Chip Multi-Processor Scalability for Single-Threaded Applications

Neil Vachharajani*, Matthew Iyer!, Chinmay Ashok!
Manish Vachharajanif, David 1. August*, and Daniel Connors!

*Department of Computer Science
Princeton University
{nvachhar,august} @princeton.edu

Abstract

The exponential increase in uniprocessor performance
has begun to slow. Designers have been unable to scale
performance while managing thermal, power, and electri-
cal effects. Furthermore, design complexity limits the size
of monolithic processors that can be designed while keep-
ing costs reasonable. Industry has responded by moving
toward chip multi-processor architectures (CMP). These
architectures are composed from replicated processors
utilizing the die area afforded by newer design processes.
While this approach mitigates the issues with design
complexity, power, and electrical effects, it does nothing
to directly improve the performance of contemporary or
future single-threaded applications.

This paper examines the scalability potential for ex-
ploiting the parallelism in single-threaded applications on
these CMP platforms. The paper explores the total avail-
able parallelism in unmodified sequential applications and
then examines the viability of exploiting this parallelism
on CMP machines. Using the results from this analysis,
the paper forecasts that CMPs, using the “intrinsic”
parallelism in a program, can sustain the performance im-
provement users have come to expect from new processors
for only 6-8 years provided many successful parallelization
efforts emerge. Given this outlook, the paper advocates
exploring methodologies which achieve parallelism beyond
this “intrinsic” limit of programs.

I. Introduction

Historically, semiconductor process and technology im-
provements have provided microarchitects with smaller,
faster, and less power-hungry transistors. The responsibil-
ity of microarchitects was to translate these device-level
improvements into cheaper and faster microprocessors.
As device technology scaled, microarchitects could design
processors using many more transistors without dramat-

TDepartment of Electrical and Computer Engineering
University of Colorado at Boulder
{iyer, ashokc, manishv, dconnors} @colorado.edu

ically increasing the cost of the product. Consequently,
designers used this glut of newly available fast transistors
to build high-clock speed, deeply pipelined, wide-issue,
out-of-order, speculative microprocessors. Through these
improvements in both physical design and microarchitec-
ture, processors in use today are almost 100 times faster
than the processors of just 15 years ago [24].

Unfortunately, this singular focus on processor per-
formance is no longer tractable. Today designer’s must
combat overwhelming design complexity, unmanageable
power requirements, thermal hot-spots, current-swings,
signal noise and other effects when designing a faster pro-
cessor. Consequently, the techniques previously employed
by designers are showing diminishing returns. For exam-
ple, several Intel designers observe that the design com-
plexity of a processor’s instruction window and the delay
through the window scales quadratically with the number
of instructions it can hold while delivering less than linear
performance improvement [32]. In response to these design
challenges, many microprocessor designers and manufac-
turers have turned to building chip multi-processors [1],
[13], [16], [36]. These products reduce design complexity
by replicating a design unit (the processor core) across
the die. The designs also help allevieate thermal issues by
spreading computational resources more uniformly. And,
if all cores can be kept occupied, the performance per
unit power, is kept almost constant. Consequently, these
designs create far fewer complications for microprocessor
manufacturers. The key to the success of these designs,
however, lies in identifying workloads that can leverage
the additional processor cores, or transforming existing
workloads into ones that can.

Multi-programmed systems and throughput driven ap-
plications naturally fit the programming model offered by
CMPs and consequently, their performance will benefit
from these new architectures. Unfortunately, the latency of
any single task remains unchanged. At best, the common
single-threaded applications will see no benefit from these
future architectures. At worst, they will experience heavy

slowdowns as the aggressiveness of each core is scaled
back to make room for larger numbers of cores. To provide
the consistent speedup of single-threaded applications that
users have come to expect (i.e. to continue the Moore’s law
of single-threaded application performance), techniques to
reduce the latency of single-threaded applications using
CMP architectures must be developed.

Decades of research in automatic parallelization of
single-threaded applications has yielded some limited suc-
cess. Scientific applications, in particular, or more gener-
ally, programs with regular accesses to memory and regu-
lar control flow have been successfully parallelized [3].
General-purpose programs, which contain indeterminate
memory accesses and control flow, however, have seen
far less success [26]. Researchers have turned to thread-
level speculation (TLS) [11], [15], [22], [26], [27], [35]
and speculative pre-computation [17], [21], [34], [39],
[40], [41] to leverage CMP architectures for accelerating
general-purpose programs. Each technique attempts to use
additional processor cores to either run large blocks of code
speculatively or to run code to enhance the performance
of the main processing thread (e.g. warm the caches or
branch predictor).

Rather developing mechanisms to extract parallelism
from general-purpose, single-threaded applications, other
researchers have attempted to quantify the “intrin-
sic” amount of parallelism found in these applications.
Instruction-level parallelism (ILP) limit studies [2], [5],
[14], [18], [19], [25], [30], [37], [38] show that in ideal
circumstances, these same hard to parallelize general pur-
pose programs can execute, on average, as many as a
few hundred to a few thousand instructions each cycle.
Unfortunately, existing ILP architectures have been unable
to unlock this parallelism because they process instruc-
tions along a single instruction stream. Consequently,
instructions that are not ready to execute occupy valuable
resources that prevent other ready, independent instructions
later in the stream from entering the pipeline. The growing
disparity between processor speed and memory speed
exacerbates this resource congestion since load operations
that miss in the cache and all subsequent instructions
remain in the pipeline for significantly more time.

