
Feb. 14, 2007: Submission to Workshop on Experimental Computer Science (San Diego, 13-14 June 2007)

Performance Testing of Combinatorial Solvers
With Isomorph Class Instances

Franc Brglez
Dept. of Computer Science

NC State University
Raleigh NC, USA

brglez@ncsu.edu

Jason A. Osborne
Dept. of Statistics

NC State University
Raleigh NC, USA

osborne@stat.ncsu.edu

ABSTRACT
Combinatorial optimization problems that may be expressed
as ‘Boolean constraint satisfaction problems’ (BCSPs) are
being solved by different communities under different formu-
lations and in different formats. If results of experimentation
are reported, these can be seldom compared and replicated.

We propose a pragmatic approach to reconcile these issues:
(1) use the familiar LP model that naturally expresses the
constraints as well as the goals of the optimization task to
formulate an optimization instance, (2) assemble and trans-
late a number of hard-to-solve instances from different do-
mains into the .lpx format parsed by at least two BCSP
solvers: lp solve in public domain, and cplex, (3) expose the
intrinsic variability of BCSP solvers by constructing instance
isomorphs as an equivalence class of randomized replicas of a
reference instance; (4) use isomorph classes for the design of
reproducible experiments with BCSP solvers that includes
performance testing hypotheses; (5) release (on the web)
all data sets, reported results, and software utilities used to
prepare the data, invoke experiments, and post-process the
results.

1. INTRODUCTION
Combinatorial optimization problems that may be expressed
as ‘Boolean constraint satisfaction problems’ (BCSPs) [1]
are being solved by different communities under different
formulations and in different formats. If results of experi-
mentation are reported, these can be seldom compared and
replicated. An instance of a Boolean constraint satisfac-
tion problem is given by m constraints applied to n Boolean
variables. The well-known conjunctive-normal-form format
(.cnf) captures such constraints very simply. However, dif-
ferent computational problems arise not only from the na-

ture of constraints but also depend on the goals of the opti-
mization task – a feature that is not supported by the .cnf
format.

We propose a pragmatic approach to reconcile these issues:

• use the familiar LP model that naturally expresses the con-
straints as well as the goals of the optimization task when
formulating an optimization instance; the .lpx format that
expresses these constraints transparently is already parsed
by at least two BCSP solvers: lp solve [2] in public do-
main, and cplex, a state-of-the-art solver available under a
commercial license [3].

• assemble and translate a number of hard-to-solve instances
from different domains into the .lpx format and report run-
time and best objective results obtained with the latest
version of cplex ;

• expose the intrinsic variability of BCSP solvers by con-
structing instance isomorphs as an equivalence class of ran-
domized replicas of a reference instance;

• use isomorph classes for the design of reproducible experi-
ments with BCSP solvers that includes performance testing
hypotheses;

• release (on the web) all data sets, reported results, and soft-
ware utilities used to prepare the data, invoke experiments,
and post-process the results.

For years, publications on special purpose BCSP solvers
have been comparing their performance to cplex whose per-
formance was usually dominated by the new special-purpose
solver being published. However, our recent work and com-
parisons with cplex reveals cases where cplex appears to
dominate on a number of instances [4]. It is a given that
the developer of a special purpose BCSP solver expects to
design it in a way that will outperform a general purpose
LP solver such as cplex which may only handle BCSPs on
the side. One of the most important goals of this paper is
to initiate a methodology of performance testing that will
reliably measure and improve the performance of any and

all BCSP solvers, thereby extending the work initiated in
[5].

The paper is organized as follows. Section 2 introduces sev-
eral classes of the Boolean constraint satisfaction problem
(BCSP) under the and 0/1 integer program (IP) formula-
tion, concluding with examples that provide a lead-in for
the Section 3 on instance isomorph classes. Statistical tech-
niques in Section 4, including hypothesis testing, are illus-
trated by running experiments with cplex on different classes
of isomorphs. Compositions of instance blocks of increasing
size, each with a ‘hidden solution’, are subject of Section 5.
Data sets, all in .lpx format, and additional experimental de-
signs are presented in Section 6. The paper concludes with
an Appendix that begins with two small example of files
in .lpx format, and proceeds by outlining features of the
software utilities used to prepare the data sets (including
a number of translators to/from .lpx), invoke experiments,
and post-process the results.

2. INSTANCE FORMULATIONS
We start with basic notation and definitions and and con-
clude with examples that illustrate them.

Notation and Definitions. The combinatorial optimiza-
tion problem is represented as a maximization problem in
[6]:

max wTx subject to Ax ≥ b, x ∈ {0, 1}

where w is an n-vector in Rn
+ or Zn

+, b is an n-dimensional
vector of 1’s, and A is an m×n constraint matrix with entries
from {0, 1}. The minimization problem is represented simi-
larly, with Ax <= b (also known as set packing constraint)
changed to Ax >= b (also known as set cover constraint).

The 0/1 IP formulation is seldom used in textbooks on opti-
mization of electronic system design [7, 8], these textbooks
would refer to the formulation above as unate, to differenti-
ate it from the more general binate formulation. In contrast
to the unate formulation, the binate formulation includes
positive and negative variables. Now, we show that both
the maximization and the minimization instance can be al-
ways expressed with the ‘>=’ relation, i.e.

max wTx subject to Ax ≥ b, x ∈ {0, 1}
and

min wTx subject to Ax ≥ b, x ∈ {0, 1}
where A is now an m×n constraint matrix with entries from
{0, 1,−1} and b is an n-dimensional vector whose entries are
no longer 1’s by default. The entries in b depend on the
context of the constraint and also on the distribution of the
± signs within the constraint, as we explain next.

Denoting Ip and In as subsets of {1 2 . . . n}, we distinguish
between three classes of constraints:

unate-positive, equivalent to the set cover constraint:X
i∈Ip

(+xi) >= +1

i.e. at least one xi must be set to 1.

unate-negative, equivalent to the set packing constraint:X
j∈In

(−xj) >= −1

i.e. at most one xj can be set to 1. Whenever |In| > 2, it
defines a clique constraint [6] and can be decomposed into
|In|(|In| − 1)/2 equivalent constraints. For example, the
single constraint −x1 −x2 −x3 >= −1 is equivalent to the
following pair-wise constraints:
−x1 − x2 >= −1, −x1 − x3 >= −1, −x2 − x3 >= −1.

binate, a combination of set cover and packing constraints
with a relaxed right-hand-side:X

i∈Ip

(+xi) +
X
j∈In

(−xj) >= +1− |In|

If Ip ∈ ∅, the constraint
P

j∈In
(−xj) >= 1−|In| is satisfied

for all combinations of values of xj , except for all xj = 1.

