in the paper.

Corollary 3.5 LetG be a geometric graph forP. LetS ⊆ P and letGS be the subgraph ofG induced byS.

• If the EMST-completionG ′ = (P, E ′) of G contains a cycle2 C = (p0, . . . , pk) of lengthk ≥ 3 with
pi ∈ S for all 0 ≤ i ≤ k, then there is a cycle in the EMST-completion ofGS.

• If the EMST-completion ofGS contains a cycleC = (p0, . . . , pk) of lengthk ≥ 3, thenG is not the
EMST ofP. 2

Now let us consider an input graphG = (P, E) that is ǫ-far from EMST. Our goal is to design a
randomized sampling scheme such that the EMST-completion of the subgraph ofG induced by the sample
set contains a cycle with high probability. LetT = (P, E) be the EMST ofP and letGC = (P, E ∪ E) be
the EMST-completion ofG. In the following we refer to the edges inE asblue edgesand to the edges in
E \ E as red edges. (Notice a fundamental difference between blue and red edges, in that red edges are
given implicitly only, since they do not belong to the input graphG.) We will show that in our analysis, it is
sufficient to focus on “short” cycles that contain at most twored edges.

Definition 3.6 Let C be a cycle of lengthk in the EMST-completion ofG. We callC ǫ-short if (1) it is of
lengthk, wherek ≤ 72

ǫ
and (2) it contains at most two red edges.

2Here,C = (p0 , . . . , pk) is a cycle (of lengthk) if pi ∈ P for all i ∈ [k], p0 = pk , (pi−1 , pi) ∈ E ′ for all i ∈ [k] and
pi 6= pj for all i, j ∈ [k], i 6= j.
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In our algorithm we try to findǫ-short cycles that satisfy some additional “topological” properties. We
will exploit the fact thatG is well-shaped, in particular, that the EMST-completion ofG has a crossing-free
straight-line embedding. Hence we will use a topological representation of the geometric graphG to exploit
the fact that every minimal cycle in a (well-shaped) planar geometric graph corresponds to a face in its
straight-line embedding. In order to use this approach in a formal framework we will consider the geometric
graphG not only as an undirected graph, but at the same time also using its “directed” representation by
“replacing” each undirected edge(p, q) by two directed edges[p, q〉 and[q, p〉.

Figure 1: A straight-line embedding and its planar map representation.

For every vertexp in G we (cyclically) sort incident outgoing edges in clockwise order around the vertex
p with respect to the Euclidean positions of the edges’ endpoints. (This sorting is done only implicitly, but
since we assume that each vertex has a constant degree — at most five, each time we consider a vertex we
can sort its incident edges in constant time.) Thesuccessorof a directed edge[p, q〉 is the edge[q, r〉 where
r is the vertex adjacent toq that precedesp in the adjacency list ofq (sorted in clockwise order aroundq); if
q has degree one, thenr = p. Furthermore, for an edgee = [p, q〉 in G thekth successor, k ≥ 0, is defined
recursively as follows: the0th successor of[p, q〉 is [p, q〉 itself, and fork > 0, thekth successor of[p, q〉
is the successor of the(k − 1)st successor of[p, q〉. Similarly, edgee is thepredecessorof edgee ′ if edge
e ′ is the successor of edgee, ande is thekth predecessorof e ′ if e ′ is thekth successor ofe. With these
definitions, cycles of successive edges (with the exceptionof cycles of length two, which are not considered
as cycles in our analysis3) correspond to faces of the straight-line embedding. Such arepresentation ofG is
called aplanar mapfor the straight-line embedding ofG (see Figure 1). We denote it̃G.

We have introduced the planar map representation of a graphG because it describes the faces of the cor-
responding embedding in a simple way (using successive edges in G̃). We observe that the correspondence
between the faces in the embedding ofG and the cycles of successive edges inG̃ is one to one. We also
note that each (directed) edge is contained in exactly one cycle of successive edges. However, a vertex may
occur more than once in such a cycle (for an example, see the (inner) boundary of the outer face in Figure
1).

Let G be a well-shaped geometric graph forP and letC = (p0, . . . , pk), k ≥ 3, be a cycle in the planar
map of the EMST-completion ofG (let us remind that cycles of length two are not considered ascycles).
ThenC is calledtopological if for every two consecutive edges on the cycle[pi, pi+1〉 and [pi+1, pi+2〉,
edge[pi+1, pi+2〉 is the successor of[pi, pi+1〉. We also call the corresponding cycle inG topological.

The following key lemmashows that every well-shaped geometric graph that is far from EMST must

3A cycle of length two corresponds inG to a single edge incident to a vertex of degree one, and thus, in the planar map
representation ofG, it consist of two directed edges incident to a vertex of degree one in the straight-line embedding ofG.
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contain many short topological cycles in its EMST-completion.

Lemma 3.7 Let G = (P, E) be a well-shaped geometric graph forP. If G is ǫ-far from EMST, then there
are at leastǫn

100
ǫ-short topological cycles in the EMST-completion ofG.

Proof : Let T = (P, E) be the EMST ofP. Let EB = E \ E denote the set of blue edges in the EMST-
completion ofG that are not in the Euclidean minimum spanning tree and letER = E \ E denote the red
edges in the EMST-completion ofG. Notice that the connectivity ofG implies that|EB| ≥ |ER|. SinceG is
ǫ-far from EMST, we have|EB| + |ER| > ǫn by definition.

Next, let H denote the EMST-completion ofG and letH̃ denote the planar map of its straight-line
embedding. Letρ be the number of faces in the straight-line embedding ofH. Then, H̃ hasρ disjoint
topological cycles since each face is bounded by a unique cycle of successive edges. SinceH is planar,
connected, and has more thann − 1 + ǫn

2
edges, we apply Euler’s formula to deduce thatρ ≥ ǫn

2
.

