
Time and Area Efficient Pattern Matching on FPGAs

Zachary K. Baker
∗

University of Southern California
Los Angeles, CA, USA

zbaker@halcyon.usc.edu

Viktor K. Prasanna
University of Southern California

Los Angeles, CA, USA

prasanna@ganges.usc.edu

ABSTRACT
Pattern matching for network security and intrusion detec-
tion demands exceptionally high performance. Much work
has been done in this field, and yet there is still significant
room for improvement in efficiency, flexibility, and through-
put. We develop a novel linear-array string matching ar-
chitecture using a buffered, two-comparator variation on
the Knuth-Morris-Pratt(KMP) algorithm. For small (16 or
fewer characters) patterns, it compares favorably with the
state-of-the-art while providing better scalability and recon-
figuration, and more efficient hardware utilization.

KMP is a well-known, efficient string matching technique
using a single comparator and a precomputed transition ta-
ble. We add a second comparator and an input buffer, al-
lowing the system to accept at least one character in each
cycle and terminate after a number of clock cycles at max-
imum equal to the length of the input string plus the size
of the buffer. The system also provides a clean, modular
route to reconfiguring the patterns on-the-fly and scaling
the system to support more units, using several rows of lin-
ear array elements. In this paper, we prove the bound on
the buffer size and running time, and provide performance
comparisons against other approaches.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special Pur-
pose Systems

General Terms
Algorithms, Design, Security

Keywords
String matching, network intrusion detection, Knuth-Morris-
Pratt

∗Supported by the United States National Science Founda-
tion under award No. 0311823 and in part by an equipment
grant from Intel Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’04, February 22-24, 2004, Monterey, California, USA.
Copyright 2004 ACM 1-58113-829-6/04/0002 ...$5.00.

1. INTRODUCTION
Methods commonly used to protect against security breaches

include firewalls with filtering mechanisms to screen out
obviously dangerous packets, and intrusion detection sys-
tems which use much more sophisticated rules and pattern
matching to sense potential malicious packets. These tech-
niques require significant computational resources, and, us-
ing highly-parallel adaptive soft processors, provide oppor-
tunities for dramatic improvements.

A complete Intrusion Detection Systems(IDS) based on
the Snort rules [12] requires a system optimized for hun-
dreds of rules, many of which require string matching against
the entire data segment of a packet. We have developed a
highly parallel hardware backend technology to dramatically
increase the speed of string matching, specifically directed
toward intrusion detection and response applications. The
high level of performance that we provide is necessary to pro-
vide real-time string matching at Internet speeds. Snort, the
open-source IDS [12] has thousands of content-based rules.
Each of these rules require that a packet be searched in its
entirety for the occurrence of some “fingerprint” string. Us-
ing näıve methods, this is unworkable. Using more sophisti-
cated algorithms or higher levels of parallelism, it becomes
tenable. Most research in this area has not developed archi-
tectures that can handle more than a few hundred rules at
reasonable speeds. By minimizing the number of compara-
tors required to match a new input character each cycle,
we use less hardware resources than other approaches. Af-
ter finding the maximum buffer size requirements through
careful analysis of the algorithm, we can produce a pattern
matching unit that uses few FPGA resources, allowing more
units to be integrated onto a single chip. By allowing only
one-way communication between neighboring units, the ar-
chitecture is suited, by design, for use in a linear array, al-
lowing little reduction in performance for any amount of
scaling.

Our novel approach to runtime adaptability uses a pipelined,
two-comparator, buffered implementation of the Knuth-Morris-
Pratt algorithm (KMP)[7] to implement high-performance
pattern matching, while yielding a unit design small enough
to fit thousands of patterns on a single FPGA. Our archi-
tecture enables high-throughput, easily configurable intru-
sion detection for a variety of hardware platforms (FPGA
or ASIC). Unlike other state-of-the-art architectures, our
approach does not use hard-wired circuitry to implement
pattern matching on an FPGA or otherwise, but uses con-
figurable memories storing patterns and precompiled jump
tables to provide exceptional flexibility.

223

A significant contribution of this paper is a demonstration
of the maximum size buffer required to implement a string
matcher capable of accepting a character from the input in
each cycle without resorting to k parallel comparators. The
architecture that enables this is a buffered string match-
ing system implementing a KMP-like pre-computation al-
gorithm utilizing two comparators. This allows a matching
unit to accept one character each cycle into a buffer of size
k/2 where k is the pattern size. By buffering the input we
allow a linear array of pattern matching units to be daisy-
chained together. This technique reduces the fanout and
the interconnect distance by allowing units to be regularly
arranged on an FPGA without long-wire interconnects. The
details of our architecture will be covered in Section 4 and
we will show in a detailed proof in Section 6 that the buffer
will never drop input characters, regardless of the input or
pattern.

