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Abstract

Given a Euclidean grap@ over a seP of n points in the plane, we are interested in verifying
whetherG is a Euclidean minimum spanning tree (EMST)Robr G differs from it in more
thane n edges. We assume th@tis given in adjacency list representation and the pointiéxer
setP is given in an array. We present a property testing algorithat accepts grapt if it
is an EMST ofP and that rejects with probability at Iea%ﬁf G differs from every EMST of
P in more thane n edges. Our algorithm runs i@(/n/€ - log?(n/e)) time and has a query
complexity of O(y/n/e - log(n/e)).
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1 Introduction

The minimum spanning tree problem in graphs belongs to onleeomost fundamental problems in algo-
rithmic graph theory. In this paper we study a relaxationhef tlecision version of this problem for the
class of geometric (Euclidean) graphs. We investigate tbbl@m of testing whether a given graghis a
minimum spanning tree for a set of poiritsn the plane or it is far from any minimum spanning tree For

We consider a sét of n points in the Euclidean plarig? and a geometric grapé = (P, E) with vertex
setP and edge sdi. GraphG = (P, E) is called aEuclidean minimum spanning tree (EMSF)point setP
if G is a minimum spanning tree of the complete Euclidean gragh dhe complete Euclidean graph is a
complete weighted graph, where each edge (p, q) € P x P has weight equal to the Euclidean distance
betweenp andq. For simplicity, we make a standard assumption in compariatigeometry thaP is in
general position, i.e., all edge weights are distinct. is tase it is known that the EMST is unique (see,
e.g., [8]). We assume th&t is given in adjacency list representation and thePsistgiven in an array.

The main result of this paper is a property testing algorithat for a giverP andG accepts the input if
G is the EMST ofP and that rejects with probability at Ieaéevery graphG that differs from the EMST of
P in more thane n edges. Our algorithm runs if(1/n/e - log?(n/e)) time and has query complexity of
O(y/n/e-log(n/e)).

Notice that since the complexity of finding the EMST for a setgoints inR? is @(n logn) (even if
an approximate solution is sought), our result provid&(a/ﬁ)—time, thus sublinear-time approximation
procedure to test if a given geometric graph is the EMST.

1.1 Related research

Our result lies on the intersection of classical optim@matand property testing. We study the Euclidean
minimum spanning tree problem and our goal is to approxipaterify if a given geometric graph is
a minimum spanning tree. Our result follows the frameworkpafperty testing[L1, 23], which is the
computational task to decide if a given object satisfies srepredetermined property (in our case, input
graph is a minimum spanning tree) or is far from every objestirig this property. If the input object
neither has the property nor is far from it, then the algomitmay answer arbitrarily. Thus, the outcome of
a property testing algorithm can be seen as an approximatiarmproperty of the input.

The main reason of increasing popularity of property testirecent years (see, e.g., survey$ [9[10, 20])
is that for a variety of problems the framework of properstitgg can lead tsublinear-timealgorithms, that
is, algorithms that can approximately verify if an objecs laggiven property without the need to examine the
whole object. This has potential applications in massive dats and other situations, when even reading
the input might be prohibitively expensive. In a sequengeagiers, various property testing algorithms have
been developed for a variety of problems, starting with Qnayoblems through string problems to problems
on matrices, see the survey works[[9, [10, 20] and the refesetterein.

In this paper we present for the first time a property testiggréhm for theminimum spanning tree
(MST) problem. The problem of finding an MST is one of the most funeiai@ and most extensively
studied problems in algorithms. For arbitrary graphs, tineently fastest deterministic algorithm due to
Chazelle runs in tim&(n + m «(m, n)) [2], wheren is the size of the vertex set amd is the number of
edges in the input graph (see algal[19]). Karger etlall [1¥¢galinear-time randomized algorithm. The
problem ofverifyingif the input graph is a minimum spanning tree of another giaghe general case has
been investigated in a series of papéild 7,15, 17], wbHre + m)-time algorithms have been given. A
better situation is known for Euclidean graphsRA. In the case considered in the current paper, that is
for d = 2 (on the plane), Shamos and HoByl[22] gave’dm logn)-time algorithm for finding an EMST



(notice that in this casen = ©(n?)). We are not aware of any research on the problem of verififiag
Euclidean graph is an EMST for its vertex set

Recently, (after publishing the preliminary versidn [6]tbE current paper) three sublinear-time ap-
proximation algorithms have been presented for the prold&estimating thewveight of the MST. These
algorithms are designed in a similar flavor as that in propesting. Chazelle et al[][3] presented an algo-
rithm that, given a connected graph in adjacency list reqmtegion with average degr&g edge weights in
the rangdl ... W], and a parametér< ¢ < % approximates, with high probability, the weight of a MST in
time (5(D W ¢73) within a factor of(1 4 ¢). Czumaj et al.[[4] gave @(ﬁ- poly(1/¢))-time for a similar
problem for geometric graphs, but this algorithm is assgntirat the input graph is provided with some
additional geometric data structures. Finally, Czumaj Sodller [5] obtained ad(n - poly(1/¢))-time
algorithm that estimates the weight of the MST in any metrapd to within a factor of1 + ¢).

1.2 Outline

After we introduce some basic notation in Secfibn 2, in $af#] we develop a property tester for disjoint-
ness of geometric objects, which is used as a subroutineeiBEMST tester. Next, in Sectidh 3, we present
our property testing algorithm for the EMST problem. Setlbgives another property testing algorithm
which is slightly faster for large values of e.

2 Preliminaries
We begin with some basic definitions needed in this sectidoréeve discuss the input representation:

Definition 2.1 A geometric graptior P is a weighted graphG = (P, E) with vertex sef® and edge set
E C P x P (the edges can be interpreted as straight-line segmentsembimg the endpoints). The weight of
an edge(p, q) is implicitly given by the Euclidean distance betweeand q in R2.

Definition 2.2 A minimum spanning tree of the complete geometric graptPfa called theEuclidean
minimum spanning tree (EMSTOYf P.

Next we define when a graph is “far” from the EMST. Typicallgistance measure for graph properties
depends on the number of entries in the graph representaibmust be changed to obtain a graph that has
the tested property.

Definition 2.3 Let G = (P, E) be a geometric graph foP and letT = (P, E) be the Euclidean minimum
spanning tree oP. We sayG is e-far from being the Euclidean minimum spanning tre€dbr, in short,
e-far from EMST) if one has to modify (insert or delete) more tham edges inG to obtainT, that is :

[E\E|+|E\E > en.

