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ABSTRACT
Internet performance is an issue of great interest, but it is not trivial
to measure. A number of commercial companies try to measure
this, as does RIPE, and many individual Internet Service Providers.
However, all are hampered in their efforts by a fear of sharing
such sensitive information. Customers make decision about “which
provider” based on such measurements, and so service providers
certainly do not want such data to be public (except in the case of
the top provider), but at the same time, it is in everyones’ interest to
have good metrics in order to reduce the risk of large network prob-
lems, and to test the effect of proposed network improvements.

This paper shows that it is possible to have your cake, and eat
it too. Providers (and other interested parties) can make such mea-
surements, and compute Internet-wide metrics securely in the knowl-
edge that their private data is never shared, and so cannot be abused.

Categories and Subject Descriptors
C.2.3 [Computer-Communications Networks]: Network Opera-
tions—network monitoring, network management; H.2.8 [Database
Management]: Database Applications—data mining

Keywords
Secure distributed computation, privacy-preserving data-mining, net-
work, management, performance, measurement.

1. INTRODUCTION
Imagine three Internet Service Providers (ISPs) who wish to make

measurements of performance. They might wish to make such
measurements to test improvements to their network, or detect ma-
jor faults. ISPs can make internal measurements, but even for
large providers the majority of traffic is “off-network” in the sense
that it must traverse other networks besides their own. Addition-
ally, it is (anecdotally) reported that many performance problems
(congestion, and routing in particular) occur at the links between
providers. Hence, inter-provider performance metrics are actually
more important than the internal measures. Large-scale asymme-
try in Internet (inter-domain) routing leads to the need for one-way
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performance measurements, but collection of such metrics requires
some co-operation between providers. However, efforts to create
co-operation are hampered by a fear of sharing sensitive informa-
tion. Customers make decision about “which provider” based on
such measurements, and network operators might also reveal more
than they wish to their competitors.

It is sometimes possible to create bilateral agreements to make
performance measurements, but these are highly inflexible, and
multilateral agreements are very hard to reach. In one case an
agreement was created through a trusted third party (RIPE) who
now conduct many such measurements primarily in Europe [10],
but other attempts have not been successful (for instance, for sev-
eral years a group of providers met at NANOG to set up such
measurements without ever reaching an agreement). In the United
States and Asia no universally trusted third party has emerged.
It seems then, that some work needs to be done to create such
a measurement infrastructure. On the research side, several such
exist (e.g., NIMI [14], PlanetLab [15],and PingER [6]), but they
have well known limitations (primarily in that they focus on aca-
demic networks, rather than the commercial Internet). There have
also been commercial attempts to build such infra-structure, but
the technology behind these has not been subject to the scientific
rigour that would be required, for instance, if one were measuring
the performance of a new drug.

This paper is aimed at creating simple techniques that could be
used to allow multilateral performance measurements without the
need for a trusted third party, or to expose a provider’s sensitive
information. The paper is not intended to discount the prior work in
the art of making measurements — in fact we rely heavily on all of
the excellent work pioneering such measurements (in particular on
synchronization of clocks (e.g., see [5,10]). This paper, in contrast,
presents a method for avoiding the problems of trust implicit in
making inter-provider measurements. We use techniques related
to those described in [17], whereby one can perform a distributed
calculation without sharing the inputs. Techniques to perform such
computations are now well developed, though they have rarely been
applied to communications networks (exceptions being [3,12,17]).

The methods stem from seminal work by Yao [20], who pro-
posed a set of solutions to two-party problems such as the million-
aires’ problem: two millionaires wish to determine who is richer,
but they do not wish to reveal their individual wealth to each other.
Yao showed that one could solve a general class of such problems,
and subsequent work has generalized this to multiple-parties of
varying degrees of honesty. We use techniques from this research
area, sometimes called secure-distributed computation, or Privacy-
Preserving Data Mining (PPDM). The major differentiator of our
work over prior work in PPDM is that in much of the preceding
literature (for instance see our own work [17]), the aim has been



to perform data-mining on datasets collected by multiple parties.
Each party holds one piece of data, and we wish to perform some
algorithm (e.g., regression) on the collection of data. However, in
our case, the measurements themselves are distributed. To clar-
ify, in [17] the measurements to be combined wereintra-domain
measurements (for example of traffic volumes), which can be per-
formed by a single network operator. The goal was to apply PPDM
to combine each of these individual datasets to form a global pic-
ture (e.g., of the total Internet traffic). In this paper we consider
inter-domain measurements, where the measurements themselves
require the co-operation of multiple providers.