Techniques such as kilo-instruction processors [7], [9]
attempt to overcome this in-order instruction processing
but unfortunately these solutions do not address the other
challenges (heat dissipation, power consumption, design
complexity, etc.) facing aggressive single core designs. On
the other hand, multi-processors in general, and CMPs, in
particular, naturally avoid in-order processing of instruc-
tions by executing multiple streams of instructions con-
currently. Consequently, if the parallelism observed in ILP
limit studies could be expressed to a CMP as threads, then
a significant improvement in single threaded application

performance may be observed when these applications are
parallelized and run on a CMP.

Despite this potential, it remains an open question to
determine how much of this ideal parallelism can be
extracted by CMP architectures. Moreover, it is unclear
how many processor cores are necessary to extract this per-
formance. Answers to these questions will allow designers
and architects to understand how many process generations
worth of transistors can be dedicated to additional proces-
sor cores while still improving single-threaded application
performance. Thus, answers to these questions provide a
timeline that indicates when architects and programmers
can no longer rely on performance improvements from
exposing the intrinsic parallelism in unmodified programs
to CMP machines.

This paper attempts to approximate these values thus
giving computer architecture researchers advance warn-
ing about how soon new techniques must emerge from
our community. To establish an idealistic limit on the
amount of parallelism present in unmodified, general-
purpose, single-threaded applications, Section II presents
a limit study reminiscent of those found in the literature.
Section III then measures how much of this parallelism can
be exploited by various idealized CMP architectures using
greedy scheduling of dynamic instructions under various
cost models. Section IV discusses the implications of the
results presented in the prior sections and outlines possible
future strategies that may help to continue performance
scaling of single threaded applications. Finally, Section V
summarizes the results of the paper and restates the posi-
tion of the authors.

II. The Availability of Parallelism

Figure 1 shows the available ILP for several benchmarks
from the SPEC CINT2000 suite using the train input sets.
To compute the instructions-per-cycle (IPC), complete pro-
gram traces were collected for each program execution and
these traces were ideally scheduled respecting differing de-
pendences and resource constraints ranging from extremely
optimistic to dependences and constraints reminiscent of
today’s processors. In all cases, each instruction was as-
sumed to have unit latency and all true data dependences
were respected. A varying re-order buffer (ROB) size
constraint was imposed to illustrate the effects of myopic
processors. This constraint limited how far into the trace
the scheduler could look, and, as a side-effect, limited the
maximum number of instructions that could be scheduled
during any cycle. Instructions were placed in and removed
from the simulated ROB in trace order. Schedules were
created for ROB sizes of 128, 256, 512, 1024, 10240,
and infinite. For each ROB size, schedules were created
respecting true control dependences (denoted C in the
figure), predicting control dependences and respecting only

10*

10°

10?

IPC

10

10°

128(C)
128(C)

IT
S
==

181.mcf

176.gcc

128(C)

197.parser

|

253.perlbmk 300.twolf

128
2
2.

Fig. 1. Non-Speculative Parallelism in Unmodified SPEC Programs

those that were mispredicted (B), and ignoring all control
dependences (I).

Similar to limit studies of the past [2], [5], [14], [18],
[19], [25], [30], [37], [38], the figure clearly illustrates that
in most cases significant parallelism exists (note the log-
scale y-axis) provided that a sufficiently large window of
instructions can be considered for scheduling. If control de-
pendences are ignored, programs such as 176.gcc, 181.mcf,
and 197.parser achieve IPCs in excess of one hundred and
in some cases in excess of one thousand. As previously
observed [30], when the effects of control dependences
(even when mitigated by branch prediction) are considered,
window sizes of about ten thousand instructions are able
to capture the vast majority of parallelism present in these
programs. Only the applications 176.gcc, 181.mcf, and
197.parser possess parallelism beyond 10240 instructions
(61%, 58%, and 63% more than achived by the 10240
instruction ROB respectively), but even in these cases,
significant parallelism is observed with ROB sizes of
10240.

Unfortunately, the ILP measured when ignoring control
dependences seems unattainable. For example, in 181.mcf,
if all control dependences are ignored except for those
due to branches in the sort_basket function (9 static
branches consisting of 13.34% of the dynamic branches
in the program), the IPC drops from 6397.25 to 25.41.
These branches represent control decisions in a quick sort
algorithm making them difficult to predict. It is unlikely
that future advances in branch prediction will be able to
overcome this type of information-theoretic limitation in
predictability.

The limitations due to ROB size, however, may be
surmountable. While it is unlikely that processors will be
built with ROBs that hold thousands or tens of thousands of

in-flight instructions, chip multi-processors combined with
application threading strategies may be able to extract the
parallelism revealed by this study using many small (i.e.
128 instruction) windows. The next section quantifies this
promise by measuring the parallelism achieved when dy-
namic instructions are scheduled across many independent
ROBs using simple greedy algorithms.