If all constraints are unate-positive, the solution of the maxi-
mization instance is trivial, similarly for the minimization of
the instance where all constraints are unate-negative. How-
ever, for the general case, both the maximization and the
minimization can be equally hard.

REMARK: An instance of a Boolean constraint satisfaction
problem (BCSP) is a maximization or a minimization prob-
lem with any combination of unate-positive, unate-negative,
and binate constraints. Minimum (weighted) binate set
cover, maximum (weighted) unate set packing, minimum
(weighted) vertex cover, (weighted vertex) maximum clique,
etc. are all BCSPs. Min Ones and Max Ones problems are
special cases of unit-weighted BCSPs. Classes of Max CSP
(Min CSP) problems as defined in [1] are also included in
this formulation of BCSP. The next few example illustrate
the structure of some such instances.

Instance examples. We show small examples and solu-
tions of a weighted minimum set cover instance, a weighted
vertex maximum clique instance that is derived directly from
the structure of the set cover instance, and a weighted bi-
nate instance with a maximization objective. We also show
solutions of related instances with the same structure: a
weighted maximum set packing instance and a weighted bi-
nate instance with a minimization objective. Examples of
additional instance transformations (and how they may re-
late) will be introduced in the full-length paper.

A weighted minimum set cover instance.
ObjectiveOpt 70
Solution 1010100
Min

+21x1 + 22x2 + 23x3 + 25x4 + 26x5 + 27x6 + 29x7

st

c1 : +x2 +x3 +x4 >= +1
c2 : +x2 +x5 +x6 >= +1
c3 : +x5 +x6 +x7 >= +1
c4 : +x3 +x7 >= +1
c5 : +x1 +x4 +x7 >= +1
c6 : +x1 +x3 +x6 >= +1

A weighted maximum set packing instance.
This instance is generated from the set packing instance by
(1) flipping the ‘+’ variable signs in each row to ‘-’, (2) re-
placing the right-hand-side with values of -1, and (3) chang-
ing the objective from ‘min’ to ‘max’.
ObjectiveOpt 52
Solution 0001010

A weighted vertex maximum clique instance.
This instance is generated from the set packing instance
by (1) expanding all clique constraints into pair constraints
(one pair on each row), (2) flipping the ‘+’ variable signs in
each row to ‘-’, (3) replacing the right-hand-side with values
of -1, and (4) changing the objective from ‘min’ to ‘max’.
ObjectiveOpt 100
Solution 1010011
Max

+21x1 + 22x2 + 23x3 + 25x4 + 26x5 + 27x6 + 29x7

st

c1 : −x3 −x5 >= −1
c2 : −x4 −x5 >= −1
c3 : −x2 −x7 >= −1
c4 : −x4 −x6 >= −1
c5 : −x1 −x5 >= −1
c6 : −x1 −x2 >= −1

A weighted binate instance (obj=max).
ObjectiveOpt 100
Solution 0110101
Max

+21x1 + 22x2 + 23x3 + 25x4 + 26x5 + 27x6 + 29x7

st

c1 : +x2 +x3 +x4 >= +1
c2 : −x2 −x5 −x6 >= −2
c3 : +x5 +x6 −x7 >= 0
c4 : −x3 +x7 >= 0
c5 : −x1 −x4 −x7 >= −1
c6 : −x1 −x3 −x6 >= −1

A weighted binate instance (obj=min).
ObjectiveOpt 22
Solution 0100000
This instance is generated from the binate instance above
by simply changing the objective from ‘max’ to ‘min’.

3. CLASSES OF INSTANCE ISOMORPHS
Isomorphs of sat instances have been shown to induce sig-
nificant variability in SAT solvers [5]. In this paper, we
demonstrate that instance isomorphs of BCSP’s (Boolean
constraint satisfaction problems) as defined in the preced-
ing section are also fundamental to exploring performance
variability of combinatorial solvers that take them as input.

Given a (sparse) matrix formulation of the reference in-
stance, an isomorph is generated by applying to the reference
any subset of four primitive operations:

C: random permutation of variables – effectively a permu-
tation of columns in the matrix;

L: random permutation of the variable order in any row of
the matrix;

R: random permutation of rows in the matrix, followed by
permutation of the weight vector (not needed if all weights
have the value of 1);

X: random sign flipping (from positive to negative and vice
versa) of any variable – while maintaining consistency of
the right-hand-side value so that the instance remains a
BCSP and the value of its objective function invariant.

The operation of flipping the variable sign (X) has intrin-
sic merits with SAT solvers and can only be applied to in-
stances of BCSP in special situations. In this paper, we shall
consider isomorphs in two equivalence classes only: LR and
CLR. Two isomorphs from each of the two classes are shown
below, based on LR operations and CLR operations applied
to the same reference instance: the weighted binate instance
in the previous section.

A weighted binate instance (obj=max) – isomorph LR.
ObjectiveOpt 100
Solution 0110101
@VariablePermutationPairs (isomorph,reference – terminated
with 0,0)
1,1 2,2 3,3 4,4 5,5 6,6 7,7 0,0

Max
+21x1 + 22x2 + 23x3 + 25x4 + 26x5 + 27x6 + 29x7

st
−x3 −x1 −x6 >= −1
−x1 −x4 −x7 >= −1
−x5 −x2 −x6 >= −2
+x3 +x2 +x4 >= +1
+x7 −x3 >= 0
−x7 +x6 +x5 >= 0

It is clear by inspection that no permutation of variables
took place in the isomorph LR, while rows have been per-
muted (row 1 in the reference instance is now row 4 in the
isomorph). Furthermore, the order of variable positions in
the row 4 in the isomorph is different from the order of vari-
able positions in the row 1 in the reference instance.

On the other hand, column or variable permutation also
took place in the isomorph CLR below: if we know the per-
mutation, the effort to verify that new new instance is in
fact the isomorph of the reference is relatively simple.

