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Abstract

Linear discriminant analysis (LDA) has been an active topic of research during the
last century. However, the existing algorithms have several limitations when applied
to visual data. LDA is only optimal for Gaussian distributed classes with equal co-
variance matrices, and only classes-1 features can be extracted. On the other hand,
LDA does not scale well to high dimensional data (over-fitting), and it cannot handle
optimally multimodal distributions. In this paper, we introduce Multimodal Oriented
Discriminant Analysis (MODA), an LDA extension which can overcome these draw-
backs. A new formulation and several novelties are proposed:

• An optimal dimensionality reduction for multimodal Gaussian classes with dif-
ferent covariances is derived. The new criteria allows for extracting more than
classes-1 features.

• A covariance approximation is introduced to improve generalization and avoid
over-fitting when dealing with high dimensional data.

• A linear time iterative majorization method is suggested in order to find a local
optimum.

Several synthetic and real experiments on face recognition show that MODA outper-
form existing LDA techniques.
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Figure 1: Classification of face images from video sequences by projecting onto a low
dimensional space. Observe that the face distributions can be non-gaussians and with
different covariances.

1 Introduction

Canonical Correlation Analysis (CCA), Independent Component Analysis (ICA), Lin-
ear Discriminant Analysis (LDA), and Principal Component Analysis (PCA) are some
examples of subspace methods (SM) useful for classification, dimensionality reduc-
tion and data modeling. These methods have been actively researched by the statistics,
neural networks, machine learning and vision communities during the last century. In
particular, SM have been very successful in computer vision to solve problems such
as structure from motion [29], detection/recognition [30] or face tracking [5, 23]. The
modeling power of SM can be especially useful when available data increases in fea-
tures/samples, since there is a need for dimensionality reduction while preserving rele-
vant attributes of the data1. Another benefit of many subspace methods is that they can
be computed as an eigenvalue or singular value type of problem, for which there are
efficient numerical packages. An obvious drawback of SM is its linear assumptions;
however, recently extensions based on kernel methods and latent variable models can
overcome some of these limitations.

Among several classification methods (e.g. Support Vector Machines, decision
trees), LDA remains a powerful preliminary tool for dimensionality reduction preserv-
ing discriminative features and avoiding the ”curse of dimensionality”. In particular,
LDA has been extensively used for classification problems such as speech/face recog-
nition or multimedia information retrieval [4, 2, 9, 12, 31, 32, 34, 22]. However, there
exist several liminations of current LDA techniques. LDA is optimal only in the case
that all the classes are Gaussian distributed with equal covariances (multimodal distri-
butions are not modeled). Due to this assumption, the maximum number of features
that can be extracted is the number of classes-1. Another common problem in com-
puter vision applications is the small size problem [32, 34], that is, the training set

1Also many times it is helpful to find a new coordinate system (e.g. Fourier transform).
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has more ”dimensions” (pixels) than data samples 2. In this situation LDA overfits
and PCA techniques usually outperform LDA [22]. On the other hand, the compu-
tational/storage requirements of computing LDA directly from covariance matrices is
impractical. In this paper we introduce Multimodal Oriented Discriminant Analysis
(MODA), a new low dimensional discriminatory technique optimal for multimodal
Gaussian classes with different covariances. MODA is able to efficiently deal with the
small sample case and scales well to very high dimensional data avoiding overfitting
effects. There is not closed form solution for the optimal values of MODA and an
iterative majorization is proposed to seach for a local optimum. Finally, a new view
and formulation of the LDA is introduced, which gives some new insights. Figure 1
illustrates the main purpose of this paper.

2 Linear Discriminant Analysis

The aim of most discriminant analysis methods is to project the data into a space of
lower dimension, so that the classes are as compact and as far as possible from each
other. Several optimization criteria are possible to compute LDA, and most of them are
based on relations between the following covariance matrices, which can be expressed
conveniently in matrix form as3:

St =
1

n − 1

n∑
j=1

(dj − m)(dj − m)T =
1

n − 1
DP1DT

Sw =
C∑

i=1

1
n − 1

∑
dj∈Ci

(dj − mi)(dj − mi)T =
1

n − 1
DP2DT

Sb =
C∑

i=1

ni

n − 1
(mi − m)(mi − m)T =

1
n − 1

DP3DT

where D ∈ �d×n is the data matrix, m = 1
nD1n is the mean vector for all the classes

and mi is the mean vector for the class i. Pi are projection matrices (i.e PT
i = Pi and