We show that there are many problems one can solve in this
domain: for example, our methods allow a provider to determine
its average inter-domain delay without any provider learning inter-
domain delays between specific providers. Thus one can measure
one’s own performance without learning any sensitive information
about other networks. The methods applied are actually rather sim-
ple, requiring only basic mathematical and cryptographic opera-
tions, though measuring delay in the presence of packet loss (where
we cannot reveal which packets are lost) is somewhat more chal-
lenging. We present a new PPDM algorithm that allows computa-
tion of average delays where some probe packets are dropped.

2. THE PROBLEM
We pose a simple inter-provider performance measurement prob-

lem. A group ofN Internet Service Providers (ISPs) wish to be
able to measure their inter-domain performance. They can do so by
sending probe packets between servers on each network and mea-
suring the delays these packets experience. However, they each
have concerns about the other learning any information about their
network. In particular, imagine that they do not wish anyone to
learn the delays between their network, and any other network. It
appears on the surface that this is an intractable problem. How can
we use such measurements without automatically learning the im-
plicit information in the measurements?

First, let us refine our notation to allow a precise description of
the problem. Imagine that theN providers send probe packets be-
tween networks during measurement interval[0, T ], and record the
transmission and arrival times of the packets12. Note however, that
they will not share this information. Formally, we definet

(k)
ij and

r
(k)
ij to be the transmission and receive times, respectively, of the

kth probe packet between networksi andj. The delay (or latency)
measurement is given byd(k)

ij = r
(k)
ij − t

(k)
ij . The data is initially

partitioned in the sense that

t
(k)
ij is known to nodei,

r
(k)
ij is known to nodej.

(1)

For the moment we shall only consider the case where no packets
are dropped, though in Section 4 we generalize to allow packet loss.
The average delay between nodes is defined to be

D̄ij =
1

Kij

Kij
X

k=1

r
(k)
ij − t

(k)
ij = R̄ij − T̄ij . (2)

where there areKij probe packets between networksi andj, and

R̄ij = 1
Kij

PKij

k=1 r
(k)
ij and T̄ij = 1

Kij

PKij

k=1 t
(k)
ij . The D̄ij are

considered to be information that ISPs do not wish to allow to

1We assume that the clocks are carefully synchronized, which is
non-trivial, but the issues have been well investigated [5,10].
2A packet may arrive after the end of the measurement interval
[0, T ] which we use to specify the transmission times of packets.

slip into the hands of their competitors. However, they do wish
to knowD̄out

i , andD̄in
i , the average delay of packets going out of,

and coming into their network, as well as the average delay across
all networks. Such data are useful for benchmarking themselves
against the notional average provider, detecting network problems,
and long-term planning. Formally, we wish keep the valuesD̄ij

secret from all participants, but to compute

D̄out
i =

1

N − 1

N
X

j=1

j 6=i

D̄ij , (3)

D̄in
i =

1

N − 1

N
X

j=1

j 6=i

D̄ji, (4)

D̄ =
1

N

N
X

i=1

D̄out
i =

1

N

N
X

i=1

D̄in
i . (5)

The obvious approach to making such a calculation is for a trusted
third party to collect the data, and share the results. In the absence
of such a third party, there is another way to proceed, which we
discuss in Section 3.

2.1 Assumptions
In any PPDM we must define the security model under consid-

eration. We will assume here the commonly used “honest-but-
curious” model. That is we assume that the ISPs in question are
honest in the sense that they follow the algorithms correctly, but
they are curious in the sense that they will perform additional op-
erations in order to attempt to discover more information than in-
tended. The honest-but-curious assumption has been widely used,
and appears applicable here. ISPs will benefit from participating
honestly in a such a scheme, and there is no downside in partici-
pating honestly, and so dishonest partners in computation (partners
who do not follow the algorithm) will reduce their own benefits,
without any notional gain.

