
A Risk-Driven Method for eXtreme Programming
Release Planning

Mingshu Li 1,2, Meng Huang 1,3, Fengdi Shu 1, and Juan Li 1,3
1Lab for Internet Software Technologies, Institute of Software, Chinese Academy of Sciences

2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
3Graduate University of Chinese Academy of Sciences

Beijing 100080, P.R. China

{mingshu, hm, fdshu, lijuan}@itechs.iscas.ac.cn

ABSTRACT
XP (eXtreme Programming) has become popular for IID
(Iteration and Increment Development). It is suitable for small
teams, lightweight projects and vague/volatile requirements.
However, some challenges are left to developers when they desire
to practise XP. A critical one of them is constructing the release
plan and negotiating it with customers. In this paper, we propose a
risk-driven method for XP release planning. It has been applied in
a case study and the results show the method is feasible and
effective. XP practicers can follow it to decide a suitable release
plan and control the development process.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management –Cost estimation,
Life cycle, Productivity.

General Terms
Management, Measurement, Economics, Experimentation.

Keywords
XP, release planning, risk, negotiation, decision

1. INTRODUCTION
Recently, eXtreme Programming (XP) is a popular Iteration and
Increment Development (IID) practice and successful in software
development [1,2,3]. It is based around the development and
delivery of small increments of functionality, customer
involvement in the process, constant code improvement and
egoless programming [4].

Release planning is the activity that stakeholders decide
requirements implementation and delivery scheme in XP practice.
It is the key point, where developers consider how coding can
contribute to software system’s goals, since there are no detailed
requirements and architecture design before system
implementation. There are four steps during XP release planning:
firstly, developers inquire customers about the business value of

each story that describes the customers’ needs; secondly,
developers estimate the needed efforts for implementing those
stories; thirdly, they analyze the technology risks in stories; and
lastly, developers negotiate with customers about the release plan
for the next iteration [5].

The vague XP release planning techniques often muddle
practicers [6]. As a result, it is difficult for developers to make a
suitable release plan in XP practice. They are often puzzled by
many problems, such as how to assess stories’ business value,
how to analyze the technology risks, how to get consensus by
negotiation, etc. Some researchers reported that release planning
had become the response to customers’ requests entirely and been
uncontrollable because of the absence of integrated system’s
viewpoint, inadequate negotiation among stakeholders and so on.
Thus, many XP processes are full of reworks and wrong problem
solutions [3,7,8,9,10,11].

In the paper, we put forward a risk-driven method for XP release
planning which aims at three main vague areas in XP practice.
Firstly, the vague techniques of XP release planning often lead
stakeholders to a poor decision when they do not consider
multiple possible release plans for the next iteration. Secondly,
stakeholders want to balance development risks and productivity,
but it is difficult for them to analyze the risks because of the
vague techniques in risks analysis. Lastly, it is a very important
work to balance development risks and productivity in process,
but there are not enough guides or techniques for stakeholders to
reach an agreement about a release plan.

The remainder of the paper is organized as follows. Section 2
summarizes the related work. Section 3 presents the risk-driven
method for XP release planning. Section 4 presents a risk-driven
XP process. Section 5 reports a case study of the method. We
conclude the paper in Section 6 with a summary and directions for
future work.

2. RELATED WORK
Release planning is one of the essential tasks in IID [6]. There are
two kinds of release planning method for IID: predictive planning
and adaptive planning [12]. Predictive planning means that
developers make a detailed plan covering the whole software life
cycle. On the contrary, according to the adaptive planning
methodology, developers only make the detailed plan for a short
time and keep a rough long-time plan. The detail plan covers a
few release millstones or even only one iteration. Adaptive
planning is more suitable for IID [12,13]. XP release planning is a
typical adaptive planning. XP practicers plan release only for the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE'06, May 20-28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

423

next iteration generally. The long-time plan keeps rough for easy
adjustment.

In the early research of release planning, researchers focused on
the method of assessing requirements’ value and estimating cost
[14,15,16]. Based on quantitive value evaluation and cost
estimation of requirements, optimizing methods are used to select
suitable combinations from all requirements [14,15,18] for
iterations. Recently, some researchers concentrate on the
inconsistent requirements’ value from multi-stakeholder
viewpoints [17,19] and dependencies among requirements
[20,21]. They suggest that the inconsistent value and
dependencies should be considered when the optimizing methods
are used. However, these methods are not suitable for XP release
planning. The premise of these methods is that there are detailed
requirements and architecture design before implementation,
which leads to a predictive plan naturally. In XP practice, this
premise can rarely be satisfied [5].

