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ABSTRACT
We investigate the problem of online scheduling of jobs to
minimize flow time and stretch on m identical machines.
We consider the case where the algorithm is given either
(1 + ε)m machines or m machines of speed (1 + ε), for ar-
bitrarily small ε > 0. We show that simple randomized
and deterministic load balancing algorithms, coupled with
simple single machine scheduling strategies such as SRPT
(shortest remaining processing time) and SJF (shortest job
first), are O(poly(1/ε))-competitive for both flow time and
stretch. These are the first results which prove constant
factor competitive ratios for flow time or stretch with arbi-
trarily small resource augmentation. Both the randomized
and the deterministic load balancing algorithms are non-
migratory and do immediate dispatch of jobs.

The randomized algorithm just allocates each incoming
job to a random machine. Hence this algorithm is non-
clairvoyant, and coupled with SETF (shortest elapsed time
first), yields the first non-clairvoyant algorithm which is con-
stant competitive for minimizing flow time with arbitrarily
small resource augmentation. The deterministic algorithm
that we analyze is due to Avrahami and Azar. For this algo-
rithm, we show O(1/ε)-competitiveness for total flow time
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and stretch, and also for their Lp norms, for any fixed p ≥ 1.
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F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.2.1 [ Dis-
crete Mathematics]: Combinatorics.

General Terms
Algorithms, Theory.
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1. INTRODUCTION
We address the problem of minimizing the average re-

sponse time of jobs in the multi-processor setting. We are
given m identical machines and n jobs. Job i has an arrival
time of ri and a processing requirement of pi. Jobs queue up
at the machines as they wait to be serviced, and we are inter-
ested in minimizing the overall time jobs spend in the system
(referred to as flow time or response time). This simple sce-
nario is of great interest in both theory and practice. Appli-
cations range from scheduling of jobs by operating systems,
serving HTTP requests at web servers, parallel computing,
and many others. We work in the model where jobs can be
preempted and rescheduled: this is necessary in almost all
cases where resources are shared by many independent com-
peting requests. Both clairvoyant (the processing time of a
job is known when it arrives) and non-clairvoyant (the pro-
cessing time of a job in known only when it completes) are of
interest. For example, when scheduling static web page re-
quests at a web server, the size of the page gives a very good
estimate of the time to serve that page. On the other hand
while scheduling processes in an operating system, there is
often little or no knowledge of the characteristics of the jobs.

In this paper we assume that the arrival times ri are
not known in advance and use the framework of competi-



tive analysis to study the performance of our algorithms.
However, all our algorithms can also be looked upon as ap-
proximation algorithms since they run in polynomial time.
We present simple randomized and deterministic algorithms
and prove that these algorithms are constant-competitive
given an arbitrarily small amount of resource augmentation.
All our algorithms are non-migratory, immediately dispatch
a job to a machine upon arrival, and can simultaneously
provide good approximation guarantees for all Lp norms of
flow times. Further, our randomized algorithm also leads to
a non-clairvoyant algorithm for flowtime. We believe that
the simplicity of our algorithms (for example, our random-
ized algorithm merely assigns an incoming job to a machine
chosen uniformly at random) makes them particularly useful
in practical settings. Prior to our work, no algorithms were
known to be constant competitive for flow time in the multi-
processor setting with arbitrarily small resource augmenta-
tion. Before stating our results more precisely, we describe
some relevant related research to motivate our problem and
to put our work in context.

Related Work and Motivation: In both theory and
practice, the problem of minimizing flowtime has been much
better understood in the single machine case. The pre-
emptive algorithm SRPT (shortest remaining processing time
first) is known to be optimal for minimizing flow time on a
single machine in the clairvoyant case. Contrary to folk-
lore belief, SRPT has also been shown to have good fairness
characteristics in many settings [15, 22, 6, 7]. For the non-
clairvoyant case, a strong lower bound of Ω(

√
n) is known

for deterministic algorithms [19]. In practice, the algorithm
most commonly used is the multi-level feedback queue algo-
rithm (MLF). MLF uses quanta of time units to minimize
preemptions and SETF (shortest elapsed time first) is the
theoretical equivalent of MLF. Motivated by MLF’s good
performance, a randomized variant of MLF has been ana-
lyzed and it is known be Θ(log n)-competitive for a single
machine where n is the number of jobs in the sequence [9].
In the dynamic setting where the system essentially runs for-
ever, a competitive ratio that depends on the length of the
sequence of inputs is not attractive. However, there exists
a lower bound of Ω(log n) on randomized competitiveness
[19] for the non-clairvoyant case. In situations such as this
where strong lower bounds exist for the worst case, it is com-
mon and useful to weaken the power of the adversary. In
the context of scheduling, Kalyanasundaram and Pruhs [17]
proposed resource augmentation wherein we assume that the
input is still chosen by the adversary in a worst-case manner
but the online algorithm is given extra power. They pro-
posed giving the algorithm a machine with a speed (1 + ε)
times the speed of the adversary’s machine. With this as-
sumption they showed that MLF is O(1/ε)-competitive for
non-clairvoyant scheduling on a single machine. Our work
can be viewed as the first multi-processor generalization of
this result.

The multi-processor setting is of much current relevance
with processors and machines getting cheaper. Enterprise
web and file servers often consist of banks of machines to
enable processing of the large number of requests they need
to handle. Thus it is an important question as to how
to schedule on multiple processors to minimize average re-
sponse time. There are a variety of constraints that are im-
posed in this situation. It is often impractical or expensive to
move a job from one machine to another once it is assigned

to a machine. Thus jobs cannot be migrated. In addition
we prefer algorithms that assign a job as soon as it arrives
into the system. Centralized queuing systems are undesir-
able for a variety of reasons including memory limitations
and fault-tolerance. Thus we prefer immediate-dispatching.
In practice it is common to use load balancing of some kind
to assign jobs to machines and then use the known single
machine algorithms such as MLF, FIFO, or SRPT. Our
work justifies the performance of such algorithms.