A weighted binate instance (obj=max) – isomorph CLR.
ObjectiveOpt 100
Solution 1100011
@VariablePermutationPairs (isomorph,reference – terminated
with 0,0)
1,3 2,1 3,2 4,5 5,6 6,4 7,7 0,0

Max
+22x1 + 23x2 + 21x3 + 27x4 + 25x5 + 26x6 + 29x7

st
−x3 −x7 −x5 >= −1
+x1 +x2 +x5 >= +1
−x2 +x7 >= 0
−x3 −x2 −x4 >= −1
−x6 −x1 −x4 >= −2
+x4 +x6 −x7 >= 0

Since one may be tempted to dismiss LR-isomorphs as triv-
ial, we bring forward a 350-variables example described in

more detail later. The name of the isomorph class is f51mb-
350 B 40v 20 20 LR, and its reference instance is in cnf-
format, i00.cnf. Since cplex takes files in .lpx format, we
must translate it. The act of translation alone can induce
instances in LR-class, depending on the implementation of
the translator program. Let the first translator produce an
instance in the ‘reference order’ given by the instance in
the .cnf format and let two more translators rely on some
hashing schemes that result in instances having row orders
that are both different from the row order of the reference
instance. Also, the order in which the variable appear in
each row may be different. Such instances can be found in
the class of 1+32 instances in the web-archive under the di-
rectory f51mb 350 B 40v 20 20 LR, say i00.lpx, i06.lpx, and
i17.lpx. Upon invoking cplex 9.0 on each of these instance,
we get a solution and a proof of optimality, however runtimes
differ dramatically, despite running on the same dedicated
CPU:

translator instance Obj opt RunTime (secs)
T1 i00.lpx 24 114.91
T2 i06.lpx 24 82.55
T3 i17.lpx 24 1801.86

These instances under f51mb 350 B 40v 20 20 LR do not
represent the extreme cases: instance i12 is solved for the
same optimum in 60.37 seconds, while instance i30 times out
at 2115.28 seconds without proving that the best objective
reported at 24 is indeed the optimum.

As shown in sections that follow, such solver sensitivity to
the order of data in the instance file is not unusual – which
explains why researchers may report vastly different perfor-
mance results with the same instance, on the same platform,
and with the same version of the solver!

Two questions arise: (1) do instances from a CLR-class in-
duce solver variability that is equivalent to the variability
induced by instance in the LR-class, and (2) is a CLR-
isomorph class needed and why. The answer to the sec-
ond question is affirmative – and is based on a few years of
‘lessons-learned’ experience [9, 10].

We do need to perform most if not all experiments with
instances from the CLR-class because we cannot anticipate
when we may encounter a ’smart solver’ that will attempt
to re-order input data in some predetermined fashion, so
that most if not all instances from the LR-class may be re-
ordered with relative ease into an almost equivalent if not
equivalent order1. While this is apparently not the case
(yet) with the cplex solver, we have had the experience
with ‘smart’ BDD variable-ordering solvers where the only
way to expose their sensitivity to order requires that we also
permute the variables in each input file instance [10].

The first question can be rephrased as a formal hypothesis
and resolved with standard statistical techniques, discussed
in the following section. We will also show that the same
technique can also be applied to resolve a related question:

1Such strategy has also been demonstrated to backfire since
it prevents the solver from ‘seeing’ many input orders that
could improve its average performance.

given experimental results from two solvers on randomly se-
lected instances from a CRL-class and on the same platform,
is the runtime performance of two solvers equivalent?

4. ON STATISTICAL TECHNIQUES
The example with three isomorphs in preceding section mo-
tivates a formalized statistical approach to testing the per-
formance of BCSP solvers. We thus expand the experiment
from three instances in a LR-class in the previous section
to a number of isomorph classes, with 32 randomly selected
isomorphs in each class.

Initial Experiments. To initiate the experiments, we in-
troduce seven isomorph classes that are derived from five
reference instances as follows:

in201 cliq CLR, where the reference instance in201 cliq.lpx
represents a weighted-vertex maximum clique problem.

in201 cliq1 CLR, where the reference instance in201 cliq1.lpx
represents a maximum clique problem related to the one
above, except that all vertex weights have the value of 1.

alu4 CLR, where the reference instance alu4.lpx represents
a minimum binate cover problem.

in401 sp LR, where the reference instance in401 sp.lpx rep-
resents a weighted maximum set packing problem.

in401 sp CLR, where the reference instance in401 sp.lpx is
already defined above.

f51mb 0350 B 0040 20 20 LR, where the reference instance
f51mb 0350 B 0040 20 20.lpx represents a specific block com-
position of two minimum binate cover problems.

f51mb 0350 B 0040 20 20 CLR, where the reference instance
f51mb 0350 B 0040 20 20.lpx is already defined above.

For more information about each reference instance and the
computing platform, see Table 1 in the section that follows.

For all instances in classes listed above, we run cplex as
a branch&bound solver that reports the same the optimum
value for each instance in its class – what is being observed
is the RunTime to find this optimum. The results of these
experiments are summarized in Figure 1. Tables in this fig-
ure report RunTime statistics for each class; note also that
we report the runtime for each reference instance in a sep-
arate column RefV. We determine the reported distribution
by running a combination of tests on the observed data:
ranging from Cramer-Von Mises, Kolmogorov-Smirnov to
χ2 goodness-of-fit-tests [11, 12]. We also plot empirical cu-
mulative distribution functions (ECDFs) for classes of most
interest (LR vs CLR), and the barcharts that illustrate the
runtime values for each isomorph in the respective LR and
CLR classes. An itemized summary of our observations fol-
lows.

in201 cliq CLR: the average runtime to solve instances in
this class is only 3.42 seconds and the distribution is uni-
form.

RunTime statistics for two clique CLR classes and a binate cover CLR class.

(RefV denotes the reference instance, excluded from the computation of min, max, median, mean, and standard deviation.)

Here, branch&bound solves each instance before time-out to an optimum value, then reports runtime.

Class RefV MinV MaxV MedV MeanV StdV N Distribution
in201 cliq CLR@BB 3.56 3.1 3.76 3.45 3.42 0.17 32 uniform
in201 cliq1 CLR@BB 235 150 215 179 181 16.7 32 uniform
alu4 CLR@BB 38.5 23.5 1260 113 207 283 32 near-exponential

RunTime statistics for isomorph classes in401 sp LR and in401 sp CLR.

Class RefV MinV MaxV MedV MeanV StdV N Distribution
in401 sp LR@BB 865 412 935 620 639 133 32 uniform
in401 sp CLR@BB 865 407 957 638 666 133 32 uniform

RunTime statistics for isomorph classes f51mb 0350 B 0040 20 20 LR and f51mb 0350 B 0040 20 20 CLR.

