
Randomized Minimum Spanning Tree Algorithms

Using Exponentially Fewer Random Bits

SETH PETTIE

University of Michigan

and

VIJAYA RAMACHANDRAN

The University of Texas at Austin

For many fundamental problems there exist randomized algorithms that are asymptotically opti-
mal and are superior to the best known deterministic algorithm. Among these are the minimum
spanning tree (MST) problem, the MST sensitivity analysis problem, the parallel connected com-
ponents and parallel minimum spanning tree problems, and the local sorting and set maxima
problems. (For the first two problems there are provably optimal deterministic algorithms with
unknown, and possibly superlinear running times.) One downside of the randomized methods for
solving these problems is that they use a number of random bits linear in the size of the input.
In this paper we develop some general methods for reducing exponentially the consumption of
random bits in comparison based algorithms. In some cases we are able to reduce the number of
random bits from linear to nearly constant without affecting the expected running time.

Most of our results are obtained by adjusting or reorganizing existing randomized algorithms to
work well with a pairwise or O(1)-wise independent sampler. The prominent exception — and the
main focus of this paper — is a linear-time randomized minimum spanning tree algorithm that
is not derived from the well known Karger-Klein-Tarjan algorithm. In many ways it resembles
more closely the deterministic minimum spanning tree algorithms based on Soft Heaps. Further,
using our algorithm as a guide, we present a unified view of the existing “non-greedy” minimum
spanning tree algorithms. Concepts from the Karger-Klein-Tarjan algorithm, such as F -lightness,
MST verification, and sampled graphs, are related to the concepts of edge corruption, subgraph
contractibility, and Soft Heaps, which are the basis of the deterministic MST algorithms of Chazelle
and Pettie-Ramachandran.

Categories and Subject Descriptors: G.2.2 [Graph Theory]: Graph algorithms; F.2.0 [Analysis

of Algorithms and Problem Complexity]: General; G.3 [Probability and Statistics]:
Probabilistic algorithms

General Terms: Graph algorithms, minimum spanning trees, random sampling

Additional Key Words and Phrases:

This work was supported by Texas Advanced Research Program Grant 003658-0029-1999 and
NSF Grant CCR-9988160. The first author was partly supported by an Alexander von Hum-
boldt Postdoctoral Fellowship. A preliminary version of this paper [Pettie and Ramachandran
2002a] appeared as: Minimizing randomness in minimum spanning tree, parallel connectivity,
and set maxima algorithms, Proceedings 13th Annual ACM-SIAM Symposium on Discrete Al-

gorithms (SODA), pp. 713–722, 2002. Authors’ addresses: Seth Pettie, Department of EECS,
University of Michigan, Ann Arbor, MI 48109. Email: pettie@umich.edu. Vijaya Ramachandran,
Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712. Email:
vlr@cs.utexas.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20 ACM 0000-0000/20/0000-0001 $5.00

ACM Journal Name, Vol. , No. , 20, Pages 1–0??.

2 · Seth Pettie and Vijaya Ramachandran

1. INTRODUCTION

In the mid-1990s researchers discovered two theoretically efficient methods for solv-
ing the fundamental minimum spanning tree (MST) problem that moved away
from the traditional greedy approach. One, developed by Karger, Klein, and Tar-
jan [1995], involves random sampling and makes heavy use of Komlós’s [1985] lin-
ear time minimum spanning tree verification algorithm. The other, developed by
Chazelle [2000a] and further by Pettie and Ramachandran [2002b], is based on the
Soft Heap [Chazelle 2000b], a kind of priority queue that is allowed to make many
well behaved errors. Both approaches are “non-greedy” inasmuch as they construct
approximately optimal spanning trees in the process of finding the minimum span-
ning tree. However, except for this quality they are apparently completely different.

In this paper we present a new minimum spanning tree algorithm running in
expected linear time. One noticeable feature of our algorithm is how it bridges the
gap between the randomized approach to the problem [Karger et al. 1995] and the
deterministic ones based on Soft Heaps [Chazelle 2000a; Pettie and Ramachandran
2002b]. By unifying the language used to describe non-greedy MST algorithms we
believe our algorithm might shed some light on their underlying nature.

The original motivation for our work was reducing the number of random bits
used to solve several problems in optimal expected time. Besides the minimum
spanning tree problem these include the parallel connected components and parallel
MST problems, the set maxima and local sorting problems, and MST sensitivity
analysis. Derandomization is still the primary technical focus of this paper: for
all of these problems we present optimal (or optimal-work) randomized algorithms
that use at most a polylogarithmic number of random bits.

In the rest of this section we give some background on the problems listed above
(in Section 1.1) and we summarize our results (in Section 1.2).

1.1 About the Problems

1.1.1 Minimum Spanning Trees. We can only review the last few developments
in the history of the MST problem. More background and references can be found
in Graham and Hell’s survey [1985] and in [Pettie 2003].

Between the late 1920s and 1980s all minimum spanning tree algorithms could be
construed as different implementations of a generic greedy algorithm. The culmi-
nation of this greedy approach is an algorithm of Gabow et al. [1986], which runs in
time O(m(1+ log∗ n− log∗ m

n)). Although it might still be possible to improve this
result within the greedy paradigm, all subsequent research on the MST problem
has pursued non-greedy approaches.

Karger, Klein, and Tarjan [1995] presented a randomized MST algorithm running
in expected linear time. Their algorithm computes (using random sampling of edges
and recursion) a spanning tree T that is probably nearly optimal, meaning that
there are very few edges e 6∈ T such that for some f ∈ T , T\{f} ∪ {e} results
in a lighter spanning tree. Such edges might still be in the minimum spanning
tree; all others can be identified and discarded with one of the linear time MST

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 3

verification algorithms [Komlós 1985; Dixon et al. 1992; King 1997; Buchsbaum
et al. 1998]. The Karger-Klein-Tarjan algorithm [1995] is optimal in one sense but
leaves a couple of things to be desired. First, it uses a linear number of random
bits, which as we will see is unnecessarily large. Second, it sheds less light on
the MST problem than one might hope—the real mechanics of the algorithm are
hidden within recursive calls and a black box minimum spanning tree verification
procedure.

Chazelle developed a deterministic non-greedy minimum spanning tree algorithm
that seemed to have no direct relationship with that of Karger et al. That is, it did
not simply replace portions of the Karger et al. algorithm by equivalent determinis-
tic procedures. Chazelle’s algorithm [2000a] runs in O(mα(m, n)) time, where α is
the slowly growing inverse-Ackermann function.1 Building on Chazelle’s algorithm,
Pettie and Ramachandran [2002b] presented an explicit, provably optimal MST al-
gorithm whose running time lies somewhere between Ω(m) and O(mα(m, n)), but
is currently unknown. This result proved that the uniform and non-uniform com-
plexities of the MST problem are asymptotically equivalent2; that is, the running
time of the (uniform) algorithm is equivalent to the (non-uniform) decision-tree
complexity of the MST problem itself.

1.1.2 Parallel Connectivity & MSTs. The connected components problem is
trivial to solve in linear time on a RAM or any similar model of computation.
However, the parallel complexity of the problem is still open. To date there is
no deterministic PRAM [Karp and Ramachandran 1990] algorithm that runs in
polylogarithmic time and uses linear work.

Gazit [1991] and Halperin and Zwick [1996; 2001] presented randomized logarithmic-
time linear-work connectivity algorithms, for the CRCW and EREW PRAM mod-
els respectively. Deterministic logarithmic-time algorithms were discovered by Cole
and Vishkin [1991] (CRCW) and then Chong, Han, and Lam [2001] (EREW),
though neither uses linear-work. The most work-efficient deterministic parallel al-
gorithm is Cole and Vishkin’s [1991], which performs O(mα(m, n)) work on the
CRCW PRAM.

The situation is very similar for the parallel minimum spanning tree problem,
except that there is no trivial linear-time sequential algorithm. Cole et al. [1996]
presented a randomized linear-work CRCW algorithm, which was followed by Pettie
and Ramachandran’s [2002c] randomized time-work optimal EREW algorithm. In
the deterministic setting, Chong, Han, and Lam [2001] presented a deterministic
EREW algorithm that is time (but not work) optimal. The most work-efficient
deterministic parallel algorithm is due to Cole and Vishkin [1999], which takes
O(m log log log n) work on the CRCW PRAM.

All of the randomized algorithms mentioned above use a linear number of random
bits.

1.1.3 Local Sorting, Set Maxima, and MST Sensitivity. Given a set system
(χ, S), where χ is a set of n weighted elements and S = {S1, S2, . . . , Sm} is a

1An alternative exposition of Chazelle’s algorithm appears in [Pettie 1999].
2We use the terms “asymptotically optimal” and “asymptotically equivalent” to mean optimal
and equivalent up to leading constant factors.

ACM Journal Name, Vol. , No. , 20.

4 · Seth Pettie and Vijaya Ramachandran

set of m subsets of χ, the set maxima problem is to compute the maximum weight
element in each Si. A number of well-studied problems are special cases of set
maxima or easily reducible to it. The local sorting, MST verification, and MST
sensitivity analysis problems are a few; see Section 6.1 for other examples and more
details.

Graham et al. [1980] noted two simple algorithms for set maxima, which are the
best deterministic solutions to date. Sorting the elements takes O(n log n) compar-
isons, which is optimal for m = n1+Ω(1), and computing the maxima obliviously
takes O(n+m2m) comparisons, which is optimal for m ≤ log n−log log n+O(1) (see
Section 6.1 for more details). Goddard et al. [1993] demonstrated that set max-
ima could be solved in a randomized fashion with an expected O(min{n log(2 +
m
n), n log n}) comparisons, which is optimal for all m. However their algorithm
uses a linear number of random bits.

1.2 Organization & Summary of Our Results

In many randomized algorithms one encounters a step of the form: sample each
element of some universe independently with probability p. A step of this kind
requires a number of random bits linear in the size of the universe, which may
be infeasible. A standard trick is to approximate the fully independent sample by
selecting pn elements uniformly at random. This alternative requires O(pn log n)
random bits, which may still be prohibitive. In Section 2 we show that if the
universe is a set of totally ordered elements, an O(1)-wise independent sampler
possesses (or approximates) some key properties of a totally independent sampler
while consuming only a logarithmic number of random bits. We also describe in
Section 2 an efficient pairwise-independent sampler that is particularly effective in
parallel algorithms. Many of the parameters in our algorithms are designed with a
pairwise or O(1)-wise independent sampler in mind.