Even though it was folklore that SRPT is optimal on a
single machine, the analysis of its performance on multiple
machines was done fairly recently by Leonardi and Raz [18]
who showed that it is O(min(log P, log n/m))-competitive
where P is the ratio of the largest job size to the smallest job
size. They also showed a matching lower bound on the com-
petitive ratio of any randomized algorithm in the oblivious
model. Note that SRPT migrates jobs between machines.
Awerbuch et al. [5] subsequently gave a non-migratory al-
gorithm with a similar competitive ratio but it did not im-
mediately dispatch the jobs. More recently Avrahami and
Azar [4] gave an algorithm that is both non-migratory and
immediate-dispatching. In the resource augmentation model
SRPT is known to be optimal if it is given 2-speed machines
[21]. For the non-clairvoyant case Becchetti and Leonardi [9]
showed that a randomized variant of MLF has a competitive
ratio of O(min(log n log P, log n log n/m)). These results do
not completely explain the good performance of algorithms
used in practice and further, the algorithms do not satisfy all
the desired properties such as being non-migratory. There
is no constant-competitive non-clairvoyant algorithm known
even with a constant factor speedup.

Before we go on to describe our results, we discuss two
related measures of performance of online algorithms. In
the context of minimizing the average response time, the
measure of stretch was introduced by Bender et al. [12]. The
stretch of a job is the time it spends in the system divided by
its processing time. For minimizing average stretch SRPT
is shown to be 2-competitive on a single machine and O(1)-
competitive on multiple machines [20].

In many online situations it is of concern that algorithms
that try to optimize the average performance might per-
form quite poorly on some jobs, for the benefit of the many.
However, it is usually difficult to optimize the worst case
performance on all jobs (say the maximum flow time or the
maximum stretch). In such situations it is natural to con-
sider compromise measures such as Lp norms of performance
for some p ≥ 1. In particular the L2 norm is commonly used.
For flow time and stretch on a single machine Bansal and
Pruhs [7] showed that with (1 + ε)-extra speed, well known
algorithms such as SRPT, SJF, and SETF not only have
good competitive ratios for flow time and stretch but also
for their Lp norms. In our results we also consider these
stronger measures.

In the context of multi-processors there are two types of
resource augmentation. The algorithm can either use m
machines with speed (1 + ε) each, which we refer to as the
extra-speed model, or can use (1+ ε)m machines with speed
1, which we refer to as the extra-machine model.

Our Results: We show that with arbitrarily small re-
source augmentation in the form of extra speed or extra
machines we can obtain simple constant-competitive ran-
domized and deterministic algorithms for minimizing flow
time and stretch. The randomized algorithm is the follow-



Problem One Machine m Machines
Ratio Res. Aug. Ref Ratio Res. Aug. Ref

C-Flowtime 1 O(log P ) [18]
O(log n/m) [18]

1 2-speed [21]
O(1/ε) (1 + ε)-speed this paper
O(1/ε) (1 + ε)-machine this paper

(Lp norm) O(1/ε) (1 + ε)-speed [7] O(1/ε) (1 + ε)-speed this paper
O(1/ε) (1 + ε)-machine this paper

NC-Flowtime O(log n) [9] O(log n log P ) [9]
O(log n log n/m) [9]

O(1/ε) (1 + ε)-speed [17] O( log(1/ε)

ε7
) (1 + ε)-speed this paper

(Lp norm) O(1/ε2+2/p) (1 + ε)-speed [7]
C-Stretch 2 [20] O(1) [20, 10, 14]
(Lp norm) O(1/ε) (1 + ε)-speed [7] O(1/ε) (1 + ε)-speed this paper

O(1/ε) (1 + ε)-machine this paper

Figure 1: Known Results on Online Algorithms for Flow Time and Stretch. C and NC refer to clairvoyant
and non-clairvoyant setting respectively.

ing: when a new jobs arrives it is assigned immediately to
a machine chosen uniformly at random. The deterministic
assignment algorithm we analyze is that of Avrahami and
Azar [4] which assigns a new job based on the prior load
that it had assigned to the machines. Once the jobs are
assigned to the machines, in the clairvoyant case we use ei-
ther SRPT, SJF or SCF (smallest class first, to be defined
later), and in the non-clairvoyant case we use SETF. Our
results are summarized below. All our results hold for re-
source augmentation for arbitrarily small ε > 0.

• The randomized algorithm is O( log(1/ε)

ε3
)-competitive

for both flow time and stretch in the clairvoyant set-
ting in both models of resource augmentation. It is

O( log(1/ε)

ε7
)-competitive in the non-clairvoyant setting

in the extra speed model. The competitive ratio holds
even against an adaptive offline adversary. We note
that in the non-clairvoyant setting, for any α > 0,
no deterministic immediate-dispatch algorithm can be
o(m/α)-competitive even with α-speed machines.

• The deterministic algorithm is O(1/ε)-competitive for
both flow time and stretch in the clairvoyant setting.
It is also O(1/ε)-competitive for minimizing Lp norms
of flow time and stretch for any p ≥ 1. These results
hold in both models of resource augmentation.

• The randomized algorithm is competitive for minimiz-
ing Lp norms of flow time and stretch, even in the
non-clairvoyant setting. We omit the details of this
result from this version of the paper.

Our results validate the use of simple load balancing strate-
gies combined with well understood single machine algo-
rithms to optimize the throughput and fairness of multi-
processor server systems. Figure 1 summarizes our results
in the context of known results. We also believe that the
randomized algorithm together with HDF (highest density
first) is competitive for weighted flow time.

Organization: Section 2 formally defines the problem and
describes various algorithms that we study. We study the
randomized load balancing algorithm for minimizing flow

time and stretch in both models of resource augmentation
in Section 3. We also show that this simple load balanc-
ing scheme yields an O(1)-competitive non-clairvoyant algo-
rithm in the extra-speed model when combined with the sin-
gle machine non-clairvoyant algorithm SETF. In Section 4,
we analyze the deterministic algorithm of Avrahami and
Azar [4], and show that it is O(1)-competitive for minimiz-
ing Lp norms of flow time and stretch on both models of
resource augmentation.

2. PRELIMINARIES
We consider the online problem of scheduling jobs in a

multiprocessor environment. We assume that jobs can be
preempted. A job’s existence is known only upon its arrival.
In the clairvoyant setting we assume that the job’s process-
ing time is known on arrival. In the non-clairvoyant setting
the processing time is known only when the job completes
its processing time and leaves the system. We denote by pj

the processing time of job j. The flow time Fj of a job j ∈ J
is defined as the time spent by the job in the system before
its processing is completed; equivalently Fj = Cj − rj where
rj is the release time of j and Cj is the completion time of j.
The stretch Sj of a job j is defined to be Fj/pj . For any al-
gorithm A, let Fp(A) = (

∑
j F p

j ) and Sp(A) = (
∑

j(Sj)
p) be

the sums of the pth powers of the flow time and stretch of the
jobs. We consider the objectives of minimizing the Lp norms
of the flow time and stretch, (Fp(A))1/p and (Sp(A))1/p re-
spectively. An algorithm is migratory if it processes a job
on more than one machine, otherwise it is non-migratory.