II1. Parallelism in CMPs

The previous section illustrated the presence of paral-
lelism in conventional, hard-to-parallelize general purpose
programs. This section quantifies the promise of CMPs to
realize this parallelism. To that end, we present a simple
greedy CMP instruction scheduling algorithm, evaluate the
parallelism it realizes, and finally measure the effect on
parallelism of several constraints that may hinder per-
formance. Throughout this section, we will analyze the
scalability of the CMP solution and identify “knees” in the
performance curves; that is to say, we identify the points
at which additional processor cores provide little to no
performance advantage.

A. CMP Instruction Scheduling

The principle advantage CMPs offer over single-core
processors is the ability to avoid resource congestion cre-
ated by contiguous instructions that form long dependence
chains. These chains prevent the processor from seeing
independent instructions that lie farther in the instruction
stream. Multi-core architectures, on the other hand, avoid
this bottleneck since multiple independent, non-contiguous
windows of instructions can be analyzed, one window
per core. Since instructions in different cores retire in-
dependently, bottlenecks in one core do not affect other

Algorithm 1 CMP Instruction Scheduling Algorithm

for instr € trace do
best_ROB «— 0
main_time «— oo
for i =1tondo
time; — try_ROB(instr, ROB;)
if time; < min_time then
min_time «— time;
best_ ROB « i
end if
end for
schedule_insert(instr, RO Byest_rOB, timesest_ROB)
end for

cores. To evaluate the potential parallelism CMPs offer
to execute single-threaded applications, the instruction
scheduler used for the limit study in the previous section
must be augmented to be aware of multiple ROBs.

Algorithm 1 presents the algorithm, a variant of the ETF
(Earliest Time First) algorithm [12], used for scheduling.
The scheduler iterates over the instructions in the program
trace. For each instruction, the try_ROB function computes
the cycle in which the instruction would be scheduled if it
were allocated to ith core. As each core is tried, the core
which executes the instruction earliest is recorded. After
all cores are tried, the instruction is scheduled into the
earliest possible slot, and the occupancy for the ROB for
the corresponding core is updated by the schedule_insert
function.

Intuitively, the algorithm will allocate instructions to a
single core until that core (i.e. the core’s ROB) gets back-
logged with a long dependence chain. In such a case, the
scheduler opts to allocate the instruction to another core
which has the least resource contention. In this way, the
scheduler greedily attempts to get each instruction to exe-
cute as early as possible. This greediness may result in sub-
optimal schedules, however, as the results will indicate,
the scheduler performs quite well. The reader should note
that more intelligent scheduling algorithms may improve
the parallelism observed, but such improvements further
support the claims made in the paper.

Notice that the net effect of this scheduling process is
reminiscent of TLS architectures. The sequential semantics
of the original single threaded program are preserved; the
instructions are merely scheduled to different cores and
inter-core (register and memory) dependences are satisfied
through inter-core communication. Unlike TLS, however,
the scheduler does not need to speculate dependences.
Since it possesses oracle knowledge, it can allocate the
instruction to any core, balancing the time when an
instruction’s dependences are satisfied with the time it
will enter the ROB of the core to which it is allocated.
Additionally, the scheduling algorithm is not constrained
to allocate instructions to cores in a round-robin fashion as
is typically required in TLS architectures. These limitations

of TLS, as well as misspeculation penalties, may make it
difficult to realize the performance shown here with TLS
architectures, but the likeness to these architectures may
help make the results more concrete in the reader’s mind.

B. Extractable Parallelism

Figure 2 shows how the SPEC CINT2000 benchmarks
evaluated earlier fare on the CMP model. The experiments
in this section and for the remainder of the paper respect
control dependences, perform branch prediction, and avoid
stack related dependences [18], [25]. In particular the
numbers presented in this graph respect only true control
dependences. That is to say, control independent instruc-
tions following a branch are not squashed if the branch is
mispredicted. Further, this data assumes that the inter-core
and intra-core inter-instruction latencies are identical (i.e.
there is no additional inter-core latency). The first four bars
(from left to right) and the last bar for each benchmark,
show the performance of the application for a single
ROB of size 128, 256, 512, 1024, and infinite instructions
respectively. The remaining bars in the graph show the
parallelism obtained in various CMP configurations. Each
configuration is denoted nxs where n is the number of
cores and s is the size of the ROB for each core. The graph
presents results for 2x64, 2x128, 4x64, 4x128, 8x32, 8x64,
16x32, and 16x64 configurations. Notice that the CMPs
show significant potential. In every case, a CMP with
the same number of total instruction window entries as
the single window machine always outperforms the single
window. For example, in 175.vpr the 2x64 CMP (128 total
instruction slots) outperforms the 128 entry ROB model.
Even more striking is that the 4x64 CMP outperforms the
1024 instruction monolithic window in all cases. Often
times, the 16x64 configuration performs almost as well as
the infinite window!