It is noteworthy that while we assume that participants follow the
algorithm correctly, we do allow collusion. Multiple partners are
allowed to collude to attempt to learn more information than they
otherwise could. The protocols we present can be made resistant to
such collusion in the presence of a majority of non-colluding partic-
ipants. Additionally, there is now a substantial literature on secure
distributed computation and data mining (e.g., see [1–4, 18, 20, 21]
and the references therein), and this literature considers many vari-
ations on the type of assumptions considered here. It is likely that
the assumption of honest-but-curious participants can therefore be
substantially weakened.

On the practical side of the measurements, we assume that the
measurements themselves are accurate. We do not include any
measurement noise, or artifacts (e.g., such as might be introduced
by imperfect clock synchronization). There is a large literature on
performing such measurements (including IETF standards), and so
we assume these problems are solved, though we realize that it
may be non-trivial to do so, particular in the case of one-way mea-
surements. We primarily consider one-way measurements here.
Round-trip measurements can be performed (at least to a rough
degree of accuracy) using mechanisms like ’ping’ without any co-
operation. However inter-domain routing is fundamentally asym-
metric, and so one-way measurements are far more useful. For
example, a large discrepancy in̄Dout

i andD̄in
i might be a useful

indication that routing problems exist.
There is an additional issue of importance here (as opposed to

the majority of the PPDM literature). We consider inter-domain



measurements here, that is, the measurements themselves are dis-
tributed (not just the datasets in question). As such, the measure-
ments must be carried out in such a way that they don’t reveal in-
formation in themselves. We must take steps to avoid a receiver
being able to infer packet loss/delay from its measurements alone.
Hence

• We avoid using a regular (uniform) sampling pattern for probe
transmission times because this might allow the inference of
delays (by the receiver), and also loss, through gaps in the
pattern.

• We avoid putting sequence numbers in packets, because once
again, out-of-order packets could then be used to infer loss.

The irregular sampling pattern we use is a Poisson Process (PP).
Poisson probes have previously been proposed to avoid synchro-
nization with network periodicities. Their advantage lies in the
Poisson Arrivals See Time Averages (PASTA) property [19], and
the fact that one cannot anticipate points in a PP [19]. Poisson
sampling removes any ability to anticipate when samples “should
have” happened, and hence one cannot determine their ordering
from their arrival time. Furthermore, when events are removed (at
random) from a PP the resulting stream is also a PP, and hence loss
would be much harder to infer from such a sequence. We might in-
fer loss by observing the difference between the observed number
of probe packets, and the (user configurable) probe rate, but where
loss rates are small, and the observation time not unduly larger, this
strategy is unlikely to provide any reasonable degree of accuracy,
given the natural variability in the number of Poisson probes.

3. THE SOLUTION
Let us delve slightly further into the calculation we wish to per-

form, in particular to computēDout
i . From (2) and (3) we get

D̄out
i =

1

N − 1

N
X

j=1

j 6=i

1

Kij

Kij
X

k=1

h

r
(k)
ij − t

(k)
ij

i

=
1

N − 1

2

6

4

N
X

j=1

j 6=i

R̄ij −
N

X

j=1

j 6=i

T̄ij

3

7

5
(6)

The second summation involves only terms such ast
(k)
ij and so is

known to ISPi. However, ISPi does not know the receive times
r
(k)
ij , so the problem (for ISPi) becomes that of calculating

R̄out
i =

1

N − 1

N
X

j=1,j 6=i

R̄ij , (7)

the average receive time over the probes. Each of the termsR̄ij is
known to ISPj, but we cannot directly share these values with ISP
i because this would reveal̄Dij for eachj.

The problem amounts to a distributed summation (a summation
over a distributed set of datapoints), for which approaches are now
well understood (see [4, 17] and the references therein). There are
at least three approaches to the problem with varying degrees of
efficiency and robustness to collusion. We describe the simplest
here for the purpose of exposition. The problem is a special case
of the problem of computingV =

PN

j=1 vj , where the individual
valuesvj are kept by ISPj, and considered to be secret. We can
perform the distributed summation as follows. Assume the value
V is known to lie in the interval[0, n], wheren may be large. Start
from a particular ISP (we will denote this ISP 1), and list the other

ISPs in some order with labels2, 3, . . . , N . ISP 1 generates a ran-
dom numberR uniformly on the interval[0, n], addsR to its value
v1 mod n, and sends this to the next ISP, which adds its value,
and repeats, until we get to the end of the sequence. The last ISP
returns the total to ISP 1, who can then subtract the original random
numberR, and compute the total (and then provide this number to
the other ISPs). Formally we specify the algorithm by