We use resource augmentation to analyze our algorithm.
We assume that the optimal offline algorithm has m ma-
chines of speed 1 to schedule the jobs. We analyze the per-
formance of our algorithm under two different scenarios: a)
when the algorithm is given m machines of speed (1+ε), and
b) when the algorithm is given d(1 + ε)me machines of speed
1. In both cases we assume that the optimal algorithm can
migrate jobs while our algorithm does not.

We assume without loss of generality that the processing
time of any job is at least one. We say that a job j is in class
k if its processing time pj lies in the interval [2k, 2k+1). We
denote the class of a job j by Class(j) and its arrival time



by rj . We consider non-migratory immediate-dispatch algo-
rithms. A job is assigned to a machine as soon as it arrives
and it is processed only on the machine it is assigned to. In
this setting, if job sizes are known upon arrival (the clair-
voyant case) we note that it is optimal to process the jobs
on each machine by SRPT. However it is easier to analyze
the following sub-optimal algorithm: at each time, process
the job in the queue from the lowest class and break ties
within a class in favor of the job that has arrived earlier.
This priority rule was used in [14] and subsequently in [4]
to simplify the analysis of algorithms for multiple machines.
We refer to this algorithm as SCF (shortest class first). In
the non-clairvoyant case when the job sizes are not known,
we use the well known algorithm SETF (shortest elapsed
time first).

We analyze a randomized and a deterministic strategy to
assign jobs to machines when the arrive. The randomized
strategy is simple: assign a new job to a machine chosen uni-
formly at random from the set of available machines. The
deterministic strategy is the balancing algorithm of Avra-
hami and Azar [4]. The algorithm maintains for each ma-
chine i and class k the total processing time of all jobs that
have been assigned to i in class k by time t. Let Zi

k(t) denote
this quantity. The algorithm assigns a new job that arrives
at time t from class k to machine j where j = argmin`Z

`
k(t).

Note that the randomized strategy is oblivious to the pro-
cessing time of the arriving job and is also stateless while
the deterministic strategy is neither.

3. RANDOMIZED LOAD BALANCING
We will assume that no two jobs have the same arrival

time; since job arrivals are real numbers, this does not result
in any loss of generality. We define a total order � on all jobs
as follows: i � j iff Class(i) < Class(j) OR (Class(i) =
Class(j) AND ri ≤ rj). A job is active if it has arrived

but has not yet been completed. We will use C
(R)
i to denote

completion time of job i in Rand.

For a given job i that is alive at time t, let S
(∗)
i (t) be

the total remaining processing time of all active jobs j � i

at time t, divided by m. Let V
(∗)
≤h (t) denote the volume of

jobs in OPT’s queue in classes 1 to h at time t. Note that

S
(∗)
i (t) ≤ V

(∗)
≤k (t)/m where k = Class(i). Define S

(R)
i (t) to

be the total remaining processing time of all jobs j � i that
are active at time t and which are assigned to the machine

that job i is assigned to in Rand. Define A
(∗)
i (t1, t2) to be

the total processing time of all jobs j � i, ri ∈ (t1, t2], di-

vided by m. The quantities S
(∗)
i (t) and A

(∗)
i (t1, t2) measure

the average remaining volume and average total arrivals, re-

spectively, on a machine in OPT. Define A
(R)
i (t1, t2) to be

the total processing time of all jobs j � i, ri ∈ (t1, t2] which
are assigned to the machine that job i is assigned to in Rand.

We say that a job i that is in Rand’s queue at time t is δ-

bad at t if S
(R)
i (t) > (1+δ)S

(∗)
i (t); it is δ-good otherwise. We

define the δ-overhead, denoted Tδ(i), of job i to be the total
length of all intervals during which job i is δ-bad. Observe
that this is the total length of the interval during which
we cannot “charge” this job to a job in OPT’s queue. The
following lemma relates the total overhead to the total flow
time.

Lemma 3.1 The total flow time of Rand is at most O((1+

δ))m′
m

OPT +
∑

i Tδ(i) where m′ is the number of machines
in Rand.

Proof. We set up a charging scheme that charges all δ-
good jobs at t to the payment available in jobs from OPT’s
queue. Let n∗

h(t) be the number of jobs in class h that are
alive at t in OPT. We set up payment from OPT’s queue to
different classes as follows. Class h receives a payment from
classes 1 to h− 1, say α(t). Class h retains (α(t) + n∗

h(t))/2
and passes on (α(t)+n∗

h(t))/2 to class h+1. Note that each
job pays for one unit.

From the payment scheme, the payment available to class
h is n∗

1(t)/2h + n∗
2(t)/2h−1 + . . . + n∗

h(t)/2 which is (n∗
1(t) +

2n∗
2(t) + . . . + 2h−1n∗

h(t))/2h. Since each job in class i has
processing time in [2i, 2i+1), it follows that (n∗

1(t)+2n∗
2(t)+

. . .+2h−1n∗
h(t))/2h ≥ (V ∗

=1(t)+V ∗
=2(t)+. . .+V ∗

=h(t))/2h+2 =
V ∗
≤h(t)/2h+2.
Thus, the total payment available to jobs in class h is

Ω(V
(∗)
≤h (t)/2h). We partition this payment to each of the

m′ machines equally, hence the payment available to class

h on each machine is Ω(V
(∗)
≤h (t)/2h) m

m′ . We distribute this
payment to jobs in class h in Rand’s queue in the order
defined by �. We give each job a payment of m

m′
1

1+δ
. From

simple calculations, we can pay for a job i if it is δ-good.
The bound on Rand’s flow time follows.

We now need to bound the expected δ-overhead of a job
in terms of its processing time. Theorems 3.2 and 3.3 are
proved in sections 3.1 and 3.2, respectively.

Theorem 3.2 In the extra machines model, for any job i,

E [Tε(i)] = O

(
pi

ε3
log

1

ε

)
.

Theorem 3.3 In the extra speed model, for any job i,

E
[
Tε/2(i)

]
= O

(
pi

ε3
log

1

ε

)
.