Now, for every facef in H, let s(f) denote the number of (directed) edges in the topological cycle
bounding facef. Since by Euler’s formula

∑
f s(f) ≤ 6n, there can be at mostǫn

8
≤ ρ

4
facesf with

s(f) ≥ 48
ǫ

. Therefore, there are at least3ρ
4

facesf with s(f) < 48
ǫ

.
Since|ER| ≤ ρ, the number of directed red edges is at most2 ρ. Hence, the number of topological cycles

with 3 or more red edges can be at most2ρ
3

. Since we have shown that there are at least3ρ
4

topological
cycles having less than48

ǫ
edges, at leastρ

12
≥ ǫn

24
of them have at most two red edges. 2

Let G be a well-shaped geometric graph forP. For every vertexp ∈ P, we define itstopologicalk-
neighborhoodas the set of vertices that are the endpoints of the edges thatare either theith successor of any
edge incident top, 0 ≤ i ≤ k, or thejth predecessor of any edge incident top, 0 ≤ j ≤ k. The topological
k-neighborhood of a vertexp is denotedN top

G (p, k).
The following claim follows from the fact that every well-shaped graph has maximum degree at most

five.

Claim 3.8 LetG be a well-shaped geometric graph forP. For every vertexp ∈ P, we can find its topological
k-neighborhood in timeO(k). 2

3.2 Property tester in well-shaped graphs

Now we are ready to present our first property tester for testing if the input well-shaped graph is the EMST
of a given input point set. Later, in Section 4.1 in Lemma 4.6,we will present a more complex algorithm
that has the query complexityO(log(n/ǫ)

√
n/ǫ), as compared to the query complexity ofO(ǫ−1

√
n/ǫ)

of the algorithm discussed in this section.
Our approach is to sample uniformly at random a sufficiently large setQ of points inP. Then we add to

the sample set the topological72
ǫ

-neighborhood of every point inQ. Provided that the setQ is sufficiently
large, we prove in Lemma 3.12 that ifG is ǫ-far from EMST, then the obtained set of vertices will contain
a certainǫ-short topological cycle in the EMST-completion ofG with probability at least2

3
. By Corollary

3.5, this would certify thatG is not an EMST.
We assume thatG is well-shaped. Notice that everyǫ-short topological cycle either

1. is a cycle consisting of at most72
ǫ

blue edges, or

2. is a path consisting of at most72
ǫ

blue edges whose two endpoints are connected by a red edge, or

7



3. is a path consisting of at most72
ǫ

blue edges whose two endpoints are connected by a path consisting
of exactly two red edges, or

4. consists of two paths containing at most72
ǫ

blue edges whose endpoints are connected to each other
by two red edges.

We first observe that if there are manyǫ-short topological cycles of type (1) or (2), then we can easily spot
them.

Lemma 3.9 Let G = (P, E) be a well-shaped geometric graph. If the EMST-completion ofG contains at
least ǫn

200
ǫ-short topological cycles of type (1) or (2), then a setQ ⊆ P of size4000

ǫ
chosen uniformly at

random with probability at least2
3

contains at least one vertex from anǫ-short topological cycle.

Proof : SinceG is well-shaped, it has a maximum degree of five and therefore the EMST-completion of
G has maximum degree at most10. Thus, every vertexp ∈ P is contained in at most10 ǫ-short topological
cycles. This implies that the setPC of all vertices that are contained in at least oneǫ-short topological cycle
(of type (1) or (2)) has cardinality at leastǫn

2000
. Now, if we choose a setQ ⊆ P of size4000

ǫ
taken uniformly

at random fromP, then

Pr [Q ∩ PC = ∅] ≤
(

1 −
|PC|

n

)|Q|

≤
(
1 −

ǫ

2000

)|Q|

≤ 1

3
.

Therefore,

Pr [Q ∩ PC 6= ∅] ≥ 2

3
.

2

Next, we observe that for anyǫ-short topological cycleC of type (1) or (2), for every vertexv from C

all other vertices fromC belong to the topological72
ǫ

-neighborhood ofv. This motivates us to define the
sample setS as the topological72

ǫ
-neighborhood of all vertices inQ. Since the setQ contains at least one

vertex from anyǫ-short topological cycle of type (1) or (2) with probabilityat least2
3
, we can conclude that

S contains all vertices from a particularǫ-short topological cycle of type (1) or (2) with probabilityat least
2
3
. Since every vertex of the topological cycle is contained inour sample set we know by Corollary 3.5 that

the EMST-completion of the subgraph induced by our sample contains a cycle. Thus our property tester
rejects the input with probability2

3
if it is ǫ-far from EMST and its EMST-completion contains at leastǫn

200

ǫ-short topological cycles of type (1) or (2).
We can summarize our discussion above in the following lemma.

Lemma 3.10 LetG = (P, E) be a well-shaped geometric graph and letQ ⊆ P be a set of size4000
ǫ

chosen
uniformly at random fromP. If the EMST-completion ofG contains at leastǫn

200
ǫ-short topological cycles

of type (1) or (2), then the set

S =
⋃

p∈Q

N top
G

(
p,

72

ǫ

)

contains all vertices of at least oneǫ-short topological cycle with probability at least2
3
. 2
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Theǫ-short topological cycles of type (3) and (4) are more difficult to detect. However, we can still use
a very similar approach as for cycles of type (1) or (2), but this time we must find two vertices that belong to
the sameǫ-short topological cycle. Suppose that in the EMST-completion of G there are at leastǫn

200
ǫ-short

topological cycles of type (3) or (4). As before, we first takea random subsetQ of P, but this time the size
of Q is Θ(

√
n/ǫ). Then, we define the sample setS to be the union of the topological72

ǫ
-neighborhood of

all vertices inQ. We show now that the so defined sample set is sufficient to certify that G (if it is ǫ-far from
EMST) is not an EMST by proving an analogous statement to Lemma 3.10 for cycles of type (3) and (4):

Lemma 3.11 Let G = (P, E) be a well-shaped geometric graph and letQ ⊆ P be a set of size80
√

n/ǫ

chosen uniformly at random fromP. If the EMST-completion ofG contains at leastǫn
200

ǫ-short topological
cycles of type (3) or (4), then the set

S =
⋃

p∈Q

N top
G

(
p,

72

ǫ

)

contains all vertices of at least oneǫ-short topological cycle with probability at least2
3
.

