
Porting a Distributed Meeting System to the Eclipse
Communication Framework
Fabio Calefato, Filippo Lanubile, Mario Scalas

Dipartimento di Informatica
University of Bari

via E. Orabona, 4 - 70125
Bari, Italy

{calefato | lanubile | scalas}@di.uniba.it

ABSTRACT
eConference is a text-based conferencing tool that supports
distributed teams in need for synchronous communication and
structured discussion services. Other than offering communication
services, it integrates an agenda and minutes editor, plus other
control and coordination features, like hand raising and threaded
discussion. The current version of the tool is based on Eclipse
RCP and uses the eXtensible Messaging and Presence Protocol
(XMPP) as the only communication infrastructure. The goal of
this paper is presenting a work-in-progress to port the
eConference tool on the Eclipse Communication Framework
(ECF), which will enables us to abstract from the underlying
communication protocol, provide better decoupling among
components, and build additional team-support services.

Keywords
Computer-Mediated Communication, Eclipse RCP, Eclipse
Communication Framework, XMPP.

1. INTRODUCTION
eConference is a text-based conferencing tool that supports
distributed teams in need for synchronous communication and
structured discussion services. Other than offering communication
services, it integrates an agenda and minutes editor, plus other
control and coordination features like hand raising. Our tool has
been successfully used at the University of Bari and at the
University of Victoria, both as a training aid and in laboratory
experimentations conducted to validate our hypothesis about the
adequateness of synchronous lean communication media for
distributed requirements workshops [1][2].

The primary functionality provided by the tool is a closed group
chat, augmented with agenda, meeting minutes editing and typing
awareness capabilities. Around this basic functionality, other
features have been built to help organizers control the discussion
during distribute meetings. Indeed, eConference is structured to
accommodate the needs of a meeting without becoming an
unconstrained on-line chat discussion. The inceptive idea behind
the eConference is to reduce the need for face-to-face meetings,
using a simple collaboration tool that minimizes potential
technical problems and decreases the time it would take to learn it.

The tool screen has six main areas: agenda, input panel, message
board, hand raising panel, minutes editor, and presence panel (see
Figure 1). The agenda indicates the status of the meeting, as well
as the current item under discussion. The input panel enables
participants to type and send statements during the discussion.
The message board is the area where the meeting discussion takes
place. The hand raising panel is used to enable turn-based
discussions, by mimicking the hand-raise social protocol. The

minutes editor is used to synthesize a summary of the discussion.
Finally, the presence panel shows participants currently logged in
and the role they play.

The present version of the tool is built on top of the Eclipse Rich
Client Platform (RCP) [7] and currently uses the eXtensible
Messaging and Presence Protocol (XMPP) [9] as the only
communication infrastructure. The goal of this paper is presenting
a work-in-progress to port the eConference tool on the Eclipse
Communication Framework (ECF) [3], which will enable us to
abstract from the underlying communication protocol and build
additional team support services. ECF provides, indeed, a general
component model for creating plugins, tools, or fully distributed
Eclipse-RCP applications that require messaging and
communication services. Porting the eConference tool on ECF
will help us to provide distributed teams with a lightweight means
to conduct synchronous, structured communication, leveraging
any supported communication protocol and/or infrastructure that
members will choose to best fit their needs in term of ease of use,
costs, privacy and security. Besides, ECF comes with libraries of
reusable components that can be used for creating new extensions,
as new collaboration needs emerge.

The remainder of the paper is structured as follows. In Section 2
we briefly describe the features of eConference, and sum up the
history and evolution of the tool. In Section 3 we motivate the
switch to a new architecture and discuss the ECF, whereas, in
Section 4, we describe the porting of eConference to the new
framework, discussing the major architectural changes and how
we are further evolving our tool. Finally, Section 5 presents
conclusions and outlines future work.

2. THE EVOLUTION OF ECONFERENCE
eConference has evolved over three generations, as first we
changed the underlying communication framework, from the
JXTA P2P platform (1st version) to the XMPP client/server
protocol (2nd version), and then its overall architecture, from
traditional plugin to pure-plugin system, built on top of the
Eclipse Rich Client Platform (3rd version). In the following we
briefly sum up the history and evolution of our tool.

The first version of the tool, named P2PConference, started in
March 2002, using the Java binding of JXTA [7], and was
completely discontinued in 2004. The choice of adopting a fully-
decentralized, P2P approach stemmed from our intent of building
a distributed meeting system easy to use and set up, with
administration cost kept at minimum. JXTA seemed a promising
technology because, by exploiting its virtual network, we aimed at
using existing resources that live on the edge of the Internet
infrastructure (e.g., bandwidth, storage space of the PCs running

Figure 1. A screenshot of eConference

eConference). No central server to maintain and no single point of
failure is what the platform promised, but JXTA did not deliver on
all of its promises. We developed with eight consecutive releases
of the platform (from ver. 1.0-build49b to ver. 2.2.1).

