A Hybrid Unsupervised Approach for Document Clustering

Mihai Surdeanu Jordi Turmo Alicia Ageno
Technical University of Technical University of Technical University of
Catalonia Catalonia Catalonia

Barcelona, Spain
surdeanu@lsi.upc.edu

ABSTRACT

We propose a hybrid, unsupervised document clustering ap-
proach that combines a hierarchical clustering algorithm

with Expectation Maximization. We developed several heuris-

tics to automatically select a subset of the clusters generated
by the first algorithm as the initial points of the second one.
Furthermore, our initialization algorithm generates not only
an initial model for the iterative refinement algorithm but
also an estimate of the model dimension, thus eliminating
another important element of human supervision. We have
evaluated the proposed system on five real-world document
collections. The results show that our approach generates
clustering solutions of higher quality than both its individual
components.

Categories and Subject Descriptors: H.3.3: Clustering
General Terms: Algorithms

Keywords: Unsupervised clustering, EM initialization

1. MOTIVATION AND BACKGROUND

The work presented in this paper is motivated by research
into text mining and classification from large, real-world
document collections. As the amount of available data be-
comes virtually unlimited, manual or supervised mining ap-
proaches become prohibitively expensive due to the limited
reading and processing speed of the human experts. For this
reason, we concentrate our research only on unsupervised
methods. From the larger field of text mining and classifi-
cation, this paper focuses on document clustering. Cluster-
ing, loosely defined as the grouping of similar data items,
is the keystone of data classification. Following our creed,
we focus on unsupervised clustering techniques that do not
require labeled data or human feedback.

From the vast array of clustering methods, iterative re-
finement clustering techniques are extremely popular due to
their good performance, relative simplicity, and good the-
oretical foundations. By and large the most popular iter-
ative refinement clustering algorithm is Expectation Max-
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imization (EM) [2]. EM iteratively: (a) assigns member-
ship probabilities for all data items and all clusters, and (b)
re-estimates its model parameters based on the new assign-
ments.

The EM class of clustering algorithms are not problem
free. Like all clustering algorithms, they rely on outside
sources to provide the expected number of clusters, k. Hav-
ing the human domain expert provide this information is
not feasible when dealing with large document collections
containing new, potentially unknown data. Hence, we fo-
cus only on automated, unsupervised methods for the es-
timation of k. The most popular probabilistic method to
determine the dimensions of a given model is the Bayes In-
formation Criterion (BIC) [9]. From all possible model di-
mensions, BIC chooses the one that maximizes the model
log likelihood function. Calinski and Harabasz [1] proposed
maximizing the ratio of inter (or between) and intra (or
within) cluster distances as a means for estimating k. This
last method was empirically shown to be the most efficient [5].
However, unless the data is part of a certain family of dis-
tributions, all these methods are not consistent. A second
problem that is specific to iterative refinement clustering al-
gorithms is the choice of the initial model parameters. Being
part of the hill-climbing family of algorithms, iterative re-
finement algorithms converge to local maxima, which may
be far from the global maximum if the choice of the initial
point is poor. De facto solutions in most implementations
of iterative refinement clustering algorithms use random or
user-chosen starting points [3, 7]. Comparative studies indi-
cate that other, more complex, initialization methods show
no improvement over random initialization [4].

The work presented in this paper addresses all previously
mentioned issues that plague EM and in general iterative
refinement clustering algorithms with the following advan-
tages:

1. It is an integrated method that detects both the num-
ber of clusters k and the initialization model for each
identified category; and

2. It consistently outperforms its constituents individu-
ally: the hierarchical algorithm and EM with random
initialization.

The paper is organized as follows. Section 2 overviews the
proposed method for the selection of the initial model for
EM. Section 3 introduces several measures that indicate the
quality of the initial points. These measures are the key of

the initialization algorithm. In Section 4 we evaluate the
performance of the initialization algorithm and the perfor-
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Figure 1: The hybrid clustering procedure

mance of a complete clustering solution based on EM. We
conclude in Section 5.

2. APPROACH

2.1 Architecture Overview

Intuitively, the proposed approach searches through the
space of all possible document clusters for the best initial
model for an EM algorithm. Obviously, a direct implemen-
tation of this idea is computationally intractable. To reduce
the computational overhead of the methodology we limit the
search to the clusters contained in a hierarchical clustering
solution, or dendrogram [10]. Figure 1 overviews the pro-
posed clustering method.