The graph also illustrates that in many cases, only a
few cores are needed to extract most of the available
parallelism. For 175.vpr, the 2x128 CMP provides nearly
all of the parallelism present in the application. For 3
of the 5 remaining benchmarks (181.mcf, 197.parser, and
253.perlbmk), the 8x64 configuration captures nearly 90%
of the parallelism provided by the 16x64 configuration and
much of the total available parallelism. The remaining two
benchmarks (176.gcc and 300.twolf) benefit significantly
in the 16x64 configuration achieving 75% and 96% of
the available parallelism respectively. This data clearly
suggests that additional cores rapidly provide diminishing
returns, and if these applications are representative, that
a 16 core CMP should be adequate for extracting the
vast majority of parallelism from single-threaded, general-
purpose applications.

75

IPC

25

RXXXXXXXXA

-}
XX

128
512
2x64
2x128
4x64
4x128
8x32
8x64
16x32
16x64
infinite

SISO,
R RRARRHRIRHKKHKKT]

infinite
infinite

Fig. 2. Comparison of Parallelism Exploitable by Different Window Sizes

C. Inter-Core Communication Latency

While the above performance may be observed on an
actual CMP, the results are likely exaggerated since inter-
core communication incurred no penalty. In practice, the
inter-core communication delay will reduce the observed
benefits, possibly severely. In this section, we revisit the
performance of CMPs when inter-core communication is
not free.

To account for communication latency, Algorithm 1
must be enhanced to understand when dependences are
being satisfied from different processor cores. In the algo-
rithm, the try_ ROB function computed the execution time
of the given instruction when scheduled to a particular
ROB. This function returned the maximum of the time an
instruction’s dependences were satisfied and the time the
instruction could enter the given ROB. To account for com-
munication latency, the time an instruction’s dependences
are satisfied must be delayed if a particular dependence is
satisfied from another core.

We model a single fixed communication latency be-
tween all cores (with no bus or network contention) and
add this latency to the time a particular operand is ready if
the operand is being obtained from a different core from
the one where the instruction is being executed. Just as
before, the scheduler will try all cores and choose the one
that allows the instruction to run the earliest. Intuitively,
this will create an affinity for instructions to remain on
the core where their data sources executed. Only if that
core experiences a back-log of instructions larger than the
communication latency will an instruction move to a new
core.

Figure 3 shows the same benchmarks from the previous
section executing with the communication latency model
just described. The single ROB IPC bars for each bench-

mark are the same as in Figure 2 and are reproduced for
reference. For the ROB configurations 2x64, 4x64, 8x64,
and 16x64, the IPC is shown for three different latencies:
16, 4, and 0. The O-latency case is identical to the CMP
bar from Figure 2 and is also reproduced for reference.

The graph illustrates that communication latency has
significant deleterious effects for the CMP models. In
particular, with a 16 cycle latency, a CMP now only
performs on par with or slightly outperforms the single-
window machine with an equal total number of ROB
entries. With latency 4, to outperform the 1024 entry
single-ROB, often times 8 cores with a ROB size 64 are
necessary.

Despite the obvious deleterious effects, one should note
that the trend of diminishing returns remains. While a com-
munication latency of 16 reduces the overall parallelism
observed by the CMP, it is unlikely that 32 or 64 cores
will perform significantly better than 16. Consequently,
even under these conditions, an 8-core CMP seems to be a
sweet-spot for performance and 16-cores seems to promise
near optimal results given the particular partitioning algo-
rithm.

D. Control Speculation and Recovery Techniques

Finally, this section examines how control dependences
are handled in the model and contrasts this with more
practical misspeculation recovery techniques. In the current
models, only true control dependences that are misspecu-
lated are respected. While this mimics modern machines
allowing control dependent instructions to be executed
early provided the dependence is predicted correctly, it be-
haves optimistically with respect to mispredicted branches.
In particular, control-independent regions of code follow-
ing a hammock (if-then-else statement) are free to be

75

IPC

RO

({) PRI

o
)
)
i
?45
{0
infinite(0)
)
0)
(|

16x641
16x64

infinite

175.vpr 176.gcc

4
()
§I
!

034

i
(
(
16x641
16x641

]

XXX

0]

X

XX

X2

o

X0

(f) POOBEBEAKRIKIR

77771
777772
(777772
(77777777

) 1

Y —

) —
POOOIRX

SeFS TS IS

g
0]
()
!
4
)
4
0
16
o
128(0;
()
!
i
)
(4
o
4
?43
X64(0
infinite(0) [X

infinitg

300.twolf Mean

Fig. 3. Comparison of Parallelism Exploitable by Different Latencies

hoisted above branches, even if the branch is mispredicted.
While such selective replay recovery mechanisms have
been proposed [6], [10], most aggressive processors simply
squash all instructions following a misspeculated branch
due to the complexity of identifying control re-convergence
and re-inserting instructions into the middle of the schedul-
ing window.

To model the more conservative recovery mechanism,
the dependences used by the scheduler must be augmented
to include a dependence arc between a mispredicted branch
and all subsequent instructions. To model core-to-core in-
dependence, these arcs are only drawn between subsequent
instructions scheduled in the same core as the branch.
Subsequent, control-independent instructions in other cores
remain independent of the branch. The scheduler will con-
sider these dependences and the constraints they impose in
the same way as before; an instruction may be scheduled to
a particular core because it is unhindered by a particular
branch misprediction. Note that this style of recovery is
again reminiscent of TLS architectures which often do not
squash later threads in response to an intra-thread branch
misprediction of an earlier thread.