2. OUR APPROACH
Our approach to intrusion detection uses a modified ver-

sion of the KMP algorithm and matching architecture (Fig-
ure 1) optimized for running on a linear array. The Knuth-
Morris-Pratt algorithm (KMP)[7] is a sophisticated approach
to string matching, providing O(n + k) in the worst case,
meaning that the a 2kB packet can be searched in only
2048*c comparisons [14]. While there are algorithms that
run faster in the average case, there are none that run faster
in the worst case. Because the linear array depends on con-
sistent, non-fluctuating consumption of input characters, the
KMP algorithm is the ideal solution for our needs.

KMP achieves these speedups by creating a table of allow-
able/possible matches, preventing redundant comparisons.
The main drawback of KMP is the slightly more compli-
cated control circuitry and lack of parallelism. Data cannot
be shifted one position at a time as in the näıve approach,
or wide parallel approaches.

There are string matching algorithms that have better
average-case running times than KMP, but no single com-
parator algorithms with better worst-case characteristics.
This is vital to our architecture as we will see later, but
it is important to network security in general because an
attacker might attempt to cause the IDS to drop packets
by flooding it with specially designed packets. If a IDS is
overwhelmed by traffic, most configurations will allow some
packets through without screening, or subject them only to
a cursory examination. This provides an opportunity for an
attacker to subvert the system. This type of attack is shown
to be useless against our design in Section 6.

Our contribution to the field of KMP research is to prove a
worst-case buffer size requirement such that a string match-
ing unit can accept an input character each cycle and end
in n + k/2 cycles plus some pipeline latency.

2.1 Introduction to KMP
KMP, developed by Knuth, Morris, and Pratt [7] utilizes

a pre-computed table to prevent redundant comparisons, re-
ducing the worst-case running time from O(kn) to O(n+k).
The pre-computed table, or π-table1, contains the length of
the largest number of characters in the prefix of the pattern

1We use the π-table as equivalent to the usage of the next
function in [7]; [14] always compares against π + 1 whereas
the original KMP compares against π

P that match the suffix:

π[q] = max{ j : j ≤ q and

P [1 . . . j − 1] = P [q − j + 1 . . . q − 1]} (1)

That is, the π-table tells how much of the beginning of the
pattern has already been matched at any position in the pat-
tern. Of course, this only affects the system when the pat-
tern has repeated strings; a pattern such as “abcdefg” would
have no useful information in the π-table, while “abaab”
would have useful information because the beginning of the
pattern shows up later in the pattern.

The π-table below is for the worst-case pattern, a Fi-
bonacci string [7]. π[1] = 0, meaning there is no possible
match and the input pointer should be advanced. π[4] =
2, meaning the next character comparison is against P [2]
= ‘b’. If this fails, the next comparison is against ‘a’. The
second comparison of ‘a’ is unavoidable because KMP is his-
toryless, meaning that the system cannot remember what it
has compared earlier.

q 1 2 3 4 5 6 7 8 9
P[q] a b a a b a b a a
π[q] 0 1 0 2 1 0 4 0 2

One important note is that when P (i) = π(π(i)), the opti-
mization π(i) <= π(π(i)) can be made. This violates Equa-
tion 1 but provides much higher performance by removing
comparisons that can never be true. This optimization was
introduced in the original paper [7] but was omitted in [14].

3. RELATED WORK
Snort [12] is a current popular option for implementing in-

trusion detection in software. It is an open-source, free tool
that promiscuously taps the network and observes all pack-
ets. After TCP stream reassembly, the packets are sorted
according to various characteristics and, in the worst case,
are string-matched using the Boyer-Moore algorithm against
rule patterns. However, the rules are searched sequentially
on a general-purpose microprocessor. This means that the
IDS is easily overwhelmed by consistently high rates of pack-
ets. The only option given by the developers to improve
performance is to remove rules from the database or allow
certain classes of packets to pass through without checking.
Some hacker tools even take advantage of this weakness of
Snort and attack the IDS itself by sending worst-case pack-
ets to the network, causing the IDS to work as slowly as
possible. The eventual uninspected packets that result pro-
vide an opportunity for the hacker. Clearly, this is not an
effective solution for a maintaining a robust IDS.