First, we use a hierarchical algorithm to generate the col-
lection dendrogram. We detail the hierarchical algorithm
used in Section 2.2. From the dendrogram clusters, the
next component generates the candidates for the EM ini-
tial model as follows:

1. All dendrogram clusters are sorted in descending order
of their quality. Intuitively, we define the cluster qual-
ity as the likeliness that the cluster contains all and
only documents from one domain. So far, an exact
implementation of this measure does not exist. Given
that the quality measure is the keystone of this paper,
we dedicate Section 3 to the introduction of several
possible approximations of the above definition.

2. The top clusters that provide a coverage of less or equal
than yn documents, where n indicates the number of
documents in the collection, are selected. Intuitively,
the v factor indicates the confidence given to the hier-
archical clustering algorithm. For example, a ~ value
of 0.75 indicates that we trust the hierarchical algo-
rithm and the quality measure to provide clusters for
up to 75% of the document collection.

3. The clusters selected in the previous step are post-
processed to remove the clusters that are already in-
cluded in other higher-ranked clusters. The set of post-
processed clusters form one initial model candidate for
a given ~ factor and a given quality measure.

The above approach leaves several important questions unan-
swered: given that multiple possible quality measures exist,
which one yields the best initial model? Furthermore, what
is the best collection coverage () to be used in an initial
model? Both questions are answered by the next compo-
nent, which selects the best initial model from all the gener-
ated candidates. The initial model candidates are produced
for all possible quality measures (see Section 3) and sev-
eral v values. The selection algorithm uses a hill-climbing
algorithm to select the model that maximizes some global
quality function. This algorithm is detailed in Section 2.3.

This initialization approach follows our intuition that the
“best” clusters provided by a hierarchical clustering approach
crystallize well the categories hidden in a document collec-
tion, and the iterative algorithm is capable of both refining
potentially incorrect assignments and assigning the missing
documents. The remaining of this section details the two
clustering algorithms used (hierarchical and EM), and the
initial model selection algorithm.

2.2 Hierarchical Clustering

The hybrid clustering method illustrated here can poten-
tially use dendrograms produced by any hierarchical clus-
tering algorithm. Due to space limitations, in this paper we
focus only on hierarchical agglomerative clustering (HAC),
a simple algorithm previously reported to have good perfor-
mance on real-world collections [10].

The HAC algorithm uses a bottom-up approach to build
the dendrogram: first, it assigns each document to its own
cluster, and then it repeatedly merges the two “closest” clus-
ters [10]. The key parameter in HAC is the method used to
measure the inter-cluster distance. We have used the UP-
GMA, or group average, distance, which we previously found
to yield the best performance in the HAC context:
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where n; indicates the number of documents in cluster c;,
n; indicates the number of documents in cluster c;, and
dist(dr,ds) =1 — cos(dy, ds), where cos(dy, ds) is the cosine
between the two documents’ tf-idf-weighted term vectors.

2.3 Sdlection of the Best Initial M odél

An important part of the proposed system is the selection
of the “best” initial model from the set of candidates. We
have opted for an approach similar to the work of Calin-
ski and Harabasz [1]. Intuitively, Calinski and Harabasz
choose the model that locally maximizes a normalized ratio
of between distances (i.e. distances between different clus-
ters) and within distances (i.e. distances between documents
within the same cluster) computed for the complete cluster-
ing model. In other words, a good initial model will contain
tight clusters that are well separated from each other. For-
mally, Calinski and Harabasz compute the score C of a given
clustering model with dimension k as follows:
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where n is the size of the model, n; is the size of the ith
cluster, centroid; is the composite vector of cluster 7, and
meta_centroid is the composite vector of the whole collec-
tion. B and W are the unnormalized between and within
distances for the complete clustering model.

One issue that is not captured in Equation 2 is that we
prefer larger size initial models, in order to avoid trivial cases
such as models that contain clusters with few orthogonal
documents. Such clusters are likely to be outliers, which are
obviously not good initial points for any iterative refinement
clustering algorithm. This preference for larger size models
is captured by the actual selection algorithm, which searches
for the first local maximum of C as the collection coverage
~ decreases from 100% to 0%. The algorithm is described
below:

1. bestModel = ¢, bestScore = 0.