Figure 4 illustrates the affect of this branch misspecula-
tion recovery policy. For each window size, the graph con-
tains two bars, one for the previous selective-replay-like
branch recovery methodology (denoted cd in the graph)
and one for the conservative-inorder-branch methodology
(denoted ino). All measurements are made assuming an
inter-core communication latency of 4 cycles. The graph
clearly indicates that this recovery policy has significant
effect on the exploitable parallelism. However, the effect
is far greater on single-ROB processors as compared to
CMPs. Just as before, the diminishing returns remain the
same and 16-cores seems to nearly saturate the exploitable

parallelism using the described threading algorithm.

As an interesting aside, the graph reveals that large
monolithic instruction windows often do not outperform
their smaller counterparts. Given the model, this effect is
quite intuitive. In the multi-core processors, since different
threads of control can be executing on the different cores,
a single branch misprediction is less devastating since all
but one window can continue execution unhindered. Con-
versely, for single-ROB machines, a single misprediction
causes the processor to restart execution of all subsequent
instructions. Its natural that extending the window size
provides very little additional parallelism due to branch
mispredictions. It is worth noting, however, that in the
presence of long-latency operations, the benefits of large
monolithic windows over small monolithic windows would
be clear. However, even in these cases, it is likely that CMP
performance will still be less sensitive to individual branch
mispredictions.

IV. CMP Scalability

The previous section illustrated that CMPs show re-
markable potential in tapping the available parallelism in
single-threaded applications. This potential remained even
in the presence of inter-core communication delays and
realistic branch recovery models. The experiments, how-
ever, also revealed that the utility of additional processor
cores rapidly diminishes after 8 cores and is effectively
insignificant beyond 16 cores if a parallelization strategy
emerges with performance similar to the one presented.

Given these scalability properties, the outlook for CMPs
continuing the exponential growth in single-threaded pro-
cessor performance appears extremely near-term. If, for
example, we consider that the number of transistors on a
single chip will double every 18 months, and that current

75

IPC

25

176.gcc 181.mcf

197.parser 253.perlbmk

IST2 SLTH
ANt B
FRL00] FHREE

300.twolf

Fig. 4. Comparison of Parallelism Exploitable by Branch Types

generation chips possess two cores, we will have the
technology to build a 16 way CMP in only 4.5 years pro-
vided all additional transistors are dedicated to additional
processor cores. However, Sun’s Niagara processor [36]
may provide a 16-way CMP solution far sooner. Consid-
ering that typical systems will optimistically be running at
most 2 to 4 compute intensive applications, in 6-8 years
additional processor cores provided by technology scaling
will not translate to single-threaded application perfor-
mance using straight-forward application parallelization.
Due to the exponential scaling, if the estimates in this
paper are off by even a factor of 2 to 4, the community
only has an additional 1.5 to 3 years to identify uses for
additional cores to accelerate single-threaded applications
or to migrate the predominant programming methodology
to parallel programming.

If viewed from performance perspective, rather than
integration density, the results in the previous section show
that CMPs can offer a 200% speedup for single-threaded,
general-purpose applications relative to a current gener-
ation uniprocessor. This corresponds to doubling perfor-
mance 1.5 times. Assuming performance is also to double
once every 18 months, given no clock rate increases, CMPs
only provide for approximately the next two years worth
of performance improvement. Process technology enhance-
ments that improve clock rate will hopefully contribute
significant performance, but even from this perspective, it
seems unlikely that application parallelization will carry
performance scaling beyond the next 6-8 years.

Given this forecast, the balance of this section proposes
strategies for extending the performance scalability of typ-
ical applications using CMPs. The author’s believe, given
the delay between technology development and adoption,
these research avenues should be explored now.

A. Baseline Performance

While Figure 4 shows that CMPs offer a 200% speedup
potential over current generation single-core processors,
the graph also estimates the IPC obtained by current
generation processors to be 6.7. While this may be the
parallelism available within a window of 128 instructions,
modern processors typically obtain an IPC of between
1 and 2 due to real-world constraints such as long
memory latencies, branch misprediction penalties due to
deep pipelines, and other static or dynamic scheduling
constraints. Additional processor cores may be helpful
in mitigating these real-world constraints boosting the
performance of single-threaded applications.

Speculative pre-computation [17], [21], [34], [39], [40],
[41] is one class of techniques attacking the problem from
this perspective. These techniques use additional threads,
and consequently processor cores, to perform pre-fetching,
warm branch predictors, or otherwise aid the primary
processor core to more efficiently execute the application.

With the availability of many additional cores, these
techniques can be extended to more aggressively assist the
group of cores executing the application. Cores can be ded-
icated to performing aggressive dynamic, adaptive recom-
pilation. Alternatively, cores can be dedicated to predicting
data aliasing between parallel threads and providing hints
about whether to synchronize or proceed speculatively to
the cores executing those threads. Ultimately, there are
limitless possibilities for using additional cores to prevent
resource or data contention between cores and to provide
each core a constant stream of the data and instructions
needed for efficient execution. The question will be how
many cores are needed before the returns are no longer
worth the effort.

