
ar
X

iv
:c

s/
03

03
00

9v
2 

 [
cs

.A
I]

  2
 J

an
 2

00
4

Unfolding Partiality and Disjuntions

in Stable Model Semantis

∗

Tomi Janhunen and Ilkka Niemelä

Department of Computer Siene and Engineering

Helsinki University of Tehnology

P.O.Box 5400, FIN-02015 HUT, Finland

{Tomi.Janhunen,Ilkka.Niemela}�hut.�

Dietmar Seipel

University of Würzburg

Am Hubland, D-97074 Würzburg, Germany

seipel�informatik.uni-wuerzburg.de

Patrik Simons

Neotide Oy

Wol�ntie 36

FIN-65200 Vaasa, Finland

Patrik.Simons�neotide.�

Jia-Huai You

Department of Computing Siene

University of Alberta

Edmonton, Alberta, Canada T6G 2H1

you�s.ualberta.a

∗
A preliminary version of this paper [21℄ appears in the Proeedings of the 7th In-

ternational Conferene on the Priniples of Knowledge Representation and Reasoning,

KR'2000.

1

http://arxiv.org/abs/cs/0303009v2


Abstrat

The paper studies an implementation methodology for partial and

disjuntive stable models where partiality and disjuntions are un-

folded from a logi program so that an implementation of stable models

for normal (disjuntion-free) programs an be used as the ore infer-

ene engine. The unfolding is done in two separate steps. Firstly, it is

shown that partial stable models an be aptured by total stable mod-

els using a simple linear and modular program transformation. Hene,

reasoning tasks onerning partial stable models an be solved using

an implementation of total stable models. Disjuntive partial stable

models have been laking implementations whih now beome avail-

able as the translation handles also the disjuntive ase. Seondly, it

is shown how total stable models of disjuntive programs an be de-

termined by omputing stable models for normal programs. Hene, an

implementation of stable models of normal programs an be used as a

ore engine for implementing disjuntive programs. The feasibility of

the approah is demonstrated by onstruting a system for omput-

ing stable models of disjuntive programs using the smodels system

as the ore engine. The performane of the resulting system is om-

pared to that of dlv whih is a state-of-the-art system for disjuntive

programs.

1 INTRODUCTION

Implementation tehniques for delarative semantis of logi programs have

advaned onsiderably during the last years. For example, the XSB sys-

tem [40℄ is a WAM-based full logi programming system supporting the well-

founded semantis. In addition to this kind of a skeptial approah that is

based on query evaluation also a redulous approah fousing on omputing

models of logi programs is gaining popularity. This work has been entered

around the stable model semantis [17, 18℄. There are reasonably e�ient

implementations available for omputing stable models for disjuntive and

normal (disjuntion-free) programs, e.g., dlv [24℄, smodels [46, 45℄, mod-

els [1℄, and assat [29℄. The implementations have provided a basis for a

new paradigm for logi programming alled answer set programming (a term

oined by Vladimir Lifshitz). The basi idea is that a problem is solved by

devising a logi program suh that the stable models of the program provide

the answers to the problem, i.e., solving the problem is redued to a stable
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model omputation task [27, 32, 34, 13, 5℄. This approah has led to interest-

ing appliations in areas suh as planning [8, 11, 2℄, model heking [30, 20℄,

and software on�guration [49℄.

This paper addresses two issues in the stable model semantis: partial-

ity and disjuntions. The idea is to develop methodology suh that e�ient

proedures for omputing (total) stable models that are emerging an be ex-

ploited when dealing with partial stable models and disjuntive programs.

Sometimes it is natural to use partial stable models to represent a domain.

Even when working with total stable models, partial stable models ould

be useful, e.g., for debugging purposes to show what is wrong in a program

without any total stable models. However, little has been done on imple-

menting the omputation of partial stable models and most of the work has

foused on query evaluation w.r.t. the well-founded semantis. In the paper

we show that total stable models an apture partial stable models using

a simple linear program transformation. This transformation works also in

the disjuntive ase showing that implementations of total stable models,

e.g. dlv, an be used for omputing partial stable models. Using a suitable

transformation of queries, a mehanism for query answering an be realized

as well.

Our translation is interesting in many respets. First, it should be noted

that the translation does not follow diretly from the omplexity results al-

ready available. It has been shown, e.g., that the problem of deiding whether

a query is ontained in some model (possibility inferene) is Σp
2-omplete for

both partial and total stable models [12, 15℄. This implies that there exists a

polynomial time redution from possibility inferene w.r.t. partial models to

possibility inferene w.r.t. total models. However, this kind of a translation

is guaranteed to preserve only the yes/no answer to the possibility inferene

problem. Seond, not all translations are satisfatory from a omputational

point of view. In pratie, when a program is ompiled into another form

to be exeuted, ertain omputational properties of the translation play an

important role:

• e�ieny of the ompilation (in whih order of polynomial),

• modularity (are independent, separate ompilations of parts of a pro-

gram possible), and

• strutural preservation (are the omposition and intuition of the origi-

nal program preserved so that debugging and understanding of runtime
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behavior are made possible).

All this points to the importane of �nding good translation methods to

enable the use of an existing inferene engine to solve other interesting prob-

lems.

The e�ieny of proedures for omputing stable models of normal pro-

grams has inreased substantially in reent years. An interesting possibility

to exploit the omputational power of suh a proedure is to use it as a ore

engine for implementing other reasoning systems. In this paper, we follow

this approah and develop a method for reduing stable model omputation

of disjuntive programs to the problem of determining stable models for nor-

mal programs. This is non-trivial as deiding whether a disjuntive program

has a stable model is Σp
2-omplete [12℄ whereas the problem is NP-omplete

in the non-disjuntive ase [31℄. The method has been implemented using

the smodels system [46, 45℄ as the ore engine. The performane of the im-

plementation is ompared to that of dlv, whih is a state-of-the-art system

for omputing stable models for disjuntive programs.

There are a number of novelties in the work. Maximal partial stable

models for normal programs are known as regular models, M-stable models,

and preferred extensions [10, 39, 50℄. Although this semantis has a sound

and omplete top-down query answering proedure [10, 16, 28℄, so far very

little e�ort has been given to a serious implementation. For disjuntive pro-

grams, to our knowledge, no implementation has ever been attempted. As

a result, we obtain (perhaps) the �rst salable implementation of the regu-

lar model/preferred extension semantis, and the �rst implementation ever

for partial stable model semantis for disjuntive programs. Our tehni-

al work on the relationship between stable and partial stable models via a

translational approah provides a ompelling argument for the naturalness

of partial stable models: stable models and partial stable models share the

same notion of unfoundedness, arefully studied earlier in [14, 26℄. Finally,

we demonstrate how key tasks in omputing disjuntive stable models an

be redued to stable model omputation for normal programs by suitable

program transformations. In partiular, we develop tehniques for mapping

a disjuntive program into a normal one suh that the set of stable models

of the normal program overs the set of stable models of the disjuntive one

and in many ase even oinides with it. Moreover, we devise a method

where the stability of a model andidate for a disjuntive program an be

determined by transforming the disjuntive program into a normal one and
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heking the existene of a stable model for it. Finally, in the experimental

part of this paper, we present a new way of enoding quanti�ed Boolean

formulas as disjuntive logi programs. This transformation is more eonom-

ial in the number of propositional atoms and disjuntive rules than earlier

transformations presented in the literature [12, 25℄.

The rest of the paper is strutured as follows. We �rst review the basi

de�nitions and onepts in Setion 2. It is then shown in Setion 3 that par-

tial stable models an be aptured with total stable models using a simple

program transformation. In Setion 4, we desribe the method for om-

puting disjuntive stable models using an implementation of non-disjuntive

programs as a ore engine. After this, we present some experimental results

in Setion 5 and �nish with onluding remarks in Setion 6.

As a omment on the historial development of the translation given in

Setion 3, the haraterization of partial stable models as stable models of

the transformed program was �rst skethed for normal programs in a proof

by Shlipf [42, Theorem 3.2℄. For disjuntive programs, it was disovered and

proven in [43℄, and independently in [21℄. In the urrent paper we present a

proof based on unfounded sets, whih was given in [21℄, as this proof reveals

some of the properties of unfounded sets whih are of interest in their own

right. Yet another approah to omputing the partial stable models of a

disjuntive program based on a program transformation has been developed

by Ruiz and Minker [37℄: a disjuntive program P is translated into a positive

disjuntive program P 3S
with onstraints, the 3S�transformation of P , suh

that the total minimal models of P 3S
that additionally ful�ll the onstraints

oinide with the partial stable models of P .

2 DEFINITIONS AND NOTATIONS

A disjuntive logi program P (or, just disjuntive program P ) is a set of rules
of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bm,∼c1, . . . ,∼cn (1)

where k ≥ 1, m,n ≥ 0 and ai's, bi's and ci's are atoms from the Herbrand

base Hb(P )1 of P . Let us also distinguish sublasses of disjuntive programs.

1

For the sake of onveniene, we assume that a given program P is already instantiated

by the underlying Herbrand universe, and is thus ground.
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If k = 1 for eah rule of P , then P is a disjuntion-free or normal program.

If n = 0 for eah rule of P , then P is alled positive.

Literals are either atoms from Hb(P ) or expressions of the form ∼a where
a ∈ Hb(P ). For a set of atoms A ⊆ Hb(P ), we de�ne ∼A as {∼a | a ∈ A}.
Let us introdue a shorthand A ← B,∼C for rules where A 6= ∅, B and C
are subsets of Hb(P ). In harmony with (1), the set of atoms A in the head

of the rule is interpreted disjuntively while the set of literals B ∪ ∼C in

the body of the rule is interpreted onjuntively. We wish to further simplify

the notation A ← B,∼C in some partiular ases. When A, B or C is a

singleton {a}, we write a instead of {a}. If B = ∅ or C = ∅ we omit B and

∼C (respetively) as well as the separating omma in the body of the rule.

2.1 PARTIAL AND TOTAL MODELS

We review the basi model-theoreti onepts by following the presentation

in [15℄. Let P be any disjuntive program. A partial interpretation I for P is

a pair 〈T, F 〉 of subsets of Hb(P ) suh that T ∩F = ∅. The atoms in the sets
It = T , I f = F and Iu = Hb(P )− (T ∪ F ) are onsidered to be true, false,

and unde�ned, respetively. We introdue onstants t, f , and u, to denote

the respetive three truth values. A partial interpretation I for P is a total

interpretation for P whenever Iu = ∅, i.e., if every atom of Hb(P ) is either
true or false. When no onfusion arises, we use It alone to speify a total

interpretation I for P (then I f = Hb(P )− It and Iu = ∅ hold).
Given a partial interpretation for P , the truth values of atoms are de-

termined by It, I f and Iu as explained above while t, f and u have their

�xed truth values. For more omplex logial expressions E, we use I(E) to
denote the truth value of E in I. The value I(∼a) is de�ned to be t, f ,

or u whenever I(a) is f , t, or u, respetively. To handle onjuntions and

disjuntions, we introdue an ordering on the three truth values by setting

f < u < t. By default, a set of literals L = {l1, . . . , ln} denotes the onjun-
tion l1∧ · · ·∧ ln while

∨

L denotes the orresponding disjuntion l1∨ · · ·∨ ln.
The truth values I(L) and I(

∨

L) are de�ned as the respetive minimum

and maximum among the truth values I(l1), . . . , I(ln). A rule A ← B,∼C
is satis�ed in I if and only if I(

∨

A) ≥ I(B ∪ ∼C). A partial interpretation

M for P is a partial model of P if all rules of P are satis�ed in M , and for

a total model, also Mu = ∅ holds. Let us then introdue an ordering among

partial models of a disjuntive program: M1 ≤M2 if and only if M1
t ⊆M2

t

and M1
f ⊇ M2

f
. A partial model M of P is a minimal one if there is no
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partial model M ′
of P suh that M ′ < M (i.e., M ′ ≤ M and M ′ 6= M). In

ase of total models, we have N1 ≤ N2 if and only if N1 ⊆ N2. Moreover,

a total model N of P is onsidered to be a minimal one if there is no total

model N ′
of P suh that N ′ ⊂ N .