Our experience with JXTA was not positive mainly because it
failed at delivering a robust, general-purpose platform that can
serve as the building blocks for P2P communication-intensive
applications. Paradoxically, its messaging framework proved
inappropriate for implementing group communication without
using a client/server-like approach. Developing a brief proof-of-
concept experiment would have probably shown that JXTA pipe
services were not suitable for many-to-many communication in
pure P2P approach, and that the platform API was too low level
and complex. The proof-of-concept, however, would have never
spotted the platform API instability issues, which probably
derived from being too low level. Stability is a key aspect of any
API to guarantee the promised independence between API
producers and API consumers.

Considering the several issues we encountered during the
development of P2PConference, we decided to port the tool onto a
different communication platform. Our choice fell onto
Jabber/XMPP (in short XMPP, hereafter). In the end of 2004, we
refactored our tool to use XMPP, and this porting was named
eConference. In our experience XMPP proved to be more stable,
easy-to-use, and reliable than JXTA. Our preference for XMPP
over JXTA is not based on a preference for the client/server
paradigm over P2P, though. On the whole, XMPP is a good
choice for applications that need an extensible messaging
framework. Indeed, its intrinsic extensibility has allowed us to
easily expand the native multi-user chat capability, adding the
extra functionality we needed to build eConference (e.g., agenda,
minutes editor, hand raising). Obviously, also developing with
XMPP was not without problems, mostly stemming from the
limitations of the current multi-user chat service, related to the
synchronization of chat content, which occurs in case of
unintentional disconnections of clients or when there are
latecomers.

Finally, in the beginning of 2006 we started to consider evolving
the tool architecture in a way that supported the composition of a
larger system that is not pre-structured and the extensibility in
ways that cannot be foreseen. We decided to build another version

of our prototype exploiting the Eclipse Rich Client Platform
(RCP). [7]. Eclipse RCP is based on Equinox, the Eclipse
implementation of the OSGi specs, which define a Java-based
dynamic component model [8]. While mostly known as a
powerful Java IDE, now Eclipse is actually a universal plugin
platform for creating other platforms. Eclipse RCP is a pure-
plugin system and, hence, fully extensible by architectural design.
This new modular architecture looked very attractive to us
because it promised to help us in developing with a focus on
modular functionality and writing new plugins for missing
functions. Our experience with Eclipse RCP was very positive.
With a little more coding, the present version of our tool offers all
the benefits seen in Eclipse (e.g., pure-plugin architecture,
perspectives, update manager, help system). The only, but
negligible, problems we encountered were some erratic behaviors
during the process of product export (to make the application
executable outside of the Eclipse workbench), and the final size of
the product itself (which grew up to almost 9 Megabytes, while
the size of the our own code, plus all the other third-party libraries
used, account for only 980 Kilobytes). This is a limitation that is
already being worked on by the Eclipse community [5].

3. THE NEED FOR A NEW
ARCHITECTURE
Although designed to be independent from the network protocol
and implemented using a pure-plugin architecture, the present
version of eConference suffers from some architectural
drawbacks. Among these limitations, the major ones include 1) a
low-level, abstract network layer, too expensive to maintain on
our own; 2) a burdensome publish/subscribe subsystem, in which
every bundle implement the Observer pattern without taking
advantage of the Eclipse/OSGi internals for the dispatching of
events in a dynamic pure-plugin environment.

Although we were working only with XMPP, for the third
generation of the eConference tool, an abstract network
infrastructure layer was designed and implemented to allow the
use of other communication protocols in the future, without a
severe impact on the code base. Consequently, all the domain-
specific features were built on that API. As a side effect, the low-
level network layer had to be maintained in addition to the
application itself, while we wanted to concentrate efforts on the
eConference domain components.

The Eclipse Communication Framework (ECF) [3] provides RCP-
based applications with an abstract communication layer that not
only replaces the whole network infrastructure layer of
eConference, but also provides some of the collaborative features
available in our tool, either in terms of API or visual components.
Thus, ECF can be employed to replace the communication layer
and some domain-specific parts of our tool, with the promise of
relieving us from the burden of maintaining an abstract network
layer to cope with future evolutions.

