

Accelerating High-level Bounded Model Checking

Malay K Ganai and Aarti Gupta
{malay | agupta } at nec-labs dot com

NEC Laboratories America, Princeton, NJ USA 08540

Abstract: SAT-based Bounded Model Checking (BMC) has
been found promising in finding deep bugs in industry designs
and scaling well with design sizes. However, it has limitations
due to requirement of finite data paths, inefficient translations
and loss of high-level design information during the BMC
problem formulation. These shortcomings inherent in Boolean-
level BMC can be avoided by using high-level BMC. We
propose a novel framework for high-level BMC, which includes
several techniques that extract high-level design information
from EFSM models to make the verification model “BMC
friendly”, and use it on-the-fly to simplify the BMC problem
instances. Such techniques overcome the inherent limitations of
Boolean-level BMC, while allowing integration of state-of-the-
art techniques for BMC. In our controlled experiments we
found signficant performance improvements achievable by the
proposed techniques.

1. Introduction
To cope with the increasing design complexity and demand to
reduce design cycle time, the focus has shifted towards
supporting high-level design abstraction, synthesis and
verification methodologies. At the Boolean-level of design
representation, SAT-based Bounded Model Checking (BMC)
[1-4] due to several advancements — improved DPLL-style
SAT solvers [5], on-the-fly circuit simplification [6, 7], and
SAT-based incremental learning [3, 7, 8] — has been gaining
wide acceptance as a scalable verification solution compared to
BDD-based symbolic model checking [9]. With advent of
sophisticated SMT solvers [10-15] built over DPLL-style SAT
solvers, SMT-based BMC [16, 17] is also gaining popularity.
Unfortunately, we do not see a similar level of maturity and
advancements in verification efforts at higher levels of
abstraction. This is mainly due to higher theoretical complexity,
and a wide engineering gap between theoretical and practical
solutions at the higher levels. To reduce this gap, we propose a
framework to efficiently perform high-level BMC using SMT
(Satisfiability Modulo Theory) solvers that overcome the
inherent limitations of SAT-based Boolean-level BMC, while
allowing integration of state-of-the-art techniques adopted for
Boolean-level BMC. In this framework, we apply three novel
techniques to accelerate high-level BMC (as shown in Figure 1):
• efficient extraction of high-level information,
• its use to obtain a “BMC friendly” verification model

through model transformations, and
• its on-the-fly application during BMC to simplify BMC

problem instances.

1.1. Bounded Model Checking
BMC is a model checking technique where falsification of a
given LTL property is checked for a given sequential depth, or
bound [1, 2]. Typically, it involves three steps:
• The design with the property f is unrolled for k (bounded)

number of time frames.
• The BMC problem is translated into a propositional

formula ϕ such that ϕ is satisfiable iff the property f has
counter-example of depth (less than or) equal to k.

• A SAT-solver is used for the satisfiability check.

1.2. Boolean-level BMC and its Limitations
In Boolean-level BMC, the translated formula is expressed in
propositional logic and a Boolean SAT solver is used for
checking satisfiability of the problem. Several state-of-the-art
techniques [18] exist for Boolean BMC that have led to its
emergence as a mature technology, widely adopted by the
industry. However, there are several limitations of a
propositional translation and use of a Boolean SAT Solver.
Some of these are as follows:
• A propositional translation in the presence of large data-

paths leads to a large formula; which is normally
detrimental to a SAT-solver due to increased search space.

• Data-path sizes need to be known explicitly a priori, before
unrolling of the transition relation. For unbounded data-
path, additional range-analysis of the program/design is
required to obtain conservative but finite data-path sizes.

• High-level information is lost during Boolean translation
and therefore, needs to be re-discovered by the Boolean
SAT solver often with a substantial performance penalty.

1.3. High-level BMC
High-level BMC overcomes the above limitations of a Boolean-
level SAT-based BMC; wherein, a BMC problem is translated
typically into a quantifier-free formula in a decidable subset of
first order logic, instead of translating it into a propositional
formula; the first order logic formula is then solved by a high-
level solver, such as an SMT solver.

In [12], an expressive logic called CLU (counter arithmetic
logic with lambda-expressions and uninterpreted functions) is
used to model systems. The decision procedure is based on a
hybrid procedure using either a small model instantiation with
conservative ranges or a predicate-based encoding. It generates
an equi-satisfiable Boolean formula, which is then checked
using a Boolean SAT solver. In [16, 17], the expressive logic
used is linear arithmetic (addition and multiplication by
constants), arrays, records, lists, bit-vectors; where SMT solvers
are used to check the satisfiability. Note that these previous
approaches [12, 16, 17] overcome part of the limitations of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD 2006, November 5-9, 2006, San Jose, USA.
Copyright 2006 ACM 1-59593-389-1/06/0011…$5.00

794

Boolean-level SAT-based BMC as discussed above, but lose
some or all of the features that state-of-the-art Boolean-level
BMC approaches provide.

Outline In Section 2 we give an overview of our contributions,
in Section 3 we give relevant background on EFSM and flow
graphs; in Section 4 we discuss our approach in detail; in
Section 5 and 6 we discuss our experiments; and in Section 7 we
conclude with summarizing remarks.

2. Our Contributions
We propose several methods to efficiently perform high-level
BMC using an SMT solver that not only overcome the inherent
limitations of SAT-based BMC but also allow integration of
state-of-the-art innovations [18] adopted for the latter. Our high-
level problem description uses a decidable quantifier-free
fragment of first-order logic, including Presburger arithmetic,
uninterpreted functions/predicates, arrays. Specifically, in our
high-level BMC framework:
1. We use expression simplification to reduce the size of the

unrolled formula not only within a time-frame, but across
time-frames also.

2. We efficiently extract high-level information such as
control-flow of the program/design.

3. We use the high-level information to simplify and reduce
the unrolled formula size.

4. We provide on-the-fly relevant high-level information at
each unrolling to the high-level solver, thereby not unduly
overburdening the solver.

5. We use incremental learning, i.e, reuse of previously learnt
lemmas from overlapping BMC instances to improve SMT
solver performance.

6. We transform the model (preserving LTL\X property)
using COI reduction, Collapsing, and Balancing Paths and
Loops, so as to improve the scope of learning and
simplification based on high-level information.