Input representation. We assume that both the point set and the graph are given ameer,@nd the
point set is represented by a functibn [n] — R? (here and throughout the paper we will use the notation
[n] :={1,...,n} for the set of integer numbers betwekandn). The algorithm may query the oracle for
the value off (i) for somei € [n]; the returned value is the position of ttte point of P.

The geometric graph is given in t@bounded length adjacency list representaiimnoduced in[[1B].
The unbounded length adjacency list model is a general nfodesparse graphs. The graph structure is
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represented by adjacency lists of varying length. Our ptggester may query the degreeg(p) of a
vertexp and for each < deg(p), it may query thdth neighbor ofp.

The goal of property testing is to develop efficigmbperty testers A property tester for EMSTs is an
algorithm that takes a distance parametand the sizex of the input point seP (which equals the number
of nodes ofG). The property tester hasacle access$o the functionf representing the point set and to the
graphG. A property tester is an algorithm that:

e acceptsG, if G is the EMST ofP, and

e rejectsG with probability at Ieast_,%, if G is e-far from EMST.
If G is neither the EMST nog-far from it, then the outcome of the algorithm can go eithayﬂ/
Complexity of property testers. In this paper we study two types of complexity measures foperty
testers: theuery complexityand therunning time The query complexity measures the number of queries to
the oracle asked by a property testing algorithm. If one toalso the time the algorithm needs to perform
other tasks than querying the input function values, therotitained complexity is called tlmanning time
of the property tester.
2.1 Disjointness of a set of objects

Before we start working on the EMST problem we first consideingler problem of disjointness of a set of
objects, which will be useful in our analysis of the EMST gdesh. A setO = {0y, ..., O} of n arbitrary
objects ispairwise disjointif each pair of object®; andO; is disjoint,1 <i<j < n.

Definition 2.4 A setO of n objects ise-far from being pairwise disjoirift one has to remove more tham
objects fromO to obtain a pairwise disjoint set of objects.

We prove a simple fact that the following is a property te&tepairwise disjointness of a set of objects.

DisJOINTNESS ESTERSet of arbitrary object®)

Choose a se8 C O of sizeO(+/n/¢€) uniformly at random
if S is disjointthen accept

elsereject

Theorem 1 Algorithm DISJOINTNESS ESTERIS a property tester for disjointness of a set of objects. Its
guery complexity i€)(1/n/€) and its running time i (O(y/n/€)) + O(1), whereT(m) is the time to
decide whether a set oft input objects is disjoint.

Proof : We have to prove that (1) algorithmi&0OINTNESS ESTER accepts every set of disjoint objects
and (2) that it rejects every set of objects thatfar from disjoint with probability at Iea%.

Part (1) is immediate and thus let us suppose@histe-far from disjoint and prove part (2). It is easy to
see that we can apply= <* times the following procedure t0: pick a pair of intersecting objects; and
by, i € [k], and remove it fron©). Now, in order to prove that BJOINTNESS ESTERIS a property tester it
is sufficient to show that with probability at Iea%ﬁt least one of these pairs isSn We will show only the

1We consider @ne-sided erromodel, though in the literature alsavso-sided erromodel has been considered, 486910, 20].
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bound for the probability 01}; standard amplification techniques can be used to incréasgrobability to

% (for example, by increasing the size $four times).
Using Boole-Bonferroni inequality, straightforward aaltions give the following:

K
Pri3iek:{a,b) CS)] > Y Prifa;,b}CS)— >  Pri{ai,bi,a5,b} CS)
i 1<icj<k
k (n—Z) (n—4) s 1 2 ( s — 1 2
B ()
20 . 2 =
HencePr [3i € k] : {ai, bi} € S)] > 7 for somes = ©(y/n/e). O

3 Testing Euclidean minimum spanning trees

We begin with discussion about some basic properties ofieah minimum spanning trees. sraight-
line embeddingf a geometric graph is a drawing of the graph on the plane thathall edges are drawn as
straight lines; it iscrossing-freef its edges do not cross. The following simple claim is welbkvn (see,

e.g., [BL16]):

Claim 3.1 Every Euclidean minimum spanning tree of a point set in garpasition inR? is connected, its
straight-line embedding is crossing-free and it has maxmuegree less than or equal to five. O

Now we want to introduce some additional notation that walluseful to simplify the description of the
algorithm and its analysis.

Definition 3.2 For a given point seP, a geometric graplc = (P, E), and the Euclidean minimum spanning
treeT = (P,E) of P, the EMST-completiorof G is the geometric grapk ¢ = (P, E U E) that contains all
edges that are it or in T.

In the next subsection we will present a property tester fgiSE that works for a special class of
input graphs which we callell-shaped The restriction to well-shaped graphs simplifies the asialgf the
algorithm and it allows a clear view on the important feasuséthe property tester.

Definition 3.3 We call a geometric grapks well-shapedf

e itis connected,
e the straight-line embedding of its EMST-completion is sirg-free, and

e it has maximum degree at most five.

Notice that by Claini_3]11, if a geometric graghis the EMST ofP then it is well-shaped. Of course, the
opposite is not true. Still, however, we can first test if thput graphG is well-shaped and only if it is,
we can test if it is the EMST oP. This suggests the following line of the attack: We first iégihe input
graph is far from a well-shaped graph. If this is the case thercan reject the graph by ClalmB.1. If the
input graph passes the test, then we know that (with conptabgbility) it is either close to a well-shaped
graph or it is well-shaped. If the graph is well-shaped weusathe testing algorithm for the special case
of well-shaped graphs that will be presented in Secfiod4ZZX Then, in SectiorS_3[3=B.5, we show that
we can relax the assumption that the graph is well-shapetharalgorithm will work also for graphs close
to well-shaped. This will establish our algorithm.



3.1 Properties of EMSTs in well-shaped graphs

We now design a property tester for EMST when the input grapteil-shaped. First, we give an overview
of the algorithm.

Let G be a well-shaped geometric graph with vertexBetWe first pick a sample s& C P using a
randomized scheme to be described later. Next, we find thgrapbG s of G that is induced by the vertex
setS. Then we compute the EMST-completion @§. If the EMST-completion ofG has a cycle then we
reject the input; otherwise we accept.

Now, we proceed with the details. We first show that if the EM®mpletion ofGs contains a cycle
then we can always reject the input graph. We use the follgptgmma which follows easily from standard
theory of minimum spanning trees (see, elg.] [23, Chapjer(Bhis lemma uses the fact that the EMST of
P is unique.)