The vague descriptions of techniques in XP method always make
it difficult to develop, negotiate, and decide a release plan. To
improve it, [12] uses “Dot Voting” or architectural significance,
risk and value score to make a release plan. But some issues are
still unclear such as negotiation. When XP practicers use the
method for release planning, they still feel difficult in deciding
what information they should collect and how to make feedbacks
to customers to reach the agreement about a release plan. Some
problems caused by unsuitable releasing plan in XP practice are
reported such as that developers are unable to finish project for
absence of integrated system viewpoints [9,10,22,23], inadequate
negotiation during release planning [11], high development
organization risks caused by excessive dependence on personal
experiences [8], and so on. Therefore, an exact method is needed
for developers to follow during XP release planning.

3. RISK-DRIVEN METHOD FOR
RELEASE PLANNING
The risk-driven method for XP release planning is shown in
Figure 1. It can be divided into three steps as follows:

Firstly, developers construct a set of feasible release plans from
the project profiles which include those original ideas about the
system’s scope, cost, schedule, product quality and so on. In this
step, developers not only write XP’s stories based on the system’s
features as in general XP practice, but also combine stories into
multiple feasible release plans according to their values,
dependences, costs and available efforts per iteration. Some
techniques, such as quantifying a story’s business value using
Analytic Hierarchy Process (AHP) method and constructing
multiple feasible release plans automatically, are integrated in our
method to help developers in this step.

Secondly, risks in each feasible release plan are analyzed. Risk
analysis is used as the crucial tool when developers and customers
plan releases. Risks are losses caused by uncertain things [27];
they maybe come from requirements, estimation or technologies
and affect system scope, schedule or products quality.

At last, stakeholders decide a certain release plan for the next
iteration according with the result of risk analysis. If there are not
release plans whose risks are acceptable, developers should trace
back and negotiate with customers about project profiles.

Furthermore, after the iteration is finished, its results will be used
to adjust project profiles.

Constructing a
set of feasible
release plans

Assessing risks in
each feasible
release plan

Adjusting
Project
Profiles

Is there any
release plan
whose risks
acceptable?

YES

NO

The release plan is implemented in next iteration

Project
Profiles

Results of the
iteration that
will be used

to adjust
 Project Profiles

R
is

k-
D

riv
en

 M
et

ho
d

fo
r X

P
R

el
ea

se
 P

la
nn

in
g

Figure 1. Risk-driven method for XP release planning

The method can be not only used for each XP iteration, but also
applied for long-time plans such as milestone plans and even
software life cycle. For example, developers use the method to get
a release plan first for long-time milestone. Then, they use the
method to get the first iteration’s release plan. And when the first
iteration is finished, they can adjust the project profiles by the
results of the iteration. The adjustments lead to a more suitable
plan for next iteration and further milestones.

Either planning for next iteration or for long-time milestone, the
method can establish the links between the overview of the whole
project and essential activities of stakeholders. This helps
stakeholders construct a successful software product under the
circumstance’s constraints.

3.1 Constructing Feasible Release Plans
A feasible release plan means a group of requirements (stories)
that can be completed in the next iteration under the iteration
efforts and stories’ dependencies constraints. Usually, the feasible
release plan is not unique. Since developers and customers always
expect to complete as many stories as possible per iteration, we
have to define a criterion to evaluate the business value of stories
in a release plan under the efforts and dependencies constraints.
Accordingly, we can select those feasible release plans with
higher business value as candidates. To construct multiple