3. Preliminaries

3.1. Extended Finite State Machine (EFSM) Model
Our method extracts high-level information from an Extended
Finite State Machine (EFSM) model of a sequential
program/design, with a partitioning of control and datapath. An
EFSM has finite logical (control) states and conditionals
(guards) on the transitions between the control states. The
guards are functions of control states, data-path and input
variables. Formally, an EFSM model is a 6-tuple <s0,S,I,O,D,T>
where, s0 is an initial state, S is a set of control states (or blocks),
I is a set of inputs, O is a set of outputs, D is a set of state
(datapath) variables, T=(TE, TU) is a transition relation, with TE
being an enabling transition relation, TE: S×D×I→ S, and TU

being an update transition relation, TU : S×D×I→ D×O.
An ordered pair <s,x> ∈ S× D is called a configuration of

M. A transition from a configuration <s,x> to <t,y> under an
input i, with possible output o comprises of two transitions: a)
an enabling transition, represented as ((s,x,i),(t))∈TE, and b) an
update transition, represented as ((s,x,i),(y,o))∈TU. For a given
enabling transition s→ t, we define an enabling function f such
that f(x,i)=1 iff ((s,x,i),(t))∈TE and we label the transition as
s→f(x,i) t. For ease of description, we consider deterministic
EFSMs where for any two transitions from a state s, i.e. s→f(x,i)
t1 and s→g(x,i) t2, f(x,i) ∧ g(x,i) = FALSE. We define to(s) = {t |

s→f(x,i) t } as a set of outgoing control states of s. Similarly, we
define from(t) = {s | (s,t)∈TE} as a set of incoming control states
of t. We define a NOP state as a control state with no update
transition and a single outgoing enabling transition. A NOP state
with n incoming transitions can be replaced with n NOP states,
each with a single incoming and a single outgoing transition,
without changing incoming or outgoing states. In our discussion,
a NOP state will have only a single incoming/outgoing
transition. We define a SINK state as a control state with no
update transition relation and no outgoing transition. We define
a transition or state as contributing with respect to a variable if it
can affect the variable; otherwise, such a transition or state is
called non-contributing.

Example 1: We illustrate EFSM model M of a FIFO example
(implemented using a RAM) using a State Transition Graph
(STG) as shown in Figure 2(a) where S={S0,…,S11}, I={ren,
wen, fifo_in}, O={fifo_out, is_full, is_empty}, D={rptr, wptr,
is_full, is_empty, RAM[10]}. The enabling functions are shown
in italics and update transitions are shown in non-italics in the
Figure 2(a). For example, the transition S2→T23S3 has enabling
function T23=(rptr==wptr-1)||(rptr=0 && wptr==9)) and
update transition {RAM[rptr]=in; is_empty=0}.

3.2. Flow Graphs
A flow graph G(V,E,r) is a directed graph with an entry node r.
A path from u to v, denoted as p(u,v), is a sequence of nodes
u=s1,...,sk=v such that (si,si+1)∈E for 1≤ i<k. We denote Path(u,v)
as a set of paths between u and v. Length of a path p∈ Path(u,v)
is the number of edges in the sequence. For px,py∈Path(u,v),
px≠py if the sequence of states in px is different from py; such
paths are called re-converging paths. A concatenation of paths
p(t,u) and p(u,v), denoted as p(t,v)=p(t,u)⊕ p(u,v), represents a
path from t to v that goes through u. A node n is said to
dominate node m, denoted as dom(m) if every path from r to m
goes through n. The node r dominates every other node in the
graph. A Strongly Connected Component, SCC (Vi,Ei) is a
subgraph of G such that for all u,v∈Vi, there exists a path
u=s1,...,sk=v such that (sj,sj+1)∈Ei for 1≤j<k. SCC (Vi,Ei,ri) is a
loop with entry ri if ri dominates all the nodes in Vi. An edge
(u,v) is called a back-edge if v dominates u; otherwise it is called
a forward-edge. Given a back-edge (u,v), a natural loop of the
edge is defined as the set of nodes (including u) that can reach u
without going through v. For a given G(V,E,r), and any pair of
natural loops, L1= (V1,E1,r1) and L2= (V2,E2,r2) one of the
following cases holds: 1) they are disjoint i.e., V1∩V2=∅, 2) they
are disjoint but have the same entry node i.e. V1∩V2={r1}={r2},
or 3) one is completely nested in the other, i.e. V1⊆V2 or V2⊆V1.
A sink node is a node with no outgoing edge.

A flow graph G(V,E,r) is reducible [19] if and only if E can
be partitioned into disjoints sets front-edge set Ef

 and back-edge
set Eb such that Gd(V,Ef,r) forms a direct-acyclic graph (DAG)
where each v∈V can be reached from the entry node r. The
reducible graph has the property that there is no jump into the
middle of the loops from outside and there is only one entry
node per loop. Most flow graphs that occur frequently fall into
the class of reducible flow graphs. Use of structured control
flow statements such as if-then-else, while-do, continue and
break produces programs whose flow graphs are always
reducible. Unstructured programs due to the use of goto can
cause irreducibility of the graphs. Thus focusing on a reducible

795

graph is not a significant restriction of our algorithms and
techniques, and indeed accords with practical guidelines.

For a given EFSM <s0,S,I,O,D,T>, let G=(V,E,r) be a flow
graph with start vertex r, such that V=S, E={(s,t)| s→t }, and r
= s0. The sets to(s) and from(s) represent the set of outgoing
nodes and incoming nodes of a node s, respectively. A
reachability analysis on a flow graph corresponds to control
state reachability analysis of the corresponding EFSM.

4. Our Approach: High-level BMC
We present the flow of our approach for high-level BMC as
shown in Figure 1. Given an EFSM Model M (discussed in 3.1)
and a property P, we perform a series of novel property
preserving transformations (Sections 4.3 and 4.6). After that we
perform control state reachability on the transformed model
(Section 4.4). Using the reachability information, we generate
novel simplification constraints on-the-fly at each unroll depth k
(Section 4.5). These simplification constraints are used by the
expression simplifier (Section 4.1) during unrolling to reduce
the formula. These constraints are also used to improve the
search on the translated problem. We also propose an
incremental learning technique (Section 4.2) i.e., re-use of
theory lemmas in high-level BMC framework. We present
various innovations in the order of ease of explanation.

Fig. 1: Accelerated High-level BMC

4.1. Expression Simplifier
High-level expressions in our framework include Boolean
expressions bool-expr and term expressions term-expr. Boolean
expressions are used to express Boolean values true or false,
Boolean variables (bool-var), propositional connectives (∨,∧,¬)
relational operators (<,>,≥,≤,==) between term expressions, and
uninterpreted predicates (UP). Term expressions are used to
express integer values (integer-const) and real values (real-
const), integer variables (integer-var) and real variables (real-
vars), linear arithmetic with addition (+) and multiplication (*)
with integet-const and real-const, uninterpreted funtions (UF),
if-then-else (ITE), read and write to model memories. To model
behaviour of a sequential system, we also have a next operator to
express the next state behavior of the state variables.

Our high-level design description is represented in a semi-
canonical form using an expression simplifier. The simplifier re-
writes expressions using local and recursive transformations in
order to remove structural and multi-level functionally
redundant expressions, similar to simplifications proposed for
Boolean logic [6, 20] and also for first order logic [21].. Our
expression simplifier has a “compose” operator [7], that can be

applied to unroll a high-level transition relation and obtain on-
the-fly expression simplification; thereby achieving
simplification not only within each time frame but also across
time frames during unrolling of the transition relation in BMC.