P2
i = Pi) with the following expressions:

P1 = I− 1
n1n1T

n P2 = I− G(GT G)−1GT

P3 = G(GT G)−1GT − 1
n1n1cGT (1)

G ∈ �n×c is an dummy indicator matrix such that
∑

j gij = 1, gij ∈ {0, 1} and
gij is 1 if di belongs to class Cj . c denotes the number of classes and n the number

2In this case the true dimensionality of the data is the number of samples, not the number of pixels.
3Bold capital letters denote a matrix D, bold lower-case letters a column vector d. dj represents the j

column of the matrix D. dij denotes the scalar in the row i and column j of the matrix D and the scalar
i-th element of a column vector dj . dji is the i-th scalar element of the vector dj . All non-bold letters
will represent variables of scalar nature. diag is an operator which transforms a vector to a diagonal matrix.
1k ∈ �k×1 is a vector of ones. Ik ∈ �k×k is the identity matrix. tr(A) =

�
i aii is the trace of the

matrix A and |A| denotes the determinant. ||A||F = tr(AT A) = tr(AAT ) designates the Frobenious
norm of a matrix. ei is the i column of the identity matrix (i.e. [0 0 0 · · · 1 · · · 0 0]T ), Nd(x; µ,Σ) indicates
a d-dimensional Gaussian on the variable x with mean µ and covariance Σ.
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of samples. Sb is the between-covariance matrix and represents the average of the
distances between the mean of the classes. Sw represents the within-covariance matrix
and it is a measure of the average compactness of each class. Finally S t is the total
covariance matrix. With the matrix expressions, it is straightforward to show that S t =
Sw + Sb. The upper bounds on the ranks of the matrices are c − 1, n − c, n − 1 for
Sb,Sw,St respectively.

Rayleigh like quotients are among the most popular LDA optimization criteria

[12]. Some are: J1(B) = |BT S1B|
|BT S2B| , J2(B) = tr((BT S1B)−1BT S2B), J3(B) =

tr(BT S1B)
tr(BT S2B) , where S1 = {Sb,Sb,St} and S2 = {Sw,St,Sw}. Other constrained
optimization formulations are possible [12]. A closed form solution to previous mini-
mization problems is given by a generalized eigenvalue problem S 1B = S2BΛ. The
generalized eigenvalue problem can be solved as a joint diagonalization, that is, finding
a common basis B, which diagonalizes simultaneously both matrices S 1 and S2 (i.e.
BT S2B = I and BT S1B = Λ).

2.1 Another view onto LDA

Previous Rayleigh quotient optimization procedures are not easy to modify when in-
corporating new constraints (e.g temporal constraints or geometric invariance). Con-
sider the following weighted between-class covariance matrix, Ŝb = DGGT DT =∑C

i=1(
ni

n )2(mi − m)(mi − m)T , that favors the classes with more samples. Fol-
lowing previous work on neural networks [14, 21], it can be shown that maximizing
J4(B) = tr((BT StB)−1BT ŜbB) is equivalent to minimize:

E(B,V) = ||GT − VBT D|| (2)

Optimizing over V results in E(B) = ||GT − GT DT B(BT DDT B)−1BT D||,
and after some arrangements it can be shown [14, 21] that E(B) is proportional to
−tr(((BT DDT B)−1)BT DGGT DT B). In this case, it is assumed that D is zero
mean and that rank(D) = d < n. This approach is appealing for several reasons.
If the dummy matrix G contains 0 and 1’s, the mapping gives a linear approxima-
tion of Bayes’s posterior probability and if g ij = ni/n then it returns classical LDA.
Also, Baldi and Hornik have shown that the surface has a unique local minimum [1],
although several inflexion points. Observe, that the LDA problem is posed as one of
hetero-associative memory, which could be solve efficiently in small data cases with
the generalized SVD [8]. Finally gradient descent methods could be applied efficiently
to optimize 2 where there is a great deal of data.