424

feasible release plans and select those with high business value,
developers should quantify every story’s business value, size,
available efforts per iteration, and locate the dependencies among
stories.
The business value of a story is defined by customers. During
release planning, the relative value should be assessed. Analytic
Hierarchy Process (AHP) method is a useful tool to evaluate the
stories’ relative business value [24]. The stories’ relative values
are evaluated by performing pair wise comparisons and checking
result consistency. After customers evaluate the stories’ relative
value by AHP, a number between 0 and 1 will be assigned to each
story as a score that means the relative value of a story. And the
sum of all scores is 1. In the paper, the symbol “Vi” denotes story
i’s business value.
Man-hour is used as the measurement of size estimation in XP.
We use ci to denote story i’s size, Ct denotes available efforts of
No. t iteration.
Although some researchers think the dependencies among stories
are unimportant in XP release plan [5], we consider the
dependencies as an important factor because a useful partial
system should be delivered to customers after each iteration. The
small release of each iteration should fulfill some customers’
business needs. Consequently, the dependencies among stories
caused by business process should be considered during planning
release. The dependencies of stories, which mean the business
process described by the stories, are denoted by d. If story i
depends on story k, we endue dik=1. It means that story i cannot
be implemented later than story k. If there is no dependency
between i and k, we endue dik=0. For ki =∀ , dik=1.

The assumption is that there are n uncompleted stories in the
storyboard. xi=1 denotes story i will be completed in the next
iteration; otherwise, xi=0. Then, a function like formula (1) is
designed to construct feasible release plans according to the
criterion “maximizing business value per iteration”.

i

n

i
i xVgMax ∗=∑

=1

 (1)

Dependencies and available effort constraints can be expressed by
formulas (2) and (3):

t
i

n

i
i Cxc ≤∗∑

=1

 (2)

ki xx ,∀ , kiki xdx ≤∗ , },,1{, nki L∈ (3)

Each solution of the function is an assignment combination of
},...,{ 1 nxx which means a feasible release plan. An algorithm is

designed to find solutions. Firstly, the solution space is organized
as Figure 2. From a node, e.g. node A, the left branch denotes a
solution that includes xi＝1; right branch denotes a solution that

includes xi＝0. A path from the root to a leaf denotes an entire
solution. Xw denotes a path of the entire solution. In these paths,
some are feasible solutions and others are not. },...,{ 1 lxxX =
denotes an assignment combination of x1 ~ xl, called partial
solution. Feasible partial solution (FPS) means an X which
satisfies formulas (2) and (3).
The algorithm is shown in Figure 3. Deep First Searching (DFS)
and backtrack are used in the algorithm. A feasible solution queue
S is used to cache solutions when the algorithm is running.

Supposing we want to construct top 5 solutions by g, there will be
5 Xw in S that are arranged in descending order according to the
results of g. The solution in S whose result is the smallest is
denoted by Xwmin and gmin denotes the result.
When the algorithm terminates, there are five solutions in S. Then,
the next step is to analyze risks in each solution.

Figure 2. A solution space

Figure 3. Algorithm for finding solutions

3.2 Analyzing Risks of Feasible Release Plans
The first step of risk analysis is to identify risks. Then the
probability and loss of each risk are estimated. At last, all kinds of
risks are combined to show the whole risks of a release plan.

The risk taxonomy is used in identifying risks. Some studies have
contributed effective risk taxonomies [25, 26]. Although those
taxonomy tables are designed for traditional development process,
they can be revised for XP. Table 1 shows a risk taxonomy
defined by us. XP practicers can add risk types and risk items
according to their experiences.

Probability and loss of a risk can be estimated quantitatively or
qualitatively. Quantitative estimation requires a lot of time and
cost, and sometime it is difficult for developers to collect enough
data for quantitative analysis [26,27]. Thus, qualitative risk

1．Do DFS from i=1;

2．If i ≤ n, xi＝1 is added into X, and X is still a FPS

 then add xi＝1 into X, i=i +1, goto 2;

 else goto 3;

3．If i ≤ n, xi＝0 is added into X, and X is still a FPS

 then add xi＝0 into X, i=i +1, goto 2；

 else goto 5;

4．Compare gi and gmin ,
 if gi > gmin

 then delete Xwmin from S, add Xi into S，

 and re-order S;

5．If for each x in X: x=0

then exit;

425

analysis is more suitable for XP. Furthermore, risks maybe cause
losses in multiple aspects of a software project. In our method, we
use scope, schedule and product quality as criterions of losses.
Scope loss means that development activities are not toward the
software system’s goals. Schedule loss means that the release is
postponed. Product quality loss means that the product cannot
fulfill the needs of functions and performance.