4.2. Incremental Learning in High-level BMC
Learning from overlapping instances of propositional formulas
has been proposed previously [3, 7, 8] and found to be useful in
Boolean SAT-based BMC [3, 4, 22]. We use incremental
learning of theory lemmas across time-frames, and found this
technique to be equally beneficial in the context of high-level
BMC.

4.3. Property-based EFSM Reduction
We perform slicing on EFSM [23] with respect to variables of
interest as defined by the property and obtain contributing and
non-contributing states and transitions. Slicing away behaviors
(and the elements) unrelated to the specific properties can
significantly reduce the model size and thereby, improve the
verification efforts. We describe two such techniques in the
following: cone-of-influence (COI) reduction and collapsing.

4.3.1. COI reduction
• We remove all non-contributing states and their outgoing

transitions.
• Any non-contributing transition s→f(x,i)t where s is a

contributing state, is replaced by a transition s→f(x,i)SINK.
• If we are concerned with reachability of a state s∈S from a

start state s0, we remove the outgoing transition from s
since it is non-contributing for the shortest counter-example
or proof. For example, the self-loop transition S1→S1 (not
shown in Figure 2(a)) is non-contributing and hence is
replaced by S1→SINK as shown in Figure 2(a).

4.3.2. Collapsing
We define a collapsing condition as that when all states in to(s)
are NOP and none of them directly appears in a reachability
check. Under such a condition, we collapse all the NOP states
and merge them with s. In other words, ∀ t∈to(s) (with t being
NOP), we remove the transitions s→f(x,i) t and t→TRUE q and add
a new transition s→f(x,i) q.

4.4. Extraction: Control State Reachability (CSR)
We now discuss extraction of high-level control-flow
information of the design/program which is subsequently used
to simplify the unrolled formula (discussed in the next section).
 Starting from the initial state S0, we compute control state
reachability (CSR) using a breadth first search (BFS). A control
state Si is one-step reachable from Sj if and only if there exists an
enabling transition between them. At a given sequential depth d,
let R(d) represent the set of control states that can be reached
statically in one step from the states in R(d-1) with R(0)={S0}.
Note that we are not computing the fixed-point diameter. For
some d, if R(d-1)≠R(d)=R(d+1), we say the CSR saturates at
depth d and stop; otherwise we compute R(d) and |R(d)| (i.e.,
size of R(d)) up to the BMC bound. Note, CSR information is
static information without considering the enabling functions,
i.e., if a control state is not reachable from the initial state in
CSR, it is definitely not reachable in the model; however, the
other way is not true in general. Applying CSR on the FIFO
example 1, we obtain the set R(d) as shown in Table 1(a). Note,

SAT?

Proposed
Method

M: High-Level Model
P: LTL Property

N: Bound
k=0;

Unroll using
High-level Logic

Simplifier

Translate to
Quantifier-free

Formula

SMT
Solver

k<N

k++

CEXAbort

EFSM
Property preserving

Transformation
M→M’

Control
Reachability

Generate
Simplification

Constraints at k

Increment
Learning

YNN Y
SAT?

Proposed
Method

M: High-Level Model
P: LTL Property

N: Bound
k=0;

Unroll using
High-level Logic

Simplifier

Translate to
Quantifier-free

Formula

SMT
Solver

k<N

k++

CEXAbort

EFSM
Property preserving

Transformation
M→M’

Control
Reachability

Generate
Simplification

Constraints at k

Increment
Learning

YNN Y

796

the saturation depth is 15, |R(15)|=|R(16)|=11 where
R(15)={S1,S2,…,S11}.

4.5. On-the-Fly Simplification and Learning
For n control states S1…Sn, we introduce n Boolean variables
BS1…BSn. Let the Boolean variable Br = TRUE iff configuration
of M is (r,x) for some x∈V. Equivalently, Br corresponds to a
predicate on the control state variable, called the PC (Program
Counter), i.e., Br ≡ (PC==r). Let Br

d denote the Boolean
variable Br at depth d during BMC unrolling.

At any unrolling depth d of high-level BMC, we apply the
following on-the-fly structural and clausal (learning-based)
simplification on the corresponding formula. Note, these
simplifications are effective for small |R(d)|. We use a procedure
Simplify (BoolExpr e, Boolean v) which constraints a Boolean
expression e to a Boolean value v, and also reduces the
expressions that use e. Later, we illustrate this with an example.

1. Unreachable Block Constraint (UBC)

∀r∉R(d) Simplify(Br
d,0)

Since the state r is not reachable at depth d, the predicate Br will
evaluate to FALSE at depth d. Therefore, simplifying the
formula by propagating Br=0 at depth d preserves the behavior
of the design.

2. Reachable Block Constraint (RBC)

Simplify(∨r∈ R(d) Br
d,1)

At any depth d, at least one state in R(d) is reachable.

3. Mutual Exclusion Constraint (MEC)

∀r,t∈R(d), r≠t Simplify((Br
d ⇒ ¬Bt

d
,),1)

At any depth d, at most one state in R(d) is the current state.

4. Forward Reachable Block Constraint (FRBC)

∀r∈R(d) Simplify((Br
d

 ⇒ ∨s∈ to(r) Bs
d+1),1)

At any depth d, if current state is r i.e. Br
d=TRUE, then the next

state must be among the to(r) set.

5. Backward Reachable Block Constraint (BRBC)

∀r∈R(d) Simplify((Br
d

 ⇒ ∨s∈from(r) Bs
d-1),1)

At any depth d>0, if current state is r i.e. Br
d=TRUE, then the

previous state at depth d-1, must be among the from(r) set.

6. Block-Specific Invariant (BSI)

∀r∈R(d) Simplify((Br
d

 ⇒ Cr
d),1)

At any depth d, a given invariant Cr for a given state r is valid
only if r is the current state at depth d.

Note, previous approaches [24] add some of these constraints in
the transition relation so as to include them in the formula at
every unrolling. In contrast, our approach adds only the relevant
constraints at each unrolling, thereby reducing the overall
formula size. Thus, ideally we would like a smaller set R(d) to
increase the effectiveness of our simplification. Later, we
discuss how we transform EFSM model to reduce the set R(d).