On the other hand, if D is zero mean, and all the classes are equally probable, LDA
can be computed by maximizing:

E(B) = maxB
tr(BT MMTB)
tr(BT DDT B)

(3)

where M ∈ �d×c is a matrix, such that each column, mi contains the mean of the class
i. In the previous expression it is possible to introduce two auxiliary variables C 1, C2,
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Figure 2: Projection onto LDA direction and ODA.

which would give us a new insight into the LDA problem, that is:

E(B, C1, C2) = minB,C1,C2

||M − BC1||F
||D− BC2||F (4)

where ||.||F denotes the Frobenious norm of a matrix (valid for any unitary invariant
norm). Eq. 4 shows that LDA can be expressed as the ratio of two generative models;
the denominator preserves the subspace of the distances between the centers, whereas
the denominator is optimal for the null space of the data (which is not in the direction
of the mean of the classes). Using the formulation of eq. 4 robustness to sample
outliers could be introduced as in [6]. Alternatively Fidler and Leonardis [10] achieve
robustness to intra-sample outliers using subsampling.

3 Oriented Discriminant Analysis

LDA is the optimal discriminative projection only in the case of having Gaussian
classes with equal covariance matrix [3, 9] (assuming enough training data). LDA
will not be optimal if the classes have different covariances. Fig. 2 shows one situation
where two classes have almost orthogonal principal directions of the covariances and
close means. In this pathological case, LDA chooses the worst possible discrimina-
tive direction where the classes are overlapped (it is also very numerically unstable),
whereas ODA finds a better projection. In general, this situation becomes dangerous
when the number of classes increases.

In order to solve this problem, several authors have proposed extensions and new
views of LDA. Campbell [3] derives a maximum likelihood approach to discriminant
analysis. Assuming that all the classes have equal covariance matrix, Campbell shows
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that LDA is equivalent to impose that the class means lie in a l-dimensional subspace.
Following this approach, Kumar and Andreou [19] proposed heteroscedastic discrim-
inant analysis, where they incorporate the estimation of the means and covariances in
the low dimensional space. On the other hand, Saon et al. [27] define a new energy

function to model the directionality of the data, J(B) =
∏c

i=1(
|BT SbB|
|BT ΣiB|)

ni , where
Σi is the class covariance matrix and Sb the between-class scatter covariance matrix.
In this paper, we extend previous approaches by deriving a probabilistic interpreta-
tion of the optimal discriminant analysis in the case of having classes with different
covariances, and multimodal distributions. Also, our method scales well with high
dimensional data and efficient algorithms are developed.

3.1 Maximizing Kullback-Leibler divergence.

In this section, we derive the optimal linear dimensionality reduction for Gaussian
distributed classes with different covariances. A simple measure of distance between
two Gaussian distributions N(x; µi,Σi) and N(x; µj ,Σj) is given by the Kullback-
Leibler (KL) divergence [12]:

KLij =
1
2

∫
dx

(
N(x; µi,Σi) − N(x; µj ,Σj)

)
log

N(x; µi,Σi)
N(x; µj,Σj)

=
1
2
tr(Σ−1

i Σj + Σ−1
j Σi − 2I) +

1
2
(µi − µj)T (Σ−1

j + Σ−1
i )(µi − µj) (5)

The aim of ODA is to find a linear transformation B, common to all the classes (i.e.
N(BT µi,BΣiBT ) ∀i), such that it maximizes the separability between the classes in
the low dimensional space, that is :

E(B) =
∑c

i=1

∑c
j=1 KLij ∝ ∑c

i=1

∑c
j=1 tr

(
(BT ΣiB)−1(BT ΣjB)

+(BT ΣjB)−1(BT ΣiB)
)

+ (µi − µj)T (6)

B
(
(BT ΣjB)−1 + (BT ΣiB)−1

)
BT (µi − µj)

After some simple algebraic arrangements, the previous equation can be expressed in
a more compact and enlightening manner:

G(B) = −∑c
i=1 tr

(
(BT ΣiB)−1(BT AiB)

)
(7)

Ai =
∑c

j �=i

(
(µi − µj)(µi − µj)T + Σj

)
Observe that a negative sign is introduced for convenience; rather than searching

for a maximum, a minimum of G(B) will be found. A i can be rewritten as: Ai =
MPiMT +