Lemma 3.4 LetS C P be a subset oP and letp,q € S. If the edgee = (p, q) does not belong to the
EMST ofS, thene does not belong to the EMST f

Proof :  The proof is by contradiction. Let us suppose thatoes not belong to the EMST Sfande
belongs to the EMST of P. The removal ofe in T splits T into two trees. These two trees induce a
partition of P into two subset®; andP,. Sincee belongs to the EMST oP, e must also be the shortest
edge between these two subsets. $et= Py NS andS, = P, N'S. Py andP, are not empty since one
vertex ofe is in each of the sets. Theris also the shortest edge betwearandS, and therefore it belongs
to the EMST ofS; contradiction. O

The following are two immediate consequences of Lerima Z#vile will use later in the paper.

Corollary 3.5 LetG be a geometric graph faP. LetS C P and letGg be the subgraph df induced bys.

e If the EMST-completioG’ = (P, E’) of G contains a cycIE C = (po,...,px) of lengthk > 3 with
pi € Sforall 0 < i<k, then there is a cycle in the EMST-completiorGat

e If the EMST-completion di s contains a cycleC = (po, ..., px) of lengthk > 3, thenG is not the
EMST ofP. O

Now let us consider an input graph = (P,E) that is e-far from EMST. Our goal is to design a
randomized sampling scheme such that the EMST-completitresubgraph o6 induced by the sample
set contains a cycle with high probability. L&t= (P,E) be the EMST of? and letG¢ = (P,E U E) be
the EMST-completion ofs. In the following we refer to the edges hasblue edgesnd to the edges in
E \ E asred edges (Notice a fundamental difference between blue and redssdgehat red edges are
givenimplicitly only, since they do not belong to the input graph We will show that in our analysis, it is
sufficient to focus on “short” cycles that contain at most t&d edges.

Definition 3.6 Let C be a cycle of lengtfk in the EMST-completion dé. We callC e-shortif (1) it is of
lengthk, wherek < 7—€2 and (2) it contains at most two red edges.

2Here,C = (po,...,px) is a cycle (of length) if p; € Pforalli € [kl, po = px, (pi_1,pi) € E' forall i € [k] and
pi #p; foralli,j e [k],1#j.



In our algorithm we try to fince-short cycles that satisfy some additional “topologicalderties. We
will exploit the fact thatG is well-shaped, in particular, that the EMST-completiorGofias a crossing-free
straight-line embedding. Hence we will use a topologicptesentation of the geometric gra@ho exploit
the fact that every minimal cycle in a (well-shaped) planaomgetric graph corresponds to a face in its
straight-line embedding. In order to use this approach ormal framework we will consider the geometric
graphG not only as an undirected graph, but at the same time alsg itsitidirected” representation by
“replacing” each undirected eddg, q) by two directed edgelp, q) and|q, p).

NV

[ ]
Figure 1. A straight-line embedding and its planar map regmeation.

For every vertey in G we (cyclically) sort incident outgoing edges in clockwisder around the vertex
p with respect to the Euclidean positions of the edges’ emdpo(This sorting is done only implicitly, but
since we assume that each vertex has a constant degree —tdivenosach time we consider a vertex we
can sort its incident edges in constant time.) Shecessoof a directed edgé, q) is the edgéq, r) where
1 is the vertex adjacent t@that precedesp in the adjacency list of (sorted in clockwise order arourny; if
q has degree one, then=p. Furthermore, for an edge= [p, q) in G thekth successqrk > 0, is defined
recursively as follows: théth successor dp, q) is [p, q) itself, and fork > 0, thekth successor dfp, q)
is the successor of thg& — 1)st successor dp, q). Similarly, edgee is thepredecessoof edgee’ if edge
e’ is the successor of edge ande is thekth predecessoof e’ if e’ is thekth successor of. With these
definitions, cycles of successive edges (with the excetiaycles of length two, which are not considered
as cycles in our analyE}scorrespond to faces of the straight-line embedding. Suep@sentation of is
called aplanar mapfor the straight-line embedding &f (see Figur&ll). We denoteG.

We have introduced the planar map representation of a didpgtause it describes the faces of the cor-
responding embedding in a simple way (using successivesaédg®. We observe that the correspondence
between the faces in the embeddingGtnd the cycles of successive edgefiiris one to one. We also
note that each (directed) edge is contained in exactly ocle of successive edges. However, a vertex may
occur more than once in such a cycle (for an example, seertherfiboundary of the outer face in Figure
).

Let G be a well-shaped geometric graph fand letC = (po,...,px), k > 3, be a cycle in the planar
map of the EMST-completion df (let us remind that cycles of length two are not consideredyakes).
ThenC is calledtopological if for every two consecutive edges on the cy@e, pi1) and[pii1, pit2),
edgelpi+1,pi+2) IS the successor dp;, pit1). We also call the corresponding cycle@ntopological.

The following key lemmashows that every well-shaped geometric graph that is fan fEMST must

3A cycle of length two corresponds i6 to a single edge incident to a vertex of degree one, and thuthei planar map
representation of, it consist of two directed edges incident to a vertex of degine in the straight-line embedding®f



contain many short topological cycles in its EMST-completi

Lemma 3.7 Let G = (P, E) be a well-shaped geometric graph fr If G is e-far from EMST, then there
are at leastyy; e-short topological cycles in the EMST-completionGof

Proof: LetT = (P,E) be the EMST ofP. LetEg = E \ E denote the set of blue edges in the EMST-
completion ofG that are not in the Euclidean minimum spanning tree and e E \ E denote the red
edges in the EMST-completion &f. Notice that the connectivity d& implies thatEg| > |Eg|. SinceG is
e-far from EMST, we haveEg| + |Eg| > e n by definition.

Next, let H denote the EMST-completion d& and letH denote the planar map of its straight-line
embedding. Lep be the number of faces in the straight-line embedding-lofThen,ﬁ hasp disjoint
topological cycles since each face is bounded by a uniquie ofcsuccessive edges. Sinkkis planar,
connected, and has more than- 1 + ¢ edges, we apply Euler’s formula to deduce that <-.

Now, for every facef in H, let s(f) denote the number of (directed) edges in the topologicalecyc
bounding facef. Since by Euler’'s formulg)_;s(f) < én, there can be at mosg* < 7‘{ facesf with
s(f) > 4?8. Therefore, there are at Iea%ﬁ facesf with s(f) < 4?8.

SincelEg| < p, the number of directed red edges is at nZgst Hence, the number of topological cycles
with 3 or more red edges can be at m@t Since we have shown that there are at Ieggﬂstopological
cycles having less thaf:f edges, at leasf; > Si of them have at most two red edges. O

Let G be a well-shaped geometric graph far For every vertexp € P, we define itsopological k-
neighborhoodas the set of vertices that are the endpoints of the edgearthaither théth successor of any
edge incident tgp, 0 < i < k, or thejth predecessor of any edge incidenptd® < j < k. The topological
k-neighborhood of a vertex is denotedV"" (p, k).