Example 1(Contd): We illustrate simplification constraints at
depth, d=4. In particular, we consider the effect of
simplification on the unrolled expression for variable is_full.
The transition relation for the state variable is_full is as follows:

 next(is_full) = (BS0 || BS7)? 0 : (BS3) ? 1 : is_full;

The high-level expression for the unrolled variable,
corresponding to next(is_full) at depth 5, would be:

 is_full5 = (BS0
4 || BS7

4)? 0 : (BS3
4) ? 1 : is_full4;

For lack of space, we explain only the Unreachable Block
Constraint. Note, at d=4, only S4, S5, S6, S9, S10, and S11 are
reachable (Table 1(a)). Therefore, we do the following:

∀r∈ {S0,S1,S2,S3,S7,S8} Simplify(Br
4,0)

Using the above simplification, the expression for is_full5 gets
mapped to an existing variable is_full4, thereby, reducing the
additional logic, i.e., is_full5 = is_full4.

4.6 EFSM Transformation: Balancing Re-convergence
Efficiency of on-the-fly simplification depends on the size of the
set R(d), i.e., |R(d)|. A larger |R(d)| reduces the scope of
simplification at depth d and hence, the performance of high-
level BMC. Re-converging paths of different lengths inside
loops is one of the reasons for the saturation of reachability and
inclusion of all looping control states in the set R. To improve
the performance of high-level BMC further, we adopt a strategy
called “Balancing Re-convergence” that transforms the original
model into a “BMC friendly” model but preserves the validity of
the model with respect to the property expressed in LTL\X
(Linear Temporal Logic without the neXt-time operator).

4.6.1. Our Strategy: Intuition
For balancing re-convergence and reducing the set R(d) and
thereby, improving the scope of simplification of high-level
BMC, we transform an EFSM by inserting NOP states such that
lengths of the re-convergence paths are the same and control
state reachability does not saturate. Reduction in R(d), in
general, improves the scope of on-the-fly simplifications. Note
that the additional NOP states have little effect on simplification,
although they increase the total number of control states and
transitions, and possibly the search depth. As NOP states do not
add complexity to the transition relations of any state variables
except the program variables encoding the control states, the
Unreachable Block Constraint simplification at depth d is
practically unaffected by inclusion of such states in R(d). Also,
the Forward and Backward Block Constraint simplification are
not affected, as these additional transitions are single outgoing
transition (and hence always enabled) from NOP states. We
define R-(d) = {s | s ∈ R(d) and s is not a NOP state}. We use
maxd |R(d)| and maxd |R-(d)| to measure the effectiveness of our
strategy in improving the scope of simplification of high-level
BMC. Note that the above transformation preserves LTL\X
properties, as NOP states can only increase the length of traces
but not the eventuality and global behavior. As the state of data
variables do not change in NOP state, the validity of atomic
propositions is not affected.

Example 1 (Contd): For the EFSM model shown in the Figure
2(a), paths S2→S3→S4 and S2→S4 are re-converging with
different lengths. For balancing, we insert a NOP state S2a such
that transition S2→~T23S4 is replaced by S2→~T23S2a→TRUES4.
Similarly, as paths S7→S8→S9 and S7→S9 are re-converging
with different lengths, we insert another NOP state S7a and
replace the transition S7→~T78S9 by S7→~T78S7a→TRUES9. The
modified EFSM model M’ is shown in the Figure 2(b). CSR on
M’ is shown in Table 1(b). Note that at depth maxd R-(d) = 4.
Also, CSR on M’ does not saturate.

797

Fig. 2: STG of EFSM a) original M b) transformed M’

Table 1[a-b]: Control State Reachability on EFSM a) M b) M’

(a) Model M (b) Model M’
d R(d) |R(d)| d R(d) |R(d)| |R-(d)|
0 S0 1 0 S0 1 1
1 S1 1 1 S1 1 1
2 S2, S7 2 2 S2, S7 2 2
3 S3, S4, S8, S9 4 3 S3, S2a, S8, S7a 4 2
4 S4, S5, S6, S9, S10,S11 6 4 S4, S9 2 2
5 S5, S6,S10, S11, S1 5 5 S5, S6, S10, S11 4 4
.. ….. 6 S1 1 1

15 Saturates with 11 states i Repeats, R(i)=R(i%5)

Algorithm: Given a reducible flow graph G, we present an
O(E) algorithm in Sections 4.6.2 and 4.6.3, that identify the
edges corresponding to the transitions in TE where inserting
certain number of NOP states will balance the re-convergence
paths, including those arising due to loops.

4.6.2. Balancing Re-convergence without Loops
Consider the DAG, G(V,Ef,r) corresponding to the reducible
flow graph G(V,E,r) with an entry node r and front-edge set Ef..
Let w(e) denote the weight of the edge, e=(a,b)∈Ef. As we later
see, the weight of the edge (a,b) corresponds to one more than
the number of NOP states that need to be inserted between
nodes a and b. We define weight for a path p=<s1,…,sk>,
denoted as w(p) = Σ1≤i<k w(ei) where ei =(si,si+1)∈Ef. We now
define our problem as follows:
Problem 1: For a given DAG G(V,Ef,r) find a weight function,
w:Ef→Z such that ∀px,py∈P(u,v) w(px)=w(py), where u,v∈V.
 Note, if we are able to find a feasible w, then the number of
NOP states introduced for an edge, e=(a,b)∈Ef will be equal to
w(e)-1. We say that the set P(u,v) is balanced when all the paths
from u to v have equal weights, i.e., ∀px,py∈P(u,v), w(px)=w(py).

Let W(u) denote the weight of the paths in the balanced set
P(r,u). We define W(r)=0.
Lemma 1: If P(r,v) is balanced and P(u,v)≠∅, then P(u,v) is
balanced.
Proof: We prove by contradiction. Let p1(r,u)∈P(r,u). Assume
P(u,v) is not balanced, i.e., there exists at least two paths
p1(u,v)∈P(u,v) and p2(u,v)∈P(u,v) such that w(p1)≠w(p2). Let
p0(r,u)∈P(r,u). The weight of the concatenated path p0⊕ p1 is
w(p0)+w(p1) and that of p0⊕ p2 is w(p0)+w(p2). Since
w(p1)≠w(p2), the weight of the concatenated paths are different.
However, since p0⊕ p1, p0⊕ p2∈ P(r,v) and P(r,v) is balanced,
we get a contradiction. Thus, P(u,v) is also balanced.
 Using Lemma 1, we re-formulate the problem as follows:
Problem 1’ (stated differently): Given a DAG G(V,Ef,r), find a
weight function, w:Ef→Z and W:V→Z such that P(r,v) is
balanced i.e., w(px)=w(py)=W(v), ∀px,py∈P(r,v)
Solution: If P(r,u) is balanced ∀u∈from(v), i.e., W(u) is
computed, we can balance P(r,v) recursively as follows.
• ∀u∈from(v) w(u,v) = t-W(u), where t = (maxu∈from(v) W(u))+1
• Set W(v)=t as for any path p(r,v) through u will have

weight W(u)+w(u,v)=W(u)+t-W(u)=t.
 We start with an initial set of nodes S which are sink nodes in

G(V,Ef,r). Then, we recursively apply the above steps in the
procedure BalancePath, as shown in Figure 3. Termination is
guaranteed as the recursive sub-procedure BalanceAux is
invoked only once per node. The correctness of the algorithm is
also shown easily by an inductive argument.