∑c
j �=i Σj , where M ∈ Rd×c is a matrix such that each column is the mean

of each class, and Pi = Ic+ceieT
i −ei1

T
c −1ceT

i ∈ Rc×c. Several interesting things are
worth pointing out from eq. 7. If all covariances are the same (i.e. Σ i = Σ ∀i), eq. 7
results in tr

(
(BT ΣB)−1(BT

∑c
i=1

∑c
j �=i(µi−µj)(µi−µj)T B)

)
+c(c−1)l, which

is exactly what LDA maximizes. ODA takes into account not just the distance between
the means but also the orientation and magnitude of the covariance. In the LDA case,
the number of extracted features cannot exceed the number of classes because the rank
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of Sb is c − 1; however, ODA does not have this constraint and more features can be
obtained. Unfortunately, due to different normalization factors (B T ΣiB)−1, eq. 7
does not have a closed-form solution in terms of an eigenequation (not an eigenvalue
problem).

4 Multimodal Oriented Discriminant Analsyis

In the previous section, it has been shown that ODA is the optimal linear transform for
class separability in the case of Gaussian distributions with arbitrary covariances (full
rank). However, in many situations the class distributions are not Gaussian. For in-
stance, it is likely that the manifold of the facial appearance of a person under different
illumination, expression, and poses is highly non-Gaussian. In this section, MODA, an
extension of ODA that is able to model multimodal classes is described.

In order to model multimodal distributions, the training data for each class is first
clustered using recent advances in multi-way normalized cuts [33]. Fig. 3.a shows
an example of clustering a set of faces from a video sequence, each row is a cluster
which mostly corresponds to different poses. Once the input space has been clustered
for each class, eq. 7 is modified to maximize the distances between the clusters of
different classes, that is:

E(B) = −1
2

∑
i

∑
j �=i

∑
r1∈Ci

∑
r2∈Cj

tr

(
(BT Σr1

i B)−1

BT
(
(µr1

i − µr2
j )(µr1

i − µr2
j )T + Σr2

j

)
B

)
(8)

= −1
2

∑
i

∑
r1∈Ci

tr
(
(BT Σr1

i B)−1(BT AiB)
)

Ai =
∑

j �=i

∑
r2∈Cj

(µr1
i − µr2

j )(µr1
i − µr2

j )T + Σr2
j

where µr1
i is the r1 cluster of class i, and r1 ∈ Ci sums over all the clusters belonging

to class i. Observe that MODA looks for a projection B which maximizes the KL di-
vergence between clusters among all the classes, but it does not maximize the distance
between the clusters of the same class.

As in the case of ODA, there is no closed expression for the maximum of eq. 8.
However, if all the covariances are the same (i.e. Σr1

i = Σ ∀ i, r1), there exists a
closed form solution that can give a new insight into the method. In appendix A,
it is shown that in this case, eq. 8 becomes 2Ktr

(
(MT M(PM − ∑

i kidiag(gi) −
GGT )(BT ΣB)−1

)
, which has a closed-form solution.

Figure (3.b) shows four 3-dimensional Gaussians belonging to two classes (XOR
problem). Each Gaussian has 30 samples generated with the same covariance. The
means of the two classes is close to zero. Since the distribution for each class is mul-
timodal and both classes have approximately the same mean, LDA cannot separate
the classes well (fig. 4.a). Figure (4.b) shows how MODA is able to separate both
classes. The figures show the projection into one dimension; the y-axis is the value of
the projection and the x-axis is the sample number.
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5 Bound optimization

Eq. 8 is hard to optimize; second-order type of gradient methods (e.g. Newton or con-
jugate gradient) do not scale well with huge matrices (e.g. B ∈ �d×l). Moreover, the
second derivative of eq. 8 is quite complex. In this section, we use a bound optimiza-
tion method called iterative majorization [15, 20, 18] able to monotonically reduce the
value of the energy function. Although this type of optimization technique is not com-
mon in the vision/learning community, it is very similar to Expectation Maximization
(EM) type of algorithms.