The following claim follows from the fact that every well&bed graph has maximum degree at most
five.

Claim 3.8 LetG be a well-shaped geometric graph fér For every vertey € P, we can find its topological
k-neighborhood in timeé& (k). O

3.2 Property tester in well-shaped graphs

Now we are ready to present our first property tester forngsftithe input well-shaped graph is the EMST
of a given input point set. Later, in Sectibnl4.1 in Lemmd &6, will present a more complex algorithm
that has the query complexit9(log(n/e)/n/e), as compared to the query complexity@fe 'y/n/e)

of the algorithm discussed in this section.

Our approach is to sample uniformly at random a sufficiemtige setQ of points inP. Then we add to
the sample set the topologic@-neighborhood of every point i9. Provided that the s&) is sufficiently
large, we prove in Lemnfa=3112 thatGf is e-far from EMST, then the obtained set of vertices will contai
a certaine-short topological cycle in the EMST-completion Gfwith probability at Ieasl%. By Corollary
B3, this would certify tha6 is not an EMST.

We assume that is well-shaped. Notice that eveeyshort topological cycle either

1. is a cycle consisting of at mo% blue edges, or

2. is a path consisting of at mo@ blue edges whose two endpoints are connected by a red edge, or



3. is a path consisting of at mo%% blue edges whose two endpoints are connected by a pathtagsis
of exactly two red edges, or

4. consists of two paths containing at méeétblue edges whose endpoints are connected to each other
by two red edges.

We first observe that if there are maenshort topological cycles of type (1) or (2), then we canlgasgiot
them.

Lemma 3.9 Let G = (P, E) be a well-shaped geometric graph. If the EMST-completio@ cbntains at
least 555 e-short topological cycles of type (1) or (2), then a &tC P of size%OO chosen uniformly at

random with probability at Ieas% contains at least one vertex from arshort topological cycle.

Proof : SinceG is well-shaped, it has a maximum degree of five and therefad&MST-completion of
G has maximum degree at mdst Thus, every vertey € P is contained in at most0 e-short topological
cycles. This implies that the sBt of all vertices that are contained in at least @rghort topological cycle
(of type (1) or (2)) has cardinality at leagtys. Now, if we choose a s&@ C P of size%OO taken uniformly
at random fronP, then

B P\ @ e\l 1
Pr[QﬁPc—(ZJ]S <]—T> §<]—m) Sg.

Therefore,

Pr[QﬂPC;&@] >

[OSTN S

|

Next, we observe that for any-short topological cycle of type (1) or (2), for every vertex from C
all other vertices fronC belong to the topologicai’gz—neighborhood ob. This motivates us to define the
sample sef as the topologicall—z-neighborhood of all vertices iQ. Since the sef) contains at least one
vertex from anye-short topological cycle of type (1) or (2) with probabiliay least?, we can conclude that
S contains all vertices from a particularshort topological cycle of type (1) or (2) with probabiligy least
%. Since every vertex of the topological cycle is containedunsample set we know by Corolldry B.5 that
the EMST-completion of the subgraph induced by our sampfgatos a cycle. Thus our property tester
rejects the input with probabilit§ ifitis e-far from EMST and its EMST-completion contains at legst
e-short topological cycles of type (1) or (2).

We can summarize our discussion above in the following lemma

Lemma 3.10 Let G = (P, E) be a well-shaped geometric graph and @tC P be a set of siz8% chosen
uniformly at random fronP. If the EMST-completion d& contains at least;j; e-short topological cycles
of type (1) or (2), then the set

o 72
PEQ

contains all vertices of at least oreeshort topological cycle with probability at Ieaét O



The e-short topological cycles of type (3) and (4) are more diffibm detect. However, we can still use
a very similar approach as for cycles of type (1) or (2), bid time we must find two vertices that belong to
the sames-short topological cycle. Suppose that in the EMST-conimiedf G there are at leasky; e-short
topological cycles of type (3) or (4). As before, we first takeandom subsd) of P, but this time the size
of Q is®(y/n/e). Then, we define the sample $eto be the union of the topologicif—neighborhood of
all vertices inQ. We show now that the so defined sample set is sufficient tiyctrat G (if it is e-far from
EMST) is not an EMST by proving an analogous statement to Lef3f0 for cycles of type (3) and (4):

Lemma3.11 LetG = (P, E) be a well-shaped geometric graph and @tC P be a set of siz80 /n/e
chosen uniformly at random frol If the EMST-completion d& contains at least; e-short topological
cycles of type (3) or (4), then the set

S - U Néop <p»7_€2>

PeQ

contains all vertices of at least oreeshort topological cycle with probability at Ieaét

Proof : For everye-short topological cycl€ of type (3), let us define the s to contain two vertices:
one vertex on the blue path i@ and the vertex incident to the two red edge<Cin Similarly, for every
e-short topological cycl€ of type (4), let us define the s&¢ to contain pairs of vertices: one vertex from
the first blue path irC and one vertex from the second blue patiCin

Since each vertex € P belongs to at most0 e-short topological cycles, we can select from the sets
W the setsW, 1 < i < ﬁ, such that the set®/; are disjoint and for each) 1 < 1 < ﬁ, there is
an e-short topological cycle&C with W; = W.  Next, we can use the same arguments as in the proof of
TheorenfdL to obtain that

2

Pridjelkl: (W;CQ) > 3

Finally, we observe that ¥ C Q then all vertices of a cycl€ are inS. Therefore, the lemma follows]

Now we are ready to prove that the following algorithm is agamny tester for EMST:

EMST-TEST-SIMPLE(G, €)

s =80y/m/e +4000/¢

choose a sdp) C P of sizes uniformly at random
S= quQNéop(q’ 2)

compute the subgrapBs induced byS

compute the EMST-completio@ ¢ of Gg

if G¢ contains a cycléhen reject

elseaccept

Lemma 3.12 Let G be a well-shaped geometric graph fBr Then there is a property tester that in time
O <\/n/e3 . Iog(n/e)) and with query complexit§?(1/n/e3) accepts the input i6 is an EMST of and
rejects the input with probability at Ieaétif G is e-far from EMST.



Proof : By Corollary[335, if the input grapks = (P, E) is the EMST then EMST-EST-SIMPLE accepts.

Now let us consider the case wheéris e-far from EMST. Then, by Lemn{az3.7, we know that there are
Too €-short topological cycles in the EMST completion @f It follows that there ares; cycles of type
(1) and (2) or555 cycles of type (3) or (4). By Lemmia3110 ahd3.11 we know thatgample taken by
EMST-TESTSIMPLE contains are-short topological cycle with probability at Iea%l By Corollaryl35 we
know that then there is a cycle in the EMST-completion of thiegsaph induced by our sample. Hence the
algorithm rejects in such a case.