Lemma 3.1 and theorems 3.2 and 3.3 immediately yield:

Theorem 3.4 The expected flow time of Rand is

O(1 + ε)OPT + O( log 1/ε

ε3
)
∑

i pi in both the extra machine
and extra speed models. The expected stretch of Rand is

O(1 + ε)OPT + O( log 1/ε

ε3
)n in both the extra machine and

extra speed models. These bounds hold against both oblivious
and adaptive adversaries.

Corollary 3.5 Rand is O( log 1/ε

ε3
)-competitive for both flow

time and stretch in the extra machine and extra speed models
with parameter ε.

Since the randomized algorithm is non-clairvoyant, we can
couple it with SETF to obtain an online non-clairvoyant
algorithm. The following theorem analyzes this algorithm
and also presents a lower bound on deterministic algorithms.

Theorem 3.6 Rand with SETF (RandSETF) is a (1+ε)-

speed O( log(1/ε)

ε7
)-competitive non-clairvoyant and non-migratory

algorithm to minimize average flow time. No deterministic
non-clairvoyant algorithm with immediate dispatch can be
o(m/(1 + ε))-competitive for minimizing average flow time
even with (1 + ε)-speed machines.



Proof. Fix any instance I. Let Ij be the (random) in-
stance presented to machine Mj by Rand. By Theorem 3.4,

m∑
j=1

E[OPT(1+ε)(Ij)] ≤
m∑

j=1

E[SCF(1+ε)(Ij)]

≤ O(
1

ε3 log 1/ε
)OPT(I) .

Also, from [7], on a single machine, for any instance H, the
non-clairvoyant algorithm SETF satisfies SETF1+ε(H) ≤
O( 1

ε4
)OPT(H). Combining this with the above equation,

we get

E[RandSETF(1+ε)2(I)] =
m∑

j=1

E[SETF(1+ε)2(Ij)]

≤ O(
1

ε4
)

m∑
j=1

E[OPT(1+ε)(Ij)]

≤ O(
log 1/ε

ε7
)OPT(I) .

To see the lower bound, consider the instance in which
m2 jobs arrive at time 0. Any algorithm with immediate
dispatch must assign at least m jobs to one of the machines,
say M1, immediately. Fix the processing time of the first m
jobs assigned to M1 to be 1 each and all other processing
times are 0. Clearly, the flow time for this algorithm is
Ω(m2/(1 + ε)). The optimal value, on the other hand, is
m, obtained by assigning each unit length job to a distinct
machine.

3.1 Bounding the overhead in the extra ma-
chine model

In the extra machine model Rand uses m′ = (1 + ε)m
machines of speed 1. We focus on some fixed job i and
analyze E[Tε(i)]. We assume without loss of generality that
job i is assigned by Rand to machine M1.

For α > 0, we will say that an infinite sequence 〈x〉 =
x1, x2, . . . is α-bounded if 0 < xi ≤ α for all i ≥ 1. Let
zi(θ) denote a Bernoulli 0,1 variable such that Pr[zi(θ) =
1] = θ. We will assume that the variables z1(θ), z2(θ), . . . are
independent, and may omit the argument θ where its value
is obvious from the context. If 〈x〉 represents a sequence of
arrivals to the system, then the random variable

max


0,

∑
j≤i

xizi

(
1

m′

)
− 1

m

∑
j≤i

xi




represents the excess total processing time assigned to ma-
chine M1 by Rand, compared to the average total processing
time assigned to a machine by OPT, after i arrivals. The
next lemma bounds the maximum value of this excess load
for any α-bounded arrival sequence.

Lemma 3.7 For 0 < δ < 1/4, and for an arbitrary α-
bounded sequence 〈x〉,

E


max


0, max

i≥1




∑
j≤i

xizi

(
1

m(1 + δ)

)
− 1

m

∑
j≤i

xi










= O

(
α

δ2
log

1

δ

)
.

We now analyze the total volume of jobs that must arrive
before Rand can compensate for an initial excess processing
time of y.

Lemma 3.8 Let 〈x〉 be an arbitrary α-bounded sequence
satisfying

∑
j≤i xi → ∞ as i → ∞. For 0 < δ < 1/4,

and y ≥ 0, let k(c)(y) denote the largest value of k such

that y +
∑k

i=1 xizi

(
1

m(1+δ)

)
≥ ∑k

i=1 xi/m and let X(c)(y)

denote
∑1+k(c)(y)

i=1 xi/m. Then

E
[
X(c)(y)

]
= O

(
y

δ
+

α

δ3
log

1

δ

)
.

The proofs of Lemmas 3.7 and 3.8 are technical and can
be found in the appendix. With these technical lemmas in
place, we are ready to bound the expected ε-overhead of a
job in the extra machines model.

Proof of Theorem 3.2. Assume wlog that job i goes to

machine M1. Let γ = max{0, S
(R)
i (ri) − S

(∗)
i (ri)}. Observe

that γ ≤ max{0, maxt<ri{A(R)
i (t, ri) − A

(∗)
i (t, ri)}}. If we

ignore jobs j which do not satisfy j � i and look at time
in reverse, then the set of arrivals in (−∞, ri) forms a 2pi-
bounded sequence. Now we can invoke Lemma 3.7 with
δ = ε to obtain

E[γ] = O

(
pi

ε2
log

1

ε

)
. (1)

If job i is never ε-bad, then we are done. Else, let t1 de-

note the first time instant in [ri, C
(R)
i ) such that S

(R)
i (t1) ≥

(1 + ε)S
(∗)
i (t1). Let β = max{0, A

(R)
i (ri, t1) − A

(∗)
i (ri, t1)}.