Class RefV MinV MaxV MedV MeanV StdV N Distribution
f51mb 350 B 40 20 20 LR@BB 115 60.4 2115 110 256 458 32 heavy-tail
f51mb 350 B 40 20 20 CLR@BB 115 71.3 2118 127 232 393 32 heavy-tail

Figure 1: Branch&bound experiments with LR and CLR classes of isomorphs.

in201 cliq1 CLR: the average runtime to solve instances in
this class is 181 seconds and the distribution is uniform.
Given that the only difference between this and the pre-
vious class is that instances in the previous instance have
non-unity weights, the presence of unity weights in this
class is a factor that increases the ‘difficulty’ of this class
significantly – when compared to the previous class.

alu4 CLR: the average runtime to solve instances in this
class is 207 seconds, and the runtime ranges from 23.5 sec-
onds to 1260 seconds. Instances in this class induce a near-
exponential distribution for cplex.

in401 sp LR: the average runtime to solve instances in this
class is 639 seconds, and the distribution is uniform.

in401 sp CLR: the average runtime to solve instances in
this class is 666 seconds, and the distribution is uniform.
Since this class is derived from the same reference instance
as the previous class, the question arises if the two classes
are equivalent, given the apparent ”closeness” of the two
ECDFs. We shall resolve this question with a hypothesis
test shortly.

f51mb 0350 B 0040 20 20 LR, the average runtime to solve
instances in this class is 256 seconds, and the distribution
is heavy-tail.

f51mb 0350 B 0040 20 20 CLR: the average runtime to solve
instances in this class is 232 seconds, and the distribution
is heavy-tail. Since this class is derived from the same ref-

erence instance as the previous class, the question arises if
the two classes are equivalent, given the apparent ”close-
ness” of the two ECDFs. One more hypothesis test will be
considered.

We state and resolve the following hypothesis:

H0 : µLR = µCLR

i.e. instances drawn at random from the LR-class are
equivalent to instances drawn at random from the CLR-
class. We test this hypothesis by finding the independent
samples t-statistics, (the degrees-of-freedom in both cases:
32 + 32 - 2 = 62)

(in401 sp LR, in401 sp CLR) induces t = 0.812 < 2.00
(f51mb... LR, f51mb... CLR) induces t = 0.224 < 2.00

thus we we fail to reject the hypothesis at the 5% signifi-
cance level.

Similarly, we can state a hypothesis about the average run-
time performance of two solvers, A and B, on instances from
an isomorph class CLR.

H0 : µA = µB on instances drawn randomly from ICLR

Again, we test this hypothesis by finding the independent
samples t-statistics, (the degrees-of-freedom: 32 + 32 - 2
= 62)

(A[ICLR], B[ICLR]) and test for t < tcrit

If the condition is met, we fail to reject the hypothesis at
the 5% significance level.

Additional Experiments. We continue the experiments
by introducing two classes of isomorphs as well as a col-
lection of random instances that are claimed to bear some
relationship to these isomorphs:

in401 sp CLR, where the reference instance in401 sp.lpx rep-
resents a weighted maximum set packing problem with
1000 vertices and 1000 constraints.

in413 sp CLR, where the reference instance in413 sp.lpx rep-
resents a weighted maximum set packing problem with
1000 vertices and 1000 constraints.

in401 sp RND, where each instance in the set represent a
randomly generated weighted maximum set packing prob-
lem with 1000 vertices and 1000 constraints.

See Table 1 for more information about the reference in-
stances in401 sp.lpx and in413 sp.lpx.

Again, we run cplex as a branch&bound solver on all in-
stances above. Now, the only random variable associated
with the class in401 sp CLR is RunTime since ObjectiveBest
remains constant. However, since in413 sp CLR is solved
only 8 times and 25 instances time out at 1056 seconds, the
random variables observed now are both RunTime and Ob-
jectiveBest. It is obvious that instances in the class in413 sp CLR
are different from instances in the class in401 sp CLR. More-
over, the differences from instance to instance are even more

pronounced when we consider 32 instances from the ‘class’
in401 sp RND. Again, both RunTime and ObjectiveBest are
random variables, but now over significantly wider range
than observed for the instances from either of the CLR
classes above. An itemized summary of our observations
follows.

in401 sp CLR: the average runtime to solve instances in
this class is 666 seconds and the distribution is uniform.

in413 sp CLR: the average runtime to solve instances in
this class is 1021 seconds and the distribution is incom-
plete due to too many timeouts.

in401 sp RND: the average runtime to solve instances in
this class is 894 seconds and the distribution is incomplete
due to too many timeouts.

The only assertion we can make with certainty about the
three classes discussed above is that the instances in the
class in401 sp RND are all very different from each other
and that in401 sp CLR and in413 sp CLR represent two dif-
ferent classes of isomorphs; instances in in413 sp CLR are
much harder to solve.

5. BLOCK INSTANCE GENERATOR
An block instance generator has been designed to compose a
structured block instance from a pair of instances. Optimal
objective values and the solutions are presumed to be known
for each instance. If such pair is composed into a block di-
agonal form with no addition of row constraints that would
introduce a variable overlap between the two instances, the
block instance has a known hidden solution as a concatena-
tion of two solutions from each instance, with the optimum
value of the new instance simply the sum of the the objec-
tive values for each instance. By following few simple rules,
we can maintain this additive property even when we intro-
duce overlap rows to the block instance. Recursively, we
can create, in linear time, very large instances with speci-
fied overlap and with guaranteed hidden solutions that are
optimal.

Details will be presented in the full-length paper. For the
time being, we illustrate some aspect of the method with a
partial response from the generator itself.

$ blocksDRS4lpx -info
+++

DESCRIPTION OF PROGRAM ’blocksDRS4lpx’
+++

blocksDRS4lpx takes two *.lpx files with

(n1-variables, m1-constraints), (n2-variables, m2-constraints)

concurrently with two *.BOUNDS files with same basenames. The
*.BOUNDS files contain ObjectiveOpt values and binary solution
strings for each instance.

The output is a *.lpx instance file with (n1+n2)-variables in a
block-diagonal form of at least (m1 + m2) rows. An overlap block
of additional rows with (n1+n2)-variables may be specified from
the command line. The method by which the overlap block is
generated is explained here by way of an example:

n1 = 6 and n2 = 7, with solution strings 110100 and 1100001

RunTime statistics for the isomorph classes in401 sp CLR, in413 sp CLR and the random ‘class’ in401 sp RND.

(RefV denotes the reference instance, excluded from the computation of min, max, median, mean, and standard deviation.)

Here, branch&bound solves each instance class in401 sp CLR to an optimum value of 77418.
However, a number of instances in in413 sp CLR and in401 sp RND time out at 1056 seconds.

Class RefV MinV MaxV MedV MeanV StdV N Distribution
in401 sp CLR@BB 865 407 957 638 666 133 32 uniform
in413 sp CLR@BB 1056 840 1056 1056 1021 65.7 32 incomplete
in401 sp RND@BB 865 455 1056 969 894 177 32 incomplete

CAUTION: Not all statistics as reported in this figure are ‘valid’. See also the body of the text.