2.2 STABLE MODELS

Given a partial interpretation I for a disjuntive program P , we de�ne a

redution of P as follows:

P I = {A← B |A← B,∼C ∈ P and C ⊆ I f}.

Note that this transformation oinides with the Gelfond-Lifshitz redution

of P (the GL-redution of P ) when I is a total interpretation.

De�nition 2.1 (Total stable model) A total interpretation N for a dis-

juntive program P is a stable model if and only if N is a minimal total model

of PN
.

The original de�nition of partial stable models [35, 36℄ is based on a

weaker redution. Given a disjuntive program P and an interpretation

I, the redution PI is the set of rules obtained from P by replaing any

∼c in the body of a rule by I(∼c). As noted in [35℄, the only pratial

di�erene between P I
and PI is that PI has rules that orrespond to rules

of A ← B,∼C ∈ P satisfying I(∼C) = u. Note that if I(∼C) = t, then

A ← B ∈ P I
, and if I(∼C) = f , then the partial models of PI are not

onstrained by the rule inluded in PI .

De�nition 2.2 (Partial stable model) A partial interpretation M for a

disjuntive program P is a partial stable model of P if and only if M is a

minimal partial model of PM .

In the above de�nition, the relation between M and PM is similar to

the one for the total stable model, both for the purpose of preserving the

stability ondition. While maximizing falsity and minimizing true atoms, a

partial stable model does not insist that every atom must be either true or

false. (Partial) stable models are intimately related to unfounded sets [14, 26℄.

De�nition 2.3 (Unfounded sets) Let I be a partial interpretation for a

disjuntive program P . A set U ⊆ Hb(P ) of ground atoms is an unfounded
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set for P w.r.t. I, if at least one of the following onditions holds for eah

rule A← B,∼C ∈ P suh that A ∩ U 6= ∅:
UF1: B ∩ I f 6= ∅ or C ∩ It 6= ∅,
UF2: B ∩ U 6= ∅, or
UF3: (A− U) ∩ (It ∪ Iu) 6= ∅.
An unfounded set U for P w.r.t. I is I-onsistent if and only if U ∩ It = ∅.
The onditions UF1 and UF3 above oinide with the onditions

I(B ∪ ∼C) = f and I(
∨

(A− U)) 6= f ,

respetively. The intuition is that the atoms of an unfounded set U an be

assumed to be false without violating the satis�ability of any rule A← B,∼C
of the program whose head ontains some atoms of U . For any suh rule,

either the rule body is false in I (UF1), or the rule body an be falsi�ed

by falsifying the atoms in U (UF2), or the head of the rule is not false in I
(UF3). In partiular, unfounded sets w.r.t. partial/total models an be used

for onstruting smaller partial/total models (reall the de�nition of minimal

partial and total models) in a way that is made preise by what follows.

Lemma 2.4 Let M = 〈T, F 〉 be a partial model of a positive disjuntive

program P and U an unfounded set for P w.r.t. M . Then, if M is total or

U is M-onsistent, M ′ = 〈T − U, F ∪ U〉 is a partial model of P .

PROOF. LetM , P , U andM ′
be de�ned as above. Additionally, we assume

that (a) M is total, or (b) U is M-onsistent. Let us then assume that some

rule A← B of P is not satis�ed in M ′
whih means that M ′(

∨

A) < M ′(B).
Thus (i) M ′(

∨

A) < t and M ′(B) = t, or (ii) M ′(
∨

A) = f and M ′(B) = u.

Our proof splits in two separate threads.

I. Assume that A∩U = ∅ holds. Consider the ase (i). Now M ′(
∨

A) < t

implies A ∩ (T − U) = ∅. Sine A ∩ U = ∅ holds, too, we obtain

A ∩ T = ∅ so that M(
∨

A) < t. On the other hand, M ′(B) = t

implies B ⊆ T − U . Thus B ⊆ T and M(B) = t holds as well.

But then M(
∨

A) < M(B), a ontradition. The ase (ii) is analyzed

next. Now M ′(
∨

A) = f implies A ⊆ F ∪ U as well as A ⊆ F , sine
A ∩ U = ∅. Thus M(

∨

A) = f . Moreover, from M ′(B) = u we obtain

B∩(F ∪U) = ∅. Thus we obtain B∩F 6= ∅ so thatM(B) > f holds. To

onlude, we have established that M(
∨

A) < M(B), a ontradition.
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II. Otherwise A ∩ U 6= ∅ holds. Then at least one of the unfoundedness

onditions is appliable to A ← B. If UF1 is, M(B) = f holds. It

follows that B ⊆ F and B ⊆ F ∪ U . Thus M ′(B) = f ontraditing

both (i) and (ii). If UF2 is appliable, we have B ∩ U 6= ∅. It follows
that B ∩ (F ∪ U) 6= ∅ so that M ′(B) = f , a ontradition.

Thus UF3 must apply, i.e., M(
∨

(A− U)) > f holds. Let us then

onsider ases (a) and (b) separately.

(a) IfM is total, we have neessarilyM(
∨

(A− U)) = t. This implies

that some atom a ∈ A − U belongs to T . Thus also a ∈ T − U
and M ′(

∨

A) = t, a ontradition with both (i) and (ii).

(b) If U is M-onsistent, we have U ∩ T = ∅. By M(
∨

(A− U)) = t

there is an atom a ∈ A − U suh that a 6∈ F . Then a 6∈ F ∪ U
whih impliesM ′(

∨

A) > f . Thus (ii) is impossible and (i) implies

M ′(
∨

A) = u and M ′(B) = t. It follows that A ∩ (T − U) = ∅
and B ⊆ T − U . Sine U ∩ T = ∅, the former implies A ∩ T = ∅
while the latter implies that B ⊆ T . Consequently, M(

∨

A) < t

and M(B) = t, i.e., M(
∨

A) < M(B), a ontradition.

✷

Let us yet emphasize the ontent of Lemma 2.4 when M is total (and U
need not be M-onsistent). Then M ′ = M −U is also a total model of P . A
ouple of examples on unfounded sets follow.

Example 2.5 Consider a disjuntive program

P = {a ∨ b← c,∼a}

and an interpretation I = 〈∅, {a}〉. The only rule in P has its body unde�ned

in I, hene UF1 is not appliable. The set {a} is unfounded w.r.t. I sine b
is unde�ned in I and not in the set, hene UF3 is appliable. On the other

hand, the set {b} is not unfounded w.r.t. I whereas {c} is unfounded w.r.t.

I. One c belongs to an unfounded set, the atoms a and b an both get in

due to UF2. Hene, we have U = {a, b, c} as an unfounded set w.r.t. I.
Comparing U with I f , we �nd that I f does not maximize the atoms that

should be false. This program P has exatly one stable model (whih is also

a partial stable model) in whih all three atoms are false. ✷
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Unlike the ase for normal programs, the union of unfounded sets may

not be an unfounded set.

Example 2.6 Consider a program P ontaining only one rule

a ∨ b←

and an interpretation I = 〈{a, b}, ∅〉. The program has two non-empty un-

founded sets w.r.t. I, {a} and {b}. Either a or b depends on the other one not
in the set for UF3 to be appliable. However, UF3 beomes not appliable

when both a and b are in, thus the union {a, b} is not an unfounded set. ✷

An interpretation I for P beomes partiularly interesting when the union

of all unfounded sets U for P w.r.t. I is also an unfounded set for P w.r.t.

I. In this ase, the program P possesses the greatest unfounded set U for P
w.r.t. I.

De�nition 2.7 A total interpretation I is said to be unfounded free for a

program P if and only if there is no unfounded set U for P w.r.t. I suh that

U ∩ It 6= ∅.
The notion of unfounded freeness aptures the stable model beautifully.

Theorem 2.8 [26℄ Let M be a total interpretation for a disjuntive program

P . Then, the following are equivalent

• M is a stable model of P .

• M f
is the greatest unfounded set for P w.r.t. M .

• M is unfounded free for P .

On the other hand, Eiter et al. [14℄ show that partial stable models an

be de�ned essentially without referene to three-valued logi.

Theorem 2.9 [14℄ If M is a partial interpretation for a disjuntive program

P , then M is a partial stable model of P if and only if

• M t
is a minimal total model of PM

and

• M f
is a maximal M-onsistent unfounded set for P w.r.t. M .
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The �rst ondition in the theorem is alled foundedness in [14℄. The dif-

ferenes between these two theorems are quite subtle. The stritness of stable

models enfores a simpler relationship between stable models and unfounded

sets. Therefore, neither maximality nor onsisteny nor foundedness need

be expliitly stated. The haraterization of partial stable models in Theo-

rem 2.9 aounts for a more re�exible situation: sine M may not be a total

model, maximality should extend the set of false atoms as muh as possible

without ausing inonsisteny. However, maximality and onsisteny are still

not strong enough.

Example 2.10 Consider a disjuntive program

P = {a ∨ b← ∼a}

and an interpretation I = 〈{a}, {b}〉 whih is total so that the de�nition of

unfoundedness makes no di�erene in valuation under I. Sine the body of

the rule is false in I, U1 = {a}, U2 = {b}, and U3 = {a, b} are all nonempty
unfounded sets in this ase. It follows immediately by Theorem 2.9 that I
is not a stable model. However, U2 is maximally I-onsistent yet it is not a
partial stable model beause It is not a minimal model of P I

.

Note that P has a unique (partial) stable model, whih is 〈{b}, {a}〉. ✷

The haraterizations for partial and total stable models in terms of un-

founded sets provide a powerful tool for establishing relationships between

stable models and partial stable models.

3 UNFOLDING PARTIALITY

In this setion, we �rst show a translation for a disjuntive program into

another disjuntive program. We then prove that the translation preserves

the semantis of partial stable models. This result allows us to ompute

the partial stable models of a program by omputing the stable models of

the translated program. Finally we address the problem of query answering

under the translation.

3.1 TRANSLATION

Let P be a disjuntive program. In the following, we desribe a translation

of P into another disjuntive program Tr(P ) suh that the stable models of
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Tr(P ) orrespond to the partial stable models of P .
Let us introdue a new atom a• for eah a ∈ Hb(P ). An atom a• is

said to be marked, and an ordinary atom a is then said to be unmarked.

The intuitive reading of a• is that a is potentially true. For a set of literals

L ⊆ Hb(P ) ∪ ∼Hb(P ), we de�ne L• = {a• | a ∈ L} ∪ {∼a• | ∼a ∈ L}. The

translation Tr(P ) of a disjuntive program P is as follows:

Tr(P ) = {A← B,∼C•; A• ← B•,∼C |A← B,∼C ∈ P} ∪
{a• ← a | a ∈ Hb(P )} (2)

where semiolons are used to separate program rules. Note that the Herbrand

base of Hb(Tr(P )) is Hb(P )∪Hb(P )•. The rules a• ← a introdued for eah

a ∈ Hb(P ) enfore onsisteny in the sense that if a is true, then a must also
be potentially true.