Table 1. XP risk taxonomy

Risk Type Risk Item Description

Unstable story Story is volatile because of
the volatile environment Requirements

Risks Vague story Story is unclear in business
goals or for system design

Size Wrong estimation of story
size Estimation

Risks Team
productivity

Wrong estimation of team
productivity

Architecture
conflict

How to combine new
stories into existent
architecture Technology

Risks Difficult
implementation How to implement stories

Personnel
Risks Customers Customers are not domain

experts in business

We use the qualitative risk estimating method provided in [27].
The degrees of “Low”, “Medium” and “High” are used as the
description for the probability and loss of risks, and then the Risk
Exposure (RE) is defined according to Table 2.

Table 2. A qualitative method for risk assessment

Probability Risk
Exposure Low Medium High

Low Minor Significant Critical

Medium Significant Critical Unacceptable Loss

High Critical Unacceptable Unacceptable

A release plan may have multiple risks. To compare differences
among feasible release plans, RE should be accumulated
according to the type of loss. Based on existent methods [27], we
present a method to combine multiple risks by scores. Developers
may use the score table (refer to Table 3) to accumulate RE,
according to scope, schedule and product quality losses,
respectively. The scores give a straight way for comparing
multiple release plans. The risks, business value and needed
efforts of each feasible release plan are then submitted to
stakeholders to help them make decisions.

Table 3. Score for risk exposure

Risk Exposure Score

Unacceptable 4

Critical 3

Significant 2

Minor 1

3.3 Making Decision and Adjusting Project
Profiles
During making decision, if every release plan always includes a
type of risks whose score is very high, it means there are crucial
defaults in the project profiles. Then developers must go back to
check the project plan and negotiate with customers about the
project profiles. The scores’ criterion of high risks comes from
historical projects’ data and former iterations’ results of the
current project. A release plan is selected based on the project
progress and risks scores. For example, in early iteration,
developers should choose the release plan whose scope risk’s
score is higher for understanding the software system’s goals
more quickly. When near the milestone, developers should choose
the release plan with low risks scores to ensure a useful system at
the milestone point.

Although it shows in our method that constructing feasible release
plans, analyzing risks and making decision are necessary for per
iteration, it does not mean that stakeholders should execute every
activity from the beginning during the development process. In
fact, if stakeholders affirm the early results of analysis such as
stories’ business value and risks, these data can still be used in
latter iterations until the events happen which cause the changes
of the early analysis results.

4. RISK-DRIVEN XP PROCESS
When the risk-driven method is applied in XP practice, the XP
process becomes a risk-driven process. To help developers apply
the risk-driven method for XP release planning easily, this section
introduces a specific XP process with the risk-driven release
planning method applied, as shown in Figure 4.

The activities and their inputs, outputs, and steps are defined as
follows:

Activity 1: Defining stories
(1) Input: Project Profiles, New Stories
(2) Steps:

a. Constructing stories based on the project profiles
b. Building test scenarios

(3) Output: Stories, Test Scenarios

Activity 2: Constructing feasible release plans

(1) Input: Stories
(2) Steps:

a. Estimating stories’ value and size as well as available
effort and analyzing stories’ dependencies

b. Making a set of feasible release plans
(3) Output: Release Plans

Activity 3: Analyzing risks and making decision

(1) Input: Release Plans
(2) Steps:

a. Analyzing risks in each release plan
b. Comparing analysis results and making decision

(3) Output: Adopted Release Plan (in the next iteration)

Activity 4: Adjusting project profiles

(1) Input: Results of Risks Analysis, Results of Acceptance Test
(2) Steps:

426

a. Negotiating with customers and adjusting project
profiles to mitigate risks

(3) Output: Guides of Project Profiles Adjustment

Activity 5: Iteration

(1) Input: Adopted Release Plan
(2) Steps:

a. Coding and unit test
(3) Output: Latest Version

Activity 6: Acceptance test

(1) Input: Latest Version, Test Scenarios
(2) Steps:

a. Testing and collecting customers’ feedback
b. Collecting new stories and information of iterations’

accumulative efforts (project velocity)
(3) Output: Small Release

Following the process, developers organize their development
orderly in accordance with the method described in section 3.
When they plan a release (from Activity 2 to Activity 4), all
techniques for constructing feasible release plans, analyzing risks
and adjusting project profiles will contribute to a sensible release
plan. Moreover, the developers have the chance to adjust the
project profiles and improve their project process according to the
feedbacks.