Proof : For everyǫ-short topological cycleC of type (3), let us define the setWC to contain two vertices:
one vertex on the blue path inC and the vertex incident to the two red edges inC. Similarly, for every
ǫ-short topological cycleC of type (4), let us define the setWC to contain pairs of vertices: one vertex from
the first blue path inC and one vertex from the second blue path inC.

Since each vertexp ∈ P belongs to at most10 ǫ-short topological cycles, we can select from the sets
WC the setsWi, 1 ≤ i ≤ ǫn

2000
, such that the setsWi are disjoint and for eachi, 1 ≤ i ≤ ǫn

2000
, there is

anǫ-short topological cycleC with Wi = WC. Next, we can use the same arguments as in the proof of
Theorem 1 to obtain that

Pr [∃j ∈ [k] : (Wj ⊆ Q)] ≥ 2

3
.

Finally, we observe that ifWC ⊆ Q then all vertices of a cycleC are inS. Therefore, the lemma follows.2

Now we are ready to prove that the following algorithm is a property tester for EMST:

EMST-TEST-SIMPLE(G, ǫ)
s = 80

√
n/ǫ + 4000/ǫ

choose a setQ ⊆ P of sizes uniformly at random
S =

⋃
q∈QN top

G (q, 72
ǫ

)

compute the subgraphGS induced byS
compute the EMST-completionGC of GS

if GC contains a cyclethen reject
elseaccept

Lemma 3.12 Let G be a well-shaped geometric graph forP. Then there is a property tester that in time

O
(√

n/ǫ3 · log(n/ǫ)
)

and with query complexityO(
√

n/ǫ3) accepts the input ifG is an EMST ofP and

rejects the input with probability at least2
3

if G is ǫ-far from EMST.

9



Proof : By Corollary 3.5, if the input graphG = (P, E) is the EMST then EMST-TEST-SIMPLE accepts.
Now let us consider the case whenG is ǫ-far from EMST. Then, by Lemma 3.7, we know that there are

ǫn
100

ǫ-short topological cycles in the EMST completion ofG. It follows that there areǫn
200

cycles of type
(1) and (2) or ǫn

200
cycles of type (3) or (4). By Lemma 3.10 and 3.11 we know that the sample taken by

EMST-TEST-SIMPLE contains anǫ-short topological cycle with probability at least2
3
. By Corollary 3.5 we

know that then there is a cycle in the EMST-completion of the subgraph induced by our sample. Hence the
algorithm rejects in such a case.

The query complexity of the algorithm is immediate. Its running time follows from Claim 3.8 and the
fact that the EMST completion of a graph withm vertices can be computed in timeO(m logm). 2

3.3 Testing connectivity and crossing-freeness of EMST-completions in bounded degree
graphs

Now we want to relax the condition that the input graphs are well-shaped. We develop property testers for
connectivity and crossing-free EMST-completions in graphs of maximum degree at most five. If for a given
set of pointsP the input graphG of maximum degree at most five is an EMST then the tester accepts G.
If howeverG is ǫ-far from connected or the straight-line embedding of the EMST-completion ofG is ǫ-far
from crossing-free, respectively, then the tester rejectsG with probability at least2

3
.

3.3.1 Testing connectivity in bounded degree graphs

We begin with a test if a graph of maximum degree at most five is connected. We say a geometric graph
G for P is ǫ-far from connectedif one has to add more thanǫn edges toG to obtain a connected graph.
Observe that this definition if equivalent to saying thatG has more thanǫn + 1 connected components.

Since the property of being connected does not depend on the positions of the input points inP, we can
use a property tester for connectivity in graphs.

Lemma 3.13 [12]Let G be a graph with degree boundd. Connectivity ofG in the bounded length adja-

cency list model4 can be tested withO
(

log2(1/ǫd)

ǫd

)
time and query complexity.

We can immediately apply this result to geometric graphs:

Corollary 3.14 LetG be a geometric graph forP with maximum degree five. There is a property tester that

in timeO
(

log2(1/ǫ)
ǫ

)
and with a query complexity ofO

(
log2(1/ǫ)

ǫ

)
accepts the input ifG is connected and

rejects the input with probability at least2
3

if G is ǫ-far from connected.

Proof : We run the tester from [12] withd = 5 andǫ ′ = ǫ
5
. 2

3.3.2 Testing crossing-free EMST-completions in bounded degree graphs

Next, we design a property tester that accepts the input graph (with maximum degree at most five) if it is the
EMST and rejects it if the straight-line embedding of its EMST-completion isǫ-far from crossing-free. We

4In the bounded degree graph model a graph isǫ-far from connected if one has to add more thanǫ d n edges to obtain a
connected graph.
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say that the straight-line embedding of a geometric graphG for P is ǫ-far from crossing-freeif one has to
remove more thanǫn edges inG to obtain a crossing-free straight-line embedding of its EMST completion.

We proceed in two steps. First, our property tester checks for pairs of intersecting blue edges and then
for intersections between blue and red edges; red edges cannot intersect because they are edges of the EMST.

We first use the tester DISJOINTNESSTESTER developed in Section 2.1 to find intersections between
blue edges. SinceG has maximum degree five, it has at most2.5n edges. Therefore, since one can verify
in time O(n logn) if a geometric graph withn vertices has crossing-free straight-line embedding [1],
Theorem 1 implies the following result.