The rest of the paper presents our reduced-randomness algorithms, most of which
make use of the results in Section 2. In Section 3 we present a new minimum span-
ning tree algorithm that runs in linear expected time and uses a polylogarithmic
number of random bits. In Section 4 we show that this algorithm is effectively par-
allelizable. Our parallel MST algorithm, which also solves the simpler connected
components problem, uses a polylogarithmic number of random bits and runs in
expected polylogarithmic time with linear work. In Section 5 we discuss the re-
lationship between the non-greedy MST algorithms [Karger et al. 1995; Chazelle
2000a; Pettie and Ramachandran 2002b], using our randomized MST algorithm
to illustrate related concepts. In Section 6 we give other low-randomness algo-
rithms: Section 6.1 gives algorithms for set maxima and local sorting that use a
polylogarithmic number of random bits. In Section 6.2 we give a general scheme for
reducing the number of random bits required to solve problems that possess a cer-
tain decomposition property. Using this scheme we show that the MST and MST
sensitivity analysis problems can be solved in expected linear time using o(log∗ n)
random bits. (This low-randomness MST algorithm uses fewer random bits than
the one from Section 3. However, it sheds little light on the MST problem and is
not parallelizable.)

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 5

2. LIMITED INDEPENDENCE SAMPLING

In this section we examine the properties of a limited independence sampler when
sampling from a totally ordered set. In Section 2.1 we show that a 4-wise indepen-
dent sampler is just as good as a totally independent one, for the purpose of choosing
some element whose expected rank is close to a desired rank. Under the assumption
of pairwise independence we prove a somewhat weaker guarantee. In Section 2.2
we give a k-wise independent sampler based on Joffe’s [1974] construction of k-wise
independent variables. We show, further, that our pairwise independent sampler
can be effectively parallelized. It yields not only a work-optimal sampler but an
ideal scheme for assigning sampled elements to processors.

2.1 Sampling from a Total Order

Suppose that we must find the rank t element from some total order but cannot
bother to examine every element. This is clearly impossible. However, one can
sample the elements independently with probability p and choose the rank dpte
sampled element. This simple trick produces an element whose expected rank is
within p−1 of t, which is good enough in many algorithmic applications. In this sec-
tion we bound the expected accuracy of this procedure when a k-wise independent
sampler is substituted for a totally independent one. Assuming a pairwise indepen-
dent sampler, we show the rank of the returned element is O(t+p−1(1+log(n/t))),
and that with a 4-wise independent sampler, it is O(t + p−1). Higher orders of
independence naturally lead to a distribution more concentrated around its mean.

Definition 2.1. Random variables X1, . . . , Xn are k-wise independent if for
any distinct indices i1, . . . , ik and values x1, . . . , xk:

Pr[Xi1 = x1 ∧ · · · ∧ Xik
= xk] = Pr[Xi1 = x1] × · · · × Pr[Xik

= xk]

Theorem 2.2 is a slightly simplified version of Theorem 4(I) appearing in Schmidt
et al. [1995]. It is based on an analysis of the kth moment inequality Pr[|X−E[X]| ≥
T] ≤ E

[

(X − E[X])k
]

/T k, which holds for even k.

Theorem 2.2. (Schmidt et al. [1995]) Let X1, . . . , Xn be a sequence of random
k-wise independent 0/1 variables with X =

∑n
i=1 Xi. If k ≥ 2 is even and C ≥ E[X]

then:

Pr[|X − E[X]| ≥ T] ≤
[√

2 cosh
(

√

k3/36C
)]

·
(

kC

eT 2

)k/2

Remark. The factor in square brackets in Theorem 2.2 becomes unwieldy when C
is very small. We will only employ Theorem 2.2 when C = E[X] ≥ 1. In this case
the bracketed factor is less than 2 for k = 2 and less than 3 for k = 4.

The main lemma of this section is given below.

Lemma 2.3. Let χ be a set of n totally ordered elements and χp be a subset of
χ derived by sampling each element with probability p using a k-wise independent
sampler. Let Z be the number of unsampled elements less than min χp. Then

E[Z] ≤







p−1(4 ln(pn)/e + 1) for k ≥ 2

p−1(8(π/e)2 + 1) for k ≥ 4

ACM Journal Name, Vol. , No. , 20.

6 · Seth Pettie and Vijaya Ramachandran

Proof. Let Xi = 1 if the element of χ with rank i is sampled, and 0 otherwise.
So E[Xi] = p and for any distinct indices i1, . . . , ik, Xi1 , . . . , Xik

are independent.

Let S` =
∑`

i=1 Xi count the number of ones in X1, . . . , X`. The expectation of S`

is clearly p`, implying:

Pr[Z ≥ `] = Pr[S` = 0] ≤ Pr[|S` − E(S`)| ≥ p`]

We bound E[Z] using Theorem 2.2 as follows:

E[Z] =

∞
∑

`=1

Pr[Z ≥ `]

≤ p−1 +

n
∑

`=p−1

Pr[|S` − E[S`]| ≥ p`]

≤ p−1 + c

n
∑

`=p−1

(

k

ep`

)k/2

≤ p−1 + c(k/ep)k/2
n
∑

`=p−1

`−k/2

(for k = 2, c = 2) ≤ p−1 + 4 ln(pn)/ep = p−1(1 + 4 ln(pn)/e)

(for k = 4, c = 3) ≤ p−1



1 + 48/pe2 ·
n
∑

`=p−1

`−2





≤ p−1

(

1 + 48/p2e2
∞
∑

`=1

(p−1`)−2

)

≤ p−1(1 + 8π2/e2)

The proof of the following Lemma 2.4 follows the same lines as Lemma 2.3.

Lemma 2.4. Let χ be a set of n totally ordered elements and χp be a subset of
χ derived by sampling each element with probability p using a k-wise independent
sampler. Let xt be the element of χp with rank t and let Zt be the number of
elements in χ less than xt. Then

E[Zt] =







O(t/p + log(pn/t)/p) for k ≥ 2

O(t/p) for k ≥ 4

Proof. Let Xi and Si be as defined in Lemma 2.3. Using the same arguments
as in Lemma 2.3 we have:

E[Zt] =
∑

i

Pr[Zt ≥ i]

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 7

≤ 2tp−1 + p−1 ·
pn
∑

j=2t

Pr[Zt ≥ j/p]

≤ 2tp−1 + p−1 ·
pn
∑

j=2t

Pr[|Sj/p − E[Sj/p]| ≥ j − t]

≤ 2tp−1 + c1p
−1 ·

pn
∑

j=2t

(

kj

e(j − t)2

)k/2

≤ 2tp−1 + c2p
−1 ·

pn
∑

j=2t

j−k/2

for k ≥ 2 = O(t/p + log(pn/t)/p)

for k ≥ 4 = O(t/p)

The constants c1 and c2 were introduced to simplify the presentation of the
proof.

2.2 Pairwise Independent Sampling in Parallel

The analyses of our algorithms are generally independent of the pairwise indepen-
dent sampler used, so long as it possesses a couple key properties. It is important
that the sampling algorithm takes time linear in the size of the sample, not the
universe. For our parallel MST and connectivity algorithms it is also necessary
that the sampler take constant time and linear work, including the cost of fairly
allocating sampled elements to processors. In this section we give a pairwise inde-
pendent sampler with these properties that is based on Joffe’s [1974] construction
of k-wise independent variables.

Definition 2.5. A k-wise independent sample of χ is a random set S such that
for any {x1, . . . , xk} ⊆ χ, Pr[{x1, x2, . . . , xk−i} ⊆ S ∧ {xk−i+1, . . . , xk} ∩ S = ∅] =
pk−i(1 − p)i, where p is the sampling probability.

Lemma 2.6. (Joffe [1974]) Let q be prime, a0, a1, . . . , ak−1 be chosen uniformly

at random from Zq, and X(i) =
∑k−1

j=0 aj · ij (mod q). Then X(0), . . . , X(q − 1)
are uniformly distributed over Zq and k-wise independent.

From Lemma 2.6 we have the useful fact that for generating pairwise independent
variables we require only two random coefficients, a0 and a1. We use this to sample
a set of size q as follows. Let p be the desired sampling probability.3 If X(i) ∈
[0, dpqe−1] then element i is sampled; otherwise it is not. Evaluating the polynomial
X on q points is too expensive because the number of sampled elements could be
sublinear in q. Under the assumption that a1 6= 0 we can generate the sampled set
by generating all solutions to i = (j − a0)a

−1
1 (mod q) for j ∈ [0, dpqe − 1]. This

leads to a simple scheme for assigning sampled elements to processors on an EREW
PRAM — refer to Figure 1. (The sequential version of the procedure is obtained
when the number of processors P = 1.)

3Due to rounding the actual sampling probability will be dpqe/q, not p.

ACM Journal Name, Vol. , No. , 20.

8 · Seth Pettie and Vijaya Ramachandran

Pairwise-Sampler:

Specs: There are P EREW processors and q elements, where q is prime. We must find
a pairwise independent sample (sampling probability p) and distribute sampled elements
among the P processors.
We assume a0, a1 have been selected uniformly at random from Zq, and that each pro-
cessor knows p, q, a0, a1, a−1

1 and its processor ID.

Case 1.. If a1 = 0 and a0 ≥ dpqe then X(i) = a0 . No elements are sampled.

Case 2.. If a1 = 0 and a0 < dpqe then all elements are sampled. Processor k is assigned

elements d q

P
ek through d q

P
e(k + 1) − 1.

Case 3.. If a1 6= 0, then processor k is assigned elements of the form

(j − a0)a−1
1 (mod q)

for all j from d pq
P
ek through d pq

P
e(k + 1) − 1.

Fig. 1. A combination pairwise-independent sampler and processor allocation scheme.

Lemma 2.7. Suppose a parallel algorithm requires s pairwise independent sam-
ples from a set of size q (a prime), with perhaps different sampling probability for
each sample. On an EREW PRAM the samples can be generated and fairly allo-
cated to processors using O(s log q) random bits, in O(s+log q)-time, and with work
linear in the size of all samples.

Proof. Our EREW sampling algorithm is given in Figure 1. For it to work,
every processor must know two random elements a0, a1 ∈ Zq and a−1

1 (if a1 6= 0)
We assign s processors to generate one (a0, a1) pair and compute a−1

1 . This takes
O(log q) time. In O(s+min{log P, log q}) time we distribute the (a0, a1, a

−1
1) tuples

to the first min{P, q} processors All other processors do not participate.

In situations where pairwise independent sampling suffices, our processor al-
location scheme is significantly more desirable than other randomized allocation
schemes [Halperin and Zwick 2001; 1996]. It is quick, uses minimal communica-
tion, and distributes the sampled set perfectly: every processor’s load is less than
the average load plus 1.