FPGA solutions attempt to provide a more efficient solu-
tion. In our previous work in regular expression matching
[10, 11], we presented a method for matching regular ex-
pressions using a Non-deterministic Finite Automaton, im-
plemented on a FPGA. Traditional serial machines require
O(2n) memory and O(1) per character. Our approach re-
quires O(n2) space and O(1) per character. Mapped onto
the Virtex XCV100, the approach designed by our group
was faster than the grep program on an 800 MHz Pentium
III for best-case grep performance and orders of magnitude
faster than the worst-case grep performance. Using our pre-
vious work, [6] implements an FPGA design that deals with
two special characteristics of firewall rule sets: the firewall

224

Character

Stream
Delay

8 8

=

C1 C2

=

Pattern Index

Input Buffer Index

Address Generation

Logic

MUX

 +
0

1

2

C1 C2 Pattern Update Input Update

0 0 Pi1 +0

0 1 Pi1

1 0 Pi2

1 1 Next2

+0

+1

+2

Figure 1: General architecture of two-comparator design

designer has design time knowledge of the rules to imple-
ment, and there are large number of rules. Because the rules
are known beforehand, the firewalls can be programmed
with precompiled rules placed in the rule set according to
performance-optimizing heuristics. Their FPGA implemen-
tation shows improvements of 600 times the software pro-
gram GNU regex.

In [5], a CAM-powered software/hardware IDS is explored.
A Content Addressable Memory (CAM) is used to match
against possible attacks contained in a packet. The tool
applies the brute force technique using a very powerful, par-
allel approach. Instead of matching one character per cycle,
the tool uses CAM hardware to match the entire pattern
at once as the data is shifted past the CAM. If a match
is detected, the CAM reports the result to the next stage,
and further processing is done to derive a more precise rule
match. If a packet is decided to match a rule, it is dropped
or reported to the software IDS for further processing. This
requires O(mx) CAM memory cells and a great deal of rout-
ing for each m-character layer of x rules. CAM hardware,
commonly used in fully-associative caches, check a bit vector
against all of the data contained within the memory, pro-
ducing some sort of output if the two pieces of data match.
Unfortunately, though, because matching is done in parallel
across all rules and across all characters at in one cycle, this
sort of implementation requires a great deal of logic. While
this does provide O(n+m) worst-case rule matching time, it
does so at the cost of a large amount of hardware. Because
of the hardware complexity and chip limitations, the CAM
approach can only provide 32 20-byte matching units on the
Virtex XCV1000E, where, given the same external memory
hardware, our approach allows several hundred units to run
in parallel, with the same worst-case execution time. Also,
we do not require that a single packet be matched against all
of the rules, allowing packet-specific matching capabilities.

Another hardware approach, in [9], uses more sophisti-

cated algorithmic techniques. In various incarnations, their
work has turned into multi-gigabyte sophisticated pattern
matching tools with full TCP/IP network support. The sys-
tem demultiplexes a TCP/IP stream into several substreams
and spreads the load over several parallel matching units us-
ing Deterministic Finite Automata pattern matchers. The
authors have transferred their designs into a for-sale solu-
tion [1] that can operate at OC-48 (2.4 Gbps) rates. In
their architecture, a full place-and-route and reconfiguration
is currently estimated at 7-8 minutes.

In [4] a novel hashing mechanism utilizing Bloom filter is
discussed. Their implementation of a hashing-table lookup
using a moderate amount of logic and external or internal
memory is an effective method to search thousands of strings
for matches in a single pass. Rules can be added by chang-
ing only some data in the memory. Rules can be removed by
maintaining some information in a software-based host. Nei-
ther requires reprogramming the FPGA. The filter is pow-
erful but somewhat hindered by a tradeoff between the false
positive rate and the number of rules in a given memory
size.

In [3, 13], a hardwired design is developed that provides
high area efficiency and high time performance by using
replicated hardwired 32-bit comparators in a pipeline struc-
ture. The main weaknesses are the p2 increase in hardware
for a p increase in throughput and the inflexibility in the
hardware. The matching technique proposed is to use four
32-bit hardwired comparators, each with the same pattern
offset successively by 8 bits, allowing the running time to be
reduced by 4x for an equivalent increase in hardware. The
authors use about 100 rules, “the most common attacks,”
and have implemented only these patterns in the FPGA. Be-
cause the comparators are hardwired, they are fast, but are
also inflexible and moreover require a full place-and-route for
any change in their pattern set. Because [13] provides the
highest throughput for the largest number of rules to date,

225

we focus our comparisons against their results. In a related
work [2], we develop some of these ideas using a unary-coded
technique with automated optimization design tools.