2. For all quality measures:

(a) currentScore = first local maximum of C as ~
decreases from 100% to 0%.
(b) If currentScore > bestScore

i. bestModel = model given by current quality
measure and current 7.

ii. bestScore = currentScore.

3. Return bestModel.

The best initial model generated from the selected v and
quality measure inherently contains the model dimension k
and initial points for each of the identified categories.

2.4 Expectation Maximization

The EM algorithm finds maximum likelihood estimates
of its parameters using probabilistic models over incomplete
data. EM was theoretically proven to converge to a local
maximum of the parameters’ log likelihood. The EM al-
gorithm used in this paper estimates its model parameters
using the Naive Bayes (NB) assumptions, similar to [6]. The
algorithm has the following structure:

1. Initialization: the model parameters are estimated us-

ing only documents labeled in the proposed initial model.

2. E step: the NB classifier is used to assign probabilistically-

weighted category labels to all documents, including
previously unlabeled documents.

3. M step: new model parameters, é, are estimated using
all the documents currently labeled.

4. Repeat the E and M steps until convergence to a local
maximum of the log likelihood of 6.

In our context, i.e. document clustering, the parameters
of the generative NB model, 6, include the probability of
seeing a given category, P(c|6), and the probability of seeing
a word given a category, P(w|c; 0). In the initialization and
maximization steps, these parameters are estimated using
Laplace smoothing:
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where P(y; = c|d;) is 1 if the label y; of document d; is ¢
and 0 otherwise; TF(wj,d;) is the term frequency of word

P(wle; 0) = (6)

wj in document d;; g is the number of categories in the col-
lection; n is the number of documents; and v is the collection
vocabulary size.

Using these parameters and the word independence as-
sumption typical to the Naive Bayes model, the probability
of a document d given a category c is estimated as:

P(d|e;0) = P(|d)ILL, P(wse; 0) (7)
Using Equation 7 and the Bayes rule, in the expectation
step the probability that a document d has a given category
c is calculated as:

P(cld;6) = (8)
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3. CLUSTER QUALITY MEASURES

The key component of our clustering approach is the bat-
tery of quality measures used to generate initial model can-
didates from the dendrogram produced by the hierarchical
clustering algorithm. We have developed a set of quality
formulas that combine the following observations:

Observation 1: On minimizing within distances.

The initial points for the iterative refinement algorithm should
contain documents from only one category. Since docu-
ments in the same category are conceptually closer than
documents from different categories, a good initial point will
have small pairwise distances between documents within the
corresponding cluster. Equation 10 introduces W (c;), the
average of the pairwise distances between documents within

a cluster ¢;:
1 .
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where dist(d,,ds) is computed as in Equation 1. Based on
the above observation, the quality measure should favor clus-
ters with small W values.

Observation 2: On maximizing between distances.
The clusters selected to generate the initial parameters for
iterative clustering should contain as many documents from
one category as possible. Therefore, since a category should
be well separated from the other categories in the data, a
good initial point will have large distances between its docu-
ments and the rest of the collection. We model the distance
B(c;) between the cluster ¢; and the rest of the collection
as the average of the pairwise distances between documents
within and outside of cluster ¢;:

Ble)= ————— 5" S dist(d,, dy) (11)
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The quality measure should favor documents with large B
values.

Observation 3: On maximizing between distances in
the neighborhood.

Combinations of the W and B measures have been previ-
ously used as clustering criterion functions and as a crite-
rion for detecting the best model dimension k. However,
when using W and B for a post-clustering filtering function,



Name | W | WB | WN

GW | GWB | GWN

Formula | I/W | B/ W [ N/W |1/ (GW) | B/ (GW) | N/ (GW)

Table 1: Quality measures used by the initialization algorithm

several subtleties arise: (i) most clusters will have large B
values because all clustering criteria maximize inter-cluster
distances, and (ii) W values will have a large variation be-
cause the dendrogram includes clusters of all sizes. In this
case, cluster comparison functions based on B and W are
decided mainly by the W measure.