(1) All the instances in the class in401 sp CLR are well-defined as isomorphs and are solved by
branch&bound solver under the time out value of 1056 seconds. Since the class is well-defined
all optima have the same value (77418), the runtime distribution is thereby well-defined, and
the statistics as reported for the class in401 sp CLR are valid.

(2) Only 22 instances in the ‘random class’ in401 sp RND time are solved by branch&bound
under 1056 seconds; there are 22 distinct optima, ranging from 68135 to 79040 – i.e.
these instances are not in the same nor are they isomorphs.
For the 11 instances that time out at 1056 seconds, values of ObjectiveBest range from
71170 to 77444. There are no indicators of how similar or different these instances really are.
We label the distribution incomplete due to too many timeouts.

(3) When we take an instance in413 sp from the random class (in401 sp RND) and create an isomorph class
in413 sp CLR, only eight instances in the isomorph class solve for an optimum value of 74435, a total of 25
instances time out at 1056 seconds (including the reference instance); values of ObjectiveBest for timed-out
instances range from 73329 to 74435. This instance is different from the instance in401 sp – as are most if
not all instances in the class in401 sp RND. We label the distribution incomplete due to too many timeouts.

Figure 2: Branch&bound experiments with instances from an isomorph class and and a random ‘class’.

that induce the following four lists of variables:

Ones1 = (1 2 4) Zeros1 = (3 5 6)

Ones2 = (7 8 13) Zeros2 = (9 10 11 12)

With the option -rows=5,
we get five pairs of unique unate constraints, chosen

randomly from Ones1 and Ones2:

(1 7) (4 8) (1 13) (2 7) (4 7)
....
....

6. DATA SETS AND MORE EXPERIMENTS
A substantial number of BCSP instances has been collected,
translated into the .lpx format, and run in cplex. A subset
of these instances and runs is summarized as reference in-
stances in Table 1. A larger set and similar results are be-
ing prepared for a technical report and a web-posting under
http://www.cbl.ncsu.edu/xBed/.

Table 1 summarizes instance categories and current status
vis-a-vis cplex. As shown, most instance have not been
solved optimally and represent an on-going challenge for
cplex and other BCSP solvers. Here are some additional
details.

min set cover (unate)

Instances ex5.pi and test4.pi represent column-row reduced
versions of the most challenging unate instances from the
LogicSyn91 set [13]. Instances in* sc have been trans-
formed into set cover instances from the set packing in-
stances described below.

min set cover (binate)

Instances rot.b, alu4, e64.b represent column-row reduced
versions of the most challenging binate instances from the
LogicSyn91 set [13].

max set packing (unate)

Instances in* sp are translated versions of set packing in-
stances kindly submitted by Y. Guo, as a follow-up on a
publication request [14], now updated in [15]. This a set
of 500 random instances in five size categories, from 500
variables to 1500 variables. We adopted the first instance
in each category as the reference instance for our experi-
ments with isomorphs. Additionally, we adopted instance
in413 sp as a reference instance of special interest (see Fig-
ure 2).

max independent set

Instances fr30* are translations of a subset of unit-weighted
independent set instances with hidden solution, downloaded
from http://www.nlsde.buaa.edu.cn/ kexu/benchmarks/-
set-benchmarks.htm. The instance dsjc125 is1 a useful test
instance floating on the web, with comments that point to
the original publications [16].

max clique

Instances *cliq and *cliq1 are weighted and unit-weighted
instance of maximum clique problems. They have been
derived from the instances fr30*, dsjc125*, and in* sp de-
scribed earlier.

blocks: min vertex cover

Instances in this set represent block compositions of in-
creasing size of the minimum vertex cover problem. The
method of block composition is described in the earlier sec-
tion.

blocks: min set cover (binate)

Instances in this set represent block compositions of in-
creasing size of the minimum binate set cover problem.

Reference instances in201 cliq, in201 cliq1, alu4, in401 sp,
f51mb 0350 B 0040 20 20, have already been expanded into
isomorphs; a summary of the experiments can be found in
Figure 1 in the earlier section. Similarly, we expanded refer-
ence instances in401 sp, in413 sp into isomorphs; a summary
of the experiments can be found in Figure 2.

In this section we re-introduce and also derive additional
isomorph classes from reference instances as follows:

in401 sp CLR, where the reference instance in401 sp.lpx rep-
resents a weighted maximum set packing problem with 500
variables.

in201 sp CLR, where the reference instance in201 sp.lpx rep-
resents a weighted maximum set packing problem with
1000 variables.

dsjc* CLR, where the reference instances dsjc*.lpx repre-
sent block compositions of increasing size of the minimum
binate minimum vertex set problem.

f51mb* CLR, where the reference instances f51mb*.lpx block
compositions of increasing size of the minimum binate set
cover problem.

It may be of some interest to observe, in Table 1, not only
the column on the sparsity measure (sp) but also the column
on the measure of completeness of the underlying instance
graph. For example, instances in* sc have constraint ma-
trices that are sparse, but the underlying structure of the
graph is highly ’interconnected’ and hard to solve to opti-
mality. Now, the maximum clique instances in* cliq that
have been derived from from these instances will have com-
plement graphs that are much less ‘internconnected’ – and
these instance have been solved to optimality in a reasonable
time frame.

Experiments in Section 4 emphasized the view of cplex as a
branch&bound solver that terminates before an externally
imposed timeout. Repeating the experiments on instances
from the same isomorph class allowed us to observe only one
random variable, RunTime, since each solution represents
a proven optimum which is an invariant for all instances
in the class. However, note that most instances shown in
Table 1 time out within 5% of the externally imposed limit
of 2112 seconds – and all we have to show for it is a single
value of the variable ObjectiveBest. Experiments that we
propose for the most part of this section have been designed
to produce a distribution of ObjectiveBest at predetermined
time intervals. To get a distribution of ObjectiveBest on such
instances, at a cost no greater than the cost of a single run
with timeout value of 2112, we proceed as follows:

• take a reference instance and generate a CLR class of 32
isomorphs;

• pick a timeout value Tout from a set of {16, 32, 64} seconds.

• run cplex on the reference and all 32 instance with a time-
out of Tout and observe the value of ObjectiveBest which
will now become the random variable.

Table 1: Introducing a subset of reference instances and basic experiments with cplex.