4. ARCHITECTURE
The KMP algorithm generally uses a single comparator

and can move forward at most one character in the input
string per cycle. However, in some situations, the input will
be stalled while the comparator makes additional compar-
isons against the same character. We extend KMP by using
two comparators, then prove in Section 6 that with a very
small buffer we are guaranteed that a character can be ac-
cepted from the input string during every cycle.

The general architecture is shown in Figure 1. Here we
have two comparators feeding a multiplexer that determines
the new index values for the pattern and input memories.
The input buffer is preloaded with the first k/2 charac-
ters. This allows the gap between the characters read from
the buffer and the characters entering the buffer to vary as
matches occur.

If there is no match in the first character, the result of the
second comparison is not considered. However, when the
first comparison does match, the result of the second com-
parison is considered. This allows the system to use input
characters faster than they enter into the buffer. This is im-
portant because when the comparison fails, the buffer stalls
on the current character until all possible matching prefixes
of the pattern are compared against. During this time, how-
ever, data continues to enter into the buffer. In Figure 2 we
see the input pointer and the incoming buffer as they vary
during a pattern matching operation. The buffer initially
loads, producing the initial separation between the upper
and lower lines. When there are no successful matches, the
input pointer proceeds diagonally upward. When the input
matches the pattern, the write index and the read indexes
get closer together, until a failing comparison occurs. This
causes the input pointer to stall and produces a horizontal
line in the graph. If, by some combination of inputs the read
and write pointers near, implying a nearly empty character
buffer, the unit will only utilize one of the comparators, slow-
ing the processing of the buffered packet to one character per
cycle, the same speed as the input to the buffer. There is no
situation where the read and write buffers can actually wrap
around the buffer and collide, falling into either of the gray
areas on either side. Buffer overruns or underruns would
cause input characters to be lost and is undesirable. We
prove that this can never happen in the next section.

After careful timing analysis of the design, it became clear
that the large contributions to the period can be split into
two sections; the memory access and comparisons, and the
multiplexing of incremented pointers. After the initial mem-
ory read, the memory essentially stands idle for the remain-
der of the cycle, and the combinational logic is idle until
the completion of the memory read. Given this situation,
pipelining is a general technique that is an obvious choice
for increasing the speed of the system, but at first glance
it seems unworkable. Pipelining generally does not make
sense for single-character-oriented string matching architec-
tures because we need to update the pointers each cycle
based on results from the current cycle.

The solution is a C-slowing technique [8], something more
akin to a fine grain multi-threaded architecture, where two
pattern matching units essentially stay out of phase with

0

10

20

30

40

50

0 10 20 30 40 50

Cycles Elapsed

Matches allow read and

write pointers to separate

No matches, read and

write pointers equal

Failures stall the read

pointer, causing read and

write pointers to near

Overflow Condition

Underflow Condition

Read_ptr = Write_ptr

Figure 2: Separation of read and write pointers in
the input buffer

each other. The two units actually share the same hard-
ware except for the memory areas storing the two different
patterns. This is an exciting approach because the combina-
tional logic and input buffers occupy more than 75% of the
utilized area. Adding a few more state registers and dou-
bling the pattern memory produces only a small increase in
the total resources required, from 50 slices to 57 slices for
a 16 character pattern and 65 slices for a 32 character pat-
tern. Because of the simplicity of the pipeline, the two units
flip back and forth between the memory and combinational
pipeline stages using only the pipeline registers, requiring no
extra control logic. While this strategy increases doubles the
latency for a single pattern, each unit provides matching for
two patterns with only a small increase in area. Thus any
clock period performance increase provided by having higher
utilization of the circuitry translates directly to increased to-
tal performance. By pipelining the units, we increased the
place-and-route clock frequency from 221 MHz to 285 MHz.

5. OPERATIONAL EXAMPLES
We will explore a sequence of cases, working up to the

proof of the general case in the next section. The cases are
illustrated in Figure 4. In the figure, f signifies a failing
match attempt, m is a successful match, and d is a ‘don’t
care’ character which does not figure in the current compar-
ison cases. In each section of the figure, the hat shows which
two characters are being compared in parallel in each cycle.