Activity 1:
Defining stories

Activity 2:
Constructing feasible

release plans

Stories

Activity 3:
Analyzing risks and

making decision

Release Plans

Activity 4:
Adjusting Project

Profiles

Activity 5:
Iteration

Adopted Release Plan

Activity 6:
Acceptance test

Latest Version

Project Profiles -- Scope, Cost,
Schedule, Quality and so on

Small Release

BUG

Results of
Risks Analysis

Figure 4. Risk-driven XP process

5. CASE STUDY
The proposed method was applied to a Web-based application
project in our organization for verifying its feasibility and
effectiveness. A team in our organization had developed the
supposed system. This team (B) practised XP without any specific
release planning method. To minimize the influences of personnel
experiences, a group of people who had never been involved in
the project was organized in a team (A) to develop the project
again. The data were established as comparable as possible by
assigning similar background of personnel according to team B
(refer to Table 4). The project data were collected and compared,
and the result demonstrates that the proposed method in the paper
is feasible and can help developers improve their XP practices.

5.1 Data Collection and Analysis
The background of the case is summarized in Table 4.

Table 4. Background of the case

Project Characteristics Description
Type of end product Web-based application

Development tools

JBuilder 9, JDK1.4, Tomcat4,
Mysql
Bugrat, Winrunner
QMP2.5, Firefly2.5

A Developer team size B 6 developers

A Developers’ experience
in XP B

1 experienced
5 novice

A Developers’ experience
in end product B 6 experienced

A Developers’ experience
in coding B 6 experienced

A 4 Iterations B 5

A release plan’s information of risks, business value and effort
needed is presented to stakeholders. Table 5 is an example of such
information used by team A for an iteration. Based on the
information, stakeholders negotiate with each other and make the
release plan decision for the next iteration.
Both objective and subjective data were collected from team B
and team A. The objective data are from the organization’s CASE
tools, such as defect tracking, project tracking, source code
analysis and test suite tools. All these data are shown in Table 6
and Figure 5. Furthermore, we collected developers’ subject
feedback in team A by a questionnaire. Some questions are
designed for developers’ opinions about the proposed method in
the paper. There are four selections for every question: “Very
good”, “Good”, “Fair”, and “Poor”. There also are some open
questions in the questionnaire for developers’ to express their
viewpoints about the method freely. The team A developers’
subject feedbacks are summarized in Table 7.
One of the characteristics of the development process of team A is
that the number of story changes declines rapidly. It means
developers and customers catch the scope and constraints of the
system and reach a consensus more quickly. We compare the rate
of story changes (the number of stories that change in each
iteration / total number of stories), as shown in Figure 6. The
results indicate a lower rate of story changes exists in later
iteration in the development process of team A using the risk-

427

driven method for XP release planning. The result also can
answer the question “Why in the similar team productivity, more
efforts are needed in the previous XP practice of team B?” Table
6 shows there are much more story changes in late phrase of the

team B. The story changes cause extra needless reworks.
Developers also agree that the proposed method in the paper is
helpful in negotiating the project’s scope and available resources.

Table 5. An example of risks, business value and effort information provided for customers’ decision making

Risks Score Feasible
Release Plans Scope Schedule Product Quality Total

Business Value
(%)

Effort Needed
(Hour)

NO. 1 17 21 35 73 37 289
NO. 2 24 19 27 70 33 312
NO. 3 29 16 33 78 21 210
NO. 4 11 23 29 63 20 247
NO. 5 18 19 28 65 19 188

Table 6. Project data

Release No. No Data Collected Case 1 2 3 4 5 Total

A 3 3 2 1 / 9 1 Calendar time (weeks)
B 3 2 2 2 2 11
A 613 703 476 199.5 / 1991.5 2 Effort (man-hour)
B 609 638 423.5 399 467 2536.5
A 21.89 26.5 19.52 8.02 / 76.9 3 KLOC implemented in the

last release B 13.22 11.99 15.46 20.71 21.6 82.98
A 35.7 37.7 41.0 40.2 / 38.6 4 Team productivity

(loc/hour) B 36.1 38.0 39.7 40.9 40.9 39.1
A 7 4 1 1* / 13 5 Numbers of story changes

after iteration B 5 4 6 5 3* 23
A 11 9 10 6 / 36 6 Numbers of stories

implemented B 10 10 8 2 4 34
A 0 1 0 0 / 1 7 BUG numbers after the

acceptance test B 0 0 0 0 0 0
* Preserved for future implementation

Table 7. Developers’ subject feedbacks

Feedback of developers
The risk-driven method is helpful in

Very good Good Fair Poor

Speeding up release planning 3 3 0 0
Balancing project scope and available resources 4 2 0 0