Lemma 3.15 LetG be a geometric graph with maximum degree at most five. There isa property tester that
in timeO(

√
n/ǫ log(n/ǫ)) and with the query complexity ofO(

√
n/ǫ) accepts the input if the straight-

line embedding ofG is crossing-free and rejects the input with probability at least 2
3

if the straight-line
embedding ofG is ǫ-far from crossing-free. 2

It remains to design a property tester for red-blue intersections in the EMST-completion ofG. (More
precisely, we do not design a property tester for the property of having no red-blue intersections. Our
algorithm might reject an input graph if its EMST-completion has no red-blue intersections. However, if the
input graph is the EMST then it is always accepted by our algorithm.) A geometric graph with red and blue
edges has a straight-line embedding without red-blue intersections if there is no intersection between the
corresponding red and blue segments. Similarly, the straight-line embedding of a geometric graph whose
edges are colored blue and red isǫ-far from having no red-blue intersectionsif one has to delete more than
anǫ-fraction of its edges to remove all red-blue intersections.

The main difficulty with testing for red-blue intersectionsin the EMST-completion ofG is caused by the
fact that the red edges are defined onlyimplicitly, because they do not belong to the input graphG. We will
use the following lemma to study properties of intersections of explicitly given blue edges with implicitly
given red ones.

Lemma 3.16 Let pq be a red andxy be a blue segment in the EMST-completion ofG. If pq and xy

intersect each other, then either edge(x, y) is not in the EMST of any set containing{x, y, p}, or (x, y) is
not in the EMST of every set containing{x, y, q}.

Proof : The pointsp, q, x, y are in convex position because the segmentspq andxy intersect. We consider
the quadrilateralpxqy (see Figure 2). Let us call the inner angles in the quadrilateral at verticesp, q, x, y

to beα, β, γ, andδ, respectively. Let us recall that the longest edge of a triangle is opposite of the largest
angle.

If α < π
2

andβ < π
2

thenγ or δ is larger thanπ
2

becauseα + β + γ + δ = 2π. Without loss of
generality, letγ > π

2
. Then, segmentpq is the longest edge of trianglepqx and thus it cannot be the EMST

of {p, q, x}. By Lemma 3.4 this is a contradiction to the fact that(p, q) is an edge of the EMST. Hence we
must have eitherα ≥ π

2
or β ≥ π

2
.

If α ≥ π
2

then segmentxy is the longest edge in trianglepxy. Hence edge(x, y) is not contained in the
EMST ofp, x, y. By Lemma 3.4 it is also not contained in any EMST of a subset ofP that containsp, x, y.
Similarly, if β ≥ π

2
then edge(x, y) is not contained in any EMST of a subset ofP that containsq, x, y. 2

This lemma shows that each red-blue intersection between a red edge(p, q) and a blue edge(x, y) has a
“witness” consisting of one pointz ∈ {p, q} and the edge(x, y) so that(x, y) is not in the EMST ofx, y, z.

Our property tester for red-blue intersections is similar to the DISJOINTNESSTESTER tester but we use
a modified definition of disjointness property: We say thattwo pointsv, u ∈ P intersectif there is a point
w ∈ P such that at least one of(v,w) and(u,w) is a blue edge that is not in the EMST ofv, u,w.

11



p

q

y
x

α

β

δ
γ

Figure 2: A quadrilateral〈p, q, x, y〉 with red blue intersection. The red edge is dotted.

We now are ready to present our property tester for red-blue intersections:

REDBLUETEST(G, ǫ)
Choose a setS ′ ⊂ P of size16

√
5n/ǫ uniformly at random

Let S = S ′ ∪ N (S ′), whereN (S ′) denotes the set of neighbors of points inS ′

Let GS denote the subgraph induced byS

if the EMST-completion ofGS has a cyclethen reject
elseaccept

The analysis of the algorithm is similar to the analysis of DISJOINTNESSTESTER, Theorem 1.

Lemma 3.17 Let G be a geometric graph forP with maximum degree five. AlgorithmREDBLUETEST

runs in timeO(
√

n/ǫ logn) and with the query complexity ofO(
√

n/ǫ), and accepts the input graphG
if it is the EMST ofP and rejects the input with probability at least2

3
if the straight-line embedding of the

EMST-completion ofG is ǫ-far from having no red-blue intersection.

Proof : Obviously, ifG = (P, E) is the EMST then algorithm REDBLUETEST acceptsG.
Let GC denote the EMST-completion ofG and let us assume thatGC is ǫ-far from having no red-

blue intersections. By Lemma 3.16, we can apply the following procedurek = ǫn
20

times: pick a pair of
intersecting (according to the definition above) points{v, u} = Wi, i ∈ [k], and remove all edges incident
to v andu from GC. By the degree bound, we removed at most10 edges for the two vertices, and therefore
this procedure can be performed at leastk times.

In order to prove that ifGC is ǫ-far from having no red-blue intersections then REDBLUETEST rejects
G with probability at least2

3
, we first use the same arguments as those used in the proof of Theorem 1 to

obtain:

Pr
[
∃j ∈ [k] : (Wj ⊆ S ′)

]
≥ 2

3
.

It remains to show that if there is a setWi ⊆ S ′ then the algorithm rejects the input graph. IfWi =

{v, u} ⊆ S ′ then there exists a blue edgee = (v,w) (or e = (u,w)) such thate is not in the EMST of
v, u,w. Therefore, by Lemma 3.4,e is not in the EMST ofS. HenceS has a cycle and REDBLUETEST

rejects. 2

Finally, we can combine Lemmas 3.15 and 3.17 to obtain the following result.
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Lemma 3.18 Let G be a geometric graph forP with maximum degree five. There is an algorithm that in
timeO(

√
n/ǫ log(n/ǫ)) and with a query complexity ofO(

√
n/ǫ) acceptsG if G is the EMST ofP and

rejectsG with probability at least2
3

if the straight-line embedding of the EMST-completion ofG is ǫ-far
from crossing-free.