1. Input: G(V,Ef,r)
2. Output: w:E->Z, W:V->Z
3. Procedure: BalancePath
4. S = {v | v is a sink node}

5. W(r) = 0; ∀v∈V,v≠r W(v)=∞;
6. ∀v∈S, BalanceAux(v);

7. Input: v
8. Output: W(v)
9. Proecedure: BalanceAux

10. ∀u∈from(v)
11. if (W(u)==∞) BalanceAux(u);
12. W(v) = Max u∈from(v)(W(u))+1;

13. ∀u∈from(v), w(u,v)=W(v)-W(u);

Fig. 3: Pseudo-code of BalancePath

Collapsing NOP states
As discussed earlier, we insert NOP states corresponding to the
edge weights obtained after running the procedure BalancePath.
For edge e=(u,v), we insert (w(e)-1) NOP states. It is easy to
see that the algorithm BalancePath adds a minimum number of
NOP states for balancing paths. However, the inserted NOP
states together with NOP states in the original EFSM can
generate a collapsing condition (discussed in Section 4.3.2). In
that case, we collapse the NOP states as discussed earlier. We
re-run BalancePath as the lengths of the re-converging paths
might have changed due to collapsing. Note, we can integrate
collapsing with the procedure BalancePath to avoid re-running.

4.6.3. Balancing Re-convergence with Loops
Since the flow graph G(V,E,r) is reducible, we know that every
loop Li=G(Vi,Ei,ri) is a natural loop corresponding to backedge
set (bi,ri)∈Eb

, and has a single entry node ri. Presence of back-
edges in loops and their relative skews cause re-convergence

is_empty=1

S1

S2
S7

sink

S3 S4
S9 S8

S0

S5
S6 S11

S10

R[rptr]=in
is_empty=0

is_full=1

wptr=0
wptr++

rptr=0
rptr++

T12: w
en ∧

~is_
full

T17: ren ∧
~is_empty

T2
3:

 (r
pt

r=
0∧

wp
tr=

9)

∨

wp
tr=

rp
tr-

1 ~T23

T4
5:

 w
pt

r=
9

~T45

T78: (w
ptr=0∧

rptr=0)

∨
(rptr=w

pt r-1)

T910: rptr=9

~T910

~T
78

out=R[rptr]
is_full=0

~T12 ∧ ~T17rptr=0
is_full=0
is_empty=1
wptr=0

(a)

is_empty=1

S1

S2
S7

sink

S3 S4
S9 S8

S0

S5
S6 S11

S10

R[rptr]=in
is_empty=0

is_full=1

wptr=0
wptr++

rptr=0
rptr++

T12: w
en ∧

~is_
full

T17: ren ∧
~is_empty

T2
3:

 (r
pt

r=
0∧

wp
tr=

9)

∨

wp
tr=

rp
tr-

1 ~T23

T4
5:

 w
pt

r=
9

~T45

T78: (w
ptr=0∧

rptr=0)

∨
(rptr=w

pt r-1)

T910: rptr=9

~T910

~T
78

out=R[rptr]
is_full=0

~T12 ∧ ~T17rptr=0
is_full=0
is_empty=1
wptr=0

is_empty=1

S1

S2
S7

sink

S3 S4
S9 S8

S0

S5
S6 S11

S10

R[rptr]=in
is_empty=0

is_full=1

wptr=0
wptr++

rptr=0
rptr++

T12: w
en ∧

~is_
full

T17: ren ∧
~is_empty

T2
3:

 (r
pt

r=
0∧

wp
tr=

9)

∨

wp
tr=

rp
tr-

1 ~T23

T4
5:

 w
pt

r=
9

~T45

T78: (w
ptr=0∧

rptr=0)

∨
(rptr=w

pt r-1)

T910: rptr=9

~T910

~T
78

out=R[rptr]
is_full=0

~T12 ∧ ~T17rptr=0
is_full=0
is_empty=1
wptr=0

(a)

is_empty=1

S1

S2
S7

sink

S3 S4
S9 S8

S0

S5
S6 S11

S10

R[rptr]=in
is_empty=0

is_full=1

wptr=0
wptr++

rptr=0
rptr++

T12: w
en ∧

~is_
full

T17: ren ∧
~is_empty

T2
3:

 (r
pt

r=
0∧

wp
tr=

9)

∨

wp
tr=

rp
tr-

1 ~T23

T4
5:

 w
pt

r=
9

~T45

T78: (w
ptr=0∧

rptr=0)

∨
(rptr=wptr-1)

T910: rptr=9

~T910

~T78

out=R[rptr]
is_full=0

S2a
S2a

(b)

is_empty=1

S1

S2
S7

sink

S3 S4
S9 S8

S0

S5
S6 S11

S10

R[rptr]=in
is_empty=0

is_full=1

wptr=0
wptr++

rptr=0
rptr++

T12: w
en ∧

~is_
full

T17: ren ∧
~is_empty

T2
3:

 (r
pt

r=
0∧

wp
tr=

9)

∨

wp
tr=

rp
tr-

1 ~T23

T4
5:

 w
pt

r=
9

~T45

T78: (w
ptr=0∧

rptr=0)

∨
(rptr=wptr-1)

T910: rptr=9

~T910

~T78

out=R[rptr]
is_full=0

S2a
S2a

is_empty=1

S1

S2
S7

sink

S3 S4
S9 S8

S0

S5
S6 S11

S10

R[rptr]=in
is_empty=0

is_full=1

wptr=0
wptr++

rptr=0
rptr++

T12: w
en ∧

~is_
full

T17: ren ∧
~is_empty

T2
3:

 (r
pt

r=
0∧

wp
tr=

9)

∨

wp
tr=

rp
tr-

1 ~T23

T4
5:

 w
pt

r=
9

~T45

T78: (w
ptr=0∧

rptr=0)

∨
(rptr=wptr-1)

T910: rptr=9

~T910

~T78

out=R[rptr]
is_full=0

S2a
S2a

(b)

798

paths of different lengths; which in turn, can also lead to
saturation during control reachability analysis. We say a loop Li
is saturated at depth s when ∀v∈Vi, v∈R(t) for t≥s. Given
balanced Path(ri,bi) for each loop Li, we define forward loop
length, Ci for loop Li as follows:
 Ci = W(bi)-W(ri)
where W:V→Z is the weight function we obtain for each node in
G(V,Ef,r) using the BalancePath algorithm, shown in Figure 3.
Observe that the entry node ri of loop Li re-appears in control
reachability after Ni = Ci+w(bi,ri) steps i.e. ri ∈ R(di+niNi) where
di, ni ∈Z . We call Ni the loop period of Li. If there is only one
loop, it is easy to see that di = W(ri). However, in presence of
multiple loops, we also have to account for the paths from other
loops to loop Li. In particular, if there is a path from entry node
rj of some loop Lj to ri, then entry ri also re-appears after Nj. We
define loop clusters LC as sets of disjoint entry nodes such that
for any two clusters LCx and LCy,∀s∈LCx, ∀t∈LCy,
P(s,t)=P(t,s)=Φ. Note, a loop in a cluster does not affect the
loop in another cluster as far as reachability is concerned. In the
following problem statement, we discuss how to prevent loop
saturation using suitable transformations.