5.1 Iterative Majorization

Iterative majorization is a monotonically convergent method developed in the area of
statistics [15, 20, 18], and it is able to solve relatively complicated problems in a
straightforward manner. The main idea is to find a function, that makes it easier to
minimize/maximize than the original (e.g. quadratic function) at each iteration. The
first thing to do in order to minimize G(B), eq. 8, is to find a function L(B), which
majorizes G(B), that is, L(B) ≥ G(B) and L(B0) = G(B0), where B0 is the current
estimate. The function L(B) should be easier to minimize than G(B). A minimum of
L(B), B1, is guaranteed to decrease the energy of G(B). This is easy to show, since
L(B0) = G(B0) ≥ L(B1) ≥ G(B1). This is called the ”sandwich” inequality by De
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Leeuw [20]. Each update of the majorization will improve the value of the function,
and if the function is bounded it will monotonically decrease the value of L(B). Under
these conditions it is always guaranteed to stop at a local optimum.

Iterative majorization is very similar to EM [25] type of algorithms, which have
been extensively used by the machine learning and computer vision communities. The
EM algorithm is an iterative algorithm used to find a local maximum of the log like-
lihood, log p(D|θ), where D is the data, θ are the parameters. Rather than maxi-
mizing the log likelihood directly, EM uses Jensen’s inequality to find a lower bound

log p(D|θ) = log
∫

q(h)p(D,h|θ)

q(h)
dh ≥ ∫

q(h)log p(D,h|θ)

q(h)
dh, which holds for any

distribution q(h). The Expectation step, performs a functional approximation on this
lower bound, that is, it finds the distribution q(h), which maximizes the data and
touches the log likelihood at the current parameter estimates θ n. In fact, the opti-
mal q(h) is the posterior probability of the latent/hidden parameters given the data (i.e.
p(h|D) ). The Maximization step maximizes the lower-bound w.r.t the parameters θ.
The E-step in EM would be equivalent to the construction of the majorization function
and the M -step just minimizes/maximizes this upper/lower bound.

5.2 Constructing a majorization function

In order to find a function which majorizes G(B), the following inequality is used

[18], ||(BT ΣiB)−
1
2 BT A

1
2
i − (BT ΣiB)

1
2 (BT

nΣiBn)BT
nA

1
2
i ||F ≥ 0, where we have

assumed that the factorizations of Ai and Bi are possible, that is, Ai = A
1
2
i A

1
2
i and

Σi = Σ
1
2
i Σ

1
2
i . Rearranging previous equation derives in:

tr((BT ΣiB)−1(BT AiB)) ≥ 2tr((BT
nΣiBn)−1)(BT

nAiB))
−tr

(
(BT ΣiB)−1(BT

nΣiBn)−1(BT
nAiBn)(BT

nΣiBn)−1
)

(9)

By adding a sum to both sides of this inequality a function L(B) which majorizes
G(B) is obtained:

G(B) = −∑
i tr((BT ΣiB)−1(BT AiB)) ≤ L(B) = −∑

i 2tr((BT
nΣiBn)−1)(BT

nAiB)) +
tr

(
(BT ΣiB)−1(BT

nΣiBn)−1(BT
nAiBn)(BT

nΣiBn)−1
)

(10)

Effectively, it can easily shown that L(B) majorizes G(B) since G(Bn) = L(Bn) and
L(B) ≥ G(B).

The function L(B) is quadratic in B and hence easier to minimize. After rearrang-
ing terms a necessary condition for the minimum of L(B) has to satisfy:

∂L
∂B =

∑
i −Ti + ΣiBFi = 0

Fi = (BT
nΣiBn)−1(BT

nAiBn)(BT
nΣiBn)−1

Ti = AT
i BT

n (BT
nΣiBn)−1 (11)

Finding the solution of eq. 11 involves solving the following system of linear equations∑
i Ti =

∑
i ΣiBFi. A closed-form solution could be achieved by vectorizing eq. 11

with Kronecker products. However, the system would have dimensions of (d×l)×(d×
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l), which is not efficient in either space or time. Instead, a gradient descent algorithm
which minimizes:

E(B) = minB||
∑

i

(Ti − ΣiBFi)||F (12)

is used. Due to the huge number of the equations to solve (d×l), an effective and linear
time algorithm to solve for the optimum of eq. 12 is a normalized gradient descent:

Bn+1 = Bn − η ∂E(B)
∂B Rk = ∂E(B)

∂B (13)

Rk = −∑
i ΣiBFT

i +
∑

i

∑
k ΣT

i ΣkBFiFT
k

η is the step size needed to converge and it is estimated by minimizing η = minη||
∑

i Ti−∑
i Σi(B + ηRk)Fi)||. After some derivation, it can be shown that the optimal η is

η =
�

i

�
k tr(ΣiRkTiT

T
k BT Σk)−�i

(
ΣiRkTiB

T
)

�
i

�
k tr(ΣiRiTiTT

k RT
k Σk)

.