Controlling project progress 2 3 1 0

30.7%

10.0%

39.9%

16.9%
11.1%

35.2%

6.3%
1.9%

4.8%

10.4%

16.8%

6.5% 7.4%

2.1%

0%
5%

10%
15%
20%

25%
30%
35%
40%
45%
50%

Spikes coding project
management

pre-release
test

refactor unit test
development

other

team A, 100%

team B, 100%

Figure 5. Comparison of task efforts distribution between team A and team B

428

19%

11%

3% 3%

12%

18%
15%

9%

15%

0%

5%

10%

15%

20%

25%

1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration

team A
team B

Figure 6. Comparison of story change rate between team A and team B

5.2 Lessons Learned
We got at least three benefits through the risk-driven method for
XP release planning in this paper:

 The risk-driven method for XP release planning is well-
defined for XP practice. It can help XP practicers make
better release plan decision.

 Identifying and assessing risks during release planning can
improve stakeholders’ understanding of the system’s goals
and developers’ capacity. Based on scope, estimation and
technology risks, stakeholders may make a balance between
the system’s goals and available resources, and ensure the
software development process towards correct goals within
the schedule and resource constraints.

 The method improves negotiation between customers and
developers. Developers can construct multiple feasible
release plans and expose their risk levels. The groundwork
for negotiation is established by these release plans and
information of the risks when developers and customers
choose suitable release plans for XP iterations.

Also, we noticed some weaknesses in the method. For example,
since one story may be included in multiple feasible release plans,
risk data can be reused during the risks analysis phase. However,
we do not have related reuse scheme yet. Actually, developers in
the case study already advised the method would be more
effective if there were some data reuse mechanism.

6. CONCLUSIONS
There are no detailed requirements and architecture design before
the system implementation in XP practice. Release planning is the
key for successful development where the scope and constraints,
design, and implementation are considered synthetically in a
software system. However, the vague techniques in traditional XP
release planning often muddle XP practicers. And developers
often hesitate in making a release plan and negotiating with
customers about the implementation order of stories in iterations.

In this paper, we put forward a risk-driven method for XP release
planning. XP practicers can follow it to decide a suitable release
plan and control the development process. The features of the

method can improve XP practices. Firstly, multiple choices of
feasible release plans are provided for stakeholders to enlarge the
scopes of the developers and customers’ negotiations when they
decide a release plan for the next iteration. Therefore,
stakeholders can avoid making a poor decision based on a single
candidate release plan. Secondly, risks analysis can improve the
ability of the stakeholders to understand the circumstance and to
collaborate with each others [28]. In our method, the scores of
scope, schedule and product quality risks provide clear criteria for
stakeholders’ consensus when they are making release plans
choice. The comparable risks’ scores, which differ from
unstructured risks analysis method in traditional XP practice,
reduce problems when release plans are negotiated. Thirdly, the
method will make out of a risk-driven XP process for developers
to guide their XP practice. Furthermore, the method not only can
be used for XP iterations, but also for long-time plans such as
milestone plans and/or even software life cycle development with
adaptive planning method. This general framework of the method
suggests that it could also be used in other IID methods to
improve their release planning.

We have applied the method in a case study and the results show
the method is feasible and effective. In the future work, we are
going to study an approach of reusing risk analysis data and
develop an integrated tool to improve the method’s usability.

7. ACKNOWLEDGMENTS
This research is supported by the National Natural Science
Foundation of China under grant Nos. 60273026, 60573082 and
the National “863” High-Tech Program of China under grant Nos.
2004AA112080, 2005AA113140.

Professors Qing Wang and Yongji Wang gave many constructive
suggestions. Their works are highly appreciated.

429

8. REFERENCES
[1] Macias, F., Holcombe, M., Gheorghe, M., A Formal

Experiment Comparing Extreme Programming with
Traditional Software Construction, Proceedings of the
Fourth Mexican International Conference on Computer
Science (ENC’03), 2003.

[2] Abrahamsson, P., Koskela, J., Extreme Programming: A
Survey of Empirical Data from a Controlled Case Study,
Proceedings of the 2004 International Symposium on
Empirical Software Engineering (ISESE’04), 2004.