Problem 2: Given a reducible flow graph G(V,E,r) with
E=Ef∪Eb, find w:Eb→Z and Ni so that loop Li is not saturated.
Solution: We define a set from(i)={j| rj=ri or Path(rj,ri)≠Φ}.
Thus, di = W(ri)+Σj∈from(i)njNj where nj ∈Z. Define, Di = mink∈

from(i)∪{i}Nk. It is easy to see that a loop Li gets saturated at depth
t+Di during reachability if ri ∈ R(t+k) ∀k, 0≤k<Di. This is
captured by the following integer linear equations in terms of s
and nj’s for given Nj’s, Ni and W(ri).

W(ri)+Σ j∈from(i)njNj + niNi = s
W(ri)+Σj∈from(i)njNj + niNi = s+1
…
W(ri)+Σj∈from(i)njNj + niNi = s+Di-1

To prevent saturation of loop Li, we need to find Nj’s and Ni such
that there is no feasible solution to the above equations. One
strategy is to choose a weight function w:Eb→Z such that the
loop lengths match i.e., Ni=Nj ∀j∈from(i). (It is easy to verify
the infeasibility for this solution assuming that each loop has at
least two nodes, i.e., Ni ≥ 2.)

We consider one loop cluster at a time. We define
maximum loop period over all loops in the cluster (i.e. whose
entry nodes are in the cluster), N = (Maxi Ci) + 1. We assign a
weight to each back-edge (bi,ri) as follows:

w(bi,ri) = N-Ci
For each loop Li in the cluster, the entry node ri ∈ R(W(ri)+nN)
where n ∈Z. Thus, the upper bound on |R(d)| for G(V,E,r) at any
depth d>>1, |R(d)| ≤ Σi maxt |Ri(t)|, where Ri(t) is the control
reachability set (including NOP states) on loop Li at a depth t.
Similarly, the upper bound on |R-(d)| for G(V,E,r) at any depth
d>>1, is |R-(d)| ≤ Σi maxt |Ri

-(t)|, where Ri
-(t) is the control

reachability set (of only non-NOP states) on loop Li at a depth t.
 Example 2: We illustrate our algorithm for balancing flow
graph using an example shown in Figure 4(a). Let vi represent
the node with index i (shown inside the circle). Note, the flow
graph G(V,E,v1) has three natural loops L1, L2 and L3

corresponding to the back-edges (v6,v3), (v7,v1), and (v8,v3)
respectively. The corresponding entry nodes for the loops are v3,

v1, and v3 respectively. Note, they all form a cluster. The DAG
G(V,Ef,v1) corresponding to the front-edge set, Ef=E-{(v6,v3),
(v7,v1), (v8,v3)} is shown in Figure 4(b). After executing

BalancePath algorithm, we obtain edge weights, also shown in
Figure 4(b), that balance all re-convergence paths in Ef. Note
that the edge with no weight shown has an implicit weight of 1.
Also, shown are the W values of each node. For instance,
W(v6)=5 denotes that all the paths in the set P(v1,v6) have
weights equal to 5. Next, we compute the forward loop length of
each loop and the weights of the back-edges. The forward loop
length of loop with back-edge (v6,v3) is W(v6)-W(v3) = 3;
similarly, with back-edge (v7,v1) is 6, and with back-edge (v8,v3)
is 5. Thus, value of N, as defined, is 7. The weight of the back-
edges (v6,v3), (v7,v1) and (v8,v3) are 4, 1, and 2 respectively as
shown in Figure 4(c). For each edge with weight w, we insert w-
1 nodes corresponding to NOP states as shown as un-shaded
circles in the modified flow graph in Figure 4(d).

Reachability on the original flow graph G(V,E,v1) in Figure
4(a) saturates at depth 6 with 8 nodes. The reachability on the
balanced flow graph in Figure 4(d) does not saturate. Instead,
the set of reachable nodes R(d) at depth d shows a periodic
behavior with period, N=7. If we do reachability separately on
each loop of the modified flow graph in Figure 4(d), we obtain
maxt |R1(t)|=2, maxt|R2(t)|=2, and maxt|R3(t)|=2. Thus, the
upper bound on |R(t)| is 6. Similarly, maxt |R-

1(t)|=1, maxt|R-

2(t)|=1 and maxt|R-
3(t)|=1 and upper bound on |R-(t)| is 3. In this

case, maxt|R(t)| = 4 and maxt|R-(t)| = 2. Clearly, the scope of
simplification during BMC is significantly improved.

Fig. 4: Execution steps of Balancing Re-convergence on an example: a)
Reducible Flow graph G(V,E,v1) where i represents the node vi, b) DAG
G(V,Ef,v1) with edge weights (=1 if not shown) after executing
BalancePath procedure, c) weights on the back-edges after balancing
loops, d) final balanced flow graph after inserting n-1 NOP states for
edge with weight n.

5. Experiments
We experimented on a public benchmark bc-1.06, a C program
for an arbitrary precision calculator language with interactive
execution of statements. This has a known array bound access
bug (checked as an error-label reachability property). Using our

1

3

2

5

6

7

4

8

L1: BE 6→3, Entry 3
L2: BE 7→1, Entry 1
L3: BE 8→3, Entry 3

Loops with Back-Edges

(a)
1

3

2

5

6

7

4

8

L1: BE 6→3, Entry 3
L2: BE 7→1, Entry 1
L3: BE 8→3, Entry 3

Loops with Back-Edges

(a) 1

3

2

5

6

7

4

8

2

2

2

W=0

W=2

W=4

W=5

W=6

W=7

W=1

W=3

(b)
1

3

2

5

6

7

4

8

2

2

2

W=0

W=2

W=4

W=5

W=6

W=7

W=1

W=3

(b)

1

3

2

5

6

7

4

8

10

12

1613
14

1511

(d) 1

3

2

5

6

7

4

8

10

12

1613
14

1511

(d)
1

3

2

5

6

7

4

8

2

2

2
4

2

L1: C1= W(6)-W(3)=3
L2: C2= W(7)-W(1)=6
L3: C3= W(8)-W(3)=5

Cycle Period of Loops

N= { MAXi Ci }+1=7

(c)
1

3

2

5

6

7

4

8

2

2

2
4

2

1

3

2

5

6

7

4

8

2

2

2
4

2

L1: C1= W(6)-W(3)=3
L2: C2= W(7)-W(1)=6
L3: C3= W(8)-W(3)=5

Cycle Period of Loops

N= { MAXi Ci }+1=7

(c)

799

program verification tool F-soft [24], we first generated an
EFSM model M with 36 control states and 24 state variables.
The data path elements include 10 adders, 106 if-then-else, 52
constant multipliers, 11 inequalities, and 49 equalities. The
corresponding flow graph has two loops, with 4 and 8 nodes
(control states) respectively. We also used statically generated
invariants [25] to provide block specific invariants.