Remark 3.1 Although for presentational purposes the translation is de�ned

for ground programs, exatly the same translation applies to non-ground

programs as well: for eah prediate p we introdue a new prediate p•,
hene for a (ground or non-ground) atom φ = p(t1, . . . , tn), the new atom

is φ• = p•(t1, . . . , tn) (f. Example 3.5). Sine our proofs do not depend

on the assumption that a given program is �nite, the onlusions reahed

over also any non-ground program with funtion symbols whose semantis

is determined by treating the program as a shorthand for its (possibly in�nite)

Herbrand instantation.

A partial stable model of a given program will be interpreted by a orre-

sponding stable model of the transformed program. The extra symbol a• for
eah atom a provides an opportunity to represent unde�ned (in three-valued

logi) in terms of truth values of a• and a in two-valued logi. For eah pair a
and a•, either of whih an be true or false, there are four possibilities: when

a• and a are in agreement, that is when they are both true or both false,

the truth value of a is their ommonly agreed truth value; the ombination

where a is false and a• is true then represents that a is unde�ned; and the

fourth possibility where a is true and a• is false is ruled out by any models

due to the onsisteny rules. This intended representation of a partial stable

model is given by the following equations.

De�nition 3.2 Let M be a partial interpretation of a program P and N
a total interpretation of Tr(P ). The interpretations M and N are said to
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satisfy the orrespondene equations if and only if the following equations

hold.

M t = {a ∈ Hb(P ) | a ∈ N t
and a• ∈ N t} (CE1)

M f = {a ∈ Hb(P ) | a ∈ N f
and a• ∈ N f} (CE2)

Mu = {a ∈ Hb(P ) | a ∈ N f
and a• ∈ N t} (CE3)

∅ = {a ∈ Hb(P ) | a ∈ N t
and a• ∈ N f} (CE4)

Note that total interpretations that are models of Tr(P ) satisfy CE4

immediately, sine the set of rules {a• ← a | a ∈ Hb(P )} is inluded in Tr(P ).
Consequently, the �fourth truth value� is ruled out. The following example

demonstrates how the representation given in De�nition 3.2 allows us to

apture the partial stable models of a disjuntive program P with the total

stable models of Tr(P ).

Example 3.3 Consider a disjuntive program

P = {a ∨ b← ∼c; b← ∼b; c← ∼c}.

Now a beomes false by the minimization of partial models, sine the falsity

of a does not a�et the satis�ability of any rule. Thus the unique par-

tial stable model of P is M = 〈∅, {a}〉. Note that the redution PM =
{a ∨ b← u; b← u; c← u}. Then onsider the translation

Tr(P ) = { a ∨ b← ∼c•; b← ∼b•; c← ∼c•;
a• ∨ b• ← ∼c; b• ← ∼b; c• ← ∼c;
a• ← a; b• ← b; c• ← c }.

The unique stable model of Tr(P ) is N = {b•, c•} whih represents (by CE2

and CE3) the setting that b and c are unde�ned and a is false in M . ✷

It is well-known that a disjuntive program P may not have any partial

stable models. In suh ases, the translation Tr(P ) should not have stable

models either, if the translation Tr(P ) is to be faithful.

Example 3.4 Consider a disjuntive program

P = {a ∨ b ∨ c←; a← ∼b; b← ∼c; c← ∼a}

13



and its translation

Tr(P )= { a ∨ b ∨ c←; a← ∼b•; b← ∼c•; c← ∼a•;
a• ∨ b• ∨ c• ←; a• ← ∼b; b• ← ∼c; c• ← ∼a } ∪ C

where C = {a• ← a; b• ← b; c• ← c} is the set of onsisteny rules.

Consider a partial model M = 〈{a, b}, ∅〉 of P and a total model N =
{a, a•, b, b•, c•} of Tr(P ) that satisfy the equations CE1�CE4 in De�nition

3.2. Now the redued program PM is

{a ∨ b ∨ c←; a← f ; b← u; c← f}

and sineM ′ = 〈{a, b}, {c}〉 < M is a partial model of PM , M is not a partial

stable model of P . On the other hand, the redut

Tr(P )N = {a ∨ b ∨ c←; a• ∨ b• ∨ c• ←; b• ←} ∪ C.

But N ′ = {a, a•, b, b•} ⊂ N is a model of Tr(P )N so N is not a stable model

of Tr(P ). The reader may analyze the other andidates in a similar fashion.

It turns out that P does not have partial stable models. Nor does Tr(P )
have stable models. ✷

Partial stable models an be viewed as a logi programming aount of

the solution of semanti paradoxes due to Kripke [23℄. In this aount, un-

de�ned means unknown for some individuals whih will not lose semanti

interpretations for other individuals.

Example 3.5 Consider the following program with variables:

P = { shave(bob, x)← ∼shave(x, x);
pay_by_cash(y, x) ∨ pay_by_credit(y, x)← shave(x, y);
accepted(x, y)← pay_by_cash(x, y);
accepted(x, y)← pay_by_credit(x, y) }.

This program intuitively says that Bob shaves those who do not shave them-

selves; if x shaves y then y pays x by ash or by redit; either way is aepted.
The prediate accepted is used here to demonstrate disjuntive reasoning.

Assume there is another person, alled Greg. Then learly, we should

onlude Bob shaves Greg, and Greg pays Bob by ash or by redit, either

way is aepted. However, the program has no stable models in this ase due
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to the paradox whether Bob shaves himself or not. But it has two partial

stable models, in both of whih shave(greg, greg) is false and shave(bob, bob)
is unde�ned (unknown). By translating the �rst two rules of P we obtain

shaves(bob, x)← ∼shaves•(x, x);
shaves•(bob, x)← ∼shaves(x, x);
pay_by_cash(y, x) ∨ pay_by_credit(y, x)← shaves(x, y); and

pay_by_cash•(y, x) ∨ pay_by_credit•(y, x)← shaves•(x, y).

The full translation Tr(P ) yields a Herbrand instantiation over the universe

{bob, greg} whih has four total stable models. One of them is

N = { shaves•(bob, bob),
shaves(bob, greg), shaves•(bob, greg),
pay_by_cash(greg, bob), pay_by_cash•(greg, bob),
pay_by_credit•(bob, bob), accepted•(bob, bob),
accepted(greg, bob), accepted•(greg, bob) }.

Hene the fat that shaves(bob, bob) is unde�ned in the orresponding partial
stable model M (reall the equations in De�nition 3.2) is represented by

shaves•(bob, bob) being true and shaves(bob, bob) being false in N . ✷

3.2 CORRECTNESS OF THE TRANSLATION

The goal of this setion is to establish a one-to-one orrespondene between

the partial stable models of a disjuntive program P and the (total) stable

models of the translation Tr(P ). It is �rst shown that the orrespondene

equations CE1�CE4 given in De�nition 3.2 provide a syntati way to trans-

form a partial stable model M of P into a total stable model N of Tr(P )
and bak. More formally, we have the following theorem in mind.

Theorem 3.6 Let M be a partial interpretation of a disjuntive program P
and N a total interpretation of the translation Tr(P ) suh that CE1�CE4 are

satis�ed. Then M is a partial stable model of P if and only if N is a (total)

stable model of Tr(P ).

Our strategy to prove Theorem 3.6 is as follows: �rst, in two separate

lemmas, we show the orrespondene, in eah diretion, between unfounded

sets for P and Tr(P ) under M and N , respetively. These two lemmas are

interesting in their own right as they show very tight onditions under whih
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the two previously studied notions of unfoundedness [14, 26℄ are related.

These results will then be used in the proof of the theorem. We �rst state

two relatively simple fats. The �rst says that that the GL-transform has no

e�et on unfoundedness, and the seond states that the translation preserves

models via CE1�CE4 in De�nition 3.2.

Proposition 3.7 Let P be a disjuntive program and N a total interpreta-

tion for P . Then, X ⊆ Hb(P ) is an unfounded set for P w.r.t. N if and only

if X is an unfounded set for PN
w.r.t. N .

PROOF. Note that A← B ∈ PN
if and only if there is a rule A← B,∼C ∈

P suh that C ⊆ N f
, i.e., C ∩ N t = ∅. Then it holds for any X ⊆ Hb(P )

that

X is not an unfounded set for P w.r.t. N
⇐⇒ ∃A← B,∼C ∈ P suh that (1) A ∩X 6= ∅, (2) B ∩N f = ∅,

(3) C ∩N t = ∅, (4) B ∩X = ∅, and (5) (A−X) ∩N t = ∅
⇐⇒ ∃A← B ∈ PN

suh that (6) A ∩X 6= ∅, (7) B ∩N f = ∅,
(8) B ∩X = ∅, and (9) (A−X) ∩N t = ∅

⇐⇒ X is not an unfounded set for PN
w.r.t. N .

✷

Proposition 3.8 Let M be a partial interpretation for a disjuntive program

P and N a total interpretation for the translation Tr(P ). Assume M and N
satisfy the CEs. Then, M is a partial model of P if and only if N is a total

model of Tr(P ).

PROOF. It follows by the orrespondene equations CE1�CE4 in De�nition

3.2 that M is not a partial model of P if and only if

∃ A← B,∼C ∈ P : M(
∨

A) < M(B ∪ ∼C)
⇐⇒ ∃ A← B,∼C ∈ P : M(

∨

A) < t and M(B ∪ ∼C) = t, or

∃ A← B,∼C ∈ P : M(
∨

A) = f and M(B ∪ ∼C) = u

⇐⇒ ∃ A← B,∼C• ∈ Tr(P ): N(
∨

A) = f and N(B ∪ ∼C•) = t, or

∃ A• ← B•,∼C ∈ Tr(P ): N(
∨

A•) = f and N(B• ∪ ∼C) = t

⇐⇒ ∃ A← B,∼C• ∈ Tr(P ): N(
∨

A) < N(B ∪ ∼C•), or
∃ A• ← B•,∼C ∈ Tr(P ): N(

∨

A•) < N(B• ∪ ∼C)

whih is equivalent to stating that N is not a total model of Tr(P ), sine the
onsisteny rules in Tr(P ) are automatially satis�ed by CE4. ✷
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Still assuming the setting determined by CEs, the following lemma gives a

ondition under whih the unfounded sets w.r.t.N for Tr(P ) an be onverted
into unfounded sets w.r.t. M for P .

Lemma 3.9 Let P be a program, M a partial interpretation of P and N a

total interpretation of the program Tr(P ) suh that CE1�CE4 are satis�ed.

Then, for any unfounded set X for Tr(P ) w.r.t. N , the set of atoms Y =
{a ∈ Hb(P ) | a• ∈ X} is an unfounded set for P w.r.t. M . In addition, if X
is N-onsistent, then Y is M-onsistent.

PROOF. Consider any rule A ← B,∼C ∈ P suh that A ∩ Y 6= ∅. It is

proven in the sequel that one of the unfoundedness onditions UF1�UF3 ap-

plies to A← B,∼C. Two ases arise depending on the value of M(B ∪ ∼C).

I. If M(B ∪ ∼C) = f , then UF1 is diretly appliable.

II. Suppose that M(B ∪ ∼C) 6= f whih implies N(B• ∪ ∼C) = t by the

CEs. Now A∩ Y 6= ∅ and the de�nition of Y imply A• ∩X 6= ∅. Sine
A• ← B•,∼C ∈ Tr(P ), X is an unfounded set for Tr(P ) w.r.t. N and

UF1 is not appliable to A• ← B•,∼C, we know that either UF2 or

UF3 applies to A• ← B•,∼C.

(i) If UF2 applies to A• ← B•,∼C, then B•∩X 6= ∅. It follows by the
de�nition of Y that B ∩ Y 6= ∅, i.e., UF2 applies to A← B,∼C.