Observe that β is stochastically dominated by the quantity

max{0, maxt>ri{A(R)
i (ri, t) − A

(∗)
i (ri, t)}}. We now invoke

Lemma 3.7 to obtain

E[β] = O

(
pi

ε2
log

1

ε

)
. (2)

Now, S
(R)
i (t1) ≤ S

(∗)
i (t1) + γ + β, and since job i is ε-bad

at time t1, we also have S
(R)
i (t1) ≥ (1 + ε)S

(∗)
i (t1). Thus,

S
(∗)
i (t1) ≤ (γ + β)/ε and

S
(R)
i (t1) ≤ (1 + ε)(γ + β)/ε. (3)

Now consider the sequence 〈x〉(t1,∞) of processing times1

of jobs j � i that arrive after time t1 and let X(c)(y) be
as defined in the statement of Lemma 3.8. Let t2 = t1 +
S

(R)
i (t1) + X(c)(γ + β).
Our goal is to now prove that job i cannot be ε-bad at

any time t > t2. If job i finishes before time t2, then we are

1To invoke Lemma 3.8, we need the technical condition that∑
k≤j xj → ∞ as j → ∞. If the sequence 〈x〉(t1,∞) does not

satisfy this property, then we can introduce fake jobs of size
pi at the end of this sequence without affecting the proof.
We omit the details.



done. Let t′ be the time when A
(∗)
i (t1, t

′) = X(c)(γ + β).
We will now consider two cases:

Case 1: t2 ≤ t′. By the definition of X(c), A
(R)
i (t1, t

′) ≤
A

(∗)
i (t1, t

′) − γ − β. Hence,

A
(R)
i (t1, t2) ≤ A

(∗)
i (t1, t

′) − γ − β

≤ X(c)(γ + β) − γ − β

≤ X(c)(γ + β)

≤ t2 − t1 − S
(R)
i (t1).

As long as job i is on machine M1, that machine only
executes jobs j � i. Hence the last inequality implies
that job i finishes by time t2.

Case 2: t2 > t′. Consider any time t ∈ [ri, C
(R)], t > t2.

Machine M1 must be busy executing jobs j � i be-
tween times t1 and t. Hence, by Lemma 3.8,

S
(R)
i (t) = S

(R)
i (t1) + A

(R)
i (t1, t) − (t − t1)

≤ (S
(∗)
i (t1) + γ + β) +

(A
(∗)
i (t1, t) − γ − β) − (t − t1)

≤ S
(∗)
i (t),

and hence job i cannot be ε-bad at time t.

Thus, job i can be ε-bad only during the interval [t1, t2]
and the total ε-overhead Tε(i) of this job is at most t2− t1 =

(1 + ε)(γ + β)/ε + X(c)(γ + β). Consider X = X(c)(γ + β).
Since Lemma 3.8 applies to an arbitrary α-bounded arrival
sequence, we can ignore any dependence of X on 〈x〉(t1,∞)

to obtain

E[X|γ, β] ≤ ρ

(
γ + β

ε
+

1

ε3
log

1

ε

)

for some suitably large constant ρ. Removing the condition-
ing on γ, β yields

E[X] ≤ ρ

(
E[γ + β]

ε
+

1

ε3
log

1

ε

)
, and hence,

E[Tε(i)] ≤ (1 + ε)E[γ + β]/ε + ρ

(
E[γ + β]

ε
+

1

ε3
log

1

ε

)
.

Substituting equations 1 and 2 in the above expression yields
the desired bound on the ε-overhead.

3.2 Bounding the overhead in the extra speed
model

In the extra speed model Rand uses m machines of speed
1 + ε. Once again we focus on some fixed job i and assume
without loss of generality that it is assigned by Rand to
machine M1.

For the case of speed-bounded machines, the following
variant of Lemma 3.7 is useful. The proof is along the lines
of proof of Lemma 3.7 in the appendix and is omitted.

Lemma 3.9 For 0 < δ < 1/4, and for an arbitrary α-
bounded sequence 〈x〉,

E


max


0, max

i≥1




∑
j≤i

xizi

(
1

m

)
− 1 + δ

m

∑
j≤i

xi










= O

(
α

δ2
log

1

δ

)
.

Proof of Theorem 3.3. Let γ1 = max{0, S
(R)
i (ri) −

(1 + ε/2)S
(∗)
i (ri)}. Let γ2 = max{0, maxt≥ri{A(R)

i (ri, t) −
(1 + ε/2)A

(∗)
i (ri, t)}}. Suppose C

(R)
i ≤ ri + (2/ε)(γ1 + γ2).

Then the total flow time, and hence the (ε/2)-overhead, of
job i is at most (2/ε)(γ1 + γ2). Now consider the case when

C
(R)
i > ri + (2/ε)(γ1 + γ2). Consider any time t ∈ [ri +

(2/ε)(γ1 +γ2), C
(R)
i ). Since job i has not completed by time

t, machine M1 must have been busy executing jobs j � i
in the interval [ri, t]. Now we use the fact that Rand has
machines that run at speed (1 + ε) to obtain

S
(R)
i (t) = S

(R)
i (ri) + A

(R)
i (ri, t) − (1 + ε)(t − ri)

≤ γ1 + (1 + ε/2)S
(∗)
i (ri) + γ2 + (1 + ε/2)A

(∗)
i (ri, t)

−(1 + ε/2)(t − ri) − (ε/2)(t − ri)

≤ (1 + ε/2)
(
S

(∗)
i (ri) + A

(∗)
i (t, ri) − (t − ri)

)
−(ε/2) (t − ri − (2/ε)(γ1 + γ2)) .

Even if OPT has been executing only jobs j � i during the

interval [ri, t), we have S
(∗)
i (t) ≥ S

(∗)
i (ri) + A

(∗)
i (t, ri)− (t−

ri). Combining this with the fact that t−ri > (2/ε)(γ1+γ2),

we obtain S
(R)
i (t) ≤ (1 + ε/2)S

(∗)
i (t), i.e., job i is not (ε/2)-

bad at time t.
Thus, job i can only be bad for a total duration of (2/ε)(γ1+

γ2). We can use Lemma 3.9 to immediately obtain E[γ2] =
O((pi/ε2) log(1/ε)). The only missing piece is E[γ1]. Ob-
serve that

S
(R)
i (t) = max

s≤t

{
A

(R)
i (s, t) − (1 + ε)(t − s)

}
≤ max

s≤t

{
A

(R)
i (s, t) − (1 + ε/2)(t − s)

}
and

S
(∗)
i (t) = max

s≤t

{
A

(∗)
i (s, t) − (t − s)

}
.

Now,

S
(R)
i (t) − (1 + ε/2)S

(∗)
i (t)

≤ max
s≤t

{
A

(R)
i (s, t) − (1 + ε/2)(t − s)

}
−(1 + ε/2)max

s≤t

{
A

(R)
i (s, t) − (t − s)

}
≤ max

s≤t

{
A

(R)
i (s, t) − (1 + ε/2)A

(∗)
i (s, t)

}
.

Now we can use Lemma 3.9 to also bound E[γ1]. Conse-
quently,

E
[
Tε/2(i)

]
= O

(
pi

ε3
log

1

ε

)
.