Nevertheless, a between measure computed in the cluster
vicinity indicates the degree of separation between a clus-
ter and only its neighbors, without the “noise” introduced
by the collection mass. We approximate the neighborhood
between distance of a cluster ¢; as the UPGMA distance be-
tween the cluster and its dendrogram sibling:

N(CZ) = diStUPG]\{A (Ci, sibling(ci)) (12)

Observation 4: On minimizing the cluster “growth”.
Filtering functions based on the W and B quality measures
have two potential drawbacks: (i) they will favor small clus-
ters, which are more compact and better separated from
the rest of the collection, and (ii) they will prefer categories
represented by denser clusters. In the first case the sys-
tem will generate many categories with smaller coverage.
In the second situation the system will miss the informa-
tion contained in the ignored categories. Such situations are
frequent in real-world document collections, which include
clusters with different densities. Given these observations, it
becomes imperative to explore other cluster properties that
are independent of the cluster density. One such property
is the cluster growth, G, defined as the cluster expansion at
the last dendrogram join, relative to the internal density of
its two children. Formally, G(c;) is the ratio of the distance
between the cluster’s two children ¢;1 and ¢;2 and the aver-
age of the pairwise distances between documents within the

two children:
w_sum(c;) = Z Z
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where w_sum(c;) is the unnormalized sum of all distances
between objects within a cluster ¢;, and within_children(c;)
is the average distance between objects belonging to the
same child of cluster ¢;. Intuitively, a good initial point will
have a small growth factor. Large variations of the growth
factor indicate that the corresponding cluster is composed
of two relatively distant children clusters, which happens
when two different categories are joined, close to the top of
the dendrogram tree.

Using the observations and the distances previously in-
troduced in this section we have derived 6 quality measures,
listed in Table 1. The quality measures are generated in
a straightforward manner: we multiply the formulas that
should be maximized (B or N) with the inverse of the for-
mulas that should be minimized (W or G).

| Collection | #doc. | #cat. | #terms |
AP 5000 11 27366
LATIMES 5000 8 31960
REUTERS 3019 93 7846
REUTERS-Topl0 2545 10 6734
SMART 5467 4 11950

Table 2: Document collections used in the evalua-
tion

4. EXPERIMENTAL RESULTS

4.1 Document Collections

We used five document collections in the evaluation of the
proposed hybrid clustering algorithm. The AP collection is
the Associated Press (year 1999) subset of the AQUAINT
collection. The documents’ category assignment is indicated
by a CATEGORY tag. The LATIMES collection is the Los
Angeles Times subset of the TREC-5 collection. The cate-
gories correspond to the newspaper desk that generated the
article [11]. The REUTERS collection is the by now classic
Reuters-21578 text categorization collection [8]. Similar to
previous work we used the ModApte split [6], but, since our
algorithm is unsupervised, we use the test partition directly.
The REUTERS-Top10 collection is a subset of the above
ModApte test partition that includes only the ten most fre-
quent categories [6]. The SMART collection was previously
developed and used for the evaluation of the SMART infor-
mation retrieval system.

Due to memory limitations on our test machines, we re-
duced the size of the AP and LATIMES collections to the
first 5,000 documents (the complete collections contain over
100,000 documents). The collection documents were pre-
processed as follows: (i) stop words and numbers were dis-
carded; (ii) all words were converted to lower case; and (iii)
terms that appear in a single document were removed [10,
11]. Table 2 lists the collection characteristics after pre-
processing. In the two Reuters collections, the assignment
of documents to categories is ambiguous: the mean number
of categories assigned to a document is 1.2 in the REUTERS
collection and 1.1 in the REUTERS-Top10 collection.

4.2 Evaluation Metrics

The quality of the clustering solutions was measured using
two evaluation measures, purity and entropy, widely used to
evaluate the performance of unsupervised clustering algo-
rithms [11, 10].