The query complexity of the algorithm is immediate. Its rimgntime follows from Clainl3B and the

fact that the EMST completion of a graph witlh vertices can be computed in tini m log m). O

3.3 Testing connectivity and crossing-freeness of EMST-opletions in bounded degree
graphs

Now we want to relax the condition that the input graphs arl-st®ped. We develop property testers for
connectivity and crossing-free EMST-completions in gsaphmaximum degree at most five. If for a given
set of pointsP the input graphG of maximum degree at most five is an EMST then the tester ax¢ept
If howeverG is e-far from connected or the straight-line embedding of thesHMompletion ofG is e-far
from crossing-free, respectively, then the tester rej@ctgth probability at Ieas%.

3.3.1 Testing connectivity in bounded degree graphs

We begin with a test if a graph of maximum degree at most fiv@isected. We say a geometric graph
G for P is e-far from connectedf one has to add more thasm edges toG to obtain a connected graph.
Observe that this definition if equivalent to saying tGalhas more tham n 4+ 1 connected components.

Since the property of being connected does not depend oroHitops of the input points iR, we can
use a property tester for connectivity in graphs.

Lemma 3.13 [12]Let G be a graph with degree bountl Connectivity ofG in the bounded length adja-
cency list modBican be tested wittp (M) time and query complexity.

We can immediately apply this result to geometric graphs:

Corollary 3.14 LetG be a geometric graph fd? with maximum degree five. There is a property tester that
in time O ('09 (1/¢) ) and with a query complexity @ ('09 Ve)) accepts the input i6 is connected and

rejects the input with probability at Iea%tlf G is e-far from connected.

Proof :  We run the tester fromi{12] witd = 5 ande’ = <. O

3.3.2 Testing crossing-free EMST-completions in boundededjree graphs

Next, we design a property tester that accepts the inpuhgraith maximum degree at most five) if it is the
EMST and rejects it if the straight-line embedding of its EM&mpletion ise-far from crossing-free. We

“In the bounded degree graph model a grapk-far from connected if one has to add more thatin edges to obtain a
connected graph.
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say that the straight-line embedding of a geometric gi@gbr P is e-far from crossing-freef one has to
remove more thaa n edges inG to obtain a crossing-free straight-line embedding of itssEMompletion.

We proceed in two steps. First, our property tester cheakpdis of intersecting blue edges and then
for intersections between blue and red edges; red edgestdatersect because they are edges of the EMST.

We first use the tester IBJIOINTNESS ESTER developed in Sectiofi 2.1 to find intersections between
blue edges. Sincé& has maximum degree five, it has at md&in edges. Therefore, since one can verify
in time O(n logn) if a geometric graph witm vertices has crossing-free straight-line embedding [1],
Theorentdl implies the following result.

Lemma 3.15 Let G be a geometric graph with maximum degree at most five. Tharprigperty tester that
in time O(y/n/elog(n/e)) and with the query complexity ¢¥(/n/e) accepts the input if the straight-
line embedding of5 is crossing-free and rejects the input with probability aa$t% if the straight-line
embedding o6 is e-far from crossing-free. O

It remains to design a property tester for red-blue intdises in the EMST-completion of. (More
precisely, we do not design a property tester for the prgpefrthaving no red-blue intersections. Our
algorithm might reject an input graph if its EMST-completioas no red-blue intersections. However, if the
input graph is the EMST then it is always accepted by our @lyor) A geometric graph with red and blue
edges has a straight-line embedding without red-bluesattions if there is no intersection between the
corresponding red and blue segments. Similarly, the $irdiige embedding of a geometric graph whose
edges are colored blue and rectigar from having no red-blue intersectioifsone has to delete more than
an e-fraction of its edges to remove all red-blue intersections

The main difficulty with testing for red-blue intersectionghe EMST-completion o6 is caused by the
fact that the red edges are defined aontylicitly, because they do not belong to the input gr&hwVe will
use the following lemma to study properties of intersediohexplicitly given blue edges with implicitly
given red ones.

Lemma 3.16 Let pq be a red andxy be a blue segment in the EMST-completionGof If pq and xy
intersect each other, then either edgey) is not in the EMST of any set containifixy y, p}, or (x,y) is
not in the EMST of every set containifig y, q}.

Proof: The pointsp, q, x,y are in convex position because the segmgntandxy intersect. We consider
the quadrilaterapxqy (see Figurél2). Let us call the inner angles in the quadrdht verticesp, q, x, y
to bew, B3, v, andd, respectively. Let us recall that the longest edge of agiears opposite of the largest
angle.

If « < S andp < 5 thenvy or o is larger thanf becausex + 3 + v + & = 27. Without loss of
generality, lety > Z. Then, segmenjiq is the longest edge of triangfegx and thus it cannot be the EMST
of {p, q,x}. By Lemmd33} this is a contradiction to the fact thatq) is an edge of the EMST. Hence we
must have eithesxt > 5 or 3 > 7.

If « > T then segmenty is the longest edge in triangfecy. Hence edgéx, y) is not contained in the
EMST ofp, x,y. By Lemmd3} it is also not contained in any EMST of a subsé thfat containg, x, y.
Similarly, if > Z then edgdx, y) is not contained in any EMST of a subsetfothat containgg, x,y. O

This lemma shows that each red-blue intersection betweet edg€p, q) and a blue edgex, y) has a
“witness” consisting of one point € {p, q} and the edgéx, y) so that(x,y) is not in the EMST ok, y, z.

Our property tester for red-blue intersections is simitathie DSJOINTNESS ESTER tester but we use
a modified definition of disjointness property: We say tiwad pointsv, u € P intersectif there is a point
w € P such that at least one 6f, w) and(u, w) is a blue edge that is not in the EMSTwgfu, w.
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Figure 2: A quadrilateralp, q, x,y) with red blue intersection. The red edge is dotted.

We now are ready to present our property tester for red-iligesections:

REDBLUETEST(G, €)
Choose a sé’ C P of size16,/5n/¢€ uniformly at random
LetS =S’ UN(S’), whereN (S’) denotes the set of neighbors of pointsSin
Let Gs denote the subgraph induced &y
if the EMST-completion oG s has a cycléhen reject
elseaccept

The analysis of the algorithm is similar to the analysis e IDINTNESSTESTER Theorent]l.

Lemma 3.17 Let G be a geometric graph foP with maximum degree five. AlgorithREDBLUETEST
runs in timeO(,/n/elogn) and with the query complexity 6?(/n/e), and accepts the input graph

if it is the EMST ofP and rejects the input with probability at Iea%tif the straight-line embedding of the
EMST-completion of is e-far from having no red-blue intersection.