(ii) If UF3 applies to A• ← B•,∼C, then N(
∨

(A• −X)) = t. Sine

A• −X = (A− Y )• by the de�nition of Y , we obtain by the CEs

that M(
∨

(A− Y )) 6= f . Thus UF3 applies to A← B,∼C.

The proof of the onsisteny laim follows. To establish the ontrapositive

of the laim, suppose that Y is not M-onsistent. Then Y ∩M t 6= ∅, i.e.,
there exists an atom a ∈ Hb(P ) suh that a ∈ Y and a ∈ M t

. The former

implies a• ∈ X by the de�nition of Y while the latter gives us a• ∈ N t
by

the CEs. Thus X ∩N t 6= ∅ and X is not N-onsistent. ✷

The next lemma shows that, under the spei�ed onditions, an unfounded

set for a given disjuntive program P orresponds to a olletion of unfounded

sets for the translation Tr(P ).

Lemma 3.10 Let M be a partial model of a disjuntive program P and N
a total interpretation of Tr(P ) satisfying the CEs. If X is an M-onsistent

17



unfounded set for P w.r.t. M , then Y = F ∪ U where F = {a, a• | a ∈ X}
and U ⊆ {a | a ∈ N f , a• ∈ N t} is an unfounded set for Tr(P ) w.r.t. N .

PROOF. Let X be an M-onsistent unfounded set for P w.r.t. M and let

Y = F ∪ U satisfy the requirements above. Sine any atom in Y is either

marked or unmarked, two ases arise.

I. Suppose that a• ∈ Y whih implies by the de�nition of Y that a ∈ Y .
Then it is lear that that UF2 applies to the onsisteny rule a• ←
a ∈ Tr(P ). Let us then prove that one of the unfoundedness onditions
applies to any rule A• ← B•,∼C ∈ Tr(P ) satisfying a• ∈ A•

. Sine

N is a total interpretation, we have N(B• ∪ ∼C) = f (in whih ase

UF1 applies to A• ← B•,∼C) or N(B• ∪ ∼C) = t in whih ase

M(B ∪ ∼C) > f . Sine a ∈ X and a ∈ A, and UF1 does not apply to

A ← B,∼C, we only need to onsider UF2 and UF3. If UF2 applies

to A← B,∼C, ∃b ∈ B suh that b ∈ X . It follows by the de�nition of

Y that b• ∈ Y . Hene UF2 applies to A• ← B•,∼C. If UF3 applies to
A ← B,∼C, ∃b ∈ A suh that M(b) > f and b 6∈ X . Then we know

that N(b•) = t by the CEs. Further, by the de�nition of Y , b 6∈ X
implies b• 6∈ Y . Hene UF3 applies to A• ← B•,∼C.

II. Suppose that a ∈ Y . Then onsider any rule A ← B,∼C• ∈ Tr(P )
suh that a ∈ A. Sine N is a total interpretation, N(B ∪ ∼C•) = f

(in whih ase UF1 applies to A ← B,∼C•
) or N(B ∪ ∼C•) = t. In

the latter ase, we know that ∃b ∈ A suh that N(b) = t, sine N is a

model of Tr(P ) by Proposition 3.8 (reall that M is a partial model of

P ). Then suppose that b ∈ Y , i.e., b ∈ F or b ∈ U by the de�nition of

Y . If b ∈ F , then b ∈ X by the de�nition of F . On the other hand,

N(b) = t implies M(b) = t. Thus M t ∩ X 6= ∅, ontraditing the

M-onsisteny of X . If b ∈ U , the the de�nition of U implies N(b) = f ,

a ontradition. Hene, b 6∈ Y and UF3 applies to A← B,∼C•
.

✷

We note that the M-onsisteny of X is also a neessary ondition for

the orrespondene to hold.

Example 3.11 Consider a disjuntive program P = {a ∨ b←; a← ∼a}
and a partial modelM = 〈{b}, ∅〉 of P . It an be heked easily that X = {b}
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is an unfounded set for P w.r.t. M : UF3 applies to the only rule in whih b
appears in the head. But X is not M-onsistent. Now onsider

Tr(P )= { a ∨ b←; a• ∨ b• ←; a← ∼a•;
a• ← ∼a; a• ← a; b• ← b }.

The total interpretation orresponding to M above is N = {a•, b, b•}. How-
ever, Y = {a, b, b•} is not unfounded for Tr(P ) w.r.t. N , sine for b ∈ Y and

the �rst rule in Tr(P ), none of the unfoundedness onditions applies. ✷

Let us establish Theorem 3.6 in two separate theorems.

Theorem 3.12 Let P be a disjuntive program. If N is a stable model of

the translation Tr(P ), then the partial interpretation M of P satisfying the

orrespondene equations CE1�CE4 is a partial stable model of P .

PROOF. Let N be a stable model of Tr(P ). Then it follows by the pres-

ene of onsisteny rules {a• ← a | a ∈ Hb(P )} in Tr(P ) that there is no

a ∈ Hb(P ) suh that a ∈ N and a• 6∈ N , sine N is a total model of

Tr(P ). Thus it makes sense to de�ne M as the partial interpretation satisfy-

ing CE1�CE4. We prove that M t
is a minimal total model of PM

, and M f

is a maximal M-onsistent unfounded set for P w.r.t. M .

I. Let us �rst establish that for any rule A← B,∼C ∈ P , A← B ∈ PM

⇐⇒ A ← B ∈ Tr(P )N . So onsider any A ← B,∼C ∈ P . It

follows by the CEs and the de�nitions of PM
, Tr(P ) and Tr(P )N that

A← B ∈ PM ⇐⇒ there is a rule A← B,∼D ∈ P suh that D ⊆M f

⇐⇒ there is a rule A ← B,∼D• ∈ Tr(P ) suh that D• ⊆ N f ⇐⇒
A ← B ∈ Tr(P )N . Note that within these equivalenes A ← B,∼C
and A← B,∼D need not be the same rules of P .

II. Let us then prove that M t
is a minimal total model of PM

. If we

assume the ontrary, two ases arise.

� M t
is not a total model of PM

, i.e., there is a rule A← B ∈ PM

suh that M t(B) = t, but M t(A) = f . It follows by the CEs that

N(B) = t and N(A) = f . Thus A← B is not satis�ed in N and

thus N is not a model of Tr(P )N , as PM ⊂ Tr(P )N holds by (I)

above. A ontradition, sine N is a stable model of Tr(P ).
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� There is a total modelM ′
of PM

suh thatM ′ ⊂M t
. Then de�ne

a total interpretation N ′ = M ′ ∪ {a• | a• ∈ N}. By M ′ ⊂M t
and

the CEs, we obtain N ′ ⊂ N (only some unmarked atoms of N
are not in N ′

). Sine M ′
is a total model of PM

, and M ′
and N ′

oinide on the atoms of Hb(P ), every rule in PM
is satis�ed by

N ′
. By (I), the di�erene Tr(P )N −PM

ontains only onsisteny

rules a• ← a (for every a ∈ Hb(P )) and rules of the form A• ← B•

(for some A ← B,∼C ∈ P ). These rules are all satis�ed by N ′
,

sine N is a total model of Tr(P )N , N ′ ⊂ N , and N ′
and N

oinide on the marked atoms in Hb(P )•. Thus N ′
is a total

model of Tr(P )N . Then N ′ ⊂ N implies that N is not a minimal

model of Tr(P )N nor a total stable model of P . A ontradition.

III. Sine N is a total stable model of Tr(P ), it holds by Theorem 2.8

that N f
is the greatest unfounded set for Tr(P ) w.r.t. N . More-

over, N f
is N-onsistent, sine N f ∩ N t = ∅. Note that a• ∈ N f

implies a ∈ N f
, sine N satis�es a• ← a ∈ Tr(P ). Thus M f =

{a ∈ Hb(P ) | a ∈ N f
and a• ∈ N f} = {a ∈ Hb(P ) | a• ∈ N f}. It fol-

lows by Lemma 3.9 that M f
is an M-onsistent unfounded set for P

w.r.t. M .

Then assume that M f
is not maximal, i.e., there is an M-onsistent

unfounded set X for P w.r.t. M suh that X ⊃ M f
. So there is an

atom a ∈ X suh that a 6∈ M f
. Then a 6∈ M f

implies a ∈ M t
or

a ∈ Mu
. In both ases, by the CEs, a• ∈ N t

, i.e., a• 6∈ N f
. Then

onstrut Y = {a, a• | a ∈ X}. Aording to Lemma 3.10, that X is

an M-onsistent unfounded set for P w.r.t. M implies that Y is an

unfounded set for Tr(P ) w.r.t N . However, a ∈ X implies a• ∈ Y
but a• 6∈ N f

. Thus a• ∈ N t
indiating that N is not unfounded free

for Tr(P ). Consequently, N is not a stable model of Tr(P ) by the

haraterization of stable models in Theorem 2.8, a ontradition.

✷

Theorem 3.13 Let P be a disjuntive program. If M is a partial stable

model of P , then the total interpretation N satisfying the orrespondene

equations CE1�CE4 is a stable model of the translation Tr(P ).

PROOF. Suppose that M is a partial stable model of P . Then we know by

Theorem 2.9 that (i) M t
is a minimal total model of PM

and (ii) M f
is a
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maximal M-onsistent unfounded set for P w.r.t. M . Then de�ne N as the

total interpretation of Tr(P ) satisfying the CEs. It follows by Lemma 3.10

that N f = {a, a• | a ∈M f} ∪Mu
is an unfounded set for Tr(P ) w.r.t. N .

Let us then assume that N is not a stable model of Tr(P ). Equivalently,
it holds by Theorem 2.8 that N f

is not the greatest unfounded set for Tr(P )
w.r.t. N . So there is an unfounded set X for Tr(P ) w.r.t. N suh that

N f ⊂ X and N t ∩X 6= ∅ hold. It follows by Proposition 3.7 that X is also

an unfounded set for Tr(P )N w.r.t. N .

Then onsider any A← B ∈ PM
for whih there is a rule A← B,∼C ∈ P

suh that C ⊆M f
. It follows by the CEs that C• ⊆ N f

. Sine A← B,∼C• ∈
Tr(P ), it follows that A ← B ∈ Tr(P )N . Thus PM ⊂ Tr(P )N holds, as

Tr(P )N ontains among others the onsisteny rules {a• ← a | a ∈ Hb(P )}.
Reall that M t = N t ∩ Hb(P ) is a minimal total model of PM

. We also

distinguish a set of atoms X ′ = X ∩Hb(P ). Let us then establish that X ′
is

an unfounded set for PM
with respet to M t

in the two-valued sense.

I. IfX ′
is not suh a set, it follows by De�nition 2.3 that there is A← B ∈

PM
with A∩X ′ 6= ∅ suh that B ⊆M t

, B∩X ′ = ∅ and (A−X ′)∩M t =
∅. It follows that A ← B ∈ Tr(P )N , as PM ⊂ Tr(P )N . Sine A and

B are subsets of Hb(P ), M t = N t ∩ Hb(P ) and X ′ = X ∩ Hb(P ), we
obtain A ∩X 6= ∅, B ⊆ N t

, B ∩X = ∅ and (A−X) ∩N t = ∅. Then
X is not an unfounded set for Tr(P )N w.r.t. N , a ontradition.