B. Transforming Dependences

While the techniques discussed in the previous section
may dramatically improve the performance of applications,
ultimately the solution is not scalable since they can only
harness parallelism that already exists. It may be possible,
however, to transform programs so they contain more
intrinsic parallelism. For example, scientific application
parallelism strategies often leverage privatization [4] to
enhance parallelism. Basic transformations such as privati-
zation, accumulator expansion, or other techniques which
expose the order agnostic nature of many algorithms may
create more opportunities for parallelism. The transforma-
tions are not limited to algorithms, but also include data
structures. Consider a linked-list search for a particular
datum. Having a single entry into the list fundamentally
serializes the search operation. However, maintaining two
or more entry points into the list offers the opportunities
for parallelism. More balanced list regions, bounded by the
various entry points, offer more benefit when the search is
parallelized. Consequently, such algorithm/data structure
modifications create new opportunities for helper threads
(like those in the described in the previous section) to
enhance benefits due to parallelization.

Dependence transformation is not limited to data de-
pendences (both true and false), but also includes re-
source dependences. The decoupled software pipelining
(DSWP) [23], [29] technique parallelizes applications by
identifying data dependence recurrences within loops and
scheduling different recurrences to different threads. In
practice, this often manifests itself as a “producer” thread
computing the loop critical path with one or more “con-
sumer” threads processing the data produced by the critical
path in parallel. The code transformation more effectively
uses the scheduling resources of a single processor. In-
structions stalled due to insufficient scheduling window
resources are often also data dependent on the stalled
instruction. This structure allows the critical-path thread to
rapidly produce data for processing creating DOALL like
parallelism for the consumers to leverage. Memory latency
stalls, branch misprediction stalls, or other hiccups in the
consumer thread pipelines do not prevent the producer
from creating more parallelism and do not prevent other
consumers from continuing processing. While DSWP is
one such technique, enhancements to DSWP and other
techniques which leverage similar insight may offer more
scalability for single-threaded application performance.

C. Value Speculation

In addition to transforming algorithms and data struc-
tures, Lipasti and Shen [20] observed that value prediction
offers opportunities to exceed the data-flow limit to paral-
lelism. While the original paper suggested using value pre-

diction hardware similar to branch predictors and leveraged
the newly exposed parallelism using conventional dynamic
scheduling, value speculation, in general, creates many
opportunities. In the context of single-threaded application
performance scalability on CMP architectures, value spec-
ulation can be used to parallelize applications, at the thread
level, beyond the data-flow limit. TLS architectures, for
example, already leverage value speculation. Indeterminate
memory access across two threads are speculated by as-
suming no two accesses conflict. TLS threading strategies
often also speculate the live-outs of a loop iteration to
allow parallel execution of future iterations [22].

In addition to using value speculation to enhance thread-
level parallelism, unused cores in CMP can be used to gen-
erate value predictions. The speculative values produced
can be used to drive traditional dynamically scheduled
processors [40] or can be used to enhance threading as
described in the previous paragraph [41].

With an abundance of processor cores, the opportunities
for aggressive value speculation are endless. Zilles and
Sohi [41] illustrated some of the possibilities however
extensions of this technique, new applications of the pre-
dicted values, and new value speculation techniques will
probably all be important to continuing the scalability of
CMPs for single-threaded applications.

D. New Programming Models

In addition to the compiler/architecture techniques dis-
cussed earlier, new programming models and tools to
aid programmers in writing threaded applications present
many opportunities for enhancing the scalability of CMPs
for common general-purpose applications. Many parallel
programming models already exist [8], [33], however,
the lack of wide-spread adoption (few programs outside
of GUI and client/server applications possess multiple
threads) indicates that the improved performance offered
by these models is inadequate given the development and
testing costs incurred when using them.

Programming models which easily expose to the user
the cost/benefit trade-off of threading, as well as those
which reduce the learning curve and improve the testability
of parallel programs will most likely have profound effect
on the how programs are written, especially with multi-
processor systems becoming standard for both desktop and
server computers. Transactional memories [28], which are
related to TLS architectures, are one such model which
may promote parallel programming.

Tools which highlight potential regions of parallelism
also offer great opportunities. For example, the Trace-
Vis [31] tool allows users to view the dynamic execution of
a program. While the tool was designed primarily to visual-
ize the effects of aggressive single-core processors, the tool
has also been used to visualize the execution of a program

running with master/slave speculative parallelization [41],
and the tool supports generalized multi-core traces. Rather
than using the tool with traces generated from a particular
processor or simulator, TraceVis or a similar tool could
be used to visualize dependences statically obtained by
a compiler or those collected by a profiler. Visualization
of the dependences and the available parallelism may
offer programmers insight into what regions of their code
naturally form threads and which regions are bottlenecks
for parallel execution. With this information, manually
threading a program or modifying algorithms to make them
more parallel can be targeted to the regions where the effort
is likely to yield significant gains. While such tools do not
automatically provide CMPs with parallel workloads, they
may offer the smoothest migration path between current-
generation single-threaded processors and the CMPs of
tomorrow.