ECF is a set of reusable components, which introduce, within the
Eclipse platform, typical collaborative services and features (e.g.,
instant messaging, white-boarding), bundled as standard plugins
that can be reused in whatever context (e.g., the JDT, as well as
any rich-client application, built on top of Eclipse RCP). Such
components include core API definitions, graphical user interface
widgets, and interfaces for specific network protocols. The ECF
core includes an extensible framework, the SharedObject API
which is of critical importance for distributed applications built

using the MVC pattern (like a distributed meeting system), since
they need to share and synchronize the model(s) across network.
Thus, the SharedObject API provides a way for sharing data at
application-level, without having to bother with protocol-specific
details. The other notable components, available in ECF, include
the Presence API, which handles the presence events, the File
Transfer API, for sharing content between remote users, and the
Remote Services API, which provides a RPC-like mechanism for
remote procedure calls.
All these APIs provide a high-level abstraction layer that enables
ECF-based applications to support multiple protocols wholesale,
ignoring any implementation detail, which is transparently
handled by the underlying framework. ECF, in fact, already
provides the implementations (called providers) of abstract
interfaces for the most used communication protocols (e.g.,
XMPP, MSN, and Skype). Besides, support to new network
protocols can be added to ECF at any time, by defining and
implementing additional providers. We observed that the best
supported protocol is XMPP, probably because it is an open IETF
standard. Usually, new features are first implemented for it and
then adapted to other providers. For this reason, we are going to
use just the richer XMPP provider. As soon as the porting is
completed, we will include other providers and verify that the
promise of multi-protocol abstraction has been kept.

For the sake of space, we are not describing the use of the
Dependency Injection pattern [6], to solve the architectural
concern of coupling, and the reimplementation of the
conferencing service on top of the standard OSGi Event
Administration Service [8], to improve the publish/subscribe
mechanism in eConference.

4. PORTING ECONFERENCE TO ECF
While it is not possible to illustrate all the architectural changes,
in this section we show at least the major ones and how we are
using ECF to build the new version of eConference. We also
introduce the Automatic Conference Assistant, a remote agent that
will assist users during the arrangement and execution of
conferencing sessions.

4.1 Replacement of the Communication
Layer
The porting of eConference to ECF was not a straightforward
task, as one might expect. Indeed, between eConference 3 and
ECF there was a large overlapping of both the whole network
infrastructure layer and the features provided, either in terms of
API and visual components.

The main design similarity between the communication
infrastructures in eConference 3 and the ECF regarded the
separation of functionalities from their implementation, realized
by a complex core set of interfaces. Thus, both architectures
provided the basic interfaces for protocol abstraction and, then,
the adoption of ECF, suggested a whole rewrite of the application,
with only a limited portion of the existing GUI code reused. With
the development of eConference 3 we realized that we were not
able to sustain the cost of maintaining an abstract communication
network infrastructure on our own. Hence, the cost of rewriting
the application almost from scratch was justified by our intension
of employing a standard network technology, maintained
separately from our tool, by a larger community than that of
eConference will ever be, given its more restricted audience. In

addition, consistently with the Eclipse RCP goal, also the ECF
architecture is designed for extensibility. This means that adding
new features in a second time (i.e. shared web browsing) won't
break our existing code.

As stated earlier, ECF does not come only with a set of non-GUI
interfaces or network services. In fact, it includes several out-of-
the box graphical components, such as contacts roster, chat
editors, and user account management, which can be embedded in
any Eclipse-based application. Table 1 shows that ECF can
replace most of the features available in eConference 3.
Nevertheless, the most specific plugins (i.e., hand raising,
threaded message board, event manager) had to be redeveloped
using the API of ECF, because they were too dependent on the
previous design to be just ported. Hence, the fourth generation of
eConference is being developed as a rich-client application that
uses plugins either available out-of-the-box in ECF, or developed
ad hoc upon its abstraction framework (see Figure 2).

In eConference 3 we used the Model-View-Controller (MVC)
architectural pattern both within each plugin and across their
whole set. MVC is an architectural pattern that separates the data
(model), from presentation (view) and logic (controller): the
controller changes the model; the model notifies the view about
change events; the view updates accordingly and notifies
controllers about user input. For instance, in eConference 3, the
conferencing session was designed as a master controller that
organized the work of each bundle and, thus, had to know in
advance (i.e., statically) about the views to be activated. This
approach, which we adopted due to our inexperience with pure-
plugin architectures, did not fully take advantage of the dynamic
environment provided by the Eclipse platform. In the new version
we have addressed this problem by properly using an extension
point based event subsystem.

In addition, in MVC-based distributed applications, like a
distributed meeting system, the model needs to be synchronized
across the network between different peers through the exchange
of messages containing state change primitives. In eConference 3,
a network service wrapped up the model and provided the
facilities for notifying change events to remote peers while
listening for incoming (XMPP) messages to update the model
accordingly.