Proof : Let G be ǫ-far from having a crossing-free EMST-completion. Then, either the straight-line
embedding ofG is ǫ

2
-far from crossing-free or the EMST-completion ofG is ǫ

2
-far from having no red-blue

intersections. Applying Lemma 3.15 and Lemma 3.17 withǫ = ǫ
2

shows thatG is rejected with probability
at least2

3
. Since the tester for blue-blue intersection and the testerfor red-blue intersections both accept the

EMST, this completes the proof of Lemma 3.18. 2

3.4 Property tester for low degree

Our next step is to deal with graphs that have maximum degree greater than five. A graphG is ǫ-far from
having low degreeif one has to remove more thanǫn edges inG to obtain a graph having maximum degree
smaller than or equal to five. In this section, we develop an efficient property tester for low degree.

Let us call a vertexheavyif it either has degree greater than five or it has a neighbor ofdegree greater
than five. Observe that if in a graph we removed all edges between heavy vertices then we would obtain a
graph of maximum degree at most five. Therefore, ifG is ǫ-far from having small degree, then there are at
least

√
ǫn heavy vertices inG. (Indeed, for if not, then we could remove less than(

√
ǫn)2 = ǫn edges

and obtain a graph with maximum degree at most five, what contradicts the assumption thatG is ǫ-far from
having small degree.) Therefore the simple algorithm that picks a random setS of 4

√
n/ǫ points inP and

tests if every pointp ∈ S has the degree smaller than or equal to five and if so then it tests if every neighbor
of p ∈ S has degree smaller than or equal to five, will detect with probability greater than or equal to2

3
every

geometric graphG that isǫ-far from having small degree.

Lemma 3.19 LetG be a geometric graph forP. There is a property tester that in timeO(
√

n/ǫ) and with
a query complexity ofO(

√
n/ǫ) accepts the input ifG has a maximum degree smaller than or equal to five

and rejects the input with probability at least2
3

if G is ǫ-far from having small degree.

Proof : Clearly, our algorithm accepts every graph having maximum degree of five. Let us assume thatG

is ǫ-far from having small degree. LetS be a sample of size4
√

ǫn chosen uniformly at random fromP.

Pr [S contains no heavy vertex] ≤ (1 − 1/
√

n/ǫ)4
√

n/ǫ ≤ 1

3
.

It follows that

Pr [S contains a heavy vertex] ≥ 2

3
.

Hence our algorithm rejects every graph that isǫ-far from having small degree with probability at least2
3
.

Thus it is a property tester.
The running time and the query complexity follow from the fact that since the degree of everyp ∈ S is

less than or equal to five, all operations can be performed in aconstant time per vertexp. 2
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3.5 Property tester for general graphs

To obtain a tester for general graphs, we first test if the input graph isǫ
4
-far from having low degree (using

the tester described in Section 3.4). Then, we run the testerfor testing if a graph of maximum degree at
most five isǫ

4
-far from being connected (using the tester described in Section 3.3.1). Next, we test if a graph

of maximum degree at most five isǫ
4
-far from having straight-line embedding of its EMST-completion

crossing-free (using the tester described in Section 3.3.2). Finally, we run our algorithm that tests if a given
well-shaped geometric graph isǫ

4
-far EMST. There is one important modification in all these algorithms:

• For each vertexv ∈ S, we also include every neighbor ofv in G into the sample set. This can be done
without asymptotically increasing the running time of the algorithm (because if we encounter a vertex
with degree greater than five then we rejectG).

• If during the course of the algorithm we encounter a vertex with degree greater than five, we immedi-
ately reject the input graph.

• If during the course of the algorithm we detect that the inputgraph is not connected then we immedi-
ately reject the input graph.

• If during the course of the algorithm we detect that the straight-line embedding of the EMST-completion
of the input graph is not crossing-free then we immediately reject the input graph.

Clearly, the above modifications do not affect the case when the input graph is the EMST of the point
set: the algorithm will still accept the input graph. Thus let us consider the case when the input graphG is
ǫ-far from EMST. If the low degree tester rejects the input graph, we are done. Thus let us assume that the
input graph passes this test but it isǫ-far from EMST. Now we define the graphG ′ to be a graph obtained
from G by deleting a minimal set of edges such thatG ′ has maximum degree of five. Since we deleted less
than ǫn

4
edges fromG to obtainG ′, we conclude thatG ′ is 3ǫ

4
-far from EMST.

In order to analyze the behavior of the modified algorithm fortesting the three other properties, we
consider the (unmodified) algorithm for graphs with maximumdegree five. First of all, we observe that
if there is a heavy vertex in the sample chosen by the unmodified algorithm then the modified algorithm
always rejects. But if there is no heavy vertex in the sample chosen by the unmodified algorithm then the
graph “looks” like the graphG ′ which has maximum degree five and is3ǫ

4
-far from EMST.

Once we have an algorithm running on graphs with maximum degree at most five, our testers for con-
nectivity and crossing-freeness of straight-line embedding of the graph’s EMST-completion can be used
without any further modifications. Therefore, after running these two testers, we can assume, with probabil-
ity at least(2

3
)3, that the input graph has maximum degree at most five, is notǫ

4
-far from being connected

and is notǫ
4
-far from having its EMST-completion crossing-free. Next,we observe that since the algorithm

did not spot a heavy vertex, nor a disconnected component, nor a crossing in the graph’s EMST-completion,
for the algorithm from Lemma 3.12 the graph “looks” like the graphG ′′ which is well-shaped. Therefore, if
we run the algorithm from Lemma 3.12, then it will reject a graph that isǫ

4
-far from EMST with probability

2
3
. Hence, these arguments imply the following main theorem.