V. Conclusion

Processor manufacturers have begun to offer chip multi-
processors instead of conventional single-core solutions
in an effort to ease the design process and increase the
potential performance improvement per transistor and per
unit of power. These solutions naturally accelerate through-
put based applications and improve system performance
for multi-programmed machines with several concurrent
tasks. These processors, however, do not directly offer any
performance improvement to conventional, single-threaded
applications.

To address this problem, the research community has
been trying to find ways to parallelize (both speculatively
and non-speculatively) single-threaded applications. This
paper showed that it is likely that we achieve as much as
a 200% speedup by parallelizing unmodified applications
and also showed that it is likely that processors with at
most 8-16 cores will be needed to unlock this parallelism.
Given this forecast and Moore’s law, this paper observed
that parallelizations that respect the original programs
dependences will provide for performance scalability for
only the next 6-8 years provided all efforts are completely
successful. Otherwise, the timeline is much shorter.

Given the rate of adoption of new technologies and
new programming methodologies, this paper advocates
exploring methodologies that will provide for performance
scaling beyond the next 6-8 years. We suggested various
possible opportunities including parallelization techniques
to mitigate the growing disparity between processor and
memory performance, techniques to mitigate the effects of
branch misprediction, techniques which transform program
dependences to create more intrinsic parallelism, value
speculation techniques that ignore program dependences
further expanding the available parallelism, and new pro-
gramming methodologies and tools that will aid program-

mers in creating parallel programs. As the paper suggests,
these techniques need not be difficult to implement, and the
community has explored some such techniques. Despite
these existing efforts, the community as a whole should
embrace these ideas and thoroughly explore the space of
designs that will be possible 8 or more years in the future.

References
[1] Advanced Micro Devices, Inc., “Multi-core pro-
cessors — the next evolution in computing,” Web

site: http://multicore.amd.com/WhitePapers/Multi-
Core_Processors_WhitePaper.pdf,” White Paper, 2005.

[2] T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi, “Dynamic
dependency analysis of ordinary programs,” in Proceedings of the
19th International Symposium on Computer Architecture (ISCA-19),
May 1992.

[3] U. Banerjee, Loop Parallelization. Boston, MA: Kluwer Academic
Publishers, 1994.

[4] M. Burke, R. Cytron, J. Ferrante, and W. Hsieh, “Automatic gener-
ation of nested, fork-join parallelism,” Journal of Supercomputing,
pp. 71-88, 1989.

[5]1 Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture opti-
mizations for exploiting memory-level parallelism,” in Proceed-
ings of the 2004 International Symposium on Computer Architec-
ture (ISCA), 2004 2004, pp. 76-89.

[6] Y. Chou, J. Fung, and J. P. Shen, “Reducing branch misprediction
penalties via dynamic control independence detection,” in Proceed-
ings of the 13th international conference on Supercomputing. New
York, NY, USA: ACM Press, 1999, pp. 109-118.

[7]1 A. Cristal, O. J. Santana, M. Valero, and J. F. Martinez, “Toward
kilo-instruction processors,” ACM Transactions on Architecture and
Code Optimization, vol. 1, no. 4, pp. 389417, 2004.

[8] M. J. Flynn, “Some computer organizations and their effectiveness,”
IEEE Transactions on Computers, vol. 21, no. 9, pp. 948-960,
September 1972.

[91 M. Galluzzi, V. Puente, A. Cristal, R. Beivide, J. Ángel
Gregorio, and M. Valero, “A first glance at kilo-instruction based
multiprocessors,” in CF’04: Proceedings of the first conference on
Computing Frontiers. New York, NY, USA: ACM Press, 2004,
pp. 212-221.

[10] A. Gandhi, H. Akkary, and S. T. Srinivasan, “Reducing branch mis-
prediction penalty via selective branch recovery,” in Proceedings of
the 10th International Symposium on High Performance Computer
Architecture, 2004, pp. 254-264.

[11] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and
K. Olukotun, “The stanford hydra cmp,” IEEE Micro, vol. 20, no. 2,
pp. 71-84, 2000.

[12] J.J. Hwang, Y. C. Chow, F. D. Angers, and C. Y. Lee, “Scheduling
precedence graphs in systems with interprocessor communication
times,” SIAM Journal of Computing, vol. 18, pp. 244-269, 1989.

[13] Intel Corporation, “A new era of architectural innovation arrives
with Intel dual-core processors,” Technology@Intel Magazine, pp.
1-11, 2005.

[14] M. Iyer, C. Ashok, J. Stone, N. Vachharajani, D. A. Connors, and
M. Vachharajani, “Finding parallelism for future epic machines,” in
Proceedings of the 4th Workshop on Explicitly Parallel Instruction
Computing Techniques, March 2005.

[15] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar, “Min-cut pro-
gram decomposition for thread-level speculation,” in Proceedings
of the ACM SIGPLAN 2004 conference on Programming language
design and implementation, 2004, pp. 59-70.