4. DETERMINISTIC LOAD BALANCING
The deterministic algorithm that we analyze is the algo-

rithm of Avrahami and Azar [4] that we described in Section
2. We refer to this algorithm as Algorithm A. We set up
some notation that we use in the rest of the section. Let
Zi

k(t) denote the total processing time of all jobs that have
been assigned to machine i in class k by time t. Algorithm
A assigns a job arriving at time t with class k to the ma-
chine Mi with the least Zi

k(t) value; breaking ties arbitrar-
ily. We use V (t, X) to denote the volume, in other words



the remaining processing time, of jobs in set X at time t.
Subscripts are used to restrict the jobs to specified classes.
We will often use predicates to define a set of jobs. For ex-
ample V≤k(t, ri ≤ t′) indicates the volume of jobs that were
released by time t′ and which were in classes 1 to k. P (X)
denotes the processing times of jobs in set X. We use the su-
perscript ∗ to indicate quantities associated with some fixed
optimal schedule that we compare the algorithm’s schedule
with. The quantity Zi

≤k(t) denotes the total processing time
of jobs assigned to machine i by time t in classes at most
k. The quantity Qi

≤k(t) denotes the amount of time that
machine i spent on jobs of class at most k till time t. Let
Ri

≤k(t) denote Zi
≤k(t)−Qi

≤k(t) the residual amount of pro-
cessing left in the queue of machine i at time t in classes up
to k. Note that V≤k(t) =

∑
i Ri

≤k(t).
We now state two properties of the algorithm A that were

shown in [4] and that we use in our analysis.

Lemma 4.1 In the schedule of A, for any two machines j

and j′ and for any time t, |Qj
≤k(t) − Qj′

≤k(t)| ≤ 2k+2.

Lemma 4.2 In the schedule of A, if at time t there exists
a machine j such that Rj

≤k(t) = 0 then for every other ma-

chine j′, Rj′
≤k(t) ≤ 2k+3.

We focus on the Lp norm Fp here, identical arguments
apply to Lp norm of Sp as well. Our analysis will establish
that Fp(A) is at most (O(1+1/ε))pFp(OPT) where OPT de-
notes an optimal algorithm. For an algorithm H, let U(H, t)
denote the set of unfinished jobs in the queue of H at time
t. Also, let Agep(X, t) denote the sum over all jobs Ji ∈ X
of (t − ri)

p−1. Then Fp(H) = p
∫

t
Agep(U(H, t), t)dt. Thus

in order to show that H is c-competitive against OPT, it
is sufficient to show that at all times, Agep(U(H, t), t) is
at most cpAgep(U(OPT, t), t). This is the approach taken
by [7] for the single machine case where they showed that
the unfinished jobs in the online algorithms queue can al-
ways be charged to unfinished jobs in OPT’s queue such
that the above condition holds. Unfortunately, we cannot
establish such a local competitiveness condition in the mul-
tiple machines case. The main difficulty in extending the
result to multiple machines comes from load balancing of
jobs across the machines. The simple round-robin load bal-
ancing approach of algorithm A leads to non-uniform work-
loads across the machines. In particular, at any moment
in time, while some machines are idle, another group of
machines may have several unfinished jobs in their queues.
Thus while algorithm A has unfinished jobs in its queue,
OPT may have no unfinished jobs to charge to in its queue.
However, as indicated by Lemmas 4.1 and 4.2, these varia-
tions in the work-load are reasonably bounded. We use this
to show that the optimal algorithm carries sufficiently many
jobs to enable a local charging for all jobs that have waited
sufficiently long in the queue of A. In other words, the jobs
must wait for some time (say, a constant times their pro-
cessing time) to participate in this charging scheme. While
a job j is waiting to qualify for local charging, we charge its
delay to the term F p

j in OPT. Thus our analysis relies on
a combination of local and global charging rules. In what
follows, we describe in detail how these ideas can be made to
work in the multiple machines setting. The charging scheme
we describe follows the overall approach developed in [7].

Charging Scheme: Let D = U(A, t) − U(OPT, t) be the
set of jobs which have finished processing in OPT’s schedule
at time t but not in the schedule produced by A. Index
the jobs in D in increasing order of their processing times.
Consider a job Ji ∈ D. Suppose Ji is in class k. Let t′

denote the time t−ε′(t−ri), where ε′ is a constant less than
1 that we fix later. Let V ∗

≤k(t, rj ≤ t′) denote the amount of
processing left in the set of jobs in U(OPT, t) which are in
class at most k and were released before time t′. We allocate
to Ji an ε′′pi amount of work from V ∗

≤k(t, rj ≤ t′) which has
not been previously allocated to a lower indexed job in D,
where ε′′ is another constant less than 1 that we fix later.
We will do this allocation only when t − ri is at least α · 2k

for some α. If Ji does not satisfy this condition, we simply
charge its waiting time to Ji’s contribution to the optimal’s
objective. Since Ji contributes at least (2k)p to Fp(OPT),
and the maximum contribution from this waiting is (α2k)p,
the charging ratio is bounded by αp. On the other hand, for
jobs that satisfy the condition, at most 2/ε′′ jobs in U(A, t)
are assigned to any one job in OPT. Moreover, for each
participating job we charge a contribution of (t − ri)

p−1 to
(t − t′)p−1 = (ε′(t − ri))

p−1. Thus for these jobs, at time
t, the contribution to Agep in A is at most 2/(ε′′(ε′)p−1)
times Agep(U(OPT, t), t). We will show that this approach
can be made to work when α, 1/ε′, and 1/ε′′ are all O(1 +
1/ε). Thus we can establish that Fp(A) is at most (O(1 +
1/ε))pFp(OPT), giving our main result.

Thus the heart of the analysis is in showing that the as-
sociation described above always works, i.e., we never run
out of jobs to assign to Ji. Given time u and u′, u ≥ u′,
let J [u′, u] be the set of jobs released during [u′, u]. Let
P≤k(J [u′, u]) be the total processing time of the jobs in
J [u′, u] which are in class at most k. Now the possible vol-
ume of jobs which we can charge Ji to is V ∗

≤k(t, rj ≤ t′).
The claim below lower bounds this volume.

Claim 4.3

V ∗
≤k(t, rj ≤ t′) ≥ V ∗

≤k(ri, rj ≤ ri)+P≤k(J [ri, t
′])−m(t−ri).