One problem that remains is finding a prime q in parallel for use with Joffe’s
construction. This is not too hard: we simply run the randomized Miller-Rabin
primality test [Miller 1976; Rabin 1980] on a sequence of integers known to contain
a prime. Baker and Harman [Bach and Shallit 1996, p. 225] showed that if pn is
the nth prime, then pn − pn−1 ≤ n.535+o(1).

Lemma 2.8. Let q be the smallest prime such that q ≥ m. Then with probability
at least 1−m−2c+1, q can be found on the EREW PRAM in O(log m) time, using
m.54 processors and c log2 m random bits.

Proof. We run the Miller-Rabin primality test c log m times on each integer
in the interval [m, m + b(m)], where b(m) = m.535+o(1), reusing the same random
bits for each number tested. The probability that Miller-Rabin reports the wrong

answer for any of the numbers is ≤ b(m)
(

1
4

)c log m ≤ m−2c+1. Each test uses log m
random bits and takes time O(log m), hence finding the first prime ≥ m takes
c log2 m random bits and O(log m) time using b(m) · c log m processors.

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 9

Remark. In our MST algorithm m represents the number of edges still in play. Since
this quantity is gradually reduced over successive phases we require a different prime
for each phase. By reusing random bits in the procedure above we can compute up
to Θ(m/b(m)) primes, which is more than enough, in O(m) work, O(log m) time,
and with O(c log2 m) random bits.
Remark. The number of random bits claimed in Lemma 2.8 can actually be reduced
to O(c log m) using the method developed by Ajtai et al. [1987] and further in
[Impagliazzo and Zuckerman 1989; Cohen and Wigderson 1989]. This algorithm
involves associating the O(log m)-bit random inputs with the vertices of an expander
graph and taking a random walk of length O(c log m). The algorithm (Miller-Rabin
in our case) is re-run at each vertex encountered.

3. A RANDOMIZED MINIMUM SPANNING TREE ALGORITHM

In this section we present a randomized MST algorithm that runs in expected linear
time using only polylog random bits. In Section 4 we show that this algorithm can
be effectively parallelized and in Section 5 we discuss it relative to the other non-
greedy MST algorithms. Later, in Section 6.2, we give another MST algorithm
running in expected linear time and using o(log∗ n) random bits; however this
algorithm is not parallelizable and contributes little to the discussion of non-greedy
MST algorithms.

The goal of our algorithm, as in [Karger et al. 1995; Chazelle 2000a; Pettie and
Ramachandran 2002b], is to construct a sequence of approximately minimum span-
ning trees, each more accurate than the last, until the actual minimum spanning
tree is obtained. The accuracy of any spanning tree T is measured by the number
of edges e for which T = MST (T ∪ {e}).

The fundamental operations of our algorithm are standard Bor̊uvka steps, approx-
imate Bor̊uvka steps, which will be discussed in Section 3.1, and MST verification.

3.1 Approximate Bor̊uvka Steps

In a Bor̊uvka step we identify and contract the lightest edge incident to each vertex.
By the cut property of minimum spanning trees all edges contracted are in the MST.
Since each Bor̊uvka step reduces the number of (non-isolated) vertices by half and
runs in linear time, the overall complexity of Bor̊uvka’s algorithm is O(m log n).4

Our algorithm is based on an approximate version of the standard Bor̊uvka step
that requires only sublinear time but still provides useful information about the
minimum spanning tree.

An approximate Bor̊uvka step is essentially a Bor̊uvka step applied to a subset
Ê of the edges, which in our case will always be obtained by random sampling.
Each vertex selects and contracts the lightest incident edge that is both in Ê and
untainted — more on this soon. Clearly the edges contracted in an approximate
Bor̊uvka step are not necessarily in the MST. Indeed, some edges may bear witness
to the fact that their end points selected a suboptimal edge. If particular, if the
edge (u, v) is lighter than either the edge chosen by u or the edge chosen by v then
(u, v) is tainted and cannot participate in further approximate Bor̊uvka steps. For
technical reasons we will taint (u, v) if either of u or v fails to choose an edge, or

4It is possible to implement Bor̊uvka’s algorithm faster; see [Gabow et al. 1989].

ACM Journal Name, Vol. , No. , 20.

10 · Seth Pettie and Vijaya Ramachandran

if (u, v) is the edge selected by u or v. Definition 3.1 defines tainted edges more
precisely.

Definition 3.1. Let G = (V, E) be a graph in which some edges in E are labeled
as being tainted, and let Ê ⊆ E be an arbitrary subset of the edges. Let ev be the
lightest incident edge on vertex v that is in Ê, not a self-loop, and not tainted. In an
approximate Bor̊uvka step w.r.t. Ê the edges {ev}v are identified and contracted.
An edge (x, y) ∈ E, where x 6= y, becomes tainted if w(x, y) ≤ max{w(ex), w(ey)},
where w(ex) = ∞ if ex does not exist. (Note that all edges in {ev}v become tainted.)

Definition 3.2. To retract the last (approximate) Bor̊uvka step means to undo
the edge contractions performed in that step and to mark untainted those edges
tainted in that step.

Throughout the paper the phrase “(approximate) Bor̊uvka step” means either a
standard or approximate Bor̊uvka step. For The pseudocode for an approximate
Bor̊uvka step is given in Figure 2.

Approx-Bor̊uvka-Step(G, Ê, Et) : graph G, Ê, Et ⊆ E(G)
Et are the previously tainted edges

1. Let ev be lightest edge in ({v} × V (G)) ∩ Ê\Et

2. For each edge (u, v) ∈ E(G),
3. If eu or ev do not exist or w(u, v) ≤ max{w(eu), w(ev)}
4. Et := Et ∪ {(u, v)}
5. G′ = G after contracting {ev}v∈V (G)

6. Return G′, Et New graph, new set of tainted edges

Fig. 2. Approximate Bor̊uvka Step

Suppose that we apply a sequence of approximate Bor̊uvka steps until all edges
become self-loops (due to contractions) or tainted. We will show that any untainted
edge cannot be in the MST of the original graph. Furthermore, if the sampling
probabilities are chosen carefully, most edges will never be tainted.

Lemmas 3.3–3.6, given below, constitute the salient features of approximate
Bor̊uvka steps. Informally, they are: (1) not that many edges become tainted
in any step; (2) the time required for each step is reasonable, though superlinear
in |Ê|; and (3) any untainted edge that becomes a self-loop (due to edge contrac-
tions) is not in the minimum spanning tree. Parts (1) and (2), corresponding to
Lemmas 3.3 and 3.4, respectively, are used to bound the overall running time of our
algorithm. Part (3), given in Lemma 3.6, proves the correctness of our algorithm.

Lemma 3.3. Consider a graph with edge set E where some of the edges may
be tainted. Let Ep ⊆ E be obtained by sampling E with probability p using a k-
wise independent sampler. The expected number of edges that become tainted in an
approximate Bor̊uvka step w.r.t. Ep is O(n log(2m/n)/p) for k ≥ 2 and O(n/p) for
k ≥ 4, where m and n are the number of edges and vertices, respectively.

Proof. Let Lv be the list of eligible edges incident on v (must be in Ep, un-
tainted, not self-loops) and let L′

v be those edges tainted by the Bor̊uvka step w.r.t.

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 11

Ep. By Lemma 2.3 E[|L′
v|] is O(p−1 log(p|Lv|)) for k ≥ 2 and O(p−1) for k ≥ 4. The

expected number of tainted edges is then O(
∑

v E[|L′
v|]) by linearity of expectation.

For k ≥ 4 this bound is O(n/p) and for k ≥ 2 the bound is, by the concavity of the
log function, O(np−1 log(2m/n)).

Lemma 3.4. Let G be a graph with no tainted edges and let H be derived from
G by ` (approximate) Bor̊uvka steps. An approximate Bor̊uvka step on H w.r.t.
Ê ⊆ E(H) can be executed in time O((` + 1) · |Ê|) time.

We omit a proof of Lemma 3.4; it follows from Lemma 4.3 given in Section 4.

Definition 3.5. (I) Let C be a subgraph of G. G/C represents the graph derived
by contracting C and removing any self-loops. (II) C is contractible w.r.t. G if for
any two edges e, f , each with a distinct endpoint in C, there exists a path P ⊆ C
connecting e to f such that either e or f is heavier than all edges in P .

Lemma 3.6. Let H be a graph derived from G after some number of (approx-
imate) Bor̊uvka steps and let U be those edges still untainted. Let C be the in-
duced subgraph of G corresponding to some vertex in H. Then C is contractible
w.r.t. C ∪ U .

PSfrag replacements

Pu Pv

Cu Cv

e f

(u, v)

Fig. 3. The edges e, f , and (u, v) are untainted when (u, v) is selected by Cu.

Proof. Enumerate the edge contractions performed by a sequence of approx-
imate Bor̊uvka steps. Let (u, v) be one such edge, selected by u for contraction
in some Bor̊uvka step, and assume inductively the Lemma holds just before it is
contracted. Let Cu and Cv be the subgraphs in G corresponding to u and v, re-
spectively, and C = Cu ∪Cv . Let e and f be two arbitrary edges with one endpoint
in C. If e and f remain untainted after the current Bor̊uvka step (when (u, v) is
selected) we show that there is a path P from e to f , all of whose edges are lighter
than either e or f . The case when both e and f are incident to Cu or Cv is covered
by the inductive assumption; assume that e is incident to Cu and f to Cv. Let Pu

(resp., Pv) be the path from e to (u, v) (resp., f to (u, v)) guaranteed by the con-
tractibility of Cu and Cv — see Figure 3 for a diagram. If (u, v) is to be contracted
in the current Bor̊uvka step it must be untainted. Since e remains untainted after
the current Bor̊uvka step, we know e is heavier than (u, v) and therefore heavier
than every edge in Pu. Similarly, every edge in Pv is lighter than either (u, v) or
f . Thus every edge in Pu ∪ {(u, v)} ∪ Pv is lighter than either e or f , proving the
contractibility of C w.r.t. C ∪ U .

ACM Journal Name, Vol. , No. , 20.

12 · Seth Pettie and Vijaya Ramachandran

Corollary 3.7. If, after some number of approximate Bor̊uvka steps, an edge
is both untainted and a self-loop, then it is not in the minimum spanning tree of the
original graph.

Corollary 3.7 follows from Lemma 3.6 and Definition 3.5.