Legend:

ObjBest: values of objective function reported for each instance by cplex
Proof: an indicator variable whether cplex has proven ‘ObjBest’ as optimal
Ones: total number of ‘ones’ in the solution vector

RunTime: runtime in seconds, reported by cplex
n: number of variables
m: number of constraints

cdMax: maximum number of non-zero entries in a column
rdMax: maximum number of non-zero entries in a row
sp(%): a sparsity measure for the constraint matrix (100 * number of non-zeros/(n ∗m))
gc(%): a measure completness of the underlying graph (100 * number of edges/(n ∗ (n− 1))

(number of unique edges is counted after expanding each constraint into a clique)
Notes:

platform: Intel-based processor, 3.2 GHz, 2 GB cache, under RedHat Linux
cplex options: the only option used is the value of timeout (set at 2112 seconds for all instances below)

(experiments with various options led to inconsistent observations)
reductions: all matrices that represent the benchmarks in the list below have been reduced to the extent

possible, using standard column and row reduction techniques [8].

Dir Instance ObjBest Proof Ones RunTime n m cdMax rdMax sp(%) gc(%)
in101 sc 189316 no 57 2112.85 1000 500 50 77 5.55 68.82

min in201 sc 547921 no 56 2114.91 1000 1000 100 79 5.59 84.99
(unate) in401 sc 593034 no 68 2112.52 500 1000 100 45 5.72 85.57

set in501 sc 589992 no 54 2116.38 1500 1000 150 157 7.85 91.84
cover in601 sc 954508 no 72 2118.01 1500 1500 150 111 5.60 90.88

in101 sp 64408 no 19 2116.68 1000 500 50 77 5.55 68.82
max in201 sp 77596 no 13 2117.8 1000 1000 100 79 5.59 84.99

(unate) in401 sp 77418 yes 12 866.87 500 1000 100 45 5.72 85.57
set in413 sp 74435 no 12 1057.95 500 1000 100 46 5.55 83.65

packing in501 sp 76906 no 15 2118.39 1500 1000 150 157 7.85 91.84
in601 sp 98805 no 15 2119.45 1500 1500 150 111 5.60 90.88
dsjc125 is1 34 yes 34 17.7 125 736 23 2 1.60 9.50

max frb30-15-1 27 no 27 2118.49 450 17827 122 2 0.44 17.65
indep. frb30-15-2 27 no 27 2118.08 450 17874 116 2 0.44 17.69

set frb30-15-3 28 no 28 2118.05 450 17809 122 2 0.44 17.63
frb30-15-4 28 no 28 2118.68 450 17831 110 2 0.44 17.65
frb30-15-5 28 no 28 2119.11 450 17794 128 2 0.44 17.61
dsjc125 cliq1 4 yes 4 0.53 125 7014 119 2 1.60 90.50
frb30-15-1 cliq1 15 no 15 2120.41 450 83198 407 2 0.44 82.35

max frb30-15-2 cliq1 15 no 15 2120.02 450 83151 404 2 0.44 82.31
clique frb30-15-3 cliq1 15 no 15 2118.98 450 83216 400 2 0.44 82.37

frb30-15-4 cliq1 15 no 15 2118.5 450 83194 401 2 0.44 82.35
frb30-15-5 cliq1 15 no 15 2120.63 450 83231 403 2 0.44 82.39
in201 cliq 7265040 yes 361 3.56 1000 74959 572 2 0.20 15.01
in201 cliq1 361 yes 361 235 1000 74959 572 2 0.20 15.01

unate ex5.pi 36 yes 36 19.44 974 686 71 74 2.85 16.79
cover test4.pi 105 no 105 2117.77 5117 1435 54 159 1.36 10.07
min rot.b 84 yes 84 6.34 887 1257 158 79 1.23 7.29

binate alu4 32 yes 32 38.5 481 592 165 74 3.46 20.16
cover e64.b 47 no 47 2117.97 571 920 35 14 1.29 6.08

dsjc 0125 91 yes 91 20.97 125 736 23 2 1.60 9.50
dsjc 0250 182 no 182 2113.14 250 1472 23 2 0.80 4.73

min dsjc 0250 0100 183 no 183 2112.98 250 1572 24 2 0.80 5.05
vertex dsjc 0500 366 no 366 2111.15 500 2944 23 2 0.40 2.36
cover dsjc 0500 0200 368 no 368 2112.45 500 3344 26 2 0.40 2.68

blocks dsjc 1000 736 no 736 2126.75 1000 5888 23 2 0.20 1.18
dsjc 1000 0400 754 no 754 2118.36 1000 7088 29 2 0.20 1.42
dsjc 2000 1480 no 1480 2132.11 2000 11776 23 2 0.10 0.59
dsjc 2000 0800 1511 no 1511 2116.64 2000 14976 30 2 0.10 0.75
f51mb 12 yes 12 0.26 175 187 49 33 7.62 29.37
f51mb 0350 24 yes 24 73.54 350 374 49 33 3.81 14.64

min f51mb 0350 B 0040 20 20 24 yes 24 114.89 350 413 73 33 4.34 26.67
binate f51mb 0525 36 no 36 2119.42 525 561 49 33 2.54 9.75
cover f51mb 0525 B 0060 40 20 36 no 36 2118.11 525 660 94 53 3.45 37.82

blocks f51mb 0700 48 no 48 2120.5 700 748 49 33 1.91 7.31
f51mb 0700 B 0080 60 20 48 no 48 2118.25 700 925 112 73 3.11 50.13
f51mb 1400 96 no 96 2120.55 1400 1496 49 33 0.95 3.65
f51mb 1400 B 0160 80 80 96 no 96 2117.76 1400 2009 271 129 2.16 40.50

The isomorph class in401 sp CLR

The isomorph class f51mb 0350 B 0040 20 20 CLR

100000
200000
300000
400000
500000
600000
700000
800000

0 200 400 600

No
de

s

RunTime (seconds)

0

1000000

2000000

3000000

4000000

5000000

6000000

0 200 400 600

Ite
ra

tio
ns

RunTime (seconds)

f(x) = 12986* x + 197300
R 2̂ = 0.989

f(x) = 1309.3* x + 51664
R 2̂ = 0.959

Nodes: the total number of nodes maintained by the
branch and bound algorithm.

Iterations: the total number of iterations done by the
simplex algorithm to solve LP-relaxations
at all of the nodes combined.

Figure 3: RunTime correlations in cplex.

Note that for value of Tout = 64, the total runtime of the
experiments with (1+32) instances is 2112 seconds – how-
ever, we now may have 33 distinct values of ObjectiveBest
in its distribution!

A summary of our experiments and observations is linked to
four figures and tables that they contain.

Figure 3: We show near-perfect correlations of RunTime with
combinatorial counts produced internally by cplex : Nodes,
the total number of nodes maintained by the branch and
bound algorithm, and Iterations, the total number of itera-
tions done by the simplex algorithm to solve LP-relaxations
at all of the nodes combined. The correlations are shown
for two very different classes of isomorphs: in401 sp CLR
where the distribution of RunTime is uniform (see Figure
4), and f51mb 0350 B 0040 20 20 CLR where the distribu-
tion of RunTime is heavy-tail (see Figure 6).