The purity measure evaluates the degree to which each
cluster contains documents from a single category. The over-
all purity is the weighted average of all cluster purities:

1 .
P(c;) = ; max n’ (16)

k
Purity = Z %P(ci) (17)

=1



| Collection | Algorithm [ Purity [ Entropy |
AP Hybrid 0.74 0.34
AP HAC 0.47 0.53
AP EM5 0.65 0.40
LATIMES Hybrid 0.75 0.42
LATIMES HAC 0.32 0.84
LATIMES EM5 0.59 0.53
REUTERS Hybrid 0.70 0.26
REUTERS HAC 0.50 0.34
REUTERS EM5 0.65 0.30
REUTERS-Topl0 Hybrid 0.76 0.17
REUTERS-Topl0 HAC 0.53 0.25
REUTERS-Topl0 EM5 0.70 0.19
SMART Hybrid 0.90 0.24
SMART HAC 0.71 0.38
SMART EM5 0.84 0.27

Table 3: Comparison of three clustering algorithms:
the hybrid approach (Hybrid), HAC, and EM with
random initialization averaged over 5 runs (EMS5)

where n/ represents the number of documents from cluster
¢; assigned to category j. Intuitively, the larger the purity
value, the better the clustering solution is.

The second evaluation measure used is the entropy mea-
sure, which analyzes the distribution of categories in each
cluster. The entropy E of a cluster ¢; is defined as:

1 &l
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where ¢ represents the total number of categories in the
collection [11]. The overall entropy is the weighted average
of all cluster entropies:

k
Entropy = Z %E(cz) (19)

=1

Because the entropy measures the amount of disorder in a
system, the smaller the entropy value, the better the clus-
tering solution is.

Lastly, for the unsupervised initialization algorithm we
report the estimated number of clusters k. The closer £ is
to the number of categories in the collection, g, the better
the initialization algorithm is. Nevertheless, in the situa-
tions when k # ¢, we prefer solutions with larger k, because
this increases the number of true categories recovered in the
clustering solution.

4.3 Evaluation of the Clustering Algorithm

In this section we evaluate the performance of the pro-
posed hybrid clustering system. We compare it against its
two constituent algorithms: EM and HAC. For the stand-
alone EM we used random initialization and we have aver-
aged the results across five runs (EM5)*. Because EM5 and
HAC require the number of clusters k as an input parame-
ter, for both of them we have used the number of clusters k
detected by the corresponding instance of the hybrid system.

Table 3 lists the results for the three algorithms and the
five test collections. The hybrid approach clearly outper-
forms the other two algorithms in all the test collections.

!The evaluation data is available at:
http://www.lsi.upc.edu/~surdeanu/papers/kdd05_data.tgz

\ [ AP | LAT [ REU | REU-TI0 | SMART |

Hybrid 10 14 11 8 6
Calinski + HAC 12 4 4 6 6
Calinski + EMb 28 16 40 20 24

| 7 [ [ 8 [® [ 10 [ 1 |

Table 4: Number of clusters estimated by the hybrid
approach and the Calinski method

These results are a strong indication that the quality mea-
sures used to generate initial model candidates and the sub-
sequent selection process are successful.

The quality of the clustering solutions generated by the
hybrid system is more than satisfactory considering that the
proposed approach is completely unsupervised, including rel-
ative to the model dimension. We analyze the quality of the
model dimensions detected by the hybrid system in the next
section and we provide a more detailed analysis of the overall
system behavior in Section 4.5.

4.4 Estimating the Model Dimension

While the previous section proves that the hybrid ap-
proach provides better clustering solutions than both HAC
and EM with random initialization, one question remains
unanswered: how does our approach compare against other
unsupervised methods for the estimation of the model di-
mension k7 To answer this question we have implemented
the method proposed by Calinski and Harabasz [1], pre-
viously reported to be the best among a number of other
unsupervised algorithms [5].

Calinski and Harabasz generate clustering models using
a range of model dimensions k and choose the k that lo-
cally maximizes Equation 2. To guarantee that the Calin-
ski method is directly comparable with our method we have
used the same clustering algorithm, HAC, for both approaches.
For a larger experiment we have also evaluated Calinski’s
method when its clustering models are generated using EM
with random initialization. Similarly with the previous sec-
tion, for EM we have averaged the C scores (see Equation 2)
across five runs. When it uses HAC to generate its cluster-
ing models, Calinski’s method is somewhat similar to our
approach with a significant difference: Calinski uses cluster-
ing models that include all the documents in the collection,
whereas we use only documents that are part of what we
consider the best clusters, since we discard ambiguous doc-
uments that decrease the quality of clustering solution.