Theorem 2 There is a property tester for the EMST property with a running time ofO(
√

n/ǫ3) · log(n/ǫ))

and with a query complexity ofO(
√

n/ǫ3). 2

Finally, we remark that the entire analysis can be carried over to the case of arbitrary (possibly degen-
erated) inputs, not necessarily in the general position. The main idea is to replace the (unique) minimum
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spanning tree in the analysis for point sets in general position by the minimum spanning tree that is nearest
(in terms of edit distance) to the input graph. Our algorithmwill also compute such spanning tree on its
sample set of points. This can be done by first computing a minimum spanning tree of the sample set. Then
we take the union of this minimum spanning tree and the input graph and compute the minimum spanning
tree of this union. During this computation we use the following tie-breaker rule for edge lengths: If two
edges have the same length and one of them is contained in the input graph, we prefer this edge. This way,
we obtain the minimum spanning tree that is closest to the input graph. If the union of this tree with the
subgraph of the input graph induced by our sample set has a circle, then we found a counter example and
can safely reject.

4 Another algorithm: stronger bound for large ǫ

In the previous section, we presented a property tester for the EMST property with a running time of
O(
√

n/ǫ3) · log(n/ǫ)) and with a query complexity ofO(
√

n/ǫ3). In this section, we present another
algorithm whose complexity is better for large values ofǫ; its running time isO(

√
n/ǫ) · log2(n/ǫ))

and its query complexity isO(
√

n/ǫ · log(n/ǫ)). The algorithm differs only in one step: we use another
algorithm for testing EMST in well-shaped graphs.

4.1 Improved property tester in well-shaped graphs

In this section we present a modification of the property tester EMST-TEST-SIMPLE(G, ǫ) that has a slightly
better complexity. In our property tester in Section 3.2, wewere always trying to catch one initially fixed
single vertex from each blue path although anǫ-short topological cycle can contain as many as72

ǫ
vertices.

We now want to take the length of the topological cycles into consideration. Furthermore, we were always
taking topological72

ǫ
-neighborhoods of all vertices. This strategy should be applied to the cycles that have as

many as72
ǫ

edges, but it is not necessary for shorter cycles. Our approach now is to improve the complexity
of the property tester by combining these two observations.We show that if the input graph is well-shaped
then the following algorithm is a property tester for EMST:

EMSTTEST(G, ǫ)
s = 1700

√
n/ǫ + 192000/ǫ + 4000/ǫ

S =FINDCYCLE(G, s, ǫ)
compute the subgraphGS induced byS
compute the EMST-completionGC of GS

if GC contains a cyclethen reject
elseaccept

Where the procedure FINDCYCLE is the following:
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FINDCYCLE(G, s, ǫ)
S(0) = ∅
for i = 1 to 2s do

j = 0

pick a vertexp(i) ∈ P uniformly at random
while j ≤ log 72

ǫ
do

j = j + 1

flip a coin
if headthen exit the while-loop

S(i) = S(i−1) ∪ N top
G (p(i), 2j)

return S(2s)

First, we observe that by Corollary 3.5 algorithm EMSTTEST accepts every EMST. Therefore, we only
have to prove that if the input graph isǫ-far from EMST then it is rejected with probability at least2

3
.

Let us assume thatG is well-shaped andǫ-far from EMST. Then, by Lemma 3.7, there are at leastǫn
100

ǫ-short topological cycles in the EMST-completion ofG. Let Cj, j = 1, 2, 3, 4, denote the set of allǫ-short
topological cycles of type (j) in the EMST-completion ofG. Now we consider separately cycles inC1 ∪ C2

and cycles inC3 ∪ C4. By our discussion above we have either|C1 ∪ C2| ≥ ǫn
200

or |C3 ∪ C4| ≥ ǫn
200

.
From now on, to simplify the notation, we will useλ = ǫ

200
.

Cycles of type (1) and (2). Suppose thatG is a geometric graph forP with maximum degree five and there
are at leastλn ǫ-short topological cycles of type (1) or (2) in the EMST-completion ofG. We first consider
the probability that a fixedǫ-short topological cycleC ∈ C1∪C2 is contained in the sample set. Letℓ denote
the number of vertices in cycleC. Then the probability that in roundi of the FINDCYCLE procedure vertex
p(i) is one of theℓ vertices of cycleC is ℓ

n
. Furthermore, the probability that the topological neighborhood

of p(i) is chosen large enough to contain all vertices ofC is at least 1
2ℓ

. Overall, for a fixed cycleC the
probability that a vertex ofC is chosen in roundi and that the topological neighborhood of the vertex is
large enough is at least1

2n
. If the cycles are vertex disjoint then it is simple to prove that afterO(1

ǫ
) rounds

at least one cycle is completely contained in the sample set with constant probability. Unfortunately, in
the general case the cycles are not vertex disjoint. To overcome this technical problem we use the planar
map representation ofG and the following trick for the analysis: Instead of taking the whole topological
2j-neighborhood of vertexp(i) we assume that our algorithm selects only one of the outgoingedges (in its
planar map representation) uniformly at random. Then it includes only the2j successors and predecessors
of the chosen edge in the planar map representation ofG. Clearly, this procedure considers only a subset of
the vertices considered in the original procedure. Nevertheless, we can show that the set of vertices we pick
using this procedure will contain the vertices ofC with sufficiently large probability. For the analysis we
use the fact that every cycle corresponds to the boundary of aface in the planar map representation of the
EMST completion. Thus, for every cycleC there is a unique directed cycleC ′. Furthermore, these directed
cycles are edge disjoint.