It follows by Lemma 2.4 that M t − X ′
is a total model of PM

. It follows

by the minimality of M t
that M t ∩ X ′ = ∅ and M t ∩X = ∅. Moreover, it

follows by Lemma 3.9 that Y = {a ∈ Hb(P ) | a• ∈ X} is an unfounded set

for P w.r.t. M . It remains to establish that Y is M-onsistent and M f ⊂ Y .

II. Suppose that Y is not M-onsistent, i.e., it holds for some a ∈ Hb(P )
that (a) a ∈ Y and (b) a ∈ M t

. Now (b) implies by the CEs that

a ∈ N t
and a• ∈ N t

. On the other hand, it follows by (a) and the

de�nition of Y that a• ∈ X . Thus one of the unfoundedness onditions

applies to the rule a• ← a ∈ Tr(P ), as X is an unfounded set for

Tr(P ) w.r.t. N . Now UF1 is not appliable, as a 6∈ N f
, and UF3 is not

appliable, as a• ∈ X . Thus UF2 must be appliable to a• ← a. It

follows that a ∈ X , too. Then there is a ∈ Hb(P ) suh that a ∈ M t

and a ∈ X . A ontradition with M t ∩X = ∅ established above.

III. Consider any a ∈ M f
. Thus a ∈ Hb(P ) and a• ∈ N f

follows by the

CEs. Then N f ⊂ X implies a• ∈ X as well as a ∈ Y by the de�nition
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of Y . Thus M f ⊆ Y . On the other hand, reall that N t ∩X 6= ∅ and
M t ∩X = ∅. Then a• ∈ N t ∩X holds for some a ∈ Hb(P ). It follows
that a• ∈ N t

and a• ∈ X . The former implies a 6∈ M f
by the CEs.

The latter implies a ∈ Y by the de�nition of Y . Hene M f ⊂ Y .

Thus M f
is not a maximal M-onsistent unfounded set for P w.r.t. M , a

ontradition. Hene N must be a stable model of Tr(P ). ✷

It is worthwhile at this point to brie�y omment on the proof of The-

orem 3.6 as given in [43℄, whih proeeds in several steps. Given two par-

tial interpretations M and M ′
of a disjuntive program P , let N and N ′

,

respetively, be the orresponding total interpretations of Tr(P ) suh that

CE1�CE4 are satis�ed. Firstly, it an be shown that M is a partial model

of PM ′
if and only if N is a total model of Tr(P )N

′

. Seondly, sine the

truth-ordering for partial interpretations orresponds to the subset ordering

for total interpretations, it an be shown that the minimal partial models of

PM ′
orrespond to the minimal total models of Tr(P )N

′

. Thirdly, based on

a haraterization of partial models in general [43℄, we onlude that M is a

partial stable model of P if and only if N is a total stable model of Tr(P ).
Looking bak to results established so far, we know by Theorem 3.13 that

any partial stable model M of P an be mapped to a stable model

f(M) = M t ∪ (M t ∪Mu)
•

(3)

of Tr(P ). Similarly, any stable model N of Tr(P ) an be projeted to a

partial stable model

g(N) = 〈{a ∈ Hb(P ) | a ∈ N}, {a ∈ Hb(P ) | a 6∈ N and a• 6∈ N}〉 (4)

of P by Theorem 3.12. These equations and the orresponding theorems

indiate that f and g are funtions between the set of partial stable models of
P and the set of stable models of Tr(P ). In the sequel, it is established that

these funtions are bijetions, whih means that our translation tehnique

does not yield spurious models for programs although new atoms are used.

This is highly desirable from the knowledge representation perspetive.

Theorem 3.14 The partial stable models of a disjuntive program P and

the total stable models of the translation Tr(P ) are in a one-to-one orre-

spondene.
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PROOF. Let f and g be de�ned by the equations (3) and (4), respetively.

It is straightforward to see that f is injetive, i.e., f(M1) = f(M2) implies
M1 = M2. Then assume that g(N1) = g(N2) holds for some stable models N1

and N2 of Tr(P ). It follows by the de�nition of g for any a ∈ Hb(P ) that (i)
a ∈ N1 ⇐⇒ a ∈ N2 and (ii) a 6∈ N1 and a• 6∈ N1 ⇐⇒ a 6∈ N2 and a• 6∈ N2.

Then onsider any a ∈ Hb(P ) suh that a• ∈ N1. Two ases arise. If a ∈ N1,

it follows by (i) that a ∈ N2. Sine N2 satis�es the rule a• ← a ∈ Tr(P )N2
,

we obtain a• ∈ N2. On the other hand, if a 6∈ N1 it follows by (i) that a 6∈ N2.

Assuming that a• 6∈ N2 implies by (ii) that a• 6∈ N1, a ontradition. Hene

a• ∈ N2 also in this ase. By symmetry, a• ∈ N2 implies a
• ∈ N1.

Thus it holds for any a ∈ Hb(P ) that (iii) a• ∈ N1 ⇐⇒ a• ∈ N2. It

follows by (i) and (iii) that N1 = N2 so that g is injetive, too. Thus f and g
are bijetions and inverses of eah other, as g(f(M)) = M and f(g(N)) = N
hold for any (partial) stable models M and N . Hene the laim. ✷

None of the preeding proofs relies on the assumption that the given

program is �nite. Therefore, all of these results presented in this setion

apply in the non-ground ase as well.

3.3 QUERY ANSWERING

Let us yet address the possibility of using an inferene engine for omput-

ing total stable models to answer queries onerning partial stable models.

This is highly interesting, beause there are already systems available for

omputing total stable models [1, 29, 24, 45℄ while partial stable models lak

implementations. Here we must remind the reader that partial stable models

an be used in di�erent ways in order to evaluate queries. Typially two

modes of reasoning are used: ertainty inferene and possibility inferene.

In the former approah, a query Q should be true in all (intended) models

of P while Q should be true in some (intended) model of P in the latter

approah. Moreover, maximal partial stable models (under set inlusion) are

sometimes distinguished; this is how regular models and preferred extensions

are obtained for normal programs [10, 39, 50℄. We are partiularly interested

in possibility inferene where the maximality ondition makes no di�erene

(see [15, 38℄ for ertainty inferene): M(Q) = t for some partial stable model

M of P if and only if M ′(Q) = t for some maximal partial stable model M ′

of P .
We onsider queries Q that are sets of literals over Hb(P ) and queries

are translated in harmony with the CEs: Tr(Q) = Q ∪ Q•
. As a diret
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onsequene of Theorem 3.13 and CE1, we obtain the following.

Corollary 3.15 A query Q is true in a (maximal) partial stable model of P
if and only if Tr(Q) is true in a stable model of Tr(P ).

What about using a query answering proedure for partial stable models

to answer queries onerning stable models? A slight extension of the trans-

lation Tr(P ) is needed for this purpose: let Tr2(P ) be Tr(P ) augmented with
a set of rules {f ← a•,∼a | a ∈ Hb(P )} where f 6∈ Hb(P ) is a new atom. The

purpose of these additional rules is to detet partial stable models with re-

maining unde�ned atoms. A query Q is translated into Tr2(Q) = Q∪ {∼f}.

Corollary 3.16 A query Q is true in a stable model of P if and only if

Tr2(Q) is true in a partial stable model of Tr2(P ).

This result allows query answering for stable models to be onduted by

a proedure for partial stable models, e.g., by the abdutive proedure of

Eshghi and Kowalski [16℄.

4 UNFOLDING DISJUNCTIONS

In this setion we develop a method for reduing the task of omputing a

(total) stable model of a disjuntive program to omputing stable models for

normal (disjuntion-free) programs. This objetive demands us to unfold

2

disjuntions from programs in a way or another. Sine the problem of de-

iding whether a disjuntive program has a stable model is Σp
2-omplete [12℄

whereas the problem is NP-omplete in the non-disjuntive ase [31℄, the

redution annot be omputable in polynomial time unless the polynomial

hierarhy ollapses. This is why our redution is based on a generate and

test approah.

The basi idea is that given a disjuntive program P we ompute its

stable models in two phases: (i) we generate model andidates and (ii) test

andidates for stability until we �nd a suitable model. For generating model

2

The idea of unfolding disjuntion generally refers to performing some transformations

on disjuntions in order to remove them [4, 9, 41℄. However, suh transformations do not

neessarily remove all disjuntions or do not preserve stable semantis.
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andidates we onstrut a normal program Gen(P ) suh that the stable mod-
els of Gen(P ) give the andidate models. For testing a andidate model M
we build another normal program Test(P,M) suh that Test(P,M) has no
stable models if and only if M is a stable model of the original disjuntive

program P . Hene, given a proedure for omputing stable models for nor-

mal programs all stable models of a disjuntive program P an be generated

as follows: for eah stable model M of Gen(P ), deide whether Test(P,M)
has a stable model and if this is not the ase, output M as a stable model of

P . This kind of a generate and test approah is used also in dlv [24℄ whih

is a state-of-the-art system for disjuntive programs. The di�erene is that

we redue the test and generate subtasks diretly to problems of omputing

stable models of normal programs whereas in dlv speial tehniques for the

two subtasks have been developed based on the notion of unfounded sets for

disjuntive programs.

It is easy to onstrut a normal program for generating andidate models

for a disjuntive program P . Consider, e.g., a program G0(P ) whih ontains
for eah atom a ∈ Hb(P ), two rules a ← ∼â; â ← ∼a where â is a new

atom denoting the omplement of the atom a, i.e., a is in a stable model

exatly when â is not. These rules generate stable models orresponding to

every subset of Hb(P ). In order to prune this set of models to those with all

rules in P satis�ed, it is su�ient to inlude a rule

f ← ∼f,∼a1, . . . ,∼ak, b1, . . . , bm,∼c1, . . . ,∼cn (5)

for eah rule of the form (1) in P where f is a new atom. As f annot be in

any stable model, the rule funtions as an integrity onstraint eliminating the

models where eah bi is inluded, every cj is exluded but no al is inluded.
In order to guarantee ompleteness, it is su�ient that for eah stable

model M of P there is a orresponding model andidate whih agrees with

M w.r.t. Hb(P ). It is lear that G0(P ) satis�es this ondition. However, for
e�ieny it is important to devise a generating program that has as few as

possible (andidate) stable models provided that ompleteness is not lost. An

obvious shortoming of G0(P ) is that it generates many andidates even if

the program P is disjuntion-free. In order to solve this problem we onstrut

for given a disjuntive program P a generating program G1(P ) as follows:

G1(P ) = {a← ∼â, B,∼C | A← B,∼C ∈ PD, a ∈ A} ∪
{â← ∼a | a ∈ Heads(PD)} ∪
{f ← ∼f,∼A,B,∼C | A← B,∼C ∈ PD} ∪ PN
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where PN is the set of the normal rules in P and PD are the other (proper

disjuntive) rules in P , i.e. P = PN ∪ PD, and Heads(PD) is the set of atoms
appearing in the heads of the rules in PD.

The program G1(P ) has typially far fewer stable models than G0(P ) and
the number of �extra� andidate models whih do not math stable models

of P is related to the number of disjuntions in P . For example, if P is

disjuntion-free, the stable models of G1(P ) orrespond exatly to the stable
models of P . However, for a disjuntive program P , G1(P ) an easily have

�extra� stable models. Consider, e.g.,

P = {a ∨ b←} (6)

for whih G1(P ) = {a ← ∼â; â ← ∼a; b ← ∼b̂; b̂ ← ∼b; f ←
∼f,∼a,∼b} has a stable model, {a, b}, not orresponding to a stable model
of P . In fat, G1(P ) only requires for eah proper disjuntive rule in P that

some non-empty subset of the head atoms of the rule is inluded in the model

andidate when the body of the rule holds. Hene, for suh a rule with d
disjunts in the head there are 2d − 1 possible subsets and in the worst ase

2d − 2 of these ould lead to �extra� model andidates. This means that

in the worst ase G1(P ) an have an exponential number of �extra� model

andidates w.r.t. the number of disjuntions in P .
In order to derease the number of �extra� models we introdue a teh-

nique exploiting a key property of supported models [3℄: eah atom a true

in a model M of P must have a rule supporting it, i.e., there is a rule A ←
B,∼C ∈ P suh that a ∈ A, M(B ∪ ∼C) = t, and M(

∨

(A− {a})) = f .