In Figure 4.a, the first character comparison fails. Re-
gardless of the other characters in the string, a failing first
character always advances the input string pointer j, and
causes the same pattern index in the pattern to be com-
pared in the next cycle. The result is that we advance the
input index one character in one cycle. This fulfills our re-
quirement for ending up no deeper in the pattern after any
sequence of operations.

The second case, shown in Figure 4.b, is a bit more compli-

226

Pattern

RAM

read

Pi-table

RAM

read

Input

Buffer

RAM

(2 read)

(1 write)

=

=

Phase A Phase B

+
+2

+
+1

CLK

+
+2

+
+1

816

8

Figure 3: Pipelined architecture of two-comparator design

Failure Position Matching Cycles Failing Cycles Characters Consumed

a. First Character f̂ − d − d − d 1 0 1

b. Second Character m̂ − f − d − d 1 1 2

c. Third Character m̂ − m − f̂ − d − d − d 2 1 3

d. Fourth Character m̂ − m − m̂ − f − d − d 2 2 4

Figure 4: Character failures; ‘m’ is a match, ‘f ’ is a failure, ‘d’ is a “don’t care”

cated. Here, we compare the first (P (1)) and second (P (2))
characters of the pattern with the first and second charac-
ters of the input, i(j) and i(j + 1) in the first cycle. The
first character matches (i(q) = P (1)), and the second char-
acter fails (i(j + 1) �= P (2)). Because only P (1) matched,
we advance the input by one byte (j = j + 1), but start the
pattern from P (1) again.

The next case is when both of the first two characters
match and we fail on the third character P (3) as in Figure
4.c. We gain a cycle in the comparison of P (1), P (2), as we
advance the input by two bytes in one cycle. When P (3) fails
in the second cycle, the only legal shift for q > 2 (as shown
in Lemma 2) is of at least two characters: π[3] ≤ 1. As we
are looking for the worst case path to q∗ = 0, we take the
path where each comparison fails. If π[3] = 1, and i[π[3]] =
P (1) �= i[q+2], then we advance to the next input character.
Starting at q = 0 and advancing to q = 2, then failing
back to q∗ = 0 (as required for the important property that
any sub-sequence of comparisons also maintains the non-
decreasing buffer gap) requires a total of three cycles for
three advances of the input pointer.

The fourth and final case we will investigate before prov-
ing that all cases meet the non-decreasing buffer gap con-
dition is a failure in the fourth position, P (4), as shown in
Figure 4.d. This is very similar to the third, except during
the second cycle the input advances by one, and because
of Lemma 2, π[4] ≤ 2, thus allowing the failure sequence
π[4] = 2, and π[2] = 1, and π[1] = 0. In comparison with
the previous case, there is an additional jump, thus requiring
a total of four cycles, but the input is advanced as well.

6. BUFFER SIZE REQUIREMENT
The general KMP architecture is difficult utilize in a pipelined

grid architecture of matching elements because the algo-
rithm can stall and suspend the processing of new characters
in unpredictable ways. Buffering the entire input sequence
is one solution, but unworkable as input sizes become large.
Theorem 2 shows that the maximum buffer size required for
our architecture is only logφ k, where k is the pattern size.

Assumptions: We receive a single byte of input data each
cycle. Total input length is n bytes. Pattern length is m
bytes. The pattern-matching element (PME) contains a
RAM buffer which can provide simultaneous reads from two
different addresses and write to a third address in one cycle.
Note that the discussion of the proof refers to Figure 1; the
pipelined architecture in Figure 3 simply stretches a single
state update across two cycles but complicates the counting
in the proof.

Definitions:
to consume a character : to advance the pointer of the in-
put buffer, ending the comparisons against the current input
character
cycles: a traversal between q∗ and q and then back to q∗ or
earlier, consuming q−q∗ +1 characters from the buffer. Not
to be confused with clock cycles.
sub-cycles: failing comparisons that lead to successful com-
parisons at positions larger than 1; that is, a cycle that ends
because a prefix of the pattern matches the current suffix of
the input.

227

cycles in: the number of clock cycles until a failing compari-
son occurs, including the cycle that contains the first failing
comparison
cycles out : the number of clock cycles after a failing com-
parison until the next increment of the input pointer, not
including the first failing comparison or the cycle after the
pointer is advanced. This number is equal to the π-transitions
that require comparisons.
architecture: the architecture in question is the string match-
ing in Figure 1
character position: the position of a characters in a string,
the leftmost character being character 0 and the rightmost
character being n − 1.