Assume that we pick a vertex that belongs to cycleC ′. Provided thatj is large enough we still have
to choose the correct directed outgoing edge to have all vertices ofC ′ (and hence all vertices ofC) in the
sample set. Since our graph has a degree bound of five the probability that this edge is chosen is at least
1
5
. Since type (2) cycles withℓ vertices are spanned by a path of (at least)ℓ − 1 (directed) blue edges, the

probability thatp(i) is one of the origins of these edges isℓ−1
n

≥ ℓ
2n

(a directed edge points from itsorigin
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to its destination). Hence the probability that a directed cycleC ′ of type (1) or (2) is completely contained
in the sample set is at least1

20n
. We know that all directed cycles are disjoint and so the probability that

at least one directed cycle is completely contained in the sample set taken in roundi is at least λn
20n

= λ
20

.
Since each directed cycleC ′ has the same set of vertices as the corresponding undirectedcycleC and since
the sample set taken in roundi by our modified procedure is a subset of the topological2j-neighborhood of
p(i), the probability that all vertices of cycleC are in the topological2j-neighborhood ofp(i) is the at least
the probability that all vertices of the directed cycleC ′ are in the sample set taken in roundi by our modified
procedure. Hence, we know that in roundi with probability at leastλ

20
for some cycleC ∈ C1∪C2 its set of

vertices is completely contained in the topological2j-neighborhood ofp(i). Let X(2s) denote the indicator
random variable for the event that all vertices of some cycleC ∈ C1 ∪ C2 are contained in the sample set
S(2s). Then we have fors ≥ 20

λ
= 4000

ǫ
:

Pr
[
X(2s) = 0

]
≤
(

1 −
λ

20

)2s

≤ 1

3

and hence

Pr
[
X(2s) = 1

]
≥ 2

3

and so we have just proved:

Lemma 4.1 Let G be a geometric graph forP with maximum degree five that has at leastǫn
200

topological
ǫ-short cycles of type (1) or (2). If algorithmFINDCYCLE(G, s, ǫ) is invoked withs ≥ 4000

ǫ
then the set

S(2s) returned by the algorithm contains anǫ-short topological cycle with probability at least2
3
. 2

Cycles of type (3) and (4). Let G be a geometric graph with maximum degree five. Let us further assume
that there are at leastλn topologicalǫ-short cycles of type (3) and (4) in the EMST-completion ofG, for
λ = ǫ

200
. We show that the sample set computed by algorithm FINDCYCLE contains every vertex of at least

oneǫ-short topological cycle with good probability.
Recall that cycles of type (4) consist of 2 paths of blue edgesconnected by two red edges. Cycles of

type (3) are a special case of type (4) cycles: The shorter path has length0. For each cycleC ∈ C3 ∪ C4 let
X

(i)

C denote the indicator random variable for the event that all vertices of the longer (blue) path of cycleC

are inS(i). Let Y(i)

C be the indicator random variable for the event that all vertices of the shorter (blue) path
of cycleC are inS(i). Furthermore, let∆(i+1) be the indicator random variable for the event that there is a
cycleC ′ ∈ C3∪C4 with X

(i)

C′ = 0 andX
(i+1)

C′ = 1. We say that a cycleC ∈ C3∪C4 is half-containedin S(i)

if X
(i)

C = 1. CycleC is containedin S(i) if X
(i)

C = 1 andY
(i)

C = 1.
We analyze the algorithm in two steps. We first show that with high probability many (at leastλs

80
)

topologicalǫ-short cycles are half-contained in the setS(s). Then we show that the setS(2s) contains at
least one cycleC ∈ C3 ∪ C4 with high probability.

Claim 4.2 Let the outcome of the random choices in round1 to i of thefor -loop ofFINDCYCLE be fixed. If
∑

C∈C3∪C4

X
(i)

C <
λs

2
(1)

then

Pr
[
∆(i+1) = 1

]
≥ λ

40
. (2)
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Proof : Let us assume that (1) holds. Then we observe that:

∑

C∈C3∪C4

X
(i)

C <
λs

2
≤ λn

2
,

sinces ≤ n. We conclude that we have more thanλn
2

cycles inC3 ∪ C4 that are not half-contained inS(i).
If p(i+1) is one of the vertices of the longer path of one of these cyclesand if the topological neighborhood
included in FINDCYCLE is large enough then we have∆(i+1) = 1. To estimate the probability for∆(i+1) = 1

we apply the same approach as in the analysis for the case of type (1) and (2) cycles. This yields immediately
(observing that we haveλn

2
cycles instead ofλn):

Pr
[
∆(i+1) = 1

]
≥ 1

2 ℓ
· ℓ

2n
· 1

5
· λn

2
=

λ

40
.

2

Our next goal is to show that there are at leastλs
80

cycles that are half-contained inS(s).

Claim 4.3

Pr




∑

C∈C3∪C4

X
(s)

C ≤ λ s

80


 ≤ e− λs

300 .

Proof :

Pr




∑

C∈C4∪C4

X
(s)

C ≤ λ s

80


 ≤ Pr




∑

1≤i≤s

∆(i) ≤ λ s

80


 ≤ Pr




∑

1≤i≤s

B(i) ≤ λ s

80


 ,

whereB(i) are independent0–1 variables withPr[B(i) = 1] = λ
40

. The latter inequality follows from Claim
4.2. We now apply a Chernoff bound [13, inequality (7)] to obtain

Pr




∑

C∈C4∪C4

X
(s)

C ≤ λ s

80


 ≤ Pr




∑

1≤i≤s

B(i) ≤
(

1 −
1

2

)
· λ s

40


 ≤ e− λ s

320 .

2

LetW(i+1) denote the indicator random variable for the event that there existsC ∈ C3∪C4 with X
(i)

C = 1

andY
(i)

C = 0 andY
(i+1)

C = 1.