3.2 The Algorithm

Our randomized MST algorithm consists of a succession of phases. At the begin-
ning of each phase we apply a certain number of standard Bor̊uvka steps, thereby
identifying many MST edges and reducing the number of vertices in the graph. We
then proceed to compute an approximately minimum spanning tree, using approx-
imate Bor̊uvka steps on sampled subgraphs. By approximately minimum we mean
that the spanning tree T found is such that T = MST (T ∪ {e}) for most edges
e 6∈ T still under consideration. The set of these edges can be identified in linear
time with an MST verification algorithm [Komlós 1985; Dixon et al. 1992; King
1997; Buchsbaum et al. 1998] and discarded. We then prepare for the next phase
by retracting all the approximate Bor̊uvka steps performed in the phase. The pseu-
docode of our algorithm is given in Figure 4. The parameters λi and pj determine,
respectively, the number of standard Bor̊uvka steps performed at the beginning of
the ith phase and the sampling probability for the jth approximate Bor̊uvka step
performed in any phase.

Randomized-MST(G, λ, p)

E1 := E(G)
Execute Phases 1, 2, · · · until the graph becomes trivial.
The MST consists of all edges contracted in Line 1.
Initially all edges are untainted.

Phase i:

1. Perform λi − λi−1 exact Bor̊uvka steps
2. For j = λi + 1, λi + 2, . . . do:
3. Let Sj be an edge-set sampled from Ei with prob. pj

4. Perform an approximate Bor̊uvka step w.r.t. Sj

5. Until all edges have become tainted or self-loops
6. Ei+1 := Ei − {untainted edges in Ei}
7. Retract all approximate Bor̊uvka steps made in Phase i (Line 4)

(All edges tainted in those steps become untainted.)

Fig. 4. A randomized minimum spanning tree algorithm based on approximate Bor̊uvka steps.

The correctness of the algorithm follows from a couple of observations. By Corol-
lary 3.7 every edge discarded by the algorithm in Line 6 is not in the minimum
spanning tree of G. Thus, the exact Bor̊uvka steps performed in Line 1 contract
only minimum spanning tree edges.

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 13

3.3 Analysis of the Algorithm

In our analysis we assume only a pairwise independent sampler and appeal to
Lemma 2.3 to bound the expected running time.

A vertex is isolated if all its incident edges are tainted. In our analysis we assume
the expected number of non-isolated vertices after j (approximate) Bor̊uvka steps
is at most nj = n/γj , for some constant γ > 1. This holds with γ = 2 for
normal (approximate) Bor̊uvka steps. However, the binary Bor̊uvka step (which
will be introduced in Section 4.1) requires a smaller value for γ, hence we will use
γ instead of 2 in the analysis here. The number of exact Bor̊uvka steps performed
at the beginning of each phase is given by the λ values, which depend on γ:

λ0 = 0, λ1 = C, λi+1 = γλi/4

where C is a constant depending on γ. The sampling probability for the jth ap-
proximate Bor̊uvka step is pj = γ−j/4.

The total cost of the algorithm is linear in the costs of the exact and approximate
Bor̊uvka steps performed in Lines 1 and 4, respectively. We argue in Section 4.2 that
a linear-time MST verification algorithm can be used in Line 6 to detect untainted
edges. Thus, in each phase the time taken at Line 6 is always dominated by that at
Line 1. By Lemma 3.4 the expected running time of the algorithm is proportional
to:

∑

i



mi(λi)
2 +

∑

j=λi+1

jpjmi



 (1)

where mi = E[|Ei|] is the expected number of edges at the beginning of Phase i.
Before analyzing (1) we bound mi. Assume inductively that mi ≤ c1m logλi/(λi)

3

for some constant c1.

mi+1 ≤
∞
∑

j=λi+1

c2njp
−1
j log(mi/nj) {c2 from Lemma 3.3}

ind
≤ c2n

∞
∑

j=λi+1

γ−3j/4
[

log(m/n) + log(c1γ
j log λi/(λi)

3)
]

≤ c2c3n log(m/n)

(λi+1)3
+

c2c3n log(c1(λi+1)
4 log λi/(λi)

3)

(λi+1)3

≤ c1m logλi+1/(λi+1)
3 {c1 > c2c3(1 + 4 log c1)}

Plugging this bound on mi into (1) we have:

[Eq. 1] ≤
∑

i



c1m logλi/λi + c1m logλi/(λi)
3

∞
∑

j=λi+1

jγ−j/4





ACM Journal Name, Vol. , No. , 20.

14 · Seth Pettie and Vijaya Ramachandran

≤
∑

i

[

c1m log λi/λi + c1c4m log λi/λi+1(λi)
2
]

= O(m)

In the next Section we will prove that the number of random bits used by this
algorithm is O(log2 n log∗ n), which gives the following Theorem.

Theorem 3.8. The minimum spanning tree of a graph can be computed in ex-
pected linear time using O(log2 n log∗ n) random bits.

In the next Section we show that our algorithm can be parallelized to find MSTs
and connected components using polylog random bits, polylog time, and expected
linear work. A stronger version of Theorem 3.8 appears in Section 6.2, where the
number of random bits is reduced to o(log∗ n) without affecting the running time.

4. A PARALLEL MST ALGORITHM

The algorithm presented in Section 3 is based on Bor̊uvka steps, a operation that
is relatively easy to parallelize. We have, therefore, very few obstacles to designing
a randomness efficient parallel MST algorithm.

We assume, without loss of generality, that edge weights are distinct and that
the graph has degree at most 3. Any vertex with higher degree can be expanded
into a chain of degree-3 vertices; edges on the chain are given very low weight.

4.1 Binary Bor̊uvka Steps

To simplify the implementation of our algorithm on the EREW PRAM [Karp and
Ramachandran 1990] it will be convenient if all Bor̊uvka steps contract vertices
in pairs — binary Bor̊uvka steps. We give in Figure 5 a procedure Pair-Up that
reduces the number of non-isolated vertices in the graph by a constant factor. The
correctness of Pair-Up depends on a certain property of minimum spanning trees
that says the endpoints of an edge can be relocated without affecting the minimum
spanning tree. More specifically:

Lemma 4.1. (Endpoint relocation property) Suppose that w(x, y) > w(y, z),
where (x, y), (y, z) are edges in a weighted graph G. Let G′ be derived from G by
reassigning the endpoints of (x, y) to (x, z); call this edge e, whether it appears in
G or G′. Then e ∈ MST (G) if and only if e ∈ MST (G′).

Proof. Suppose that e is the heaviest edge on a cycle Q in G, that is, e 6∈
MST (G). Then in G′, e is the heaviest edge on the unique cycle in Q ∪ {(y, z)},
since w(e) > w(y, z). Note that the edge (y, z) may or may not be in the cycle in
Q ∪ {(y, z)}. The reverse direction is proved in an identical manner, switching the
roles of G and G′.

The edges selected in any (approximate) Bor̊uvka step induce a forest F of at
least n′/2 trees, where n′ is the number of non-isolated vertices. If we consider the
edges to be directed, where (u, v) ∈ F represents the edge chosen by u, then each
tree in F has two roots, corresponding to an edge that is chosen by both endpoints.
We remove one of these directed edges and consider F to be a forest of rooted trees.
Pair-Up relocates the endpoints of certain edges of F consistent with Lemma 4.1
then finds a sizable set F ′ ⊆ F of nonadjacent edges. The interesting features

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 15

of Pair-Up are given in Lemma 4.2; the particulars of the procedure are given in
Figure 5.

Lemma 4.2. Let F be a set of rooted trees and n = |V (F)|. Pair-Up(F) returns a
set of independent edges F ′, such that E[|F ′|] ≥ n/4, even if the random bits required
of the algorithm are only pairwise independent. Moreover, all edge relocations made
by Pair-Up are minimum spanning tree preserving [see Lemma 4.1].

Proof. By Lemma 4.1 all edge relocations do not affect which edges are in
the MST. Each relocated edge in F ′ removes from further consideration at most 4
vertices, i.e., at Line 8 of Pair-Up |V (F −V (F ′))| ≥ n−4|F ′|. At Line 8 F −V (F ′)
consists of directed paths. Pair-Up sets the head and tail of each path to be heads
and tails, resp., and flips a fair coin for the other vertices. Therefore, in a path
of length k in F − V (F ′), we expect that at least 1

4 (k − 2) + 1
22 > 1

4 (k + 1) of
its edges will be added to F ′ in Line 13, even if the coin flips of Line 9 are only
pairwise independent. Summing over all paths in F −V (F ′) we see that the size of
F ′ returned at Line 14 is at least n/4.

By Lemma 4.2 and linearity of expectation, the expected number of non-isolated
vertices after j (approximate) Bor̊uvka steps is no more than n(3

4)j . Therefore the
analysis of our MST algorithm in Section 3 is correct for γ = 4/3.

Pair-Up(F) : F is a forest of rooted trees
1. F ′ := ∅
2. For each vertex v:
3. Let v1, v2, . . . , vk be the children of v in F

4. For i := 1..b k
2
c

5. Assume w.l.o.g. that w(v2i, v) > w(v2i−1, v)
6. Relocate (v2i , v) to (v2i−1 , v2i)
7. F ′ := F ′ ∪ {(v2i−1 , v2i)}
8. (F − V (F ′) now consists of a collection of directed paths)
9. Each vertex with in- and out-degree 1 in F − V (F ′) flips a fair coin
10. Vertices with out-degree (resp., in-degree) 1 in F − V (F ′) pick heads (resp., tails)
11. For each edge (u, v) ∈ F − V (F ′)
12. If u picked heads and v picked tails,
13. F ′ := F ′ ∪ {(u, v)}
14. Return(F ′)

Fig. 5. Pair-Up(F) returns a set of independent edges from F , after performing some MST-
respecting edge relocations.

4.2 Contraction Trees

We model the Bor̊uvka steps performed by our algorithm with a contraction tree.
This structure was introduced by King [1997] as part of her MST verification algo-
rithm. After b (approximate) Bor̊uvka steps the contraction tree consists of b levels.
The vertices at height i correspond to the graph vertices after i steps and the parent
of a vertex v in the contraction tree, denoted p(v), is the vertex representing v after
performing one Bor̊uvka step. (We use the same notation for both graph vertices

ACM Journal Name, Vol. , No. , 20.

16 · Seth Pettie and Vijaya Ramachandran

and their equivalent contraction tree vertices.) The weight of an edge (v, p(v)) is
exactly the weight of the edge chosen by v in the appropriate Bor̊uvka step.

If we perform only binary Bor̊uvka steps (using the Pair-Up procedure from
Section 4.1) then we can make some additional claims about the structure of the
contraction tree. Obviously every vertex in the tree has at most two children. Some
vertices have only one child though they are not necessarily isolated. They may
simply have been unpaired by Pair-Up. By Lemma 4.2 the expected number of
non-isolated vertices in the tree is O(n); however the number of isolated vertices
could be Ω(bn) after b Bor̊uvka steps. For this reason we do not explicitly represent
a vertex p(v) if v is isolated.