ISP 1: randomly generate R ∼ U(0, n)
ISP 1: compute s1 = v1 + R mod n
ISP 1: pass s1 to ISP 2
for i=2 to N

ISP i: compute si = si−1 + vi mod n
ISP i: pass si to ISP i + 1 mod N

endfor
ISP 1: compute vN = sN − R mod n

Each ISPi = 2, . . . , N has only the informationvi andsi−1,
which can be written in full as

si = R +
i

X

i=1

vi mod n. (8)

Since this value is uniformly distributed across the interval[0, n],
ISP i learns nothing about the other valuesvj , j 6= i. At the last
step, ISP 1 hassN , and when it subtractsR away it gets theV . Note
that where we wish to allow computation of quantities that may
be negative, the condition thatV ∈ [0, n] can be easily replaced
by V ∈ [−n/2, n/2]. The algorithm above requires only that we
adjust the range of the initial sum (i.e., in the second step ISP 1
takess1 = n/2 + v1 + R mod n), and that in the last step ISP 1
reverses this addition (i.e., vN = sN − n/2 − R mod n ).

Any ISP, givenV can computeV − vi =
P

j 6=i
vi, and so this

approach only works forN > 2, and in reality, where one could
make meaningful guesses about some values, it is only really secure
for reasonable values ofN , and this is the case we consider here.

This incredibly simple process can, unfortunately, be corrupted
if ISPs collude. If ISPl − 1 and ISPl + 1 share information, they
can computevl by takingsl−sl−1 (sl is received by ISPl+1, and
sl−1 is sent by ISPl − 1). There are various approaches to avoid
this issue, as well as dealing with potentially unreliable partners in
the summation, for instance see [17] for more discussion.

Once we computēRout
i via a distributed summation, it is a sim-

ple matter for ISPi to computeD̄out
i via (6). This approach pro-

vides a powerful, yet very simple way of combining transmit and
receive times in such a way that we can compute the average per-
formance without revealing the specifics. However, there are many
generations, and we consider these below.

3.1 Other statistics
There are many other possible statistics of interest. In particular,

percentiles of the distribution of delay (including the median, or
50th percentile), the minimum, and maximum delays, and higher-
order statistics such as variance. All of these may be calculated
from the distribution of delays. Note that the distribution may also
reveal information that is sensitive even if the computation proce-
dure is secure3, and so we must take this into consideration in any
future work.

Furthermore, note that the receive times may not be ordered, in
the sense that we may haver(k)

ij > r
(k+1)
ij , resulting in an am-

biguity in packet measurements where the packets lack sequence

3Any multiparty computation (secure or otherwise) gives out the result, and
hence cannot be secure against revealing whatever can be deduced from the
input of a party and the ultimate output.



numbers. Figure 1 shows a set of measurement times and two
possible interpretations of these. The interpretation doesn’t mat-
ter when computing the averages, but is very important for higher-
order statistics. Without some kind of packet ID we cannot resolve
these ambiguities. We might choose some kind of cryptographic
approach to create packet IDs, but we suggest a simpler approach.

t (2) t (3)t (1) t (4) t (6)

r (1) r (2) r (4) r (5) r (6)r (3)
t (5)

(a) packet probe pattern

t (2) t (3)t (1) t (4) t (6)

r (1) r (2) r (6)
t (5)

r (3) r (4)r (5)

(b) alternative explanation

Figure 1: Example transmission and receive patterns.

Rather than try to preserve everything as secret, we will allow
some information to leak, while keeping the critical information a
secret. We do so by putting a timestamp into each probe packet,
however, we do not put the transmission time into the packet. At
the start of the experiment, each operator chooses a random num-
berSi uniformly over the interval[0, S], whereS is chosen so that
it is larger than the longest reasonable delay (for instance, it might
be chosen to take the value of the loss detection timeout), perhaps
a value of the order of 10 seconds. When the experiment nomi-
nally starts, the actual transmission of the first packet from node
i is delayed bySi, and each packet is timestamped with the time
t
(k)
ij − Si. Therefore, the receiverj can determine

d
(k)
ij

′
= r

(k)
ij − t

(k)
ij + Si, (9)

from which j may compute a distribution ford′
ij . Note however,

thatj does not knowSi, so it cannot infer the true distribution – in
effectj sees a shifted distribution. Ifj were to transmit this infor-
mation back toi, theni would know the true distribution (which is
not allowed), and soj cannot perform this step directly. However,
j may approximate the distribution (via one of two approaches de-
scribed below), and then perform a distributed summation to obtain
a shifted distribution for the group of receivers{j|j 6= i}, which
can then be transmitted toi, who removesSi, and obtains an un-
shifted distribution for its delays to the group of other ISPs.