(4)

Proof. The machines in OPT’s schedule can perform at
most m(t− ri) during [ri, t]. The volume of jobs of group at
most k that needs to be processed during this interval is at
least V ∗

≤k(ri, rj ≤ ri) + P≤k(J [ri, t
′]). Further, the release

time of all the jobs in this expression is at most t′. This
proves the claim.

Recall that V ∗
≤k(t, rj ≤ t′) is the volume we want to use

to charge Ji. Some of this volume has been consumed while
charging jobs in J1, . . . , Ji−1. Consider the jobs in this set
which were released after time ri. Since all these jobs were
finished in OPT by time t, their total processing time can
be at most m(t − ri). Now consider those jobs in this set
which were released before time ri. These jobs are a sub-
set of the jobs in U(A, ri). So their processing time is at
most P≤k(U(A, ri)). Thus, the total volume of jobs that is
sufficient for charging jobs J1, . . . , Ji is

ε′′ (m(t − ri) + P≤k(U(A, ri))) . (5)

From Equations 4 and 5, it suffices to show that

V ∗
≤k(ri, rj ≤ ri) + P≤k(J [ri, t

′]) − m(t − ri)

≥ ε′′ (m(t − ri) + P≤k(U(A, ri))) . (6)



In what follows, we first establish for the case of machines
with extra speed in section 4.1, and then shjow that the
analysis can be carried over to the case of extra machines as
well with minor modifications.

4.1 Extra speed
We start by establishing a relation between the unpro-

cessed volume of jobs in the optimal algorithm and the un-
finished jobs in A.

Lemma 4.4 Consider the schedule produced by A. Suppose
a machine remains busy in the interval [t1, t2] and processes
jobs only from classes 1 to k during this interval. Then the
total amount of processing done by all the m machines on
jobs of class at most k during [t1, t2] is at least (1+ε)m(t2−
t1) − m2k+3.

Proof. Given a machine j, and a time u, recall that
Qj

≤k(u) is the total volume of jobs of class at most k pro-
cessed by machine j till time u. Then from Lemma 4.1, if j

and j′ are two arbitrary machines, then |Qj
≤k(u)−Qj′

≤k(u)| ≤
2k+2. Let j be the machine which remains busy from t1
to t2 processing jobs from class at most k. So, Qj

≤k(t2) −
Qj

≤k(t1) = (1 + ε)(t2 − t1). If j′ is any other machine, we

know from Lemma 4.1 that |Qj
≤k(t1)−Qj′

≤k(t1)| ≤ 2k+2 and

|Qj
≤k(t2) − Qj′

≤k(t2)| ≤ 2k+2. Therefore,

Qj′
≤k(t2) − Qj′

≤k(t1)

=
(
Qj′

≤k(t2) − Qj
≤k(t2)

)
+

(
Qj

≤k(t1) − Qj′
≤k(t1)

)
+

(
Qj

≤k(t2) − Qj
≤k(t1)

)
≥

(
Qj

≤k(t2) − Qj
≤k(t1)

)
− |Qj′

≤k(t2) − Qj
≤k(t2)|

− |Qj
≤k(t1) − Qj′

≤k(t1)|
≥ (1 + ε)(t2 − t1) − 2k+3

Adding this for all j′ gives the desired result.

The above lemma helps us to lower bound the amount of
work remaining in OPT’s schedule at t. Let V≤k(u) be the
amount of processing time remaining for the set of jobs in
U(A, u) which are of class at most k. In other words V≤k(u)
is shorthand V≤k(u, U(A, u)). Recall that P≤k(U(A, u)) is
the total processing time of the jobs in U(A, u).

Lemma 4.5 For any time u,

V ∗
≤k(u, rj ≤ u) ≥ ε

1 + ε
P≤k(U(A, u))+

1

1 + ε
V≤k(u)−m2k+4

1 + ε
.

Proof. Let u′ be the earliest time such that there is some
machine j which is processing jobs of class at most k during
the interval (u′, u]. So, at time u′, machine j does not have
any job from classes up to k. From Lemma 4.2, at time u′,
Rj

≤k(u′) ≤ 2k+3 for every machine j. It follows that

V≤k(u′) =
∑

j

Rj
≤k(u′) ≤ m2k+3. (7)

Note that u′ ≤ rj for any job j ∈ U(A, u) since j was
assigned to some machine at time rj and this machine,

by the nature of the algorithm, cannot process a job of
class greater that k while j is unfinished. It follows that
P≤k(J [u′, u]) ≥ P≤k(U(A, u)). Now, Lemma 4.4 implies
that the machines do at least (1 + ε)m(u − u′) − m2k+3

amount of work on jobs of class at most k during [u′, u] in
A. Combining this with inequality (7), we get

V≤k(u)

≤ m2k+3 + P≤k(J [u′, u]) −
(
(1 + ε)m(u − u′) − m2k+3

)
= P≤k(J [u′, u]) + m2k+4 − (1 + ε)m(u − u′). (8)

Now OPT can do at most m(u−u′) amount of work during
[u′, u]. Further, it receives jobs of class at most k which have
total processing time P≤k(J [u′, u]) during this interval. So,
it follows that

V ∗
≤k(u, rj ≤ u) ≥ P≤k(J [u′, u]) − m(u − u′). (9)

Combining inequalities (8) and (9), we get the desired
result.

We now come back to the proof of inequality (6). Using
the expression for V ∗

≤k(ri, rj ≤ ri) obtained from Lemma 4.5
(by substituting ri for u) in inequality (6), it is sufficient to
show the following:

ε

1 + ε
P≤k(U(A, ri)) +

V≤k(ri)

1 + ε
− m2k+4

1 + ε
+

P≤k(J [ri, t
′]) − m(t − ri)

≥ ε′′ [m(t − ri) + P≤k(U(A, ri))] . (10)

Rearranging terms, we need to show that

(
ε

1 + ε
− ε′′

)
P≤k(U(A, ri)) +

V≤k(ri)

1 + ε

+ P≤k(J [ri, t
′]) − (1 + ε′′)m(t − ri) ≥ m2k+4

1 + ε
.

Clearly, V≤k(ri) ≤ P≤k(U(A, ri)). So if we assume ε′′ ≤
ε

1+ε
, and replace P≤k(U(A, ri)) by V≤k(ri) it suffices to show

(1−ε′′)V≤k(ri)+P≤k(J [ri, t
′])−(1+ε′′)m(t−ri) ≥ m2k+4

1 + ε
.