6 Dealing with high dimensional data

When applying any classifier to visual data, a major problem is the high dimensionality
of the images. Several strategies are necessary to get good generalization, such as fea-
ture selection or dimensionality reduction techniques (PCA, LDA, etc). In this context
LDA or MODA can be a good initial step to extract discriminative features. However,
as it is well known, dimensionality reduction techniques such as LDA, that preserve
discriminative power cannot handle very well the case that n << d (more pixels than
training data), which is the typical. For instance, an image of 100 × 100 pixels will
correspond to feature vectors of 10000 dimensions, which will induce covariance ma-
trices of 10000× 10000. To make the covariance full rank, at least 10000 independent
samples would be necessary, and even that will be a poor estimate. In this scenario,
working with huge covariance matrices presents two major problems: computational
tractability (storage, efficiency and rank decificiency) and generalization.

To solve the computational aspect, one straightforward approach is to realize that
if d >> n, the true dimensionality of D ∈ �d×n is n. Therefore, we can project
into the first n principal components without losing any discriminative power. A more
interesting approach, Direct LDA methods [32, 4], discard the null space of S 1, which
contains no discriminative information (i.e. S1B = 0), and then find the transformation
that diagonalizes S2.

Besides the computational aspects, the second and more important problem is the
lack of generalization when too few samples are available. As noticed by Hugues
[17], the fact of increasing the dimensionality would have to enhance performance for
recognition (more information is added), but due to the lack of training data this will
rarely occur. Fukunaga [13] studied the effects of finite data set in linear and quadratic
classifiers, and concluded that the number of samples should be proportional to the
dimension for linear classifiers and square for quadratic classifiers. A similar conclu-
sion has been obtained by Raudys and Jain [26], that the complexity of the classifier
increases exponentially with the dimensionality of the data. In this case, LDA over-fits
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the data and does not generalize well to new samples. One way to understand over-
fitting is to consider eq. 2. There are O(c × n) equations and O(d × k) unknowns
(B) 4. Without enough training data, eq. 2 is an underdetermined system of equations
with ∞ solutions. In other words, if there are more features than training samples,
directly minimizing LDA will result in a dimensionality reduction that will act as a
associative memory rather than learning anything (no regression is done), and no good
generalization will be achieved.

Several regularized solutions have been proposed in order to alleviate the lack of
training data [34, 16]. Hoffbeck and Landgrebe [16] have proposed a combination of
class covariance and common covariance matrix, that is, the new covariance matrix
C(Σi) will be, C(Σi) = α1diag(Σi) + α2Σi + α3S + α4diag(S), where S =
1
L

∑L
i Σi and

∑
i αi = 1. Zhao [34] suggested adding a regularization term Σ b + kId,

where k is a small constant this will modify only the eigenvalues and will preserve the
same directions (eigenvectors).

In order to be able to generalize better than LDA and not suffer from storage/computational
requirements, our solution approximates the covariance matrices as the sum of outer
products plus a scaled identity matrix Σi ≈ UiΛiUT

i +σ2
i Id. Ui ∈ �d×k, Λi ∈ �k×k

is a diagonal matrix. In order to estimate the parameters σ 2
i , Ui, Λi, a fitting approach

is followed by minimizing Ec(Ui,Λi, σ
2
i ) = ||Σi −UiΛiUT

i − σ2
i Id||F . By making

derivatives w.r.t Ui, σ
2
i and Λi and setting them to zero, it is easy to show that the

parameters have to satisfy:

UiΛi = (Σi − σ2
i Id)Ui σ2

i =
tr(Σi − UiΛiUT

i )
tr(Id)

(14)

Taking into account that Σi and (Σi−σ2
i Id) have the same eigenvectors and the eigen-

values are related by σ2
i , it is easy to show that: σ2

i = tr(Σi − UiΛ̂iUT
i )/d − k,

Λi = Λ̂i −σ2
i Id, where Λ̂i are the eigenvalues of the covariance matrix Σ i. The same

expression could be derived using probabilistic PCA [24, 28].