We may approximate distributions in a number of ways. Most

simply, given some set of data pointsd
(k)
ij

′
, we simply create a set

a set of bins[hn, h(n + 1)), and count the number of data points
in each bin, i.e., we obtain

c
(n)
ij =

X

k

I
h

d
(k)
ij

′
∈ [hn, h(n + 1))

i

, (10)

whereI(·) denotes an indicator function, i.e.,

I(A) =



1, if A is true,
0, otherwise.

(11)

We then perform a distributed sum to compute

c
(n)
i =

N
X

j=1,j 6=i

c
(n)
ij , (12)

which can be used to approximate the density of the delay distribu-
tion, and this value is transmitted to ISPi. The value ofc(n)

i gives

an approximation to the shifted distribution of delays of packets
transmitted from ISPi, and so we can recover an approximation of
the original delay distribution by reversing the shift by−Si. Once
one has a distribution, other statistics are easy to compute.

This approach, while useful, has the problem one often encoun-
ters when making empirical measurements of density functions,
that the bin size is of some importance. Too small a bin size re-
sults in large errors in the probabilities (per bin), whereas too large
a bin results in a coarse histogram of the distribution. Moreover,
the smaller the bins, the higher the communications cost of com-
puting the sum. An alternative is to use some other approximation
technique for the distributions. For instance, one could approxi-
mate by a truncated Fourier series, and then sum the Fourier coef-
ficients, and invert to obtain an approximation of the distribution.
One could use any type of approximation basis that fits the distri-
bution functions reasonably, as long as it has the property that sums
of approximations are equal to the approximation of sums.

There is clearly information leakage in the above approach. Ob-
viously, once one has the shifted distribution, one can compute the
variance of the distribution, and soj, can compute Var(dij). How-
ever, neitheri nor j can compute the mean of the delay between
their networks, and so the critical information we wish to retain as
a secret is preserved. The question here is how much information
is needed about delays, and how much information do we need to
keep secret? Only the participants in such a computation can an-
swer such a question.

3.2 Traffic weighted statistics
An additional set of statistics one might be interested in are traffic-

weighted performance metrics. An ISP is perhaps less worried
about performance on paths that carry little traffic, and so might
wish to give these less weight in an overall traffic performance met-
ric. The simplest traffic-weighted performance metric would be

D̂out
i =

1

N − 1

N
X

j=1

j 6=i

TMijD̄ij ,

=
1

N − 1

2

6

4

N
X

j=1

j 6=i

TMijR̄ij −
N

X

j=1

j 6=i

TMij T̄ij

3

7

5
, (13)

whereTM denotes the origin-destination traffic matrix between the
participating ISPs, i.e.,TMij denotes the traffic volume from net-
work i to j.

If all network operators measured their inter-domain traffic (for
instance using flow-level collection on peering links), the multipli-
cationsTMijR̄ij can be performed locally, and then secure dis-
tributed summation used to compute the results. However, the case
might arise where a single provider wants this metric, and not all
other providers can make the flow-level measurements required. In
this case, operatori measuresTMij for all j, and so can easily cal-
culate

PN

j=1,j 6=i
TMij T̄ij . However, ISPi may not wish to share

TMij with other ISPs, so we need to use PPDM to perform the
computation of

PN

j=1,j 6=i
TMijR̄ij .

More precisely, we use a PPDM primitive [8] that allows two
parties to compute an inner producta · b where one party knows
a vectora, the other knowsb. Obviously the result of this compu-
tation could reveal information, so the result is partitioned so that
partiesA andB learnva andvb respectively, where

va + vb = a · b =
X

i

aibi. (14)

The va andvb should be determined in such a way that no infor-



mation is revealed abouta andb. For existing algorithms this may
not be the case for arbitrarya andb. We will discuss this further
in Section 4 below, but note that for the case of traffic weighted
performance metrics there should be no significant problem.