Proof : Obviously, if G = (P, E) is the EMST then algorithm BOBLUETEST acceptss.

Let G¢ denote the EMST-completion @& and let us assume th&ic is e-far from having no red-
blue intersections. By Lemnfa_3]16, we can apply the follgypnocedurek = S times: pick a pair of
intersecting (according to the definition above) pointat} = Wi, i € [k], and remove all edges incident
tov andu from G¢. By the degree bound, we removed at miisedges for the two vertices, and therefore
this procedure can be performed at Idatimes.

In order to prove that ifs ¢ is e-far from having no red-blue intersections theaOBLUETEST rejects
G with probability at Ieast%, we first use the same arguments as those used in the prookoféril to
obtain:

Pridjelkl: W;cs)] > %

It remains to show that if there is a sét; C S’ then the algorithm rejects the input graph.Wf, =
{v,u} C S’ then there exists a blue edge= (v,w) (or e = (u,w)) such thate is not in the EMST of
v,u,w. Therefore, by LemmB3.4 is not in the EMST ofS. HenceS has a cycle and BOBLUETEST

rejects. O
Finally, we can combine LemmBsS3]15 40dB.17 to obtain theviaig result.
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Lemma 3.18 Let G be a geometric graph foP with maximum degree five. There is an algorithm that in
time O(y/n/e log(n/e)) and with a query complexity @(+/n/e) acceptsG if G is the EMST of and
rejectsG with probability at Ieast% if the straight-line embedding of the EMST-completiorGak e-far
from crossing-free.

Proof : Let G be e-far from having a crossing-free EMST-completion. Therthei the straight-line
embedding ofs is 5-far from crossing-free or the EMST-completion®fis 5-far from having no red-blue
intersections. Applying Lemn{a3115 and LemimaB.17 with § shows tha is rejected with probability
at Ieast%. Since the tester for blue-blue intersection and the tésteed-blue intersections both accept the
EMST, this completes the proof of Lemina=3.18. O

3.4 Property tester for low degree

Our next step is to deal with graphs that have maximum degesgey than five. A grapk is e-far from
having low degre& one has to remove more tham edges inG to obtain a graph having maximum degree
smaller than or equal to five. In this section, we develop &oient property tester for low degree.

Let us call a vertexheavyif it either has degree greater than five or it has a neighbaolegfee greater
than five. Observe that if in a graph we removed all edges legtweavy vertices then we would obtain a
graph of maximum degree at most five. Therefore; i e-far from having small degree, then there are at
least,/e n heavy vertices irG. (Indeed, for if not, then we could remove less thigfe n)? = e n edges
and obtain a graph with maximum degree at most five, what adiatis the assumption thatis e-far from
having small degree.) Therefore the simple algorithm tiekspa random sef of 4 /n/e points inP and
tests if every poinp € S has the degree smaller than or equal to five and if so thertstifes/ery neighbor
of p € S has degree smaller than or equal to five, will detect with gbdlity greater than or equal t%)every
geometric graplt that ise-far from having small degree.

Lemma 3.19 Let G be a geometric graph foP. There is a property tester that in tin@@(/n/e) and with
a query complexity af(/n/€) accepts the input i6 has a maximum degree smaller than or equal to five
and rejects the input with probability at Ieaétif G is e-far from having small degree.

Proof : Clearly, our algorithm accepts every graph having maximegree of five. Let us assume th@t
is e-far from having small degree. L&tbe a sample of sizé,/e n chosen uniformly at random frof.

Pr [S contains no heavy vertex < (1 —1/y/n/e)*V/e < !

w

It follows that

. 2
Pr [S contains a heavy vertex > 3

Hence our algorithm rejects every graph that¢4far from having small degree with probability at Ie%st
Thus it is a property tester.

The running time and the query complexity follow from thetftmat since the degree of evapye S is
less than or equal to five, all operations can be performectonatant time per vertgx. O
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3.5 Property tester for general graphs

To obtain a tester for general graphs, we first test if thetigpaph is%-far from having low degree (using
the tester described in Sectibnl3.4). Then, we run the tésteéesting if a graph of maximum degree at
most five is5-far from being connected (using the tester described iti@d8.3.1). Next, we test if a graph
of maximum degree at most five {&far from having straight-line embedding of its EMST-coetmn
crossing-free (using the tester described in Seéfion]g.Bigally, we run our algorithm that tests if a given
well-shaped geometric graphgsfar EMST. There is one important modification in all thesgoaithms:

e For each vertex € S, we also include every neighbor oin G into the sample set. This can be done
without asymptotically increasing the running time of thgogithm (because if we encounter a vertex
with degree greater than five then we rejégt

e If during the course of the algorithm we encounter a vertekdegree greater than five, we immedi-
ately reject the input graph.

e If during the course of the algorithm we detect that the irgraph is not connected then we immedi-
ately reject the input graph.

e If during the course of the algorithm we detect that the glrialine embedding of the EMST-completion
of the input graph is not crossing-free then we immediatejgat the input graph.

Clearly, the above modifications do not affect the case wherirtput graph is the EMST of the point
set: the algorithm will still accept the input graph. Thusue consider the case when the input grépls
e-far from EMST. If the low degree tester rejects the inpuiphr,ave are done. Thus let us assume that the
input graph passes this test but iteidar from EMST. Now we define the grapgh’ to be a graph obtained
from G by deleting a minimal set of edges such tdthas maximum degree of five. Since we deleted less
than <"* edges fromG to obtainG’, we conclude thaG’ is 2¢-far from EMST.

In order to analyze the behavior of the modified algorithm tésting the three other properties, we
consider the (unmodified) algorithm for graphs with maximdegree five. First of all, we observe that
if there is a heavy vertex in the sample chosen by the unmddifigorithm then the modified algorithm
always rejects. But if there is no heavy vertex in the samptesen by the unmodified algorithm then the
graph “looks” like the graplt’ which has maximum degree five andiji%-far from EMST.

Once we have an algorithm running on graphs with maximumestegt most five, our testers for con-
nectivity and crossing-freeness of straight-line embegldf the graph’s EMST-completion can be used
without any further modifications. Therefore, after rungpthese two testers, we can assume, with probabil-
ity at Ieast(%)f’, that the input graph has maximum degree at most five, is;#fat from being connected
and is notz-far from having its EMST-completion crossing-free. Nexg observe that since the algorithm
did not spot a heavy vertex, nor a disconnected componeng crmssing in the graph’'s EMST-completion,
for the algorithm from Lemm@311 2 the graph “looks” like thphG” which is well-shaped. Therefore, if
we run the algorithm from Lemnfa3]12, then it will reject agirahat is7-far from EMST with probability
%. Hence, these arguments imply the following main theorem.