Figure 4: The first three rows in the table show the statis-
tics for ObjectiveBest, given the time out values of 16, 32,
and 64 seconds. The fourth row shows RunTime statis-
tics where an optimum value of ObjectiveBest=77418 is
proven for each isomorph. The distribution is uniform,
with a mean of 666 seconds, and a range from 407 to 957
seconds. The most interesting part is the fact that an op-
timum value of 77418 has been reached by cplex already
in 64 seconds (by two isomorphs) – however it takes on an
average of 666 seconds to prove that this value is indeed an
optimum.

Figure 5: All instance reported in this figure are hard –
there are no proven optima on any of the instances – de-
spite the additional expenditures in runtime. Isomorphs in
the class frb30-15-1 CLR have a known hidden solution of
30; the maximum of ObjectiveBest is reported at 28 – after
expanding a total of 33*256 = 8448 seconds. We could not
run 33 isomorphs in the class in201 sp CLR for 2112 sec-
onds each, the computer system timed out the experiment
after solving the first 15 isomorphs.

Figure 6: The first five rows present ObjectiveBest statistics
for 32 instances in five CLR classes: the variable size in-
creases from 125, 250, 500, 1000, and 2000 variables and
each instance is timed out at 64 seconds. These instance
are compositions of blocks with hidden solution, shown in
the first column of the table. Each reference instance has an
number of rows (100, 200, 400, 800) that overlap the with
constraints in the blocks above these rows. An optimum
is proven only for the first class, one with 125 variables.
No optimal solutions are found for instances beyond 125
variables.

ObjectiveBest statistics for 32 instances in five CLR classes
of the binate instance f51m* are not shown. In contrast
to the preceding example, cplex finds known optima in
16 seconds even for the largest instance (1400 variables,
non-trivial number binate constraints in the overlap re-
gion). No optima can be proven for instances starting at
525 variables. However, we contrast two RunTime distri-
butions for two CLR classes that can still be solved with
branch&bound: f51mb 350 CLR (strictly block-diagonal,
no overlap regions) and f51mb 350 B 40 20 20 CLR (non-
trivial overlap of binate constraints). The statistics tabu-
lated for two classes shows (1) a mean value of 98.4 seconds
and near-exponential distribution, and (2) a mean of 232
seconds and a heavy-tail distribution. Clearly, adding over-
lap rows to the block composition is a significant factor in
making the instance appear significantly harder (to cplex)
– despite the fact the both instances have the same hidden
solution!

7. CONCLUSIONS
This section will be completed when preparing the final ver-
sion of this paper.

Acknowledgments. This work benefited a great deal from
discussions, over the years, with Matt Stallmann and Xiao
Yu Li. In particular, Matt Stallmann helped with the scripts
that facilitated invocations of cplex. Eric Sills, from the
NCSU High Performance Computing (HPC) facility with
fast dedicated processors, assisted in a number of ways to
maintain continuous access to computing resources and its
environment. We also thank Y. Guo for readily sharing
reprints of his papers and the 500-instance benchmark set
that now has a new life in a number of settings, all in the
.lpx format.

ObjectiveBest statistics for instances in isomorph classes in401 sp CLR

(RefV denotes the reference instance, excluded from the computation of min, max, median, mean, and standard deviation.)

Here, branch&bound times out at 16, 32, 64 seconds and returns the best objective value for each instance.

Class RefV MinV MaxV MedV MeanV StdV N Distribution
in401 sp CLR@16 65086 59852 71797 65992 66080 3721 32 uniform
in401 sp CLR@32 66826 60658 75114 69240 68548 3351 32 uniform
in401 sp CLR@64 66826 64451 77418 70260 69829 3450 32 uniform

RunTime statistics for instances in isomorph classes in401 sp CLR

Here, branch&bound solves each instance before time-out to an optimum value, then reports runtime.

Class RefV MinV MaxV MedV MeanV StdV N Distribution
in401 sp CLR@BB 866 407 957 638 666 133 32 uniform

Figure 4: Timeout and branch&bound experiments with instances in class in401 sp CLR.

ObjectiveBest statistics for instances in isomorph class frb30-15-1 CLR.

(RefV denotes the reference instance, excluded from the computation of min, max, median, mean, and standard deviation.)

This is one of the independent set instances [], with hidden solution value of ‘30’.
The solver does not return this value, despite total computation effort of 33 * 256 = 8448 seconds –

i.e. the reference and each isomorph is run for 256 seconds before timeout.

Class RefV MinV MaxV MedV MeanV StdV N Distribution
frb30-15-1 CLR@256 26 24 28 26 26.1 0.88 32 uniform

ObjectiveBest statistics for instances in isomorph class in201 sp CLR.

Here, branch&bound times out at 16, 32, 64 seconds and returns the best objective value for each instance. The additional run for 2112

seconds on each isomorph does not get significantly better; it also timed-out after 15-th instance due to computer system constraints.

Class RefV MinV MaxV MedV MeanV StdV N Distribution
in201 sp CLR@16 66948 55663 70416 60006 61034 3242 32 near-normal
in201 sp CLR@32 66948 58656 74819 64366 64449 4146 32 normal
in201 sp CLR@64 66948 58723 74819 66214 66510 3973 32 uniform
in201 sp CLR@2112 77596 72417 79739 76747 76520 2243 15 uniform

55000

60000

65000

70000

75000

80000

10 100 1000 2112

O
bj

ec
tiv

eB
es

t
(u

ni
ts

)

RunTime (seconds)

Obj@16 secs

Obj@32 secs

Obj@64 secs

Obj@2112 secs

TimeOut=2112 secs
0

0.2

0.4

0.6

0.8

1

55000 60000 65000 70000 75000

EC
DF

ObjectiveBest (units)

TimeOut=16

TimeOut=32

TimeOut=64

*
Isomor ph instance

class in201_sp_CLR:
size = 1 + 32

* Refer ence
instance

*
*

Figure 5: No optima are proven with branch&bound on these hard instances in class CLR.

8. REFERENCES
[1] S. Khanna, M. Sudan, L. Trevisan, and D. P.

Williamson. The approximability of constraint
satisfaction problems. SIAM J. Comput.,
30(6):1863–1920, 2000.

[2] Home page for lp solve, 2007.
http://tech.groups.yahoo.com/group/lp solve.

[3] Home page for cplex, 2007.
http://www.ilog.com/products/cplex/.

[4] X. Y. Li, M. F. M. Stallmann, and F. Brglez. Effective
bounding techniques for solving unate and binate
covering problems. In DAC, pages 385–390, 2005.