We performed controlled experiments to evaluate the role
of various accelerators discussed in improving the performance
of high-level BMC. We used our difference logic solver SLICE
[14] in the backend. We modified the solver to support
incremental learning across time-frames. We translated
conservatively each BMC problem instance into a difference
logic problem. (A precise translation would have been to a
UTVPI − Unit Two Variables Per Inequality − problem.) For
understanding the effectiveness of our methods, a conservative
translation suffices as long as we do not get false negatives
(which was not an issue for this example).

We conducted our experiments on a workstation with dual
Intel 2.8 GHz Xeon Processors with 4GB physical memory
running Red Hat Linux 7.2, using a 500s time limit for each
high-level BMC run. We present the results in Table 2. We
experimented on three EFSM models M, M’ and M’’. Model M
is the original model without any proposed transformations.
Model M’ is the model obtained from M using the procedure
described in Section 4.6.2 (Balancing re-convergence without
loops and Collapsing NOP states). Model M’’ is obtained from
M’ using the procedure described in Section 4.6.3 (Balancing
re-convergence with loops). Column 1 shows the loop sizes in
each of the models for loops L1 and L2; the number of control
states (including inserted NOP states); the results of control
reachability on each of the models i.e., either saturation depth or
max loop period N; maximum size of the reachable set of
control states overall all depth Rmax=maxdR(d); and maximum
size of the reachable set of non-NOP control states overall
depth, R-

max=maxdR
-(d). Column 2 presents various learning and

simplification strategies denoted as follows: A for Expression
Simplification (ES), B for Incremental Learning (IL) combined
with A, C for Unreachable Block Constraint (UBC) combined
with B, D for Reachable Block Constraint (RBC) combined with
C, E for Forward Reachable Block Constraint (FRBC)
combined with D, F for Backward Reachable Block Constraint
(BRBC) combined with E, and G for Block Specific Invariants
(BSI) combined with F. Column 3 shows number of calls (#HS)
made to the high-level solver when the expression simplifier
cannot reduce the problem to a tautology. Column 4 shows the
depth D reached by high-level BMC under a given time limit
(‘*’ denote time-out). Column 5 shows the time taken (in
seconds) to find the witness; TO denotes that time-out occurred.
Column 6 shows whether a witness was found in the given time
limit; if so, the witness length is equal to D.

5.1. Discussion of results
Note that fewer calls (#HS) made to the SMT solver directly
translates into performance improvement, as the expression
simplifier structurally solves the remaining D-#HS SMT
problems more efficiently. We discuss the effect of various
learning scheme in improving the structural simplifications.
CSR on Model M saturates at depth 13 with 36 control states.
Although Unreachable Block Constraint (UBC) allows deeper
search with fewer solver calls, the simplification scope is very
limited due to a large set R(d). This also prevents other
simplification strategies from being useful. As shown in Column

6, none of the strategies is able to find the witness in the given
time limit. When we apply the procedure BalancePath with the
procedure collapsing of NOP states on Model M, we obtain a
model with M’ with 34 control states with reduced loop size |L2|.
CSR on M’ does not saturate, and has maxdR(d)=4 and maxdR-

(d)=3. This increases the scope of simplification significantly.
As shown in Column 6, all simplification strategies C-G are able
to find the witness in the given time limit. Except for FRBC, all
simplification strategies seem useful in reducing the search time;
though only UBC can reduce the number of calls to the high-
level solver as shown in Column 3. Block Specific Invariants
added on-the-fly are also found to be useful. Note, although
strategy B with only incremental learning does not find the
witness, it still helps to search deeper compared to strategy A.

Table 2: Comparison of high-level BMC accelerators

By applying our loop balancing procedure on the model M’, we
obtain a model M’’ with matching loop lengths of 6 and total
number of control states of 36. We added two NOP-states in the
back-edge of loop L1 to get a loop length of 6. Control
reachability on M’’ has maxdR(d)=3 and maxdR-(d)=2, further
increasing the scope of simplification as indicated by a
decreased number of calls to the high-level solver. This is
indicated by the reduced solve time (=19s) using strategy F,
although there is a small performance degradation with strategy
G. Not surprisingly, the witness length has gone up to 205.
Overall, we see progressive and cumulative improvements with
various learning techniques and strategies.

5.2. Comparison with Boolean-level BMC
To compare with Boolean-level BMC, we used our state-of-the-
art Boolean-level BMC framework DiVer [4] on a Boolean
translation of the model M (with 654 latches, 6K gates) to
witness the bug, and used an identical experimental setup as
discussed. Note, like in [24], we add high-level information such
as mutual exclusion constraint and backward reachable block
constraints in the transition relation beforehand. Thus, all these
constraints get included in every unrolled BMC instance
automatically, unlike the proposed approach here, where only
the relevant constraints are added to a BMC instance. The
Boolean-level BMC is able to find a witness at depth 143 in
723s. Not surprisingly, the number of instances solved by
structural simplification is merely 15, while 128 calls are made

Model Strategy #HS D sec W?

A: ES 16 17* TO N
B: A+ IL 26 27* TO N

C:B + UBC 41 64* TO N
D:C + RBC 26 49* TO N
E:D+FRBC 26 49* TO N
F:E+BRBC 28 51* TO N

Original M
|L1|= 4, |L2|=8, #ctrl state=36

Rmax=36, R-
max=33

Saturation at d=13

G: F + BSI 28 51* TO N
B 28 29* TO N
C 62 143 426 Y
D 62 143 159 Y
E 62 143 159 Y
F 62 143 120 Y

M’: M+Balanced Non-Loop
paths + collapsed NOP states
|L1|= 4, |L2|=6, #ctrl state=34

Rmax=4, R-

max=3,
Max loop period, N=6 G 62 143 65 Y

F 32 205 19 Y M’’:M’+Loop Balanced
|L1|= 6, |L2|=6, #ctrl state=36

Rmax=3, R-
max(d)=2, N=6 G 32 205 22 Y

800

to the SAT-solver. Thus, a reduced scope of simplification can
greatly affect the performance of BMC, further supporting the
case for synthesizing “BMC friendly” models [26].