Claim 4.4 Let the outcome of the random choices in round1 to i of the procedureFINDCYCLE be fixed. If

∑

C∈C3∪C4

X
(i)

C >
λs

80

then

Pr
[
W(i+1)

]
≥ λ s

1600n
.
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Proof : We assume that there are more thanλs
80

cycles that are half-contained inS(i). Again, we use
essentially the same approach as in the case of type (1) and (2) cycles. We observe that there is a problem
with cycles of type (3). Since the length of the shorter path is 0 there is no directed edge in this path. Thus
we have to slightly modify our approach. We use the followingsampling scheme for the analysis: Instead
of taking the whole topological2j-neighborhood ofp(i) we choose a numberk between1 and6 uniformly
distributed. Ifk is between1 and five we include the2j predecessors and successors of thekth edge incident
to p(i). In the casek = 6 we only include the vertexp(i) in the sample. Then we get that the probability
that a cycleC is contained in the sample is at least1

2ℓ
· ℓ

2n
· 1

6
= 1

24n
. We have more thanλs

80
cycles that are

half-contained inS(i). Therefore we obtain that:

Pr
[
W(i+1)

]
≥ λ s

1920 · n .

2

Lemma 4.5 Let G be a geometric graph forP with maximum degree five that has at leastǫn
200

topological
ǫ-short cycles of type (3) or (4). ThenFINDCYCLE is an algorithm with (expected) query complexity
O(
√

n/ǫ log(n/ǫ)) that samples a setS ⊆ P, |S| ≥ 1700
√

n/ǫ + 192000
ǫ

, such that the EMST-completion
of the subgraphGS(2s) induced byS(2s) has anǫ-short topological cycle.

Proof : Let λ = ǫ
200

and letG be a geometric graph forP with maximum degree five that has at least
λn topologicalǫ-short cycles of type (3) or (4). By Claim 4.4, the probability that there is a cycle in the
EMST-completion of the subgraph induced byS(2s) is greater than or equal to

1 −


Pr


1

s

∑

C∈C3∪C4

X
(s)

C ≤ λ

80


+

(
1 −

λ s

1920n

)s


 .

Choosings ≥ 1700
√

n/ǫ+192000
ǫ

, this bound together with Claim 4.3 forn ≥ 4 implies that the probability
that there is a cycle in the EMST-completion of the subgraph induced byS(2s) is greater than or equal to
1 − (e−2 + e−5) ≥ 4

5
. 2

The complexity of our tester in Lemma 4.5 is in expectation. We can obtain a tester with a deterministic
bound on the query complexity, if we stop our algorithm when the sample size is some constant larger than
its expectation. The small additional error can be charged to the failure probability of the algorithm.

Lemma 4.6 Let G be a well-shaped geometric graph forP. Then there is a property tester that in time
O(log2(n/ǫ) ·

√
n/ǫ) and with query complexity ofO(log(n/ǫ) ·

√
n/ǫ) accepts the inputG if G is an

EMST ofP and that rejects the input with probability at least2
3

if G is ǫ-far from EMST.

Proof : Follows from Lemmas 3.7, 4.1 and 4.5. 2

4.2 Extension to general graphs

The result from Lemma 4.6 can be extended using property testing algorithms from Sections 3.3–3.5 to
obtain the following result.

Theorem 3 There is a property tester for the EMST property with a running time ofO(
√

n/ǫ) · log2(n/ǫ))

and with a query complexity ofO(
√

n/ǫ · log(n/ǫ)). 2

19



5 Conclusions

There are a few open problems left after our work. We believe that our property testing algorithms have
asymptotically optimal or almost optimal complexity, but we leave as an open question whether this is
indeed the case. Our algorithms have been using many properties of minimal spanning trees for sets of
points on the plane; can one extend our approach to obtain ano(n)-time property testing for EMST in
higher dimensions, say, even inR

3?

References

[1] J. L. Bentley and T. A. Ottmann. Algorithms for reportingand counting geometric intersections.IEEE
Transactions on Computers, C-28:643–647, 1979.

[2] B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity.Journal
of the ACM, 47(6): 1012–1027, November 2000.

[3] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree weight in
sublinear time.SIAM Journal on Computing, 34(6): 1370–1379, 2005.

[4] A. Czumaj, F. Ergün, L. Fortnow, A. Magen, I. Newman, R. Rubinfeld, and C. Sohler. Sublinear-time
approximation of Euclidean minimum spanning tree.SIAM Journal on Computing, 35(1): 91–109,
2005.

[5] A. Czumaj and C. Sohler. Estimating the weight of metric minimum spanning trees in sublinear-time.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages 175–183,
2004.

[6] A. Czumaj, C. Sohler, and M. Ziegler. Property testing incomputational geometry. InProceedings of
the 8th Annual European Symposium on Algorithms (ESA), pp. 155–166, 2000.

[7] B. Dixon, M. Rauch, and R. E. Tarjan. Verification and sensitivity analysis of minimum spanning trees
in linear time.SIAM Journal on Computing, 21(6):1184–1192, 1992.

[8] D. Eppstein. Spanning trees and spanners. InHandbook of Computational Geometry, pp. 425–461.
Elsevier Science B.V., 1997.

[9] E. Fischer. The art of uniformed decisions. A primer to property testing.Bulletin of the European
Association for Theoretical Computer Science, 75:97 – 126, 2001.

[10] O. Goldreich. Combinatorial property testing (a survey). In P. Pardalos, S. Rajasekaran, and J. Rolim,
editors,Proceedings of the DIMACS Workshop on Randomization Methods in Algorithm Design, vol-
ume 43 ofDIMACS, Series in Discrete Mathematics and Theoretical Computer Science, pages 45–59,
1997. American Mathematical Society, Providence, RI, 1999.

[11] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approx-
imation. Journal of the ACM, 45(4):653–750, 1998.

[12] O. Goldreich and D. Ron. Property testing in bounded degree graphs.Algorithmica, 32(2): 302–343,
2002.

20
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