We use the contraction tree to perform approximate Bor̊uvka steps and to de-
tect untainted edges after each phase of the algorithm. Lemmas 4.3 and 4.4 give,
respectively, bounds on the time for one (approximate) Bor̊uvka step and a char-
acterization of the untainted edges w.r.t. the contraction tree.

Lemma 4.3. Suppose that G′ is a graph derived from b (approximate) binary
Bor̊uvka steps. Given a contraction-tree representing those steps, the next (approx-
imate) binary Bor̊uvka step can be executed in O(b+1) time and O((b+1)m) work
on an EREW PRAM. Here m is the number of edges participating in the step.

Proof. We assume that the participating edges have been fairly allocated to
processors. Our description proceeds as if two virtual processors were assigned to
each edge. An edge (u, v) (where u and v are nodes in the original graph) is eligible
if root(u) 6= root(v), where root(u) is the ancestor of u at height b in the contraction
tree, and if w(u, v) is strictly greater than the weights along the paths from u to
root(u) and from v to root(v). The two processors assigned to (u, v) attempt to
crawl up the contraction tree starting from u and v, recording the heaviest edge
along the way. If several processors meet at a vertex x only one continues; after it
discovers the heaviest edge on the path from x to root(x) it relates this information
to the stalled processors. We find the lightest eligible edge incident on each vertex in
a similar manner. Each of the O(b+1) steps of these procedures can be implemented
in constant time on an EREW PRAM because the contention at each node of the
contraction tree is constant. At most three processors access a leaf in one step (the
graph is degree at most three) and at most two processors access any internal node.
We omit a description of the parallelized Pair-Up procedure. It runs in O(b + 1)
steps using the same tree-crawling technique.

Lemma 4.4. Let G be a graph and let F be the contraction tree resulting from
some number of (approximate) Bor̊uvka steps, where the leaves of F are identified
with the vertices of G. An edge (u, v) is untainted either if (a) u and v are connected
in F and (u, v) is the unique heaviest edge on the cycle in F ∪{(u, v)}, or (b) (u, v)
is the unique heaviest edge on the path from root(u) to root(v) in F ∪ {(u, v)} and
both root(u) and root(v) are non-isolated.

Proof. Follows directly from Definition 3.1.

One can now see how an MST verification algorithm [Komlós 1985; Dixon et al.
1992; King 1997; Buchsbaum et al. 1998] could be used to detect untainted edges in
Line 6 of our algorithm presented in Section 3. Since all roots of F are isolated at

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 17

Line 6, the untainted edges are precisely those satisfying condition (a) in Lemma 4.4.
Condition (a), in turn, is equivalent to the condition that (u, v) is not in any
minimum spanning forest of F ∪ {(u, v)}.

4.3 Analysis

Theorem 4.5. The minimum spanning tree of a graph can be computed on an
EREW PRAM in expected linear work and O(log2 n log∗ n) time while using only
O(log2 n log∗ n) random bits.

Corollary 4.6. The connected components of a graph can be computed on an
EREW PRAM with expected linear work, O(log2 n log∗ n) time, and O(log2 n log∗ n)
random bits.

Proof. We will show that there are at most 2 log∗ n phases of the algorithm
presented in Sections 3 and 4, and that each phase requires both O(log2 n) random
bits and time.

The expected number of phases is min{i : λi ≥ logγ n}. Recall that the λ values

are λ1 = C, λi+1 = 2λi/c, where c is a constant and C depends on c. For a C ≥ c2

we prove inductively that λi+2 ≥ 2λi , which implies min{i : λi ≥ logγ n} ≤ 2 log∗ n.

Assume that λi ≥ C. Then λi+2 ≥ 22λi/c/c ≥ 22λ
1/2
i

−log λi/2

. Thus, for C ≥ c2 such
that C1/2 ≥ (3/2) logC, it follows that λi+2 ≥ 2λi .

The expected number of (approximate) Bor̊uvka steps in each phase is logγ n. By
Lemma 4.3 each step takes O(log n) time and requires 2(log n+logm) random bits:
2 logm for sampling the edges (if it is an approximate Bor̊uvka step) and 2 log n to
perform the random mating in Pair-Up. The number of random bits required to
find all the primes used in our sampling procedure is O(log2 n) — see Lemma 2.8.
The time required to perform MST verification is O(log n) per phase [King et al.
1997] and is not significant overall. The expected work of our algorithm is linear;
see Section 3 for the analysis.

5. DISCUSSION

In this section we will attempt to unify the language and concepts introduced
in the recent non-greedy minimum spanning tree algorithms. We argue that our
algorithm in Section 3 serves as a bridge between the randomized and deterministic
approaches because it combines ideas from both in a very natural way.

Non-Greedy Algorithms.. The recent MST algorithms [Karger et al. 1995; Chazelle
2000a; Pettie and Ramachandran 2002b], are all said to be non-greedy, but they
are not really alike. Karger et al.’s algorithm [1995] uses random sampling and
MST verification, while the deterministic MST algorithms of Chazelle [2000a] and
Pettie-Ramachandran [2002b] are based on the Soft Heap [Chazelle 2000b]. The
reduced-randomness MST algorithm we presented in Section 3 reveals some of the
commonality between the two approaches. Like the Karger et al. it uses random
sampling and MST verification. However one should imagine our approximate
Bor̊uvka steps as implementing a certain kind of soft heap, in particular, one where
the tradeoff between running time and error rate changes depending on the sam-
pling probability, which can be set arbitrarily. We elaborate more on this below.

ACM Journal Name, Vol. , No. , 20.

18 · Seth Pettie and Vijaya Ramachandran

Abstract Soft Heaps.. The central concept of non-greedy MST algorithms can
be viewed as that of an abstract soft heap, not to be confused with the concrete
Soft Heap data structure invented by Chazelle [2000b]. We consider an abstract
soft heap to be any data structure supporting the usual heap operations (make-
empty-heap, insert, delete, findmin, meld) but without the obligation of answering
all findmin queries correctly. Any heap element that bears witness to the fact that a
previous findmin was answered incorrectly is called corrupted. (Chazelle’s [2000b]
definition is different but equivalent. His Soft Heap always answers findmin queries
correctly. However, it is free to increase the key of any element in order to ensure
correctness. The corrupted elements are those with increased keys.) We use the
lower case soft heap to denote any implementation of an abstract soft heap.

Chazelle’s Soft Heap is deterministic and provides an accuracy-time tradeoff that
meets an information theoretic lower bound. There are, however, many other con-
ceivable ways to design abstract soft heaps. For instance, the approximate Bor̊uvka
steps from our algorithm implement a coordinated system of soft heaps, with one
soft heap associated with each vertex of the contracted graph. Tainted edges would
then correspond to corrupted elements in some abstract soft heap. An important
subtlety here is that since each element appears in two soft heaps, corresponding to
the associated edge’s endpoints, if it is corrupted in one soft heap it also becomes
corrupted in the other. (The MST algorithm of Karger et al. [1995] can also be
reinterpreted as a soft heap-based algorithm, with F -lightness taking the role of
taintedness/corruptedness. However doing so is very unnatural. As the algorithm
traverses its recursion tree we would need to imagine the “clock” of the system of
abstract soft heaps wiggling forward and backward in time.)

The accuracy-time tradeoff of a random sampling-based soft heap can be incom-
parable to the tradeoff of Chazelle’s Soft Heap. The Soft Heap performs all oper-
ations in O(log ε−1) time while guaranteeing that an ε fraction of the heap is cor-
rupted. By comparison the tth approximate Bor̊uvka step performs n′ = O(n/2t)
deletions on n′ abstract soft heaps (and between n′/2 and n′ − 1 melds) while cor-
rupting an expected kn′ elements (edges), at a total cost of O(tm/k). Approximate
Bor̊uvka steps (viewed as a soft heap) could be construed as less efficient than the
Soft Heap. However an approximate Bor̊uvka step possesses several useful proper-
ties beyond the reach of Soft Heaps. First, the error rate (i.e., sampling probability)
can be chosen at will. Second, approximate Bor̊uvka steps are guaranteed to return
only uncorrupted elements. Finally, approximate Bor̊uvka steps corrupt edges in
different heaps without difficulty.

Abstract Soft Heap Verification.. Approximate Bor̊uvka steps have many strengths
but one glaring weakness: they cannot easily distinguish between the corrupted
and uncorrupted elements, a property that the deterministic Soft Heap-based al-
gorithms [Chazelle 2000a; Pettie and Ramachandran 2002b] depend on heavily. In
other words, a sampling-based soft heap cannot stand alone. It must be used in
conjunction with a soft heap verification algorithm that performs a post mortem
analysis of the transcript of heap operations in order to decide which elements were
ever corrupted. In Section 4.2 we argued that an MST verification algorithm could
be used to decide which edges were tainted/corrupted by the approximate Bor̊uvka
steps in one phase of our algorithm. In fact, the MST verification problem is entirely

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 19

equivalent to the soft heap verification problem. Below we give one direction of the
reduction, from soft heap verification to MST verification. The input is a transcript
of heap operations that includes the answers produced by the findmin operation.
We model the history of a system of soft heaps by a forest of rooted trees. A root
node corresponds to an extant soft heap and internal nodes corresponds to extinct
ones. A make-empty-heap operation creates a new root node representing the new
soft heap. A meld(H, H ′) operation creates a new (root) node that is made the
parent of the nodes representing H and H ′, and a findmin(H) operation makes the
node representing H the child of a new parent node. Edges introduced by melds
have weight −∞, while the edge of a findmin has weight equal to the answer of that
findmin. This tree T represents the purported minimum spanning tree in the cor-
responding instance of MST verification. Consider a soft heap element e that was
inserted into a soft heap H and deleted from the soft heap H ′, which was derived
from H by a sequence of inserts, deletes, and melds. Viewing H and H ′ as vertices
in T , the element e corresponds to a non-tree edge e = (H, H ′) with weight equal
to e’s original key. It may be the case that e is assigned the same weight as an
edge e′ ∈ T . We break such a tie by letting e (the non-tree edge) have the heavier
weight. For an element e that was inserted into soft heap H and not deleted, we
place a non-tree edge from the vertex representing H to the root of its tree, again
with weight equal to the original key of e.