6. Experiments on Industry Software
We also experimented on industry software written in “C” with
about 17K lines of code. We first generated an EFSM model M
with 259 control states and 149 state (term) variables. The data
path elements include 45 adders, 987 if-then-else, 394 constant
multipliers, 53 inequalities, 501 equalities and 36 un-interpreted
functions. The corresponding flow graph has 12 natural loops.
We consider reachability properties P1-P6 corresponding to six
control states. CSR on M saturates at depth 84. After
transforming M using path and loop balancing algorithms, we
obtain a model M’’ with 439 control states and max loop period
N=4. Using a similar experimental setup (discussed earlier), we
ran high-level BMC (HBMC) for 500s on each of P1-P6 on: (I)
Model M with strategy A (using only expression simplification),
(II) Model M using strategy F (all simplifications), and (III)
transformed Model M” using F. We present our results in Table
3. Column 1 gives the property checked; Column 2-4 give BMC
depth reached (* denotes depth at time out, TO), time taken (in
sec) and whether witness was found (Y/N) respectively for
combination (I). Similarly, Columns 5-7 and 8-10 present
information for combinations (II) and (III) respectively. The
results clearly show that combination (III) is superior to (II) and
(I), with significant improvement in the performance, though at
increased witness depth.

Table 3: Evaluating high-level BMC on industry software

7. Conclusions and Future Work
The current trend of designing at higher levels of abstraction
using high-level languages and specifications has challenged the
verification community to lift the maturity and advancements of
BMC from the Boolean-level to the higher levels. Although
high-level BMC overcomes several inherent limitations of
Boolean-level BMC, higher theoretical complexity of the
associated logics and decision procedures makes the approach
even more challenging. We provide an engineering framework
for high-level BMC with several state-of-the-art innovations
based on extraction and efficient use of high-level information
to improve the performance and scalability. This framework also
allows easy integrations of the state-of-the-art techniques
available for Boolean-level BMC. We believe that our proposed
framework is a step towards reducing the gap between theory
and practice of such techniques.

References
[1] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu,

"Symbolic model checking using SAT procedures instead of
BDDs," in Proceedings of the DAC, 1999.

[2] M. Sheeran, S. Singh, and G. Stalmarck, "Checking Safety
Properties using Induction and a SAT Solver," in Proceedings of
Conference on FMCAD, 2000.

[3] O. Strichman, "Pruning Techniques for the SAT-based bounded
model checking," in Proceedings of TACAS, 2001.

[4] M. Ganai, A. Gupta, and P. Ashar, "DiVer: SAT-Based Model
Checking Platform for Verifying Large Scale Systems," in
Proceeding of TACAS, 2005.

[5] L. Zhang and S. Malik, "The Quest for Efficient Boolean
Satisfiability Solvers," in Proceeding of CAV, 2002.

[6] H. Andersen and H. Hulgard, "Boolean expression diagram," in
Proceedings of LICS, 1997.

[7] M. Ganai and A. Aziz, "Improved SAT-based Bounded
Reachability Analysis," in Proceedings of VLSI Design
Conference, 2002.

[8] J. Whittemore, J. Kim, and K. Sakallah, "SATIRE: A New
Incremental Satisfiability Engine," Proceedings of DAC, 2001.

[9] K. L. McMillan, Symbolic Model Checking: An Approach to the
State Explosion Problem: Kluwer Academic Publishers, 1993.

[10] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. V.
Rossum, M. Schulz, and R. Sebastiani, "The MathSAT 3 System,"
in Proceedings of CADE, 2005.

[11] C. Barrett, D. L. Dill, and J. Levitt, "Validity Checking for
Combination of Theories with Equality," in Proceedings of
FMCAD, 1996.

[12] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, "Modeling and
Verifying Systems using a Logic of Counter Arithmetic with
Lambda Expressions and Uninterpreted Functions," in CAV, 2002.

[13] R. Nieuwenhuis and A. Oliveras, "DPLL(T) with Exhaustive
Theory Propogation and its Application to Difference Logic," in
CAV, 2005.

[14] C. Wang, F. Ivancic, M. Ganai, and A. Gupta, "Deciding
Separation Logic Formulae with SAT by Incremental Negative
Cycle Elimination," in Proceeding of Logic for Programming,
Artificial Intelligence and Reasoning, 2005.

[15] M. Ganai, M. Talupur, and A. Gupta, "SDSAT: Tight Integration
of Small Domain Encoding and Lazy Approaches in a Separation
Logic Solver," 2006.

[16] L. d. Moura, H. RueB, and M. Sorea, "Lazy Theorem Proving for
Bounded Model Checking over Infinite Domains," in Proceedings
of CADE, 2002.

[17] A. Armando, J. Mantovani, and L. Platania, "Bounded Model
Checking of Software using SMT Solvers instead of SAT solvers,"
University of Genova 2005.

[18] M. R. Prasad, A. Biere, and A. Gupta, "A survery of recent
advances in SAT-based formal verification.," in STTT 7(2), 2005.

[19] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques and Tools: Addison-wesley Publishing Company,
1988.

[20] M. Ganai and A. Kuehlmann, "On-the-Fly Compression of Logical
Circuits," in Proceedings of International Workshop on Logic
Synthesis, 2000.

[21] J.-C. Filliatre, S. Owre, H. RueB, and N. Shankar, "ICS: Integrated
Canonizer and Solver," in Proceedings of CAV, 2001.

[22] M. Ganai, A. Gupta, and P. Ashar, "Beyond Safety: Customized
SAT-based Model Checking," in Proceeding of DAC, 2005.

[23] B. Korel, I. Singh, L. Tahat, and B. Vaysburg, "Slicing of State-
based Models," in Proceedings of ICSM, 2003.

[24] F. Ivancic, J. Yang, M. Ganai, A. Gupta, and P. Ashar, "Efficient
SAT-based Bounded Model Checking for Software," in
Proceedings of ISOLA, 2004.

[25] H. Jain, F. Ivancic, A. Gupta, I. Shlyakhter, and C. Wang, "Using
Statically Computed Invariants inside the Predicate Abstraction
and Refinement Loop," in Proceeding of CAV, 2006.

[26] M. Ganai, A. Mukaiyama, A. Gupta, and K. Wakabayashi,
"Another Dimension to High Level Synthesis: Verification," in
Proceedings of Workshop on Designing Correct Circuits, 2006.

I: Strategy A on M II: Strategy F on M III: Strategy F on M’’P
D sec W? D sec W? D sec W?

P1 9* TO N 38* TO N 41 <1 Y
P2 9* TO N 41* TO N 44 <1 Y
P3 9* TO N 43* TO N 92 156 Y
P4 9* TO N 30 188 Y 94 151 Y
P5 9* TO N 21 6 Y 60 4 Y
P6 9* TO N 31 164 Y 70 22 Y

801

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