Table 4 shows the number of clusters k estimated by our
hybrid approach for the five evaluation collections, com-
pared with the number of clusters estimated by the Calinski
method using the two clustering algorithms, and the actual
number of categories g. Table 4 indicates that the results
obtained by Calinski’s method using EM with random ini-
tialization are fairly unsatisfactory: the model dimension is
generally over-estimated and there is no relation between the
estimated number, k, and the actual number of categories,
g. On the other hand, when using HAC, Calinski’s method
has the tendency to underestimate k. This issue is more
visible in collections with a larger number of categories, like
the two Reuters collections. For the larger REUTERS col-
lection, our approach generates a k equal to 11. Although
this value seems relatively far away from the actual num-
ber of categories (93), we consider it a good result: the top



| Collection | Quality Measure | Coverage |

AP GW 85%
LATIMES GW 55%
REUTERS GWB 75%
REUTERS-Top10 GW 90%
SMART GWN 90%

Table 5: Quality measures and collection coverages
detected by the unsupervised initial model selection
component

11 categories in REUTERS cover over 94% of the collection
documents.

45 Discussion

Underestimating the model dimension can be a serious
drawback for a real-world system because it reduces the
number of categories recovered in the clustering solution.
Potentially important categories may simply be dispersed
among existing clusters instead of getting a cluster of their
own, which makes them virtually invisible to the human an-
alyst that browses the generated clustering solution. We
believe that Calinski’s approach suffers more from this issue
because the clustering models used cover all the collection
documents, including ambiguous documents that minimize
the distance between distinct (but close) categories. On the
other hand, our method works only with documents that are
part of the “best” clusters, i.e. dense clusters that are well
separated from the rest of the collection. We have shown
that this approach is beneficial for both the detection of the
model dimension (see Section 4.4) and for the selection of
an initial model for EM (see Section 4.3).

One question that remains unanswered is: what is the
best performance we can expect from such an unsupervised
system? To answer this question we inspected the quality of
the clustering solutions generated from all the initial model
candidates (for all collection coverages v and for all qual-
ity measures). We found that the upper limits for purity
ranged from 75% (in LATIMES and REUTERS) to 92% (in
SMART), and the upper limits for entropy ranged from 10%
(in REUTERS-Top10) to 40% (in LATIMES). These rela-
tively high upper limits on the system performance indicate
that the proposed quality measures generate initial cluster-
ing models of good quality. Furthermore, the performance
of our unsupervised method is, on the average, in the top
14% of all candidate models’ purities and top 21% of all en-
tropies, which is a strong indication of the robustness of our
approach. Although these results are certainly encouraging
they indicate that the proposed method can be extended at
least with a better performing selection component.

Lastly, Table 5 lists the quality measures and collection
coverages 7 selected by the unsupervised system. Table 5
indicates that, if execution time is an important concern,
a practical optimization of the proposed method that uses
only one quality measure (GW') would still have acceptable
qualitative performance.

5. CONCLUSIONS

This paper introduces a hybrid clustering approach that
extracts the initial model for an EM algorithm from the den-
drogram generated by a hierarchical clustering algorithm.
The initial EM model is extracted in a two-step process.

First, a number of candidate models are generated by sort-
ing the dendrogram clusters according to a battery of quality
measures and extracting the top-ranked clusters for various
collection coverages. Then, the candidate model that lo-
cally maximizes a global quality score is chosen as the initial
model for the EM algorithm.

The first novelty of the proposed method is that only the
“best” clusters produced by the hierarchical algorithm are
selected as the initial model of the expectation maximiza-
tion algorithm. The second novelty is that our initialization
algorithm generates not only an initial model but also an
estimate of the model dimension, thus eliminating another
important element of human supervision.

An instance of our clustering algorithm has been empiri-
cally evaluated on five real-world document collections. The
results show that our approach is always superior to both
EM with random initialization and the hierarchical agglom-
erative algorithm. A comparison of our technique for esti-
mating the model dimension with the Calinski and Harabasz
method indicate that the latter prefers simpler models, while
our approach tends to generate more complex models, which
increases the number of categories recovered in the cluster-
ing solution.
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