Given a privacy preserving protocol for performing this calcula-
tion, we can build a protocol as follows: assume ISPi wishes to
compute its outgoing traffic-weighted delaŷDout

i .
(1) for each j 6= i, use PPDM to compute

v
(a)
ij + v

(b)
ij =

N
X

j=1,j 6=i

TMijR̄ij

where ISP x learns v
(x)
ij .

(2) The ISPs perform a distributed sum

V
(b)

i =
1

N − 1

N
X

j=1,j 6=i

v
(b)
ij

which they transmit to i.
(3) ISP i computes

V
(a)

i =
1

N − 1

N
X

j=1,j 6=i

v
(a)
ij

and thence

D̂out
i = −V

(a)
i − V

(b)
i +

1

N − 1

N
X

j=1

j 6=i

TMijR̄ij .

Thus the desired results is obtained byi. Step (1) uses the PPDM
inner product operation, and so reveals nothing about the inputs
to the participants. In step (2), ISPi learns only an aggregated
version of thev(b)

ij , and so cannot separate out the individual terms
to determine the value of the individual inner products. Hence at no
stage does any other ISP hold enough data to determine sensitive
data. A similar approach could be performed for computingD̂in

i .

4. LOSS
Until now, we have assumed that all probe packets are received,

however, in the Internet packets are sometimes dropped. This intro-
duces the problem of measuring loss rates, but it also complicates
the problem of measuring delays as we must censor the lost packets
from our measurement data. We consider both problems below.

4.1 Estimating loss rates
Let us first consider the case where all data is shared. In this case,

one can set atimeout S beyond which we believe the packet could
not survive “in the wild” of the Internet. If a packet is delayed
by more than this time, we assume it has been lost. Usually this
timeout is several orders of magnitude larger than typical lifetimes,
resulting in minimal false positive packet-loss detection. If the total
measurement time interval isT ≫ S and the number of probes is
also large then it is a reasonable approximation to count the number
of packets which were transmittedKij and receivedMij in the
time-interval and compute to get the loss rate

pij ≃ 1 − Mij/Kij . (15)

There is an error in this calculation at the edges, of the order of
S/T , resulting from packets which we transmitted, but which don’t
arrived during the measurement interval[0, T ]. Likewise, we can
compute average loss rates such as

pout
i ≃ 1 − Mi/Ki, (16)

whereKi =
P

j 6=i
Kij , andMi =

P

j 6=i
Mij .

It is simple to generalize this approach to PPDM. The countsKij

andMij are known to ISPi andj respectively. Hence ISPi can di-
rectly computeKi, andMi can be computed (as in Section 3) using
a secure distributed sum, and we can perform similar operations to
obtainpin

i .

4.2 Estimating delay in the presence of loss
A much trickier problem is estimating delay in the presence of

loss. The above approach tells us how many packets were lost, but
not which packets, and so we cannot appropriately censor the data
being used to calculate the averaged delay (for received packets).

One approach would be to simply use the shifted timestamps
described in Section 3.1 in order to compute the distribution, from
which we may calculate the mean. However, as noted above, this
approach results in information leakage. We can do better.

We will add a packet ID to each packet, but note that these are
not sequential. We choose the packet IDs in some random fashion
from the numbers{1, 2, . . . , L}, whereL ≥ Kij for all i andj.
The transmitter knowsKij , but the receiver does not (remember
we use Poisson sampling intervals for measurements). The receiver
only knowsL. The receiver can form a series of indicator vectors

I
(k)
ij =



1, if the packet with IDk from i to j is received,
0, otherwise.

As before, the receivers can use distributed summation to compute
the sum of receive times (for packets which are not lost). The re-
ceivers may also (as noted above) perform a standard distributed
summation to computeMi =

P

j 6=i
Mij =

P

j 6=i

PL

k=1 I
(k)
ij .