[16] R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM Power5 chip: a
dual-core multithreaded processor,” IEEE Micro, vol. 24, no. 2, pp.
4047, March 2004.

[17] D. Kim, S. S. Liao, P. H. Wan, J. del Cuvillo, X. Tian, X. Zou,
H. Wang, D. Yeung, M. Girkar, and J. P. Shen, “Physical experi-
mentation with prefetching helper threads on Intel’s Hyperthreaded

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

(26]

(27]

(28]

[29]

[30]

[31]

(32]

[33]

(34]

[35]

[36]

(37]

processors,” in Proceedings of the 2004 Annual Conference on Code
Generation and Optimization (CGO-3), March 2004, pp. 27-38.
M. S. Lam and R. P. Wilson, “Limits of control flow on parallelism,”
in Proceedings of the 19th International Symposium on Computer
Architecture, May 1992, pp. 46-57.

H. H. Lee, Y. Wu, and G. Tyson, “Quantifying instruction-level
parallelism limits on an epic architecture,” in Proceedings of the
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), April 2000, pp. 21-27.

M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value
prediction,” in Proceedings of the 29th International Symposium on
Microarchitecture, December 1996, pp. 226-237.

C.-K. Luk, “Tolerating memory latnecy through software-controlled
pre-execution in simultaneous multithreading processors,” in Pro-
ceedings of the 28th International Symposium on Computer Archi-
tecture, July 2001.

P. Marcuello and A. Gonzalez, “Clustered speculative multithreaded
processors,” in ICS ’'99: Proceedings of the 13th international
conference on Supercomputing. New York, NY, USA: ACM Press,
1999, pp. 365-372.

G. Ottoni, R. Rangan, A. Stoler, and D. 1. August, “Automatic thread

extraction with decoupled software pipelining,” in Proceedings of

the 38th IEEE/ACM International Symposium on Microarchitecture,
November 2005.

[38]

[39]

[40]

[41]

S. J. Patel, Web site: http://courses.ece.uiuc.edu/ece512/Lectures/lecturel.pdf.

M. A. Postiff, D. A. Greene, G. S. Tyson, and T. N. Mudge,
“The limits of instruction level parallelism in SPEC95 applications,”
Computer Architecture News, vol. 27, no. 1, pp. 31-34, 1999.

M. K. Prabhu and K. Olukotun, “Using thread-level speculation
to simplify manual parallelization,” in Proceedings of the Ninth
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. New York, NY, USA: ACM Press, 2003, pp. 1-12.
——, “Exposing speculative thread parallelism in spec2000,” in
Proceedings of the Tenth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. New York, NY, USA:
ACM Press, 2005, pp. 142-152.

R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing transactional
memory,” in Proceedings of the 32nd International Symposium on
Computer Architecture, June 2005, pp. 494-505.

R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August,
“Decoupled software pipelining with the synchronization array,”
in Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques, September 2004, pp.
177-188.

P. Ranganathan and N. P. Jouppi, “The relative importance of
memory latency, bandwidth, and branch limits to performance,” in
Proceedings of the Workshop on Mixing Logic and DRAM: Chips
that Compute and Remember, June 1997.

J. E. Roberts, “TraceVis: An execution visualization tool,” Master’s
thesis, Department of Computer Science, University of Illinois,
Urbana, IL, July 2004.

R. Ronen, A. Mendelson, K. Lai, S.-L.. Lu, E. Pollack, and J. P.
Shen, “Coming challenges in microarchitecture and architecture,”
Proceedings of the IEEE, vol. 89, no. 3, pp. 325-340, 2001.

H. Shan and J. P. Singh, “A comparison of MPI, SHMEM and
cache-coherent shared address space programming models on the
sgi origin2000,” in Proceedings of the 13th International Confer-
ence on Supercomputing. New York, NY, USA: ACM Press, 1999,
pp. 329-338.

G. S. Sohi and A. Roth, “Speculative multithreaded processors,”
IEEE Computer, April 2001.

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A scalable
approach to thread-level speculation,” in Proceedings of the 27th
International Symposium on Computer Architecture, June 2000, pp.
1-12.

Sun Microsystems, Inc., “Introduction to throughput computing,
White Paper,” 2003.

D. W. Wall, “Limits of instruction-level parallelism,” in Proceedings
of the 4th International Conference on Architectural Support for

Programming Languages and Operating Systems, April 1991, pp.
176-188.

——, “Limits of instruction-level parallelism,” DEC WRL, Tech.
Rep. 93/6, November 1993.

P. H. Wang, H. Wang, J. D. Collins, E. Grochowski, R. M. Kling,
and J. P. Shen, “Memory latency-tolerance approaches for Itanium
processors: Out-of-order execution vs speculative precomputation,”
in Proceedings of the 8th International Symposium on High-
Performance Computer Architecture, February 2002, pp. 187-196.
C. Zilles and G. Sohi, “Execution-based prediction using speculative
slices,” in Proceedings of the 28th International Symposium on
Computer Architecture, July 2001.

——, “Master/slave speculative parallelization,” in Proceedings of
the 35th International Symposium on Microarchitecture, November
2002.