Sine every stable model of P is also a supported model of P , it makes per-
fet sense to require supportedness from the andidate stable models. For

this, we introdue a new atom as, whih denotes the fat that atom a has

a supporting rule, for eah atom a appearing in the head of a disjuntive

rule. The intuition behind the set of rules Supp(P ) below is that a rule an

support exatly one of its head atoms and we may exlude every model that

has an atom without a supporting rule:

Supp(P ) =

{as ← ∼(A− {a}), B,∼C | A← B,∼C ∈ P, a ∈ A ∩Heads(PD)} ∪
{f ← ∼f, a,∼as | a ∈ Heads(PD)} (7)

where Heads(PD) is the set of atoms appearing in the heads of the proper

disjuntive rules in P . For example, for P in (6),
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Supp(P ) = {as ← ∼b; bs ← ∼a; f ← ∼f, a,∼as; f ← ∼f, b,∼bs}.

Now G1(P )∪ Supp(P ) has exatly two stable models {a, as, b̂} and {b, bs, â}
orresponding to the two stable models {a} and {b} of P .

Combining this idea with G1(P ) gives a promising generating program

Gen(P ) = G1(P ) ∪ Supp(P ) (8)

whih still preserves ompleteness.

Proposition 4.1 Let P be a disjuntive program. Then if M is a stable

model of P , there is a stable model N of Gen(P ) = G1(P ) ∪ Supp(P ) with
M = N ∩ Hb(P ).

PROOF. Let M be a stable model of P and

N = M ∪ {â | a ∈ Heads(PD)−M} ∪ {as | a ∈ M ∩ Heads(PD)}.

Now learlyM = N∩Hb(P ). We show �rst that (i)N is a model of Gen(P )N

and then that (ii) if there is a model N ′
of Gen(P )N suh that N ′ ⊆ N then

N ⊆ N ′
holds. These together imply that N is a stable model of Gen(P ).

For property (i) onsider rules in Gen(P )N = G1(P )N ∪ Supp(P )N start-

ing with those in G1(P )N . Suppose a ← B ∈ G1(P )N . If a ∈ Heads(PD),
then â 6∈ N and, hene, a ∈ M ⊆ N . Otherwise if a 6∈ Heads(PD), then
a ← B ∈ PM

implying that N(⊇ M) satis�es a ← B. If â ←∈ G1(P )N ,
then a 6∈ M and â ∈ N . If f ← B ∈ G1(P )N , then there is a rule

A← B,∼C ∈ PD suh that A∩M = ∅ and A← B ∈ PM
. As M is a model

of PM
, B 6⊆ M and, onsequently, B 6⊆ N . Thus, N is a model of G1(P )N .

Next onsider rules in Supp(P )N . If as ← B ∈ Supp(P )N , then there is a

rule A ← B,∼C ∈ P suh that A ← B ∈ PM
and (A − {a}) ∩M = ∅. If

B ⊆ N , then B ⊆M and, hene, A∩M 6= ∅ as M is a model of PM
. Thus,

a ∈ M . If f ← a ∈ Supp(P )N , then as 6∈ N , and a 6∈ N . This implies that

N is a model of Supp(P )N and that (i) holds.

For property (ii) onsider a modelN ′
ofGen(P )N suh thatN ′ ⊆ N . First

we show that N ′ ∩Hb(P ) is a model of PM
implying that M ⊆ N ′ ∩Hb(P ).

Consider A← B ∈ PM
. If the body B is true in N ′∩Hb(P ) ⊆ N ∩Hb(P ) =

M , then at least one a ∈ A ∩M . Then a ← B ∈ Gen(P )N and a ∈ N ′
.

Hene, M ⊆ N ′ ∩ Hb(P ). If â ∈ N , then a 6∈ N and, hene, â ←∈ G1(P )N

implying â ∈ N ′
. If as ∈ N , then a ∈ M ∩ Heads(PD). Then there is a rule

A ← B ∈ PM
suh that B ⊆ M but (A − {a}) ∩M = ∅. This is beause
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otherwise M −{a} would be a model of PM
ontraditing the minimality of

M . Hene, as ← B ∈ Supp(P )N and B ⊆ M ⊆ N ′
implying as ∈ N ′

. Thus,

N ⊆ N ′
and (ii) holds. ✷

A (total) model andidate M ⊆ Hb(P ) is a stable model of a program

P if it is a minimal model of the GL-transform PM
of the program. This

test an be redued to an unsatis�ability problem in propositional logi using

tehniques presented in [33℄: M is a minimal model of PM
if and only if

PM ∪ {¬a | a ∈ Hb(P )−M} ∪ {¬b1 ∨ · · · ∨ ¬bm} (9)

is unsatis�able where M = {b1, . . . , bm} and the rules in PM
are seen as

lauses. This an be determined by testing non-existene of stable models for

a normal program Test(P,M) whih is onstruted for a disjuntive program

P and a total interpretation M ⊆ Hb(P ) as follows:

Test(P,M) = {a← ∼â, B | A← B ∈ PM
D , a ∈ A ∩M,B ⊆M} ∪

{â← ∼a | a ∈ Heads(PD)} ∪
{f ← ∼f,∼A,B | A← B ∈ PM

D , B ⊆M} ∪
{a← B ∈ PM

N | a ∈ M,B ⊆ M} ∪
{f ← ∼f,M}

where PN is the set of the normal rules in P and PD are the proper disjuntive

rules in P and Heads(PD) is the set of atoms appearing in the heads of the

rules in PD. The idea is that stable models of Test(P,M) apture models of
the redut PM

that are properly inluded in M .

Proposition 4.2 Let P be a disjuntive program and M a (total) model of

P . Then M is a minimal model of PM
if and only if Test(P,M) has no

stable model.

PROOF. Let M ⊆ Hb(P ) be a total model of P .
(⇒) Let N be a stable model of Test(P,M). If a ∈ Hb(P )−M , then there

is no rule with a in the head in Test(P,M) and a 6∈ N . Hene, N ∩Hb(P ) ⊆
M . As f 6∈ N and f ← M ∈ Test(P,M)N , there is some a ∈ M suh that

a 6∈ N ∩ Hb(P ). Consider A ← B ∈ PM
. Let B ⊆ N ∩ Hb(P ) ⊆ M but

suppose A∩N∩Hb(P ) = ∅. If A = {a}, a← B ∈ Test(P,M)N and a ∈ N , a

ontradition. Otherwise f ← B ∈ Test(P,M)N and f ∈ N , a ontradition.

Hene, N ∩Hb(P ) is a model of PM
but N ∩Hb(P ) ⊂ M implying that M

is not a minimal model of PM
.
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(⇐) Assume that M is not a minimal model of PM
. As M is a model

of PM
, there is a minimal model M ′ ⊂ M of PM

. We show that N =
M ′ ∪{â | a ∈ Heads(PD)−M ′} is a minimal model of Test(P,M)N , i.e., N a

stable model of Test(P,M). Now Test(P,M)N =

{a← B | A← B ∈ PM
D , a ∈ A ∩M ∩M ′, B ⊆M} ∪

{â←| a ∈ Heads(PD)−M ′} ∪
{f ← B | A← B ∈ PM

D , A ∩M ′ = ∅, B ⊆M} ∪
{a← B ∈ PM

N | a ∈M,B ⊆M} ∪
{f ←M}.

It is easy to hek that (i) N is a model of Test(P,M)N . Assume there is

a model N ′
of Test(P,M)N suh that N ′ ⊆ N holds. We show that then

(ii) N ⊆ N ′
holds as follows. We notie that for all a ∈ Hb(P ), a ∈ N ′

implies a ∈M ′
. Consider A← B ∈ PM

. If B is true in N ′ ∩Hb(P ), then B
is true in M ′

and, thus, B ⊆ M and some a ∈ A ∩M ∩M ′
. Then a← B ∈

Test(P,M)N and a ∈ N ′
. Hene, N ′∩Hb(P ) is a model of PM

whih implies

M ′ ⊆ N ′ ∩ Hb(P ). If â ∈ N , then a 6∈ M ′
and â←∈ Test(P,M)N implying

â ∈ N ′
. Then N ⊆ N ′

holds. Now (i) and (ii) imply that N is a minimal

model of Test(P,M)N and, hene, a stable model of Test(P,M). ✷

Example 4.3 Consider a disjuntive program P and its generator Gen(P ):

P = {a ∨ b← ∼c}

Gen(P ) = { a← ∼â,∼c; b← ∼b̂,∼c;
â← ∼a; b̂← ∼b;
f ← ∼f,∼a,∼b,∼c;
as ← ∼b,∼c; bs ← ∼a,∼c;
f ← ∼f, a,∼as; f ← ∼f, b,∼bs }

For a stable model {b, bs, â} of Gen(P ) the orresponding model andidate is
M1 = {b, bs, â} ∩ Hb(P ) = {b} and the test program:

Test(P,M1) = { b← ∼b̂;
â← ∼a; b̂← ∼b;
f ← ∼f,∼a,∼b; f ← ∼f, b }

Test(P,M1) has no stable models and, hene, M1 is a stable model of P . ✷
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The simple generate and test paradigm an be optimized by building model

andidates gradually. This means that we start from the empty partial in-

terpretation and extend the interpretation step by step. An interesting ob-

servation is that the tehnique for testing minimality an be used to rule out

a partial model andidate of Gen(P ) at any stage of the searh and not just

when a total model of the program P has been found. This an be done by

treating a partial interpretation M as a total interpretation where unde�ned

atoms are taken to be false and using the Test(P,M) program.

Proposition 4.4 Let P be a disjuntive program and M a total interpreta-

tion. If Test(P,M) has a stable model, then there is no (total) stable model

M ′
of P suh that M ⊆M ′

.

PROOF. Let Test(P,M) have a stable model. As shown in the proof of

Proposition 4.2, then there is a model M ′′
of PM

with M ′′ ⊂ M . Consider

any total interpretation M ′
suh that M ⊆ M ′

and M ′
is a model of PM ′

.

Now M ′
is not a minimal model of PM ′

as PM ′ ⊆ PM
and, hene, M ′′

is a

model of PM ′

but M ′′ ⊂M ⊆M ′
. ✷

Notie that for a total interpretation M , Proposition 4.4 an only be

used for eliminating stable models of P extending M . For guaranteeing the

existene of a stable model of P , a total model of P needs to be found making

Proposition 4.2 appliable.

Our approah to testing minimality of model andidates di�ers from that

used in dlv [22℄. We hek minimality by diretly searhing for models of

the redut stritly ontained in the andidate model. In dlv a dual approah

is used based on the notion of unfounded sets for disjuntive programs [26℄

and minimality testing is done using a SAT solver. Our approah ould be

implemented straightforwardly using a SAT solver, too, but we have hosen

to use the same logi program ore engine for generating and testing sub-

tasks in order to keep the implementation as simple as possible. A basi

di�erene is that in our approah the set of lauses (9) used for minimal-

ity testing follow the struture of the original program whereas in the dlv

approah dual lauses (with eah literal omplemented) are employed. More-

over, dlv employs a ouple of optimizations whih have not been exploited

in our approah. First, dlv adopts speialized algorithms for some synta-

tially reognizable lasses of rules like head yle free programs. Seond,

dlv employs modular evaluation tehniques for minimality testing where the

program is divided into omponents based on its dependeny graph and the
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minimality of a andidate model is tested for eah omponent separately

by exploiting speialized algorithms for omponents with orresponding re-

strited form whenever possible. For a more detailed omparison, see [22℄.