Hence we need only provide a distributed method for computing
the sum of transmit times for the packets which are not dropped.
We denote this by

sij =

L
X

k=1

I
(k)
ij t

(k)
ij , (17)

and we note that the value is not dependent on the value ofL, i.e.,
we can have as many “dummy” probes in the sequence as required.
One way to chooseL would be maximize the entropy of the indi-
cator functions by assuring thatp{I

(k)
ij = 1} = 0.5. Given small

loss rates, we can do so approximately by takingL = 2E[Kij ].
In order to compute this value we exploit methods designed to

allow the computation of inner products. Given such a protocol
our task is relatively easy: the inner productsij is divided into two
components,s(a)

ij , ands
(b)
ij which are learnt by the senderi and

the receiverj, respectively. Then the sender performs a simple sum
over his values, and the receivers perform a secure-distributed sum-
mation over their values, and provide this value to the transmitteri.
The transmitter then calculates

D̄out
i =

1

Mi

2

6

4

N
X

j=1

j 6=i

L
X

k=1

I
(k)
ij r

(k)
ij −

N
X

j=1

j 6=i

s
(a)
ij −

N
X

j=1

j 6=i

s
(b)
ij

3

7

5
.

There are several existing approaches for computing the inner
product (without a trusted third party). However, most of them may
result in information leakage in the case where we know that one
of the vectors in the inner product is a{0, 1} vector (e.g.,, [8]).
This issue was not a problem when computing traffic-weighted
performance measures (as in Section 3.2), but is a problem here.
We present here a novel approach to solving the distributed inner
product which avoids this pitfall. We use the inner product pro-
tocol described in [7], which is based on another primitive from
PPDM referred to as 1-in-n Oblivious Transfer (OT) (for original



work on 1-in-2 oblivious transfer see [9], and for many relevant
papers see [11, 13, 16]). OT is an often used primitive in PPDM,
which provides the following operation. AssumeB knowsn values
b1, . . . , bn, andA holds a valueα ∈ {1, 2, . . . , n}. OT provides
a mechanism that allowsA to learnbα, but none of the values of
bn for n 6= α, andB does not learn the value ofα. Given 1-in-n
oblivious transfer the inner product algorithm works as follows.

(1) A and B agree on two numbers m and n
(2) A finds m random vectors ti such that

a1 + a2 + ... + am = a

B finds m random numbers r1, r2, . . . , rm.
(3) for i = 1 to m

(3a) A sends B n different vectors:

{a
(1)
i ,a

(2)
i , ..., a

(n)
i }

where exactly one a
(q)
i = ai, the other

n − 1 vectors are random
(3b) B computes a

(j)
i · b − ri

(3c) A uses 1-in-n OT to retrieve

vi = a
(q)
i · b − ri = ai · b − ri.

(4) B computes Vb =
Pm

i=1 ri

(5) A computes

Va =

m
X

i=1

vi =

m
X

i=1

ai · b − ri = a · b − Vb.

Then we haveVa + Vb = a · b. A learns nothing aboutb (due to
ri), and B learns something abouta, but the probability of correctly
guessingq for i = 1, . . . , m is around1/nm. With sufficiently
largen andm, this is close to 0. Even if B has some idea of the
properties ofa (e.g., that it is a{0, 1} vector), it still does not help,
because we splita into fragmentsai which loose these properties
before performing the computation. We apply this here by taking
A to be the transmitter, and B the receiver, witha being a vector of
the transmission timest(k)

ij for k = 1, . . . , L, anda being a vector

of the indicator functionsI(k)
ij . As before, once we have performed

this operation for eachj 6= i, a secure distributed summation is
used to add up the values ofVb, which can then be passed back to
the transmitteri.

One can tradeoff efficiency in this protocol for security. We re-
quireO(m) 1-in-n OTs, which are not a cheap operation (in terms
of communications cost). Larger values ofm andn retain a greater
level of secrecy, but result in a larger overhead.

5. CONCLUSION
This paper has shown that there are techniques for solving per-

formance measurement problems that do not require sharing of de-
tailed information. Such techniques have the capability to enable
much larger scale Internet performance measurements than are cur-
rently available to the research community by removing security
and privacy concerns that currently restrict the number of willing
participants.

This paper presents a variety of techniques, with different pri-
vacy tradeoffs. This work does not stop here, however. There are
many variations of the techniques described here, and these may
be applicable to other problems such as computing jitter, or other
performance metrics. Additionally, it has been shown how to ap-
ply such distributed computation to sketches [17], and such may
find utility in cases where the volume of measurements becomes
very large. There are approaches to apply such methods to time

series. For example, Atallahet al. [1] show that time-series algo-
rithms (such as detecting a linear trend) can be performed, without
revealing intermediate values. In the case of detecting a trend, the
algorithm will reveal the slope to all parties, without revealing the
absolute values. Likewise, detection of anomalies could prove very
useful in improving Internet health.
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