It is worthwhile to point out two important aspects of the previous factorizations.
Factorizing the covariance as the sum of outer products and a diagonal matrix is an
efficient (in space and time) manner to deal with the small sample case. Observe that
to compute ΣiB = UiΛi(UT

i B)+σ2
i B storing/computing the full d×d covariance is

not required. On the other hand, the original covariance has d(d+1)/2 free parameters,
and after the factorization the number of parameters is reduced to l(2d − l + 1)/2
(assuming orthogonality of Ui), so that much less data is needed to estimate these
parameters and hence it is not so prone to over-fitting. Also, the spectral properties of
the matrix are not altered; the eigenvectors of U iΛiUT

i +σ2
i Id are the same as Σi, and

the set of eigenvalues will be ζ1 = σ2
i +λ1, ζ2 = σ2

i +λ2, ζ(l+1) = σ2
i , · · · , ζd = σ2

i ,
where λi are the eigenvalues of the original sample covariance.

4Orthogonality of B is not assumed.
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7 Experiments

7.1 Toy Problem

In order to verify that under ideal conditions ODA outperforms LDA, we tested ODA
on a toy problem. 200 samples for five 20-dimensional (d=20) Gaussian classes were
generated. Each sample for class c was generated as yi = Bcc + µc + n, where
yi ∈ �20×1, Bc ∈ �20×7, c ∼ N7(0, I) and n ∼ N20(0, 2I). The means of each
class are µ1 = 4120 , µ2 = 020 , µ3 = −4[010 110]T , µ4 = 4[110 010]T and µ5 =
4[15 05 15 05]T . The basis Bc are random matrices, where each element has been
generated from N(0, 5). A weak orthogonality between the covariance matrices (i.e.
tr(BT

i Bj) = 0 ∀i 
= j) is imposed with a Gram-Schmidt approach, i.e. B j = Bj −∑j−1
i=1 tr((BiBi)−1BT

j Bi)Bi ∀j = 2 · · · 5. The covariance matrices are approximated
as Σi = UiΛiUT

i + σ2
i I, such that they preserve 90% of the energy.

In the test set, a linear classifier is used, that is, a new sample di is projected into
the subspace by xi = BT di and it is assigned to the class that has smallest distance,

(xi− µ̂i)Σ̂i
−1

(xi− µ̂i)+ log|Σ̂i|, where µ̂i and Σ̂i are the low-dimensional estimates
of the mean and class covariance. Table 7.1 shows the average recognition rate of LDA
and ODA over 50 trials. For each trial and each basis, the algorithm is run five times
from different initial conditions (perturbing the LDA solution), and the best solution is
chosen. As can observed from table 7.1, ODA always outperforms LDA and it is able
to extract more features.

Basis 1 2 3 4 5 6
LDA 0.46 0.69 0.74 0.78 NA NA
ODA 0.46 0.77 0.85 0.90 0.94 0.97

Table 1: Average over 50 trials

It is well known, that in the case of having a small number of samples, classical
PCA can outperform LDA [22]. We run the same experiment as before but with a
feature size of 152 (i.e. d=152) and just 40 samples per class. The results can be seen
in table 7.1.

Basis 1 2 3 4 5 6
PCA 0.20 0.42 0.53 0.66 0.75 0.82
LDA 0.20 0.37 0.57 0.78 NA NA
ODA 0.20 0.67 0.81 0.90 0.95 0.97

PCLDA 0.20 0.50 0.79 0.85 NA NA
PCODA 0.20 0.70 0.84 0.91 0.95 0.97

Table 2: Average over 50 trials

PCLDA holds for PCA+LDA (preserving 95% of the energy) and PCMODA for
PCA+ODA. Even, in the small sample case, ODA still outperforms all the other meth-
ods. Also, by projecting onto PCA, LDA avoids overfitting.
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Figure 5: Training data.

7.2 Face Recognition from Video

Face recognition is one of the classical pattern recognition problems that suffers from
noise, limited number of training data and the face under pose/illumination changes
describes non-linear manifolds. These facts make face recognition a good candidate
for MODA.