[5] F. Brglez, X. Y. Li, and M. F. M. Stallmann. On SAT
instance classes and a method for reliable performance
experiments with SAT solvers. Ann. Math. Artif.
Intell., 43(1):1–34, 2005.

[6] G. L. Nemhauser and L,A, Wolsey. Integer and
Combinatorial Optimization. John Wiley, 1988.

[7] G. D. Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill Publishers, 1994.

[8] G.D. Hachtel and F. Somenzi. Logic Synthesis and
Verification Algorithms. Kluwer Academic Publishers,
1996.

[9] J. E. Harlow and F. Brglez. Design of Experiments in
BDD Variable Ordering: Lessons Learned. In
Proceedings of the International Conference on
Computer Aided Design. ACM, November 1998.

[10] J. E. Harlow III and F. Brglez. Design of experiments
and evaluation of BDD ordering heuristics.
International Journal on Software Tools for

Technology Transfer (STTT), 3(2):193–206, May 2001.
Springer-Verlag Heidelberg.
http://springerlink.metapress.com/, ISSN: 1433-2779
(Paper) 1433-2787 (Online).

[11] K. A. Brownlee. Statistical Theory and Methodology
In Science and Engineering. Krieger Publishing, 1984.
Reprinted, with revisons, from second edition, 1965.

[12] L. J. Bain and M. EngelHardt. Introduction to
Probability and Mathematical Statistics. Duxbury,
1987.

[13] S. Yang. Logic synthesis and optimization benchmarks
user guide. Technical Report 1991-IWLS-UG-Saeyang,
MCNC, Research Triangle Park, NC, January 1991.

[14] Y. Guo, A. Lim, B. Rodrigues, and Y. Zhu. Heuristics
for a brokering set packing problem. In Eighth
International Symposium on Artificial Intelligence and
Mathematics, January 4-6, 2004, Fort Lauderdale,
Florida, USA. ACM, January 2004.

[15] Y. Guo, A. Lim, B. Rodrigues, and Y. Zhu. Heuristics
for a bidding problem. Comput. Oper. Res.,
33(8):2179–2188, 2006.

[16] D. S. Johnson, R. Aragon C, L. A. McGeoch, and
C. Schevon. Optimization by simulated annealing: An
experimental evaluation; part ii, graph coloring and
number partitioning. Operations Research, 39:378–406,
1991.

ObjectiveBest statistics for instances in block isomorph classes, each instance times out at 64 seconds.

(Opt opt denotes the known optimum value of the hidden solution for each block class.)
(RefV denotes the reference instance, excluded from the computation of min, max, median, mean, and standard deviation.)

Class Obj opt RefV MinV MaxV MedV MeanV StdV N Distribution
dsjc 125 CLR@64 91 91 91 91 91 91 0 32 Imp
dsjc 250 100 CLR@64 182 186 183 186 184 184 0.92 32 uniform
dsjc 500 200 CLR@64 364 372 367 378 374 374 2.81 32 uniform
dsjc 1000 400 CLR@64 728 759 747 764 756 756 4.86 32 uniform
dsjc 2000 800 CLR@64 1456 1556 1552 1569 1560 1560 4.26 32 uniform

RunTime statistics for two block isomorph classes f51mb 0350 CLR and f51mb 0350 B 0040 20 20 CLR.

Here, branch&bound solves each instance before time-out to an optimum value of 24, then reports runtime.

Class Obj opt RefV MinV MaxV MedV MeanV StdV N Distribution
f51mb 350 CLR@BB 24 73.5 50.2 446 87.8 98.4 66.7 32 near-exponential
f51mb 350 B 40 20 20 CLR@BB 24 115 71.3 2118 127 232 393 32 heavy-tail

Figure 6: Asymptotic experiments with block instances generated from hidden solutions.

APPENDIX
The appendix will be completed with the revised version of
this manuscript. For details and updates, interested reader
may also visit

http://www.cbl.ncsu.edu/xBed/

This version of appendix includes only a brief section that
illustrates the ‘.lpx’ format. Later, we shall briefly describe
software utilities used to prepare data sets (including a num-
ber of translators to/from .lpx), invoke experiments, and
post-process the results.

A. SMALL EXAMPLES IN .LPX FORMAT
Lpx format appears to be an undocumented subset of the
lp-file format and any pointers to its documentation will be
gratefully included in the updated version of this paper. The
number of hits on the web in response to a query about lpx
is overwhelming and none of the listing have the context
that is relevant. However, the fact remains that the two
small files below will be read and produce correct results by
both lp solve as well as by cplex. We keep the emphasis
on keeping the extension .lpx as a reminder that all variable
names are prefixed with ‘x’ – a feature we rely on to post-

process the respective solver outputs.

In the first file, the constraint lines are labeled explicity, a
feature that is useful for a reference instance. However, as
the second example shows, the constraint lines need not be
labeled – a feature we find convenient when writing out an
isomorph instance (in which rows are randomly permuted
by design).

\ @file exA_spb_max.lpx
\ @date 2007-02-01-20-26-19 (Thu Feb 01 20:26:19 GMT 2007)
\
\ ObjectiveBest 100
\ SolutionCoordinates 0110101
\ SolutionProvedOptimal 1
\
Max

obj: +21x1 +22x2 +23x3 +25x4 +26x5 +27x6 +29x7
st

c1: +x2 +x3 +x4 >= +1
c2: -x2 -x5 -x6 >= -2
c3: +x5 +x6 -x7 >= 0
c4: -x3 +x7 >= 0
c5: -x1 -x4 -x7 >= -1
c6: -x1 -x3 -x6 >= -1

Binary
x1 x2 x3 x4 x5 x6 x7

End

\ @file exA_spb_max_morph_CLR.lpx
\ @date 2007-02-14-16-39-47 (Wed Feb 14 16:39:47 UTC 2007)
\ @remark below, see comments about the origin of this file
\ ---
\ @VariablePermutationPairs (isomorph,reference --
\ terminated with 0,0)
\ 1,3 2,1 3,2 4,5 5,6 6,4 7,7 0,0
\
\ ObjectiveBest 100
\ SolutionCoordinates 1100011
\ SolutionProvedOptimal 1
\
Max

obj: +22x1 +23x2 +21x3 +27x4 +25x5 +26x6 +29x7
st

-x3 -x7 -x5 >= -1
+x1 +x2 +x5 >= +1
-x2 +x7 >= 0
-x3 -x2 -x4 >= -1
-x6 -x1 -x4 >= -2
+x4 +x6 -x7 >= 0

Binary
x1 x2 x3 x4 x5 x6 x7

End