5 EXPERIMENTS

In this setion, we ompare dlv [24℄, a state-of-the-art implementation of the

stable model semantis for disjuntive logi programs, with an implementa-

tion of the generate and test approah of the previous setion whih we all

GnT. In Setion 5.1 we explain brie�y implementation tehniques employed

in GnT and explain the setup for the experiments. For omparisons we

use three families of test problems related to reasoning about minimal mod-

els [12℄, evaluating quanti�ed Boolean formulas [47℄, and planning [34℄ for

whih enodings of the problem instanes as logi programs and test results

are presented in Setions 5.2�5.4, respetively. All benhmarks used in the ex-

periments are available at http://www.ts.hut.fi/Software/gnt/benhmarks/jnssy-tests-2003.tgz.

5.1 IMPLEMENTATION

The implementation of GnT [44℄ is based on smodels [46, 45℄, a program

that omputes stable models of normal logi programs. The basi idea behind

GnT is to use two instanes of the smodels engine, one that generates the

model andidates and one that heks if they are minimal. To implement the

idea it is enough to extend the smodels engine only slightly. Figure 1 shows

the pseudo-ode for GnT modi�ed from the original smodels funtion pre-

sented in [45℄. The funtion gnt(G,P,A) takes as input a normal (generator)
program G, a disjuntive program P and a partial model (a set of literals)

A and performs a baktraking searh for stable models of G. It returns

a stable model M of G whih agrees with A and for whih minimal(P,M)
returns true if suh a stable model exists and otherwise it returns false. It

uses funtions expand(G,A), extend(G,A), conflict(G,A), heuristic(G,A),
and minimal(P,A). The �rst four are as in the original smodels proedure:

• expand(G,A) returns a partial model whih expands the given partial

model A by literals satis�ed by all (total) stable models of G agreeing

with A (obtained using a generalized well-founded omputation);
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• extend(G,A) returns a partial model extending the partial model A by

literals obtained by expand enhaned with lookahead tehniques.

• conflict(G,A) heks whether there is an immediate on�it, i.e., if the

partial model A ontains a omplementary pair of literals and

• heuristic(G,A) returns an atom unde�ned in A to be used as the next

hoie point in the baktraking searh for stable models.

For further details on these funtions see [45℄. The funtion minimal(P,A)
performs the minimality test for a disjuntive program P and a partial model

A given in Proposition 4.4 using a all to smodels, i.e., it views A as a total

model A′
where all atoms unde�ned in A are taken to be false, builds the

program Test(P,A′), alls smodels and returns false if Test(P,A′) has a

stable model and otherwise returns true. To ompute a stable model for a

disjuntive program P , the proedure gnt(Gen(P ), P, ∅) is alled. First gnt
extends the given partial model and heks for on�its. If all atoms are

overed by the extended partial model, then a (total) model andidate has

been found and it is heked for minimality. Otherwise the heuristi funtion

selets a new unde�ned atom x and gnt searhes reursively �rst for models

where x is false. If no suh model is found, the partial model is expanded

by making x true. If there is a on�it or the expanded model does not

pass an �early� minimality test, the proedure baktraks and otherwise it

ontinues the searh reursively using the expanded model. As the �early�

minimality tests are omputationally quite expensive, some optimization has

been employed so that suh tests are performed only when baktraking from

a model andidate. For this there is a global variable 'WasCovered' whih

is initially set to false and whih is set to true when a model andidate

is found. However, it should be notied that when baktraking from a

model andidate, the test ould be repeated at eah baktraking level until

it sueeds. The implementation of the gnt proedure shown in Figure 1

onsists of a few hundred lines of ode [44℄ on top of the smodels system.

In the sequel, we report several experiments whih we arry out in order

to ompare dlv (version 2003-05-16) with GnT whih is based on smod-

els (version 2.27) and uses lparse (version 1.0.13) as an instantiator. We

onsider two versions of our approah, GnT1 and GnT2, whih are simi-

lar exept that in GnT1 generating program G1(P ) is used and in GnT2,

Gen(P ) = G1(P ) ∪ Supp(P ). All of our tests are run under Linux 2.4.20

operating system on a 1.7 GHz AMD Athlon XP 2000+ omputer with 1
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funtion gnt(G,P,A)
A := extend(G,A)
if conflict(G,A) then
return false

else if A overs Hb(G) then
WasCovered := true

if minimal(P,A) then

return A
else

return false

end if

else

x := heuristic(G,A)
A′

:= gnt(G,P,A ∪ {∼x})
if A′ 6= false then
return A′

else

A′ := expand(G,A ∪ {x})
if conflict(G,A′) then
return false

else if WasCovered then

if not minimal(P,A′) then
return false

end if

end if

WasCovered := false

return gnt
(

G,P,A′
)

end if

end if.

Figure 1: GnT Proedure
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GB of memory. Exeution times are measured using the ustomary Unix

/usr/bin/time ommand.

5.2 MINIMAL MODELS

Our �rst test problem is the Σp
2-omplete problem of deiding the existene of

a minimalmodel of a set of lauses in whih some spei�ed atoms are true [12℄.

This problem is mapped to a stable model omputation problem as follows.

For a problem instane onsisting of a set of lauses and some spei�ed atoms,

a program P is onstruted where eah lause a1 ∨ · · · ∨ an ∨¬b1 ∨ · · · ∨ ¬bm
is translated into a rule a1∨· · ·∨an ← b1, . . . , bm and for eah spei�ed atom

ci, a rule
f ← ∼f,∼ci (10)

is inluded. Now P has a stable model if and only if there is a minimal model

of the lauses ontaining all spei�ed atoms ci.
The test ases (random disjuntive 3-SAT programs) are based on random

3-SAT problems having a �xed lauses/atoms ratio c and they are onstruted
as follows. Given a number of atoms n, a random 3-SAT problem is gener-

ated, i.e. c×n lauses are generated eah by piking randomly three distint

atoms from the n available and seleting their polarity uniformly. This is done
using a program makewff developed by Bart Selman. Then the lauses are

translated into rules as desribed above and for i = 1, . . . , ⌊2n/100⌋ and for

random atoms ci, the extra rules (10) are added. The problem size is on-

trolled by the number of atoms n whih is inreased by inrements of 10.
For eah n, we test 100 random 3-SAT programs and measure the maximum,

average, and minimum time it takes to deide whether a stable model exists.

In the �rst set of tests we study the e�et of di�erent generating programs

on the performane of our approah, i.e., we ompare GnT1 and GnT2,

whih are similar exept that in GnT1 generating program G1(P ) is used
and in GnT2, Gen(P ) = G1(P ) ∪ Supp(P ). We test at two lauses/atoms

ratios. The �rst test is at 4.258 whih is in the phase transition region [7℄

where roughly 50% of the generated 3-SAT lause sets are satis�able. The

seond test is at lauses/atoms ratio 3.750 where pratially all generated

3-SAT lause sets are satis�able.

The test results are shown in Figure 2. In the �rst test set the key

problem seems to be �nding at least one model andidate. The simpler

generator (GnT1) appears to perform relatively well exept for a few outliers,
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i.e. instanes with signi�antly higher running time than the average. The

outliers our when the generator program G1(P ) allows a high number of

andidate models. At lauses/atoms ratio 3.750 the frequeny of outliers for

GnT1 inreases and outliers our already in smaller problem sizes. The

more involved generating program Gen(P ) behaves in a muh more robust

way and the average running time of GnT2 is signi�antly lower than that

of GnT1. Next we use the same two test sets for omparing GnT2 and

dlv. The results are shown in Figure 3. The systems sale very similarly

in both test sets but dlv seems to be roughly a onstant fator faster than

GnT2. This is probably due to the overhead aused by the more ompliated

generating program in GnT2 and by the two level arhiteture of GnT2

where two instanes of smodels are ooperating.

5.3 QUANTIFIED BOOLEAN FORMULAS

We ontinue the omparison of GnT2 and dlv using instanes of quanti�ed

Boolean formulas (QBFs) and develop a new way to enode suh formulas

as disjuntive logi programs. In our experiments, we onsider a spei�

sublass of QBFs, namely 2, ∃-QBFs. Suh formulas are of the form ∃X∀Y φ
where X and Y are sets of existentially and universally quanti�ed proposi-

tional variables, respetively, and φ is a Boolean formula based on X ∪ Y .
Deiding the validity of suh a formula forms a Σp

2-omplete deision problem

[47℄ even if φ is assumed to be a Boolean formula in 3DNF [48℄. Reall that

heking the existene of a stable model for a disjuntive logi program is of

equal omputational omplexity [12℄, whih implies the existene of polyno-

mial time transformations between the deision problems mentioned above.

In fat, Eiter and Gottlob [12℄ show how a QBF of the form ∃X∀Y φ with

φ in 3DNF an be translated into a disjuntive logi program P suh that

∃X∀Y φ is valid if and only if P has a stable model. This translation is used

by Leone et al. [25℄ to ompare dlv and GnT2.

However, we present an alternative transformation in order to obtain a

better performane for the two systems under omparison. Our transforma-

tion is based on the following ideas. The �rst observation is that we an

rewrite ∃X∀Y φ with φ in DNF as ∃X¬∃Y ¬φ where ¬φ an be understood

as a Boolean formula in CNF or as a set of lauses S so that eah lause

c ∈ S an represented as a disjuntion of the form

X1 ∨ ¬X2 ∨ Y1 ∨ ¬Y2 (11)
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where X1 and ¬X2 are the sets of positive and negative literals, respetively,

whih appear in c and involve variables fromX while Y1 and ¬Y2 are similarly

related to Y . It follows that ∃X∀Y φ is valid if and only if we an �nd an

interpretation

3 I : X ∪ Y → {t, f} suh that ¬φI(X) is unsatis�able where

¬φI(X) denotes the set of lauses Y1 ∨ ¬Y2 for whih (11) belongs to S and

I 6|= X1 ∨ ¬X2. The seond idea behind our transformation is to hoose the

truth value of the ondition X1 ∨ ¬X2 for eah lause (11) in S rather than

the truth values of the variables in X ∪ Y . This line of thinking leads to the
following translation of S.

De�nition 5.1 A lause c of the form (11) where X1, X2 ⊆ X and Y1, Y2 ⊆
Y is translated into following sets of rules:

TrV(c) = {c← ∼ĉ; ĉ← ∼c},
TrE(c) = {f ← x,∼ĉ,∼f | x ∈ X1} ∪ {x← ∼ĉ | x ∈ X2} ∪

{f ← X2,∼X1,∼c,∼f}, and

TrU(c) = {y ← u | y ∈ Y1 ∪ Y2} ∪ {Y1 ∪ {u} ← Y2,∼ĉ}

where c and ĉ are new atoms assoiated with the lause c, and f and u are

new atoms. A set of lauses S is translated into

⋃

c∈S(TrV(c) ∪ TrE(c) ∪ TrU(c)) ∪ {u← ∼u}.