A database of 23 people has been collected using our omnidirectional-meeting-
capturing device [7]. The database consist on 23 people recorded over two different
days under different illumintation conditions. Figure 7.2 shows some images of peo-
ple in the database, variations are due to facial expression, pose, scale and illumina-
tion conditions. The training set consists of the data gathered on the first day under
three different illumination conditions (varying lights in the recording room), scale and
expression changes. The testing data consist of the recordings of the second day (a
couple of weeks later) under similar conditions. Figure 6 illustrates the recognition
performance using PCA, LDA and MODA, similarly table 7.2 provides some detailed
numerical values for different number of basis.

Basis 2 5 10 20 25 30 50
PCA 0.12 0.26 0.43 0.55 0.56 0.58 0.59
LDA 0.21 0.36 0.48 0.56 NA NA NA

MODA 0.23 0.38 0.50 0.59 0.60 0.61 0.63

Table 3: Recognition performance of PCA/LDA/MODA

In this experiment, each class has been clustered into two clusters to estimate B.
Once B is calculated, the Euclidean distance for the nearest neighbourhood is used.
Several metrics have been tested (e.g. Mahalanobis, Euclidean, Cosine, etc) and the Eu-
clidean distance performed the best in our experiments. For the same number of bases,
MODA outperforms PCA/LDA. Also, observe that LDA can extract only classes-1
features (22 features), whereas MODA can extract many more features. In this exper-
iment, each sample is classified independently; however, using temporal information
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Figure 6: PCA/LDA/MODA

can greatly improve the recognition performance; Refer to [7] for more details.

8 Discussion and future work

In this paper we have introduced Multimodal Oriented Discriminant Analysis (MODA),
a new discriminant analysis method that extends classical linear discriminant analysis
by modeling class covariances and multimodal manifolds. Several synthetic and real
experiments confirm that MODA always outperforms classical LDA. Even when there
are few samples, MODA can perform better than PCA by factorizing the covariances.

However, several issues remain unsolved; there is need for faster optimization al-
gorithms that can find global optimal solutions. It would be interesting to train MODA
with Adaboost or boosting [11] techniques that use a greedy strategy to look for local
optima. On the other hand, in the context of object recognition from video, one of
the most important steps is registration and being able to deal with outliers. Further
research needs to be done in order to address these problems.

A Appendix A

In general eq. 8 does not have a closed form solution; however, in the case that Σ r1
i =

Σ ∀i, r1 an eigensolution does exist. Let be ki the number of clusters for class i and
K =

∑c
i=1 ki the total number of clusters. M ∈ �d×K is a matrix such that each

column contains the mean of each cluster and each class. G ∈ �K×c is a dummy
indicator matrix, such that

∑
j gij = 1, gij ∈ {0, 1} and gij is 1 if mi belongs to class

j. PM = Id − 1
K 1d1T

d is a projection matrix. Using these definitions and taking into
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account that µr1
i = Me(

�i−1
j=1 ki)+r1

, it can be shown that:

E1 =
∑C

i=1

∑C
j=1

∑
r1∈Ci

∑
r2∈Cj

(15)

tr
(
(BT (µr1

i − µr2
j )(µr1

i − µr2
j )T B)(BT ΣB)−1

)
= 2Ktr(BT MT MPMB(BT ΣB)−1)

E1 computes the sum of the distances of the means among all the clusters for all the
classes. However, the distances between the clusters of the same class should be sub-
tracted. The sum of distances between the clusters in a class, that is when i = j, is
given by:

E2 =
∑C

i=1

∑
r1∈Ci

∑C
r2∈Ci

(16)

tr
(
(BT (µr1

i − µr2
j )(µr1

i − µr2
j )T B)(BT ΣB)−1 =

2tr

(
(BT (MT M(

∑c
i=1 kidiag(gi) − GGT )B)(BT ΣB)−1

)

Where recall that gi is the i column of G. Subtracting E1 from E2:

E3 = E1 − E2 =
∑C

i=1

∑C
j �=i

∑
r1∈Ci

∑
r2∈Cj

tr
(
(BT (µr1

i − µr2
j )(µr1

i − µr2
j )T B)(BT ΣB)−1

)
= 2K

tr

((
BT (MT M(PM − ∑

i kidiag(gi) − GGT ))B
)
(BT ΣB)−1

)
(17)

results in eq. 8 if the covariances are the same. The solution of eq. 17 can be computed
as a standard generalized eigenvalue problem.
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