Theorem 2 There is a property tester for the EMST property with a rugrtime ofO(y/n/e3)-log(n/e))
and with a query complexity @?(1/n/e3). O

Finally, we remark that the entire analysis can be carriest tvthe case of arbitrary (possibly degen-
erated) inputs, not necessarily in the general positiore mhin idea is to replace the (unique) minimum
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spanning tree in the analysis for point sets in generaliposity the minimum spanning tree that is nearest
(in terms of edit distance) to the input graph. Our algorithithi also compute such spanning tree on its
sample set of points. This can be done by first computing aimuimi spanning tree of the sample set. Then
we take the union of this minimum spanning tree and the inpapplyand compute the minimum spanning
tree of this union. During this computation we use the foltaytie-breaker rule for edge lengths: If two
edges have the same length and one of them is contained inpihiegraph, we prefer this edge. This way,
we obtain the minimum spanning tree that is closest to thetigpaph. If the union of this tree with the
subgraph of the input graph induced by our sample set hagla,dihen we found a counter example and
can safely reject.

4 Another algorithm: stronger bound for large €

In the previous section, we presented a property testerhiorEfMST property with a running time of
O(y/n/e3) - log(n/e)) and with a query complexity af(1/n/e3). In this section, we present another
algorithm whose complexity is better for large valueseofits running time is®(y/n/e) - log*(n/e))
and its query complexity i®(1/n/e - log(n/e)). The algorithm differs only in one step: we use another
algorithm for testing EMST in well-shaped graphs.

4.1 Improved property tester in well-shaped graphs

In this section we present a modification of the propertyetedsMST-TEST-SIMPLE(G, €) that has a slightly
better complexity. In our property tester in Sectiod 3.2,weare always trying to catch one initially fixed
single vertex from each blue path althougheashort topological cycle can contain as manyZGéS/ertices.
We now want to take the length of the topological cycles iminsideration. Furthermore, we were always
taking topological7—€2—neighborhoods of all vertices. This strategy should bdieghpo the cycles that have as
many as%2 edges, but it is not necessary for shorter cycles. Our appnmoaw is to improve the complexity
of the property tester by combining these two observatidvis.show that if the input graph is well-shaped
then the following algorithm is a property tester for EMST:

EMSTTEST(G, €)

s =1700/n/e + 192000/€ + 4000/ ¢
S =FINDCYCLE(G, s, €)

compute the subgrapBs induced byS
compute the EMST-completio@ ¢ of Gg
if G¢ contains a cycléhen reject
elseaccept

Where the procedurel®D CyCLE is the following:
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FINDCYCLE(G, s, €)

SO =90
fori=1to2sdo
j=0

pick a vertexpY) € P uniformly at random
while j < log % do
j=j+1
flip a coin
if headthen exit the while-loop
S0 = ST [ AZP(p (), 2)
return S(2s)

First, we observe that by CorollafyB.5 algorithm EMSEST accepts every EMST. Therefore, we only
have to prove that if the input graphdsfar from EMST then it is rejected with probability at Ieét

Let us assume thai is well-shaped and-far from EMST. Then, by Lemmia3.7, there are at leggt
e-short topological cycles in the EMST-completion®f Let ¢;, j = 1,2, 3,4, denote the set of all-short
topological cycles of type (j) in the EMST-completion Gf Now we consider separately cyclesdnu ¢,
and cycles ir¢3 U €4. By our discussion above we have eitféy U €| > 555 or [€3 U €4 > 545.

From now on, to simplify the notation, we will uge= 5.

Cycles of type (1) and (2). Suppose thab is a geometric graph fd? with maximum degree five and there
are at leashn e-short topological cycles of type (1) or (2) in the EMST-cdeatjn of G. We first consider
the probability that a fixed-short topological cycl€ € €U, is contained in the sample set. letenote
the number of vertices in cyclé. Then the probability that in rounidof the FNDCYCLE procedure vertex
pV is one of thet vertices of cycleC is £. Furthermore, the probability that the topological neigtttvod

of p¥ is chosen large enough to contain all vertice<Cok at Ieastﬁ. Overall, for a fixed cycleC the
probability that a vertex o€ is chosen in round and that the topological neighborhood of the vertex is
large enough is at Iea%. If the cycles are vertex disjoint then it is simple to proluattafterO(le) rounds

at least one cycle is completely contained in the sample ghtognstant probability. Unfortunately, in
the general case the cycles are not vertex disjoint. To owggcthis technical problem we use the planar
map representation @@ and the following trick for the analysis: Instead of takirg twhole topological
2)-neighborhood of vertex ") we assume that our algorithm selects only one of the outgeitygs (in its
planar map representation) uniformly at random. Then iuihes only the2) successors and predecessors
of the chosen edge in the planar map representati@h flearly, this procedure considers only a subset of
the vertices considered in the original procedure. Neegts, we can show that the set of vertices we pick
using this procedure will contain the vertices ©fwith sufficiently large probability. For the analysis we
use the fact that every cycle corresponds to the boundaryfaifeain the planar map representation of the
EMST completion. Thus, for every cyciéthere is a unique directed cyol®. Furthermore, these directed
cycles are edge disjoint.

Assume that we pick a vertex that belongs to cy€le Provided thaf is large enough we still have
to choose the correct directed outgoing edge to have alcesrof C’ (and hence all vertices @) in the
sample set. Since our graph has a degree bound of five thehiigbthat this edge is chosen is at least
%. Since type (2) cycles with vertices are spanned by a path of (at leést)1 (directed) blue edges, the
probability thatp ¥ is one of the origins of these edgesf—ﬁr > %1 (a directed edge points from itsigin
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to its destination. Hence the probability that a directed cy€lé of type (1) or (2) is completely contained
in the sample set is at Ieagﬁ. We know that all directed cycles are disjoint and so the aipdly that
at least one directed cycle is completely contained in thepéa set taken in rountlis at leastyy’ = 3.
Since each directed cycl® has the same set of vertices as the corresponding undireatdC and since
the sample set taken in roundby our modified procedure is a subset of the topologi¢aieighborhood of
p¥, the probability that all vertices of cyclé are in the topological’-neighborhood op (V) is the at least
the probability that all vertices of the directed cy€léare in the sample set taken in rouinoly our modified
procedure. Hence, we know that in rouingith probability at Ieas% for some cycleC € &, U ¢, its set of
vertices is completely contained in the topologiziheighborhood op (V). Let X(?5) denote the indicator
random variable for the event that all vertices of some cycle ¢; U &€, are contained in the sample set
S(2s). Then we have fog > 20 = 40%;

2s
Pr [x = 0| < (1—%) < %

Pr [X(ZS) - 1} > %

and hence

and so we have just proved:

Lemma 4.1 Let G be a geometric graph foP with maximum degree five that has at legg topological
e-short cycles of type (1) or (2). If algorithfAINDCYCLE(G, s, €) is invoked withs > %OO then the set
S(2¢) returned by the algorithm contains anshort topological cycle with probability at leagt i

Cycles of type (3) and (4). Let G be a geometric graph with maximum degree five. Let us furtbeume
that there are at leadtn topologicale-short cycles of type (3) and (4) in the EMST-completion&ffor
A = 555- We show that the sample set computed by algorithepEYCLE contains every vertex of at least
onee-short topological cycle with good probability.