In Lemma 1, we show that the worst case for the algo-
rithm are failures that cause full-cycle traversals of the π-
table, that is, where the pattern pointer starts and ends at
the first pattern character.

Lemma 1
If the algorithm correctness is maintained in full-cycle fail-

ures, the algorithm is correct in sub-cycle failure situations.
Proof: Failures that cause sub-cycles, that is, failing compar-

isons that lead to successful comparisons at positions larger
than 1, require fewer clock cycles than full-cycle traversals.
The relation q − π[q] ≥ 2 for q > 3 holds except for the
case detailed in Lemma 2. Because each π-transition skips
at least one character for q > 3, and in general makes much
larger skips due to the logarithmic increase in the number of
steps as a function of position, the situation is always better
than at positions deeper in the pattern.

Because full-cycle traversals are the worst-case situation,
if the condition is satisfied for all q when q∗ = 1, we can be
satisfied it will work for intermediate (sub-cycle) cases.

Lemma 2 proves that a pattern with the first (n−1) char-
acters identical followed by a different character is the only
pattern that can cause a transition that moves one element
backwards. Because this type of pattern can cause the ar-
chitecture to fail, we seek to understand it fully and then
eliminate it.

Lemma 2
Transitions of the form π[q] = q − 1 for q < n can exist

for a pattern, P [1,2, . . . , n-1, n, . . .], when P [q] = α for q
= 1 . . . n and α is some pattern character.

Proof: The π-table is defined as the maximum j not greater
than q such that P [1 . . . j − 1] = P [q − j + 1 . . . q − 1]

In the case π[q] = q − 1, j = n - 1. Substituting for j,

P [1 . . . (n − 2)] = P [2 . . . (n − 1)].

Lemma 2 proves that all characters P [1] through P [n−1]
must be identical to produce single-character π transitions.
Moreover, n must be at least 2. This is the only case where
sequences of single-character π-jumps (more than one single-
character jump in a row) may occur. Fortunately, the origi-
nal KMP algorithm [7] prevents sequences of repeated failing
comparisons, and thus, this case is impossible.

While characters P [1]...P [n−1] must be identical, nothing
is guaranteed about P [n], which certainly may be different
character. This causes an interesting situation, as π[q] =
q − 1 can exist for only the nth character. For α1 �= α2,

n = 2, the situation is identical to Case b in Section 5. For
n > 2, there must have been at least one pair of characters
successfully matched in a single cycle. This gives the system
the space to make a single-byte π-jump. Due to the original
KMP algorithm, only patterns having the identical leading
(n−1) characters, followed by a different nth character, can
cause π[n] = n−1, and thus there will exist only one single-
character π-jump in any cycle. This is acceptable and does
not lead to buffer overruns.

In the proof of Theorem 1, we show that the architecture
accepts, on average over certain controlled time intervals, at
least one character per cycle.

The buffer enqueues characters to use when the input
pointer stalls. The input pointer stalls when a character
comparison fails and some number of additional compar-
isons have to be made against the same input character.
This proof is important because we need a guarantee that
the buffer in the architecture will never run out of space dur-
ing an input stall caused by non-matching input characters.
While trivial with a n-sized input buffer, we provide only a
k/2 buffer for each matching unit.

Theorem 1 proves that, for any sequence of matching and
failing the number of cycles required to advance into the pat-
tern to position q and then fail out to the starting character
or earlier (q∗) is less than the number of characters processed
from the input buffer in the same number of cycles. That is,
the system advances farther when it matches than it gets be-
hind when it fails. In order for this to work, the system has
to take advantage of the two comparators provided and “get
ahead,” or decrease the number of unprocessed characters
in the input buffer. When the failure occurs and the input
pointer stalls for several cycles, the number of unprocessed
characters will increase. We call this the “non-decreasing
buffer gap,” meaning that the gap between the read and write
pointers in the cannot have decreased at the end of a cycle.
If this condition is satisfied, no possible input sequence will
cause the system to not accept a character each cycle, or fail
to fully process each character.

