Quantum Physics
[Submitted on 7 Nov 2003 (v1), last revised 15 Jul 2004 (this version, v4)]
Title:Multilinear Formulas and Skepticism of Quantum Computing
View PDFAbstract: Several researchers, including Leonid Levin, Gerard 't Hooft, and Stephen Wolfram, have argued that quantum mechanics will break down before the factoring of large numbers becomes possible. If this is true, then there should be a natural set of quantum states that can account for all experiments performed to date, but not for Shor's factoring algorithm. We investigate as a candidate the set of states expressible by a polynomial number of additions and tensor products. Using a recent lower bound on multilinear formula size due to Raz, we then show that states arising in quantum error-correction require n^{Omega(log n)} additions and tensor products even to approximate, which incidentally yields the first superpolynomial gap between general and multilinear formula size of functions. More broadly, we introduce a complexity classification of pure quantum states, and prove many basic facts about this classification. Our goal is to refine vague ideas about a breakdown of quantum mechanics into specific hypotheses that might be experimentally testable in the near future.
Submission history
From: Scott Aaronson [view email][v1] Fri, 7 Nov 2003 00:53:17 UTC (62 KB)
[v2] Sat, 6 Mar 2004 07:50:09 UTC (60 KB)
[v3] Wed, 16 Jun 2004 20:14:05 UTC (60 KB)
[v4] Thu, 15 Jul 2004 20:03:42 UTC (69 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.