Notice that for any non-tree edge e, the unique cycle in T ∪ {e} contains pre-
cisely those soft heaps (vertices) that contained the element e. Clearly, if T =
MST (T∪{e}) then e cannot bear witness to any findmin queries that were answered
incorrectly, i.e., it remains uncorrupted. On the other hand, if T 6= MST (T ∪ {e})
then for some vertex H on the cycle in T ∪{e} the query findmin(H) must have re-
turned an element heavier than e, corrupting e. This concludes the reduction from
soft heap verification to MST verification. The reverse reduction follows similar
lines. We would orient the purported MST and replace each non-tree edge (u, v)
by two edges connecting u and v to their least common ancestor. Converting such
an instance of MST verification into a transcript of abstract soft heap operations
is then straightforward.5

5Begin Digression. The relationship between MST-related problems and heap-related problems
is stronger than generally acknowledged, the MST verification/soft heap verification connection
being just one. We demonstrate here one more. Consider the Offline Heap problem, where we
are given a sequence of heap operations (make-empty-heap, insert, delete, find-min, meld). The
arguments to the operations are given; the problem is to compute the correct answer to each
find-min query. We argue that the Offline Heap problem is equivalent to the MST Sensitivity
Analysis [Pettie 2005] problem: given the MST of a graph, decide how much each MST edge
can be increased without affecting the identity of the MST. We model the Offline Heap instance
as a rooted tree using the exact same transformation given for abstract soft heap verification.
However in this case it is the non-tree edges that are weighted; tree edges have weight −∞. One
can verify that an answer to the MST Sensitivity Analysis problem on this graph gives an answer
to the Offline Heap instance. In particular, if e ∈ MST is an edge representing a find-min, the
maximum possible weight of that edge is precisely the key-value returned by the corresponding
find-min. The reverse direction, reducing MST Sensitivity Analysis to Offline Heap, is equally
straightforward. One application of an Offline Heap algorithm is monitoring a purportedly correct
heap data structure. The Offline Heap algorithm would periodically check a transcript of the input
& output of the heap and detect and correct any errors. End of Digression.

ACM Journal Name, Vol. , No. , 20.

20 · Seth Pettie and Vijaya Ramachandran

Contractibility. The discussion above does not answer the question of why ab-
stract soft heaps are such a natural means to obtain fast MST algorithms. Consider
the definition of contractibility (Definition 3.5) from Section 3. It is not difficult
to show that at any stage in the classical minimum spanning tree algorithms of
Kruskal [1956], Dijkstra-Jarńık-Prim [Dijkstra 1959; Jarńık 1930; Prim 1957], and
Bor̊uvka [1926], every maximal tree of MST edges already found represents a con-
tractible component. These greedy algorithms are generally implemented using
(non-soft) heaps. It is an interesting exercise to show that by substituting a soft
heap for a standard one, the components computed by the standard algorithms
are contractible with respect to uncorrupted edges. This statement applies in a
straightforward manner to Kruskal’s algorithm and the Dijkstra-Jarńık-Prim al-
gorithm; see [Pettie and Ramachandran 2002b]. However there are some compli-
cations in Bor̊uvka’s algorithm because elements (edges) normally appear in two
soft heaps simultaneously. To ensure contractibility these two copies must be cor-
rupted together, i.e., have their weights increased by the same amount. This slight
twist helps explain why Chazelle’s Soft Heap [2000b] cannot be merely plugged into
Bor̊uvka’s algorithm, but why, say, it can be used with the algorithms of Kruskal
or Dijkstra-Jarńık-Prim, which employ only one heap.

Contractible components are useful because they represent sub-problems that
can be solved recursively (as in [Chazelle 2000a]) or with minimum-depth decision
trees (as in [Pettie and Ramachandran 2002b]) or with another MST algorithm (as
in Section 6.2 of this paper). Furthermore, if multiple uncorrupted edges join two
contractible components, all but at most one must be non-MST edges. In [Karger
et al. 1995] and Section 3 of this paper, these non-MST edges can be identified and
discarded using an MST verification/soft heap verification algorithm. One way or
another, the non-greedy algorithms use contractible components to reduce the size
of the problem geometrically, in linear or near-linear time.

The observations made above illustrate some of the common structure of all non-
greedy MST algorithms6 and explain, to a limited extent, why they are the way
they are. To summarize, the existing algorithms use Soft Heaps as in [Chazelle
2000a; Pettie and Ramachandran 2002b] or can be construed as using an abstract
soft heap as in [Karger et al. 1995] and Section 3 of this paper. Abstract soft
heaps allow the algorithm to find contractible components w.r.t. the set of edges
uncorrupted/untainted by the heap, and these components let the algorithm reduce
the problem size by a constant factor, either by simply filtering out uncorrupted
non-MST edges between contractible components (as in [Karger et al. 1995] and in
Section 3 of this paper) or by solving the subproblems induced by those components
as in [Chazelle 2000a; Pettie and Ramachandran 2002b].

6. FURTHER RESULTS

In this section we present optimal randomized algorithms using reduced number of
random bits for other problems concerning total orders. See Table I for a summary
of our results. In Section 6.1 we demonstrate how the techniques developed in

6We should point out that the optimal MST algorithm of Pettie and Ramachandran [2002b]
uses minimum-depth MST decision trees, for which we cannot claim any resemblance to existing
non-greedy MST algorithms.

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 21

Probabilistic Bound
Problem Deterministic Bound

Best previous This paper

Minimum O(mα(m, n)) O(m) O(m)
spanning O(Optimal(m, n)) O(m) rand. bits o(log∗ n) random bits

trees

Parallel NC O(mα(m, n)) O(m) O(m)
graph conn. O(m) rand. bits o(log2+ε n) rand. bits

(work)

Parallel NC O(m log(3) n) O(m) O(m)

MST O(m) rand. bits o(log2+ε n) rand. bits
(work)

MST/SSSP O(m log α(m, n)) O(m) O(m)
sensitivity O(Optimal(m, n)) O(m) rand. bits o(log∗ n) rand. bits
analysis

Local sorting O(min{m, n log n}) O(n log m+n
n

) O(n log m+n
n

)

(comparisons) (trivial) ω(n log m+n
n

) r.b. o(log1+ε n) rand. bits

Set maxima O(min{n + m2m , n log n}) O(n log m+n
n

) O(n log m+n
n

)

(comparisons) (trivial) ω(n log m+n
n

) r.b. o(log1+ε n) rand. bits

Notes: Optimal(m, n) is the decision-tree complexity of the respective problem and ε is an arbi-
trarily small constant. With the exception of Set Maxima, m = |E(G)| is the number of edges
and n = |V (G)| is the number of vertices. For Set Maxima m is the number of sets and n the
number of elements. See [Chazelle 2000a; Pettie and Ramachandran 2002b; Karger et al. 1995] for
sequential minimum spanning tree algorithms, [Cole and Vishkin 1991; Gazit 1991; Halperin and
Zwick 2001] for parallel connected components algorithms, [Cole and Vishkin 1986; Pettie and Ra-
machandran 2002c; Cole et al. 1996] for parallel minimum spanning tree algorithms, [Pettie 2005;
Dixon et al. 1992] for minimum spanning tree and shortest path sensitivity analysis algorithms,
and [Goddard et al. 1993] for set maxima and local sorting.

Table I. A summary of our results

Sections 2 and 3 can be used to adapt the local sorting and set maxima algorithms in
[Goddard et al. 1993] to use O((log n)1+o(1)) random bits. In Section 6.2 we describe
how a simple technique — reusing random bits — can give optimal randomized
algorithms that use a nearly constant number of random bits. This technique is
applied to the minimum spanning tree and MST sensitivity analysis problems. In
Section 6.3 we show that selection can be performed (non-uniformly) with 1.5n +
o(n) comparisons using only O(log log n) random bits.

6.1 Local Sorting and Set Maxima

In the set maxima problem we are given a set system (χ,S) where χ is a set of n
totally ordered elements and S = {S1, . . . , Sm} is a collection of subsets of χ. The
problem is to determine {maxSi}1≤i≤m. This intriguing problem seems to have
been introduced by Graham, Yao, and Yao [1980] who noted the trivial O(n log n)
time solution. A bound of Fredman appears in the same paper showing that an

ACM Journal Name, Vol. , No. , 20.

22 · Seth Pettie and Vijaya Ramachandran

instance of set maxima can have no more than
(

m+n−1
n−1

)

distinct solutions, im-

plying any information-theoretic lower bound must be O(n log(1 + m+n
n)). This

bound was shown to be tight in [Goddard et al. 1993] for randomized algorithms.
Liberatore [1998] has shown the set maxima problem to be precisely the prob-
lem of verifying the optimal base of an arbitrary matroid, and Karger [1993] has
demonstrated the usefulness of set maxima in actually finding an optimal base.
Many more concrete problems are instances of set maxima (or are reducible to it),
such as verifying a given partial order [Kenyon-Mathieu and King 1989], sensitivity
analysis and verification of minimum spanning trees and shortest path trees [Tarjan
1982; Komlós 1985; Pettie 2005], and orienting the edges of an undirected, node-
weighted graph from the lesser to greater endpoint. This last problem is just set
maxima when all sets have two elements; it was dubbed local sorting by Goddard
et al. [1993].

Besides the trivial O(n log n) set maxima algorithm there are really only three
results to speak of. Graham, Yao, and Yao [1980] observed that set maxima could
be solved with O(n + m2m) comparisons by dividing the elements into 2m groups
based on their set memberships. Bar-noy et al. [1992] gave a deterministic algorithm
that uses O(n) expected comparisons when the m = n sets are chosen randomly.
Goddard et al. [1993] gave an elegant randomized algorithm for set maxima that
makes an optimal O(n log(1 + m+n

n)) expected comparisons.
We first make an observation on the sampling requirements of the algorithms

from [Goddard et al. 1993].

Observation 6.1. The optimal local sorting and set maxima algorithms of [God-
dard et al. 1993] use only properties of random samples that are guaranteed by
Lemma 2.3 or Lemma 2.4 using a 4-wise independent sampler.

Thus the number of random bits required by these algorithms is 4 logn times
the number of sampling events,

√
log n in the case of local sorting and 2O(logt n)

in the case of set maxima, for any constant t. Note that this does not lead to a
polylogarithmic number of random bits for set maxima.

In this section we modify the local sorting algorithm in order to accommodate
a pairwise independent sampler, then show how the set maxima algorithm can be
made to use a polylog number of random bits using a 4-wise independent sampler.
(The time required to find the primes used in our sampler from Section 2.2 is
small, and moreover, unimportant. In this subsection we only consider comparison
complexity.)

Theorem 6.2. A graph on n vertices and m ≥ n edges can be locally sorted with
a pairwise independent sampler using an expected O(n log m+n

n) comparisons and
(2 + ε) log n log log log n random bits, for any ε > 0.