Lemma 4.4 implies that A does at least (1+ε)m(t′−ri)−
m2k+3 amount of work during [ri, t

′]. So, it must be the case
that V≤k(ri) + P≤k(J [ri, t

′]) ≥ (1 + ε)m(t′ − ri) − m2k+3,
because the left hand side is the total volume of jobs of group
at most k that need to be processed during [ri, t

′]. Thus, it
is enough to show that

(1 − ε′′)(1 + ε)(t′ − ri) − (1 + ε′′)(t − ri)

≥ 2k+4

1 + ε
+ (1 − ε′′)2k+3. (11)

Observing that t′ − ri = (1 − ε′)(t − ri), and choosing
ε′ = ε′′ = ε

4(1+ε)
, we get

[
(1 + 3ε/4)

(
1 + 3ε/4

1 + ε

)
− 1 + 5ε/4

1 + ε

]
(t − ri)

≥ 2k+4

1 + ε
+

1 + 3ε/4

1 + ε
2k+3.



Simplifying each side of the equation, we see that it is
enough to have

ε

4
(t − ri) ≥ 3 · 2k+3.

The equation above is satisfied whenever (t − ri) ≥ (3 ·
2k+5)/ε. Thus we can set α to be O(1 + 1/ε) as well.

4.2 Extra machines
The analysis for the extra machines is very similar to the

one with extra speed. We will simply highlight the modifi-
cations needed in the analysis above. Lemmas 4.4 and 4.5
each become slightly weaker, as stated below.

Lemma 4.6 Consider the schedule produced by A. Suppose
a machine remains busy in the interval [t1, t2] and processes
jobs only from classes 1 to k during this interval. Then the
total amount of processing done by all the m machines on
jobs of class at most k during [t1, t2] is at least (1+ε)m(t2−
t1) − (1 + ε)m2k+3.

Lemma 4.7 For any time u,

V ∗
≤k(u, rj ≤ u) ≥ ε

1 + ε
P≤k(U(A, u))+

1

1 + ε
V≤k(u)−m2k+4.

Thus Equation 10 can now be rewritten as

ε

1 + ε
P≤k(U(A, ri)) +

V≤k(ri)

1 + ε
− m2k+4

1 + ε

+ P≤k(J [ri, t
′]) − m(t − ri)

≥ ε′′ [m(t − ri) + P≤k(U(A, ri))] . (12)

Doing similar manipulations as before, we get

(1 − ε′′)(1 + ε)(t′ − ri) − (1 + ε′′)(t − ri)

≥ 2k+4 + (1 − ε′′)2k+3. (13)

Finally, substituting t′−ri = (1−ε′)(t−ri), and choosing
ε′ = ε′′ = ε

4(1+ε)
, we see that it is enough to have

ε

4(1 + ε)
(t − ri) ≥ 3 · 2k+3.

The equation above is satisfied whenever (t − ri) ≥ (3 ·
2k+5)(1 + ε)/ε. Thus we can set α to be O(1 + 1/ε) once
again.
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APPENDIX
It suffices to prove Lemmas 3.7 and 3.8 for α = 1. For

brevity, we will use zk to denote the random variable zk

(
1

m(1+δ)

)
.

Proof of Lemma 3.7. Let I(j) denote the small-

est value of l such that
∑l

k=1 xk/m ≥ j. Define µj =∑I(j)
k=1 xk/(m(1 + δ)). Define Xj =

∑I(j)
k=1 xkzk. Clearly,

E[Xj ] = µj ≥ j/(1 + δ).



Consider any i > 0. Let j =
⌈∑i

k=1 xk/m
⌉
. Clearly

I(j) ≥ i, and hence,
∑I(j)

k=1 xkzk ≥ ∑i
k=1 xkzk. But

I(j)∑
k=1

xk/m ≤ 1 + d
i∑

k=1

xk/me ≤ 2 +
i∑

k=1

xk/m.

Therefore,

max
i

{
i∑

k=1

xkzk −
i∑

k=1

xk/m

}
≤ 2 + max

j
{Xj − µj(1 + δ)} .

Hence, it suffices to analyze the random variable

∆ = max
j

{Xj − µj(1 + δ)} .

Using a folklore generalization of the Chernoff bound that
works for Bernoulli variables where the i-th variable is 0
with probability qi and takes an arbitrary value xi ≤ 1 with
probability 1 − qi, we obtain

Pr [Xj > µj(1 + δ)] ≤
(

eδ

(1 + δ)1+δ

)µj

≤
(

eδ/(1+δ)

1 + δ

)j

≤ e−jδ2/4, for 0 ≤ δ ≤ 1/4.

The last inequality above can be verified easily by plotting
the function in Mathematica, or with a little more effort, by
using eδ ≤ 1 + δ + δ2 in the range of interest. Hence,

Pr[∆ > β] ≤ βe−βδ2/4 +
∑
j≥β

e−jδ2/4 ≤
(

β +
8

δ2

)
e−βδ2/4.

We will only use the above inequality for β > 8/δ2, and

hence, Pr[∆ > β] ≤ 2βe−βδ2/4.
But E[∆] ≤ k+

∑
β≥k Pr[∆ > β] for all k. Using standard

series summations, we obtain E[∆] ≤ k + 2 rk

1−r

(
k + r

1−r

)
,

for any k and where r = e−δ2/4. Choosing k = (c/δ2) log(1/δ)
for a suitably large constant c, we get E[∆] = O((1/δ2) log(1/δ)),
completing the proof of Lemma 3.7.

Proof of Lemma 3.8. Define

∆ = max

{
0, max

i

{
i∑

j=1

xjzj − (1 − δ/2)

i∑
j=1

xj/m

}}
.

By an argument analogous to Lemma 3.7, we obtain

E[∆] = O((1/δ2) log(1/δ)). (14)

Define ∆′ = (2/δ)(∆+y). Choose k to be the smallest value

such that
∑k

j=1 xj/m > ∆′. For any k′ ≥ k,

k′∑
j=1

xjzj −
k′∑

j=1

xj/m

=
k′∑

j=1

xjzj −
k′∑

j=1

(1 − δ/2)xj/m − (δ/2)
k′∑

j=1

xj/m

≤ ∆ − (δ/2)(∆ + y)(2/δ)

≤ −y

Thus we obtain X(c)(y) ≤ ∆′ + 1. Combining with equa-
tion 14, we obtain

E
[
X(c)(y)

]
= O

(
y

δ
+

1

δ3
log

1

δ

)
.