We use Boolean variables from X∪Y as propositional atoms in the trans-

lation. Intuitively, the rules of TrV(c) hoose whether a lause c is ative, i.e.
X1∨¬X2 evaluates to false so that the satisfation of the lause c depends on
the values assigned to Y1∪Y2. The rules in TrE(c) try to explain the preeding
hoie by heking that the values of the variables in X an be assigned a-

ordingly. Finally, the rules in TrU(c) implement the test for unsatis�ability
together with the rule u ← ∼u. Basially, the same unsatis�ability hek is

used in the translation proposed by Eiter and Gottlob. However, the trans-

formation given in De�nition 5.1 is more eonomial as it uses far less new

atoms and disjuntive rules. In partiular, note that variables from X ∪ Y
not appearing in the lauses do not ontribute any rules to the translation.

Next we address the orretness of our transformation and onsider a

2, ∃-QBF ∃X∀Y φ where φ is in DNF and the disjuntive logi program P
obtained by translating ¬φ (a set of lauses S) aording to De�nition 5.1.

3

The values assigned by I to the variables in Y are not important, but make I a proper

interpretation over X ∪ Y .
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Lemma 5.2 Let M ⊆ Hb(P ) be a total propositional interpretation for the

translation P suh that for every lause c ∈ S of the form (11), (i) c ∈ M
⇐⇒ ĉ 6∈M and (ii) c ∈M ⇐⇒ X1 ∩M = ∅ and X2 ⊆M .

Then the programs TrV(c), TrE(c), and TrU(c) assoiated with a lause

c ∈ S of the form (11) satisfy the following.

(R1) The fat c← belongs to TrV(c)
M ⇐⇒ c ∈M .

(R2) The fat ĉ← belongs to TrV(c)
M ⇐⇒ ĉ ∈M .

(R3) For x ∈ X1, the rule f ← x belongs to TrE(c)
M ⇐⇒

x 6∈M and f 6∈M .

(R4) For x ∈ X2, the fat x← belongs to TrE(c)
M ⇐⇒ x ∈M .

(R5) The rule f ← X2 belongs to TrE(c)
M ⇐⇒ X2 6⊆M and f 6∈M .

(R6) For y ∈ Y1 ∪ Y2, the rule y ← u belongs to TrU(c)
M

unonditionally.

(R7) The rule Y1 ∪ {u} ← Y2 belongs to TrU(c)
M ⇐⇒ c ∈M .

Theorem 5.3 The quanti�ed Boolean formula ∃X∀Y φ is valid if and only

if the translation P has a stable model.

PROOF.We may safely assume that all variables in X ∪Y atually appear

in φ, sine redundant variables an be dropped without a�eting the validity

of the formula nor the struture of its translation.

( =⇒ ) Suppose that ∃X∀Y φ is valid. Then there is an interpretation I :
X ∪ Y → {t, f} suh that I |= ∀Y φ. Then de�ne XI = {x ∈ X | I(x) = t}.
Without loss of generality we may assume that XI is minimal, i.e. there is

no interpretation J suh that J |= ∀Y φ and XJ ⊂ XI . Then de�ne a total

propositional interpretation

M = XI ∪ Y ∪ {u} ∪
{c | c = X1 ∨ ¬X2 ∨ Y1 ∨ ¬Y2 ∈ ¬φ and I 6|= X1 ∨ ¬X2} ∪

{ĉ | c = X1 ∨ ¬X2 ∨ Y1 ∨ ¬Y2 ∈ ¬φ and I |= X1 ∨ ¬X2}. (12)

It is veri�ed next that M is a stable model of P . The de�nition of M implies

that M satis�es the requirements of Lemma 5.2. Then (R1)�(R7) e�etively

desribe the struture of PM
and it is easy to verify that M is a model of PM

on the basis of these relationships, as Y ∪{u} ⊆M and f 6∈M by de�nition.
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Next we assume that N ⊆ M is a model of PM
and show that M ⊆ N .

(i) If c ∈ M for some lause c of the form (11), then c ∈ N , as c ← belongs

to PM
by (R1). (ii) Similarly, ĉ ∈ M implies ĉ ∈ N by (R2). (iii) We have

u ∈ N beause otherwise N would form a model of ¬φI(X) by satisfying

the rules Y1 ∪ {u} ← Y2 inluded in PM
by (R7). (iv) Moreover, Y ⊆ N

holds, as u ∈ N and N satis�es all the rules y ← u belonging to PM
by

(R6). (v) Let us de�ne an interpretation J : X ∪ Y → {t, f} suh that for

x′ ∈ X , J(x′) = t ⇐⇒ x′ ∈ N , and for y ∈ Y , J(y) = I(y). Using (R4),

we an establish for any (11) that I 6|= X1 ∨ ¬X2 implies J 6|= X1 ∨ ¬X2.

Thus ¬φI(X) ⊆ ¬φJ(X) where ¬φI(X) is known to be unsatis�able. The same

follows for ¬φJ(X) so that J quali�es as an assignment for whih J |= ∀Y φ
holds. But then the minimality of I implies J = I, XJ = XI , and XI ⊆ N .

To onlude the preeding analysis, M ⊆ N and M is a stable model of P .
(⇐= ) Suppose that P has a stable modelM . Then de�ne an interpreta-

tion I : X ∪ Y → {t, f} by setting I(z) = t ⇐⇒ z ∈M for any z ∈ X ∪ Y .
Let us then establish that M and I satisfy (12). (i) The de�nition of I im-

plies that XI = M ∩ X . (ii) Now u ∈ M , beause P ontains u ← ∼u and

M is a stable model of P . (iii) For the same reason, f 6∈M , beause all the

rules having f as the head have ∼f among the negative body literals. (iv)

Sine u ∈ M and PM
ontains the rule y ← u for every y ∈ Y , we obtain

Y ⊆ M . (v) For any lause c of the form (11), the struture of TrV(c) ⊆ P
implies that c ∈ M ⇐⇒ c ← belongs to TrV(c)

M ⊆ PM ⇐⇒ ĉ 6∈ M .

Using this property, we an establish that c ∈M ⇐⇒ I 6|= X1 ∨¬X2 holds

for the interpretation I de�ned above. (vi) Thus ĉ ∈M ⇐⇒ I |= X1∨¬X2

is implied by the fat that c ∈M ⇐⇒ ĉ 6∈M , as shown above in (v).

It remains to show that ¬φI(X) is unsatis�able. So let us assume the

ontrary, i.e. there is a model Y ′ ⊆ Y for ¬φI(X). Note that M meets the

requirements of Lemma 5.2 by (v) and (vi) above, as the de�nition of I implies
I 6|= X1∨¬X2 ⇐⇒ X1∩M = ∅ and X2 ⊆M . The relationships (R1)�(R7)

imply that N = (M−(Y ∪{u}))∪Y ′
is a model of PM

, too. Sine u 6∈ N , we

have N ⊂ M indiating that M is not stable, a ontradition. Thus ¬φI(x)

is unsatis�able whih implies I |= ∀Y φ and the validity of ∃X∀Y φ. ✷

Using an implementation of the translation given in De�nition 5.1 we

are able to transform 2, ∃-QBFs into disjuntive programs. The remaining

question is how to generate 2, ∃-QBF instanes. We use two di�erent shemes

based on random instanes [6, 19℄. In the �rst sheme, the sets of variables

X and Y satisfy |X| = |Y |. Eah random instane is based on v = |X| +
|Y | variables and a Boolean formula φ whih is a disjuntion of d = 2 × v
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onjuntions of 5 random literals out of whih at least two literals involve

a variable from Y , as suggested by Gent and Walsh [19℄. This sheme is

slightly di�erent from 2QBFGW in [25℄ based on 3 literal onjuntions just to
obtain a more hallenging benhmark. The onstant fator 2 in the equation
relating d and v has been determined as a phase transition point for the dlv

system by keeping v = 50 �xed and varying the number of disjuntions in φ.
In the atual experiment, the number of v variables is varied from 5 to 50
by inrements of 5. We generate 100 instanes of 2, ∃-QBFs for eah value

of v and translate them into orresponding disjuntive logi programs. The

running times for dlv and GnT2 are depited in the upper graph of Figure

4. The systems sale very similarly, but dlv is on the average from one to

two deades faster than GnT2.

In the seond experiment with 2, ∃-QBFs, we use a di�erent sheme for the
number of disjuntions d = ⌊

√

v/2⌋ as well as the number of literals whih is 3
in eah onjuntion. The resulting instanes are muh easier to solve, beause

d remains relatively low (e.g. d ≈ 41 for v = 3500) and many variables do

not appear in φ at all. We let v vary from 50 to 3550 by inrements of 50
and generate 100 instanes of 2, ∃-QBFs for eah value of v. The resulting

running times are shown in the lower graph of Figure 4. The shapes of the

urves are basially the same, but the performane of GnT2 degrades faster

than that of dlv. However, the bene�ts of the translation given in De�nition

5.1 are lear, as GnT2 is able to solve muh larger instanes than reported

in [25℄ where 40 variables turn out to be too muh for GnT2. As far as

we understand, this is due to the sizes of searh spaes assoiated with the

translated instanes of 2, ∃-QBFs. For the translation given in De�nition 5.1,
the size of the searh spae examined by GnT2 is of order 2

√
v/2

whereas it

is of order 2v if the translation proposed by Eiter and Gottlob [12℄ is used.

5.4 PLANNING

In order to get an idea of the overhead of GnT2 when ompared to smod-

els, we study three bloks world planning problems enoded as normal pro-

grams [34℄:

• large. is a 15 bloks problem requiring a 8 step plan using the enoding

given in [34℄ allowing parallel exeution of operators,

• large.d is a 17 bloks problem with a 9 step plan and
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Table 1: Planning: smodels vs. GnT2

Problem Number of Number of Time (s) Time (s)

steps ground rules smodels GnT2

large. 8 81681 4.5 10.3

7 72527 0.6 2.1

large.d 9 127999 10.1 21.2

8 115109 1.4 5.2

large.e 10 191621 18.2 35.0

9 174099 2.2 8.7

• large.e is a 19 bloks problem with a 10 step plan.

Table 1 ontains two entries for eah problem: one reporting the time needed

to �nd a valid plan with the �optimal� number of steps given as input and one

reporting the time needed to show optimality, i.e., that no plan (no stable

model) exists when the number of situations is dereased by one. The times

reported for eah test ase are the exeution times of smodels and GnT2

given a ground normal program (generated by lparse) as input. The results

show that there is some overhead in the urrent implementation of GnT2

even for normal programs andGnT2 handles these examples 2-4 times slower

than smodels.

6 CONCLUSIONS

The paper presents an approah to implementing partial and disjuntive

stable models using an implementation of stable models for disjuntion-free

programs as the ore inferene engine. The approah is based on unfolding

partiality and disjuntions from a logi program in two separate steps. In the

�rst step partial stable models of disjuntive programs are aptured by total

stable models using a simple linear program transformation. Thus, reasoning

tasks onerning partial models an be solved using an implementation of

total models suh as the dlv system. This also sheds new light on the

relationship between partial and total stable models by establishing a lose

orrespondene. In the seond step a generate and test approah is developed

for omputing total stable models of disjuntive programs using a ore engine

apable of omputing stable models of normal programs. We have developed

an implementation of the approah using smodels as the ore engine. The
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extension is fairly simple onsisting of a few hundred lines of ode. The

approah turns out to be ompetitive even against a state-of-the-art system

for disjuntive programs. The e�ieny of the approah omes partly from

the fat that normal programs an apture essential properties of disjuntive

stable models that help with dereasing the omputational omplexity of

the generate and test phases in the approah. However, a major part of

the suess an be aounted for by the e�ieny of the ore engine. This

suggests that more e�orts should be spent in developing e�ient ore engines.
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