Proof. We will not describe the algorithm of [Goddard et al. 1993] in detail
but go straight to the analysis. The algorithm consists of a number of phases,
each having one sampling event. We have total freedom in choosing the sampling
probabilities. Let pi be the sampling probability for the ith phase, where p0 is
fixed at 1, and let D = m+n

n . Using a pairwise independent sampler, the expected
number of comparisons in the ith phase is then on the order of

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 23

n log(D)
[

22ipi−1 + 22ip2
i−1/pi

]

Notice that this quantity is larger than in [Goddard et al. 1993] due to the pairwise

independent sampler. We let pi = 1/22i/c

for i > 0 and c = 1 + ε
2 . Summing over

all phases the total number of comparisons is

n log(D)
∑

i>0

22i

(

1

22(i−1)/c
+

22i/c

22(i+c−1)/c

)

= O(n log D) ·
∑

i>0

22i · 22i/c

22(i+c−1)/c

{2(i−1)/c > 3i for i sufficiently large}
= O(n log D)

The last line follows from the fact that (22i · 22i/c

)/22(i+c−1)/c

< 2−i for i suffi-
ciently large (recall c > 1).

As observed by Goddard et al. [1993], if pi ≤ 1/ logn then i phases are sufficient.
Therefore our algorithm has c log log log n sampling events, each requiring 2 logn
random bits to generate the pairwise independent random variables. The hidden
constants in this scheme are a bit large. Smaller constants can be obtained by
setting pi = 1/23i, leading to an algorithm using O(log n log log n) random bits.

A generalization of set maxima is t-maxima [Goddard et al. 1993], where we are
asked to identify and sort the largest t elements in each set.

Theorem 6.3. The t-maxima problem can be solved optimally, with expected
O(n log(t(m+n)/n)) comparisons, while using O

(

log n log log log n2Θ(1+log∗ n−log∗ t)
)

=

o(log1+ε n) random bits. Here n and m are the number of elements and sets, re-
spectively.

Proof. As above, we will skip a description of the algorithm and jump straight
to the analysis. Each recursive invocation of the t-maxima algorithm solves one
local sorting problem and makes three recursive calls. The recursion depth of
the [Goddard et al. 1993] algorithm can be shown to be logt n, hence the 3logt n

upper bound on the number of calls to the local sorting algorithm. We adapt their
algorithm so the recursion depth is O(log∗ n), thus reducing the number of random
bits required from nε (for any ε > 0) to log1+ε n.

Let T (t, n, m) be the expected number of comparisons performed by the t-maxima
algorithm. It is shown in [Goddard et al. 1993] that

T (t, n, m) ≤ c1n log(mt2

np2) + T (t, pn, m) + T (t0, pn, n) + T (t, mt
pt0

, m)

where p is a sampling probability and t0 can be chosen arbitrarily. It is not difficult
to chose p and t0 such that T (t, n, m) = O(n log mt

n) We reduce the recursion depth
as follows. In addition to parameters t, n, and m, we let a recursive call to t-maxima
set p and t0 according to another parameter i. If i = 0 we let p0 = 1/t (whatever
t is at the time), otherwise we let pi = 2−1/4pi−1 , where pi−1 was the sampling
probability used by the “parent” recursive call. We set t0 = mt/npipi+1. We have
then

ACM Journal Name, Vol. , No. , 20.

24 · Seth Pettie and Vijaya Ramachandran

T (i, t, n, m) ≤ c1n log(mt2

np2
i
)+T (i+1, t, pin, m)+T (0, t0, pin, n)+T (i+1, t, pi+1n, m)

In other words we increment i for the first and third recursive calls, but reset it
to zero for the second recursive call. We maintain the invariants that t is at least
24 and non-decreasing in recursive calls, pi ≤ 1/t, and that m/n ≥ 2.

Assuming inductively that T (i, t, n, m) ≤ cn log(m
npi

) for some c,

T (i, t, n, m) ≤ c1n log

(

mt2

np2
i

)

+ cpin log

(

m

npipi+1

)

+ cpin log

(

mt

n(pi)2pi+1

)

+ cpi+1n log

(

m

n(pi+1)2

)

≤ 4c1n log

(

m

npi

)

+ c
10n log

(

m

npi

)

+ c
5n log

(

m

npi

)

+ c
4n log

(

m

npi

)

= cn log

(

m

npi

)

{for c ≥ 9c1, completing the induction.}

The coefficients 1
10 , 1

5 , and 1
4 are easily derived using the lower bounds p−1

i , t ≥ 24

and p−1
i+1 ≥ 64. If the algorithm is started with i = 0 then the expected total number

of comparisons is O(n log
(

mt
n

)

), which is optimal [Goddard et al. 1993]. It is easy
to see that if the sampling probability is pi in one call to t-maxima, then it is no
more than pi+1 in each recursive call. This is trivial for the first and third recursive
calls as i is incremented. For the second, where i is set to zero, the new sampling
probability is 1/t0 = npipi+1/mt < pi+1. Since the algorithm bottoms out when
the sampling probability is less than 1/n we conclude that the recursion depth is
O(1 + log∗ n − log∗ t) and hence there are 3O(1+log∗ n−log∗ t) recursive calls.

Corollary 6.4. Set Maxima can be solved optimally, with expected O(n log m+n
n)

comparisons, while using log n log log log n2O(log∗ n) random bits.

6.2 Reusing Random Bits

In this section we present a simple but general method for drastically reducing the
number of random bits required to solve certain problems in optimal expected time.
The problems we give as examples are the minimum spanning tree problem and
the MST sensitivity analysis problem, though the method works for any problem
possessing Properties 6.5(1)–(3).

Property 6.5. Let P be an arbitrary problem whose input sizes are measured
by pairs (m, n). We assume that any instance of size (m, n) is no harder than one
of size (m′ ≥ m, n′ ≥ n). Let f(m, n) be a function such that f(kn, n) is non-
decreasing in n and non-increasing in k and let gi(n) = min{k : f(kn, n) ≤ i}.
The following properties hold for problem P:

(1) There exists a deterministic algorithm Adet solving P in O(m · f(m, n) + n)
time.

(2) There exists a randomized algorithm Arand solving problem P in O(m + n)
expected time using O(m) random bits.

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 25

(3) There exists a deterministic algorithm Adecomp that reduces, in O(m+n) time,
a size (m, n) instance of P to a set of instances {(mj , nj)}0≤j≤` such that for

any q, m0 ≤ m,
∑`

j=1 mj ≤ m, n0 ≤ n/q, and for j ≥ 1, mj ≥ nj = Θ(q).

Theorem 6.6. If a problem P satisfies Property 6.5 then there exists a ran-
domized algorithm Ahybrid running in O(im + n) expected time using O(gi(n) ·
g
(2)
i (n) log g

(2)
i (n)) random bits.

Proof. First execute Adecomp with q = gi(n). This takes O(m + n) time.
Execute Adet on the problem of size (m0, n0) in time O(m0 · f(m0, n0) + n0) =
O(mf(m, n/q) + n/q) = O(im + n/q). For each subproblem of size (mj , nj), if
mj > njgi(nj) = Θ(gi(n) · gi(gi(n))), solve it with Adet in O(imj) time. Other-

wise solve it as follows. For at most O(log g
(2)
i (n)) iterations, run Arand for O(mj)

steps (using O(mj) random bits) until it returns an answer. If there is no answer

after O(log g
(2)
i (n)) iterations revert to Adet, which takes O(mj · f(mj , nj) + nj) =

O(gi(n) · g(2)
i (n) · f(gi(n)g

(2)
i (n), gi(n))) = O(i · gi(n) · g(2)

i (n)) time. The expected
running time for the problem of size (mj , nj) is therefore O(mj + igi(n)) = O(imj).
By reusing the random bits for each subproblem (mj , nj), j > 0, the total number

of random bits used is O(gi(n) · g(2)
i (n) log g

(2)
i (n)) and, by linearity of expectation,

the expected running time is O(m+n)+O(im+n/q)+
∑

j>0 O(imj) = O(im).

Define λi(n) to be the ith row inverse of Ackermann’s function. The functions
{λi(n)}i can be defined apart from Ackermann’s function as λ1(n) = log n and

λi+1(n) = min{j : λ
(j)
i (n) ≤ 1}.

Corollary 6.7. The minimum spanning tree problem can be solved in O(im)
expected time using λi(n) random bits.

Proof. The MST problem satisfies Property 6.5 with f(m, n) = α(m, n) [Chazelle
2000a], where α is the inverse-Ackermann function, and gi+1(n) = λi+1(n). We use
the Pettie-Ramachandran [2002b] algorithm for Adet. For Arand we can use either
the Karger-Klein-Tarjan [1995] algorithm or the one presented in Section 3. For a
description and analysis of Adecomp see Lemma 3.3 in [Pettie and Ramachandran
2002b]. By applying Theorem 6.6 the expected running time is O((i + 1)m) =

O(im) and the number of random bits used is O(λi+1(n) λ
(2)
i+1(n) log λ

(2)
i+1(n)) =

o(λi(n)).

The MST sensitivity analysis problem [Tarjan 1982; Pettie 2005] is, given a
graph G and T = MST (G), to decide by how much the weights of edges in T can
be increased without affecting the identity T = MST (G).

Corollary 6.8. The minimum spanning tree sensitivity analysis problem can
be solved in O(im) expected time using λi(n) random bits.

Proof. In the sensitivity analysis problem the Adecomp algorithm is nearly triv-
ial [Dixon et al. 1992]. For Adet we can use the O(mα(m, n)) time algorithm of
Tarjan [1982] or the faster O(m log α(m, n)) time algorithm of Pettie [2005]. We
use the Dixon-Rauch-Tarjan [1992] algorithm for Arand.

ACM Journal Name, Vol. , No. , 20.

26 · Seth Pettie and Vijaya Ramachandran

6.3 Randomized Selection

Blum et al. [1973] showed that with O(n) binary comparisons one can select the
kth largest element in a set of n elements from a total order. All subsequent work
on this problem has focused on bounding the constant factors involved. Floyd and
Rivest [1975] gave a randomized algorithm that performs an expected 1.5n + o(n)
comparisons. This bound was later shown to be tight [Cunto and Munro 1989].
For the deterministic version of the problem somewhat weaker bounds are known.
Dor and Zwick [1999], building on the approach of Schonhage et al. [1976], gave a
selection algorithm making roughly 2.945n comparisons. Dor and Zwick [2001] also
showed that any deterministic selection algorithm must perform (2 + ε)n compari-
son, where ε is a very small constant. Thus there is at least a (1

2 + ε)n separation
between the randomized and deterministic complexity of the problem.

Although the Floyd-Rivest algorithm is fast and optimal in terms of comparisons,
it uses Õ(n1/2) random bits. Motwani and Raghavan [1995] observed that by using
a pairwise independent sampler it is possible to perform selection with O(log n)
random bits and 1.5n + o(n) comparisons. We improve this result to show below
how the number of random bits can be reduced exponentially, to O(log log n).

Theorem 6.9. There is a randomized Selection algorithm that uses O(log log n)
random bits and performs 1.5n+o(n) comparisons with probability 1− (log n)−Ω(1).