Table 1. Components required by eConference 3 and their
support in ECF (only the major components are listed)

Available in eConference 3 Provided by ECF

Contacts management Yes

Message board* Partially

Roster View Yes

Extension Points API Yes

Hand Raising No

White board Yes
Conferencing Events Manager

(invitations, reminders, …) No

Account creation / Login Manager Yes
 * Does not support multiple discussion threads

SWT

JFace

OSGi Service Platform

Eclipse Core Runtime

UI (Generic Workbench)
Abstract Communication Layer

XMPP JXTA … JMS SIP

ECF

Eclipse RCP

Edit panel
Control
features

Agenda

Conferencing

Browser
Sharing

Presentation
Sharing

eConference over ECF

IM / chat Account/Contact Mngmt…

…

Figure 2. The 4th generation of eConference is a rich client

application composed by ad hoc and ECF-native plugins
However, while the communication bus was composed by an
extensible infrastructure capable of supporting additional
requirements, services and models were tightly coupled: the
controller explicitly knew about the service and used it for
accessing the model and perform changes. The service captured
changes to the model and notified remote hosts. On the other side,
the service received remote messages and updated the model,
triggering new events to update views and other observers. This
communication bus was the main architectural block we replace
by plugging ECF in eConference 4. The general MVC design
scheme is still applied (see Figure 3).

Although the change may seem somewhat trivial, with ECF,
however, we are actually relieved from the burden of continuously
create abstract network messages to wrap and handle low-level
protocol-specific messages.

Controller

Model

View

ECF

Controller

Model

View

ECF

A
ny

ne
tw

or
k
la
ye
r

Figure 3. ECF as communication bus in eConference 4

4.2 Extending eConference with the
Conference Assistant
In the fourth generation of eConference, from the user point of
view, the most visible change during conferencing sessions will
be the explicit presence of the Automatic Conference Assistant, a
software agent, built upon the ECF Bot framework [4]. The
conference assistant is deployed as an independent agent
permanently logged on some network server, appearing just as a
contact in user’s roster and waiting for some call from users. As
of this writing, the agent is only assisting in basic tasks, like
sending notifications to invitees. However, in the future releases,
we are going to extend it with additional capabilities for assisting

users during conversations, thanks to the extensibility of the ECF
Robot API. According to our vision, when a user wants to set-up a
new conference, he/she will just have to contact the assistant,
which will set up the conference (e.g., allocate the room on some
network server, set permissions, send notifications to all invitees)
on the behalf of the user. It will also log into the room and wait
for further requests.

5. CONCLUSIONS & FUTURE WORK
In this paper we have presented the porting of eConference, a
distributed meeting system built upon Eclipse RCP and XMPP, to
ECF, a communication framework for rich-client application that
provides transparent support to the most used communication
protocols. Although the porting is still in progress, we have
already taken advantage of ECF also for enhancing the feature set
of our tool: Using the ECF Robot API, we have built a software
agent that assists users in the tasks of arranging and running
remote conferencing sessions.

ACKNOWLEDGMENTS
This work has been partially supported by the 2006 Eclipse
Innovation Award and the MiUR-Italy under grant 2006
“METAMORPHOS”. We wish to thank Carla Milani and Cristina
Cannone of IBM University Relations, and Doug Tidwell of
IBM's Software Group Strategy organization, for their support and
encouragement.

REFERENCES
[1] Calefato, F., and Lanubile, F.. Using The Econference Tool

for Synchronous Distributed Requirements Workshops, Proc.
1st Int’l Workshop on Distributed Software Development
(DiSD 2005, August 2005

[2] Calefato, F., Damian, D., and Lanubile, F. An Empirical
Investigation on Text-Based Communication in Distributed
Requirements Engineering, Proc. 2nd Int’l Conf. Global
Software Engineering (ICGSE ’07), Munich, Germany, 27-
30 August, 2007.

[3] Eclipse Communication Framework homepage,
http://www.eclipse.org/ecf/

[4] ECF Bot Framework,
http://wiki.eclipse.org/index.php/Bot_Framework

[5] Eclipse Rich Client Platform, http://www.eclipse.org/rcp, last
visited: July 1st 2007

[6] Eclipse RCP product size enhancement,
https://bugs.eclipse.org/bugs/show_bug.cgi?id=53338, last
visited: July 1st 2007

[7] Fowler, M. Inversion of Control Containers and the
Dependency Injection pattern,
http://martinfowler.com/articles/injection.html

[8] JXTA homepage, https://jxta.dev.java.net/
[9] The OSGi Alliance, OSGi Service Platform Service

Compendium, Release 4, Version 4.1, April 2007
[10] XMPP protocol specifications, 2004,

http://www.xmpp.org/specs/

	1. INTRODUCTION
	2. THE EVOLUTION OF ECONFERENCE
	3. THE NEED FOR A NEW ARCHITECTURE
	4. PORTING ECONFERENCE TO ECF
	4.1 Replacement of the Communication Layer
	4.2 Extending eConference with the Conference Assistant

	5. CONCLUSIONS & FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