[3] Layman, L., Williams, L., Cunningham, L., Motivations and
Measurements in an Agile Case Study, Proceedings of the
Workshop on Quantitative Techniques for Agile Processes
(QUTE-SWAP ’04), 2004.

[4] Sommerville, I., Software Engineering, 6th edition, Addison-
Wesley, 2000.

[5] Beck, K., Fowler, M., Planning Extreme Programming,
Addison-Wesley, 1st edition, 2000.

[6] Paetsch, F., Eberlein, A., Maurer, F., Requirements
Engineering and Agile Software Development, 12th IEEE
International Workshops on Enabling Technologies
(WETICE 2003), 2003, 308-313.

[7] Orr, K., Agile Requirements: Opportunity or Oxymoron?.
IEEE Software, 21, 3 (2004), 71-73.

[8] Neill, C. J., The Extreme Programming Bandwagon:
Revolution or Just Revolting?. IEEE IT Professional, 5, 5
(2003), 62-64.

[9] Nawrocki, J., et al., Extreme Programming Modified:
Embrace Requirements Engineering Practices, Tenth
International IEEE Conference on Requirements
Engineering, 2002.

[10] Rand, C., Eckfeldt, B., Aligning Strategic Planning with
Agile Development: Extending Agile Thinking to Business
Improvement, Proceedings of the Agile Development
Conference (ADC’04), 2004.

[11] Cao, L., et al. How Extreme does Extreme Programming
Have to be? Adapting XP Practices to Large-scale Projects.
Proceedings of the 37th Hawaii International Conference on
System Sciences, 2004.

[12] Larman. C., Agile Iterative Development A Management’s
Guide, Pearson Education, 2004.

[13] Lehman, M. M., Ramil, J. F., Rules and Tools for Software
Evolution Planning and Management, Annals of Software
Engineering, Vol 11, 2001,15-44.

[14] Jung, HW. Optimizing Value and Cost in Requirements
Analysis. IEEE Software, 15, 4(1998), 74- 78.

[15] Karlsson, J., Ryan, K., A Cost-Value Approach for
Prioritizing Requirements. IEEE Software, 14, 5(1997), 67-
74.

[16] Tran, T., Sherif, J.S., Quality Function Deployment (QFD):
an effective technique for requirements acquisition and
reuse, 2nd IEEE Software Engineering Standards
Symposium, 1995.

[17] Moisiadis, F., The fundamentals of prioritising requirements.
(Web) Proceedings of Systems Engineering/Test and
Evaluation conference (SETE2002). 2002.

[18] Wiegers, K., Software Requirements, Microsoft Press, 2003.
[19] In, H., Olson, D., Rodgers, T., Multi-Criteria Preference

Analysis for Systematic Requirements Negotiation, IEEE
International Computer Software and Applications
Conference (COMPSAC 2002), 2002, 887-892.

[20] Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Dag,
Johan N., An Industrial Survey of Requirements
Interdependencies in Software Product Release Planning.

[21] Jackson, A., et al., Behind the Rules: XP Experiences.
Proceedings of the Agile Development Conference (ADC’
04), 2004.

[22] Glass, L. R., Extreme Programming: The Good, the Bad, and
the Bottom Line, IEEE SOFTWARE, 18, 6 (2001), 112-113.

[23] Karlsson, J., Wohlin, C., Regnell, B., An Evaluation of
Methods for Prioritizing Software Requirements,
Information and Software Technology, 39, 14-15 (1998),
938-947.

[24] Carr, M. J. Konda, S. L., Monarch, I., Ulrich, F. L and
Walker, C. F., Taxonomy-Based Risk Identifcation, Software
Engineering Institute, technical Report, CMU/SEI-93-TR-6,
1993.

[25] Simmons, E., Requirements Triage: What Can We Learn
from a “Medical” Approach?, IEEE Software, 21, 4 (2004),
86-88.

[26] Greer, D., Bustard, David W., Towards an Evolutionary
Software Delivery Strategy based on Soft Systems and Risk
Analysis. IEEE symposium on Engineering of Computer
Based Systems, 1996, 126-133.

[27] Boehm, B., Tutorial: Software Risk Management, IEEE
Computer Society Press, 1989.

[28] Boehm, B., Turner, R., Using Risk to Balance Agile and
Plan-Driven Methods, IEEE computer, 36, 6(2003), 57-66.

430