Proof. (Sketch) Consider the following variation on the Floyd-Rivest algorithm
to select the element with rank k. Let g = n/ log2 n. We choose a sample S of
cardinality g and sort S. We then choose two sampled elements a, b ∈ S whose
ranks are expected to be closest to k− g and k + g, respectively. Using an expected
1.5n + o(n) comparisons we categorize all elements as less than a, greater than b,
or between a and b. If the rank k element lies between a and b we sort this set;
otherwise the algorithm fails. If the probability of failure is at most (log n)−2 then
we can afford to sort all n elements, at an expected cost of O(n/ log n) = o(n)
comparisons.

Rather than choosing S from all
(

n
g

)

subsets we choose it from a small collection

Sn of subsets. Thus the number of random bits used is log |Sn|. A particular
collection of subsets Sn is good if for every input permutation, the probability that
the algorithm either fails or fails to use less than 1.5n + O(n/ log n) comparisons is
no more than log−2 n. We show, using the probabilistic method, that there exists
a good Sn with |Sn| = sn ≤ 4 log9 n.

If the algorithm fails then the chosen subset satisfies one of four conditions;
we give two, each has a symmetric condition. Either fewer than (k − g)/ log2 n
elements were included from the first k elements (corresponding to the case when
a has rank higher than k) or more than (k − g)/ log2 n elements were included
from the first k − 2g elements (corresponding to the case when too many elements
lie between a and b). We bound the probability of failure using the inequality

Pr[|X − E(X)| > t] < e−t2/2m, where X is the sum of m Bernoulli trials [Cormen

et al. 1990]. The probability of any failing condition holding is at most 4e−n/2 log6 n.
Suppose that Sn consists of sn subsets of size g, each chosen uniformly at random.

The probability that Sn is not good is at most n!·ssn/ log2 n
n ·4e−nsn/2 log8 n. Therefore

there must exist, for each n, a good collection Sn of size sn = (2 + o(1)) log9 n.

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 27

ACKNOWLEDGMENTS

We would like to thank David Zuckerman for his helpful suggestions.

REFERENCES

Ajtai, M., Komlós, J., and Szemerédi, E. 1987. Deterministic simulation in Logspace. In Ann.
ACM Symposium on the Theory of Computation (STOC’87). 132–140.

Bach, E. and Shallit, J. 1996. Algorithmic Number Theory. The MIT Press.

Bar-Noy, A., Motwani, R., and Naor, J. 1992. A linear time approach to the set maxima
problem. SIAM J. Discr. Math. 5, 1, 1–9.

Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L., and Tarjan, R. E. 1973. Time bounds for
selection. J. Comput. Syst. Sci. 7, 4, 448–461.

Bor̊uvka, O. 1926. O jistém problému minimálńım. Práce Moravské Př́ırodovědecké
Společnosti 3, 37–58. In Czech.

Buchsbaum, A. L., Kaplan, H., Rogers, A., and Westbrook, J. R. 1998. Linear-time pointer-
machine algorithms for LCAs, MST verification, and dominators. In Proc. 30th ACM Sympo-
sium on Theory of Computing (STOC). 279–288.

Chazelle, B. 2000a. A minimum spanning tree algorithm with inverse-Ackermann type com-
plexity. J. ACM 47, 6, 1028–1047.

Chazelle, B. 2000b. The soft heap: an approximate priority queue with optimal error rate.
J. ACM 47, 6, 1012–1027.

Chong, K. W., Han, Y., and Lam, T. W. 2001. Concurrent threads and optimal parallel mini-
mum spanning trees algorithm. J. ACM 48, 2, 297–323.

Cohen, A. and Wigderson, A. 1989. Dispersers, deterministic amplification, and weak random
sources. In Proceedings 30th Symposium on Foundations of Computer Science (FOCS). 14–25.

Cole, R. 1999. Personal communication.

Cole, R., Klein, P. N., and Tarjan, R. E. 1996. Finding minimum spanning forests in loga-
rithmic time and linear work using random sampling. In Proc. SPAA’96. 243–250.

Cole, R. and Vishkin, U. 1986. Approximate and exact parallel scheduling with applications to
list, tree, and graph problems. In Proc. FOCS’86. 478–491.

Cole, R. and Vishkin, U. 1991. Approximate parallel scheduling. II. Applications to logarithmic-
time optimal parallel graph algorithms. Information and Computation 92, 1, 1–47.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms. MIT
Press, Cambridge, Mass.

Cunto, W. and Munro, J. I. 1989. Average case selection. J. ACM 36, 2, 270–279.

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische Mathe-
matik 1, 269–271.

Dixon, B., Rauch, M., and Tarjan, R. E. 1992. Verification and sensitivity analysis of minimum
spanning trees in linear time. SIAM J. Comput. 21, 6, 1184–1192.

Dor, D. and Zwick, U. 1999. Selecting the median. SIAM J. Comput. 28, 5, 1722–1758.

Dor, D. and Zwick, U. 2001. Median selection requires (2 + ε)n comparisons. SIAM J. Discr.
Math. 14, 3, 312–325.

Floyd, R. and Rivest, R. 1975. Expected time bounds for selection. Comm. ACM 18, 3,
165–172.

Gabow, H. N., Galil, Z., and Spencer, T. H. 1989. Efficient implementation of graph algorithms
using contraction. J. ACM 36, 3, 540–572.

Gabow, H. N., Galil, Z., Spencer, T. H., and Tarjan, R. E. 1986. Efficient algorithms for
finding minimum spanning trees in undirected and directed graphs. Combinatorica 6, 109–122.

Gazit, H. 1991. An optimal randomized parallel algorithm for finding connected components in
a graph. SIAM J. Comput. 20, 6, 1046–1067.

Goddard, W., Kenyon, C., King, V., and Schulman, L. 1993. Optimal randomized algorithms
for local sorting and set-maxima. SIAM J. Comput. 22, 2, 272–283.

ACM Journal Name, Vol. , No. , 20.

28 · Seth Pettie and Vijaya Ramachandran

Graham, R. L. and Hell, P. 1985. On the history of the minimum spanning tree problem. Ann.

Hist. Comput. 7, 1, 43–57.

Graham, R. L., Yao, A. C., and Yao, F. F. 1980. Information bounds are weak in the shortest
distance problem. J. ACM 27, 3, 428–444.

Halperin, S. and Zwick, U. 1996. An optimal randomised logarithmic time connectivity algo-
rithm for the EREW PRAM. J. Comput. Syst. Sci. 53, 3, 395–416.

Halperin, S. and Zwick, U. 2001. Optimal randomized EREW PRAM algorithms for finding
spanning forests. J. Algor. 39, 1, 1–46.

Impagliazzo, R. and Zuckerman, D. 1989. How to recycle random bits. In 30th Ann. Symp.
on Foundations of Computer Science (FOCS). 248–253.

Jarńık, V. 1930. O jistém problému minimálńım. Práca Moravské Pr̆́ırodovĕdecké Spolec̆nosti 6,
57–63. In Czech.

Joffe, A. 1974. On a set of almost deterministic k-independent random variables. Ann. Proba-
bility 2, 1, 161–162.

Karger, D. R. 1993. Random sampling in matroids, with applications to graph connectivity and
minimum spanning trees. In 34th Annual Symposium on Foundations of Computer Science.
84–93.

Karger, D. R., Klein, P. N., and Tarjan, R. E. 1995. A randomized linear-time algorithm for
finding minimum spanning trees. J. ACM 42, 321–329.

Karp, R. M. and Ramachandran, V. 1990. Parallel algorithms for shared-memory machines.
In Handbook of Computer Science. MIT Press/Elsevier, 869–942.

Kenyon-Mathieu, C. and King, V. 1989. Verifying partial orders. In Proc. STOC’89. 367–374.

King, V. 1997. A simpler minimum spanning tree verification algorithm. Algorithmica 18, 2,
263–270.

King, V., Poon, C. K., Ramachandran, V., and Sinha, S. 1997. An optimal EREW PRAM
algorithm for minimum spanning tree verification. Info. Proc. Lett. 62, 3, 153–159.

Komlós, J. 1985. Linear verification for spanning trees. Combinatorica 5, 1, 57–65.

Kruskal, J. B. 1956. On the shortest spanning subtree of a graph and the traveling salesman
problem. In Proc. Amer. Math. Soc. Vol. 7. 48–50.

Liberatore, V. 1998. Matroid decomposition methods for the set maxima problem. In
Proc. SODA’98. 400–409.

Miller, G. L. 1976. Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci. 13, 3,
300–317.

Motwani, R. and Raghavan, P. 1995. Randomized Algorithms. Cambridge University Press,

New York.

Paterson, A. S. M. S. and Pippenger, N. 1976. Finding the median. J. Comput. Syst. Sci. 13,
184–199.

Pettie, S. 1999. Finding minimum spanning trees in O(mα(m, n)) time. Technical Report
CS-TR-99-23, University of Texas, Austin.

Pettie, S. 2003. Ph.D. thesis. Ph.D. thesis, The University of Texas
at Austin. Department of Computer Sciences Technical Report TR-03-35,
http://www.cs.utexas.edu/ftp/pub/techreports/tr03-35.ps.gz.

Pettie, S. 2005. Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time.
In Proceedings 16th Int’l Symposium on Algorithms and Computation (ISAAC). 964–973.

Pettie, S. and Ramachandran, V. 2002a. Minimizing randomness in minimum spanning tree,
parallel connectivity and set maxima algorithms. In Proc. 13th Ann. ACM-SIAM Symp. on
Discrete Algorithms (SODA). 713–722.

Pettie, S. and Ramachandran, V. 2002b. An optimal minimum spanning tree algorithm.
J. ACM 49, 1, 16–34.

Pettie, S. and Ramachandran, V. 2002c. A randomized time-work optimal parallel algorithm
for finding a minimum spanning forest. SIAM J. Comput. 31, 6, 1879–1895.

Prim, R. C. 1957. Shortest connection networks and some generalizations. Bell Systems Technical
Journal , 1389–1401.

ACM Journal Name, Vol. , No. , 20.

Randomized Minimum Spanning Tree Algorithms · 29

Rabin, M. O. 1980. Probabilistic algorithm for testing primality. J. Number Theory 12, 1,

128–138.

Schmidt, J. P., Siegel, A., and Srinivasan, A. 1995. Chernoff-Hoeffding bounds for applications
with limited independence. SIAM J. Discr. Math. 8, 2, 223–250.

Tarjan, R. E. 1982. Sensitivity analysis of minimum spanning trees and shortest path problems.
Info. Proc. Lett. 14, 1, 30–33. See Corrigendum, IPL 23(4):219.

ACM Journal Name, Vol. , No. , 20.