Theorem 1:
For any sequence of successful comparisons followed by a

sequence of failing comparisons where the initial character
position at ti is greater than or equal to the final position
at tf and the number of characters removed from the buffer
at tt = consumedt, the following relation holds:

∑tf
t=ti

consumedt

tf − ti
≥ 1

Proof:
First, we define an equivalent relation. We multiply through

by tf − ti, then substitute the cycle equivalence tf − ti =
cmatching + cfailing , where cmatching is the number of sys-
tem cycles in which both comparisons succeeded and cfailing

is the number of system cycles spent in which at least one
comparison failed. This yields

tf∑

t=ti

(consumedt) ≥ cmatching + cfailing

For convenience, we define
∑tf

t=0 (consumedt), the total
number of characters consumed from cycle ti to tf , as Cc.

We count the number of cycles starting when the system

228

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Time

Write Pointer

Pattern Pointer

Read Pointer

Empty Buffer

Figure 5: Various relevant pointers during a simulation of the two-comparator algorithm. The input sequence
matches the 16 character pattern for the first 15 characters of the worst-case Fibonacci string pattern. The
pointers into the buffer are do not wrap at the buffer boundaries for clarity.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

q

f(
q)

floor(q/2)
floor(log(q))
q

At q = 3,5,7, the condition is not
violated due to the lack of
a tight bound on the
worst case

Figure 6: Using q∗ = 1, we graph Cc, cmatching, cfailing in the formula Cc ≥ cmatching + cfailing

requests input character ij+q∗ (using the input index j for
generality) and pattern character Pq∗ , successfully matches
forward until input character ij+q and pattern character Pq .

This requires cmatching = � q−q∗+1
2

� clock cycles, counting
from 1. If the pattern is not matched, a failure will occur.
The worst-case number of cycles until the next input char-
acter is requested from the buffer occurs when the pattern
pointer jumps all the way to the 1st pattern character. In
this case, the original KMP authors [7] proved that the worst
case number of π-transitions, and equivalently, the number
of stalling cycles where no input characters are consumed,

is logφ q∗, where φ = 1+
√

5
2

. What we need, though, is the
number of cycles until we fail to a position less than or equal
to the starting position q∗. This allows us to prove that

sub-cycles of matching and failing also conserves the buffer
appropriately. This is simple enough because the KMP al-
gorithm is history-less, that is, only the current state mat-
ters, allowing our accounting to start and end where we like,
namely, q∗ and q.

The upper bound on the number of failing cycles cfailing

between q∗ and q is the difference between the upper bound
of jumps for q and the lower bound for q∗.

For the worst-case pattern, the upper bound on the num-
ber of cycles from q is logφ(q).

Lemma 1 showed that the worst case for the cycles/characters
consumed condition is actually where q∗ = 1. This sim-
plifies the analysis of the condition by allowing us to set
min jumps(q∗) = 0, yielding

229

cfailing = max jumps(q)−min jumps(q∗) = logφ(q)− 0

The final component required is the number of input char-
acters processed. Because we no longer require input char-
acter j at the end of our accounting, we can define Cc = q
- q∗ + 1. Putting the pieces together, we get:

q − q∗ + 1 ≥ � q−q∗+1
2

� + �logφ(q)�

When q and q∗ are large, say, above 8, there is no question
that the condition is satisfied (see Figure 6), because the
number of π-transitions decreases logarithmically with the
position in the pattern. Pattern positions less than 8 seem
to be much more challenging in analysis. In particular, for
q < 8 because logφ q > q

2
.

Cc Cmatching Cfailing Successful?
1 1 0 T
2 1 1 T
3 2 �2 0 �F T
4 2 2 T
5 3 �3 1 �F T
6 3 3 T
7 4 �4 3 �F T
8 4 4 T
9 5 4 T
10 5 4 T

Figure 7: Correctness table based on worst-case
bounds, which are found in Figure 6 to overstate
true worst-case numbers for some low values of q.
In cases where this affects the correctness of the
analysis we fix the number of cycles out and corre-
spondingly adjust the success flag.