Recall that cycles of type (4) consist of 2 paths of blue edgemected by two red edges. Cycles of
type (3) are a special case of type (4) cycles: The shortérhzs lengtld. For each cycl€ € €3 U ¢4 let
X(g) denote the indicator random variable for the event thatetices of the longer (blue) path of cydle

are inSW, Let Y(Ci) be the indicator random variable for the event that all gediof the shorter (blue) path
of cycle C are inSY). Furthermore, len\(*+1) be the indicator random variable for the event that there is a
cycleC’ € €3U €4 with X(Cl) =0 andX(Ci,H) = 1. We say that a cycl€ € ¢3U ¢4 is half-containedn S!)
if X! = 1. CycleC is containedin S if X' =1 andYY —1.

We analyze the algorithm in two steps. We first show that with lprobability many (at Ieas%%)

topological e-short cycles are half-contained in the &Y. Then we show that the s&t%$) contains at
least one cycl€ € €3 U €4 with high probability.

Claim 4.2 Let the outcome of the random choices in roudrtd i of thefor-loop of FINDCYCLE be fixed. If

Y ox o< B €
Cedzuly
then
Pr [A“*”:q > A @)
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Proof : Letus assume thdfl(1) holds. Then we observe that:

) As An

E X —-— < —

c < 7 =7
Cedzuly

sinces < n. We conclude that we have more th3A cycles in€3 U ¢4 that are not half-contained 8fV.

If p(i+1) is one of the vertices of the longer path of one of these cyareksif the topological neighborhood
included in ANDCYCLE is large enough then we haxéit!) = 1. To estimate the probability fax(i+1) = 1
we apply the same approach as in the analysis for the caspeoflyand (2) cycles. This yields immediately
(observing that we havélLl cycles instead ok n):

. 1 ¢ 1 An A
(i+1) — > . .- .=
Pr[A q—ze 2n'5 2 40

Our next goal is to show that there are at legstycles that are half-contained §i°.

Claim 4.3

Proof :

Cee, Uy 1<i<s 1<i<s

whereBV are independertt-1 variables withPr[B(Y) = 1] = . The latter inequality follows from Claim
2. We now apply a Chernoff bourid 13, inequality (7)] toabt

(s) _ As (i) 1 As _As
Pr Z‘xcg% < Pr ZBlg(pz ol S e
Cee,uly 1<i<s

O
LetW(t+1) denote the indicator random variable for the event thattbeistsC € ¢3U¢, with X\ = 1
andY = 0andy( "V = 1.

Claim 4.4 Let the outcome of the random choices in rourtd i of the procedurd=IND CyCLE be fixed. If

; A
yox@ s 22
80
Cedzuey
then \
] > §
Pr [W ] = 7600m

18



Proof :  We assume that there are more tl@mycles that are half-contained §1*). Again, we use
essentially the same approach as in the case of type (1) angid2s. We observe that there is a problem
with cycles of type (3). Since the length of the shorter paththere is no directed edge in this path. Thus
we have to slightly modify our approach. We use the followsagnpling scheme for the analysis: Instead
of taking the whole topological’-neighborhood op (V) we choose a numbérbetweenl andé uniformly
distributed. Ifk is betweerl and five we include th@’ predecessors and successors okthezdge incident
to p(Y. In the casé& = 6 we only include the vertex* in the sample. Then we get that the probability
that a cycleC is contained in the sample is at leght- - - 1 = 5. We have more thags cycles that are
half-contained irs!). Therefore we obtain that:

Pr W] > 19;os-n '

|

Lemma 4.5 Let G be a geometric graph foP with maximum degree five that has at legg} topological
e-short cycles of type (3) or (4). ThedANDCYCLE is an algorithm with (expected) query complexity
O(+y/n/elog(n/e)) that samplesas& C P, |S| > 1700 /1 /€ + &foo, such that the EMST-completion
of the subgraplG .. induced byS'?*) has ane-short topological cycle.

Proof : LetA = 555 and letG be a geometric graph fdt with maximum degree five that has at least
A1 topological e-short cycles of type (3) or (4). By Claili4.4, the probabpilibat there is a cycle in the
EMST-completion of the subgraph induced ¥ is greater than or equal to

1 (s) A As s
— _ < —— e —
1 (Pr s 2 Xe'< 80] +<1 1920n>
Cedzuey

Choosings > 1700/1/e+1722% this bound together with Claifii3.3 far > 4 implies that the probability
that there is a cycle in the EMST-completion of the subgragstuced byS(2s) is greater than or equal to
1—(e2+ed) >3 O

The complexity of our tester in Lemriia .5 is in expectatiore ¢&n obtain a tester with a deterministic
bound on the query complexity, if we stop our algorithm whies $ample size is some constant larger than
its expectation. The small additional error can be chargetld failure probability of the algorithm.

Lemma 4.6 Let G be a well-shaped geometric graph fBr Then there is a property tester that in time
O(log?(n/e€) - \/n/€) and with query complexity @(log(n/e) - /n/€) accepts the inpu6 if G is an
EMST ofP and that rejects the input with probability at Iea§1if G is e-far from EMST.

Proof : Follows from LemmaE3lT. 4.1 abdk.5. O

4.2 Extension to general graphs

The result from LemmB=.6 can be extended using propertingeatgorithms from Sectiods—3.8=B.5 to
obtain the following result.

Theorem 3 There is a property tester for the EMST property with a rugrtime ofO(/n/¢)-log?(n/e))
and with a query complexity @(y/n/e - log(n/e)). O
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5 Conclusions

There are a few open problems left after our work. We belibat dur property testing algorithms have
asymptotically optimal or almost optimal complexity, bueweave as an open question whether this is
indeed the case. Our algorithms have been using many piexpeit minimal spanning trees for sets of
points on the plane; can one extend our approach to obtaw(@jitime property testing for EMST in
higher dimensions, say, eveniy?
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