We note that 3, 5, and 7 are not successful (as also in-
dicated in Figure 6), based on the worst-case formulation
provided by Knuth, Morris, and Pratt in their original pa-
per [7]. Unfortunately, the worst case bound is not as tight
as required. We have already shown that the q=3 case main-
tains the buffer requirements. We can look at the Fibonacci
string, proved to be the worst-case possible pattern in the
original paper, and see that the worst-case bound overstates
the actual worst-case in these important cases:

i 1 2 3 4 5 6 7 8 9
P [i] a b a a b a b a a
π[i] 0 1 0 2 1 0 4 0 2

Inspecting q = 3, 5, and 7, we can count the number of
transitions before we can move to the next input character.
π(3) = 0, so the number of cycles for a failure is actually
zero. For q = 5, π(5) = 1, thus the number of transitions
is 1. For q = 7, π(7) = 4, π(4) = 2, π(2) = 1. Adding,
there are a maximum of three transitions for q = 7. Substi-
tuting our new, accurate values into the table, we see that
each “worst-case” violation is valid. This proves that our
architecture requires equal or fewer cycles to compare the
pattern against the input than the number of input charac-
ters advanced during the same period, or, equivalently, over
any sequence of matches followed by a sequence of failures,
the average number of characters removed from the buffer
is at least 1.

Theorem 2: Using two comparators, our KMP architecture
requires a buffer of only k/2 characters, where k is the pat-
tern length to support a one character per cycle throughput,
regardless of pattern or input sequence.

Proof: The two comparators allow two characters to be ac-
cepted from the buffer during each cycle. It is thus possible
to match an entire k length pattern in k/2 cycles. In The-
orem 1, we proved that at least one character is removed
from the buffer in every clock cycle, on average. By Lemma
2, the maximum number of consecutive cycles in which the
system can remove zero characters from the buffer is equal

to logφ k, where φ = 1+
√

5
2

.
The logφ k cycles in which characters are not removed

from the buffer have already been accounted for in the anal-
ysis of Theorem 1. That is, enough characters have been
removed from the buffer to allow for logφ k cycles to pass
without removing data. However, because characters con-
tinue to be added to the buffer regardless of the removal rate,
the buffer needs to be large enough to allow logφ k charac-
ters to enter without causing overflow. Thus, the maximum
required size of the buffer is logφ k.

The number of clock cycles required to completely match
a pattern starting from the first position, �k/2�, is actu-
ally greater than the precise buffer size required, logφ k.
The number of clock cycles for failing is always less than
or equal to the number of cycles for matching, for patterns
larger than eight characters. We could limit the buffer to
the number of cycles for failing comparisons, but the slightly
larger buffer allows the architecture to offer on-the-fly recon-
figuration.

To conclude this section, we have proved that with two
comparators and a k/2 buffer a matching unit can accept one
character per cycle, while guaranteeing that no character
will ever be dropped nor any pattern match overlooked.

7. FUNCTIONAL SIMULATION
In this section we present the results of a functional sim-

ulation of an input against a 16-character pattern. The
pattern used is the Fibonacci string, thereby exercising the
worst-case situation for the buffer. Various relevant point-
ers during a simulation of the two-comparator algorithm.are
shown in Figure 5.

During the first six cycles, the logφ k size buffer is loaded,
and then the algorithm starts. In the simulation, the input
sequence matches the first 15 of 16 characters in the pattern.
Because of the two comparators, the system only requires 8
cycles to match to the end of the pattern. When the failure
occurs in the 8th cycle, the read pointer stalls for several
cycles (in Figure 5, the stall is manifested as a horizontal
line), approaching the point at which the read pointer is
equal to the write pointer mod logφ k. If the read pointer
was to collide with the write pointer, data loss would oc-
cur due to overflow. However, before the buffer overflows
the pattern pointer reaches the first character, and the read
pointer resumes incrementing.

8. RESULTS
In this section we present our results and define some per-

formance measures to compare against the competing archi-
tectures. We targeted the Virtex II Pro xc2vp4 device with
-7 speed grade. We use the Xilinx ISE 5.2i and Mentor
Graphics ModelSim 5.7 development tools.

Our design provides reconfiguration that proceeds at the

230

Input Buffer

Pattern Memory

KMP

Unit

Input Buffer

Pattern Memory

KMP

Unit

Input Buffer

Pattern Memory

KMP

Unit

Packet In

Pattern In

Match Out

Pattern Out

Packet Out

Figure 8: Linear array of matching units. Each input buffer is of size k/2, each pattern memory is of size k.

Implementation Total Work Performed Input Bits Freq (MHz) Throughput
USC(no pipeline) 2n 8 221 8*freq=1.8 Gb/s
USC(pipelined) 2n over two patterns 8 285 8*2 * freq/2 units = 2.4Gb/s2

Los Alamos[5] 128n 32 68 32*freq=2.2Gb/s
Wash U. - DFA[9] 8n 8 80 8*freq=0.640Gb/s3

Wash U. - Bloom[4] 8n 8 100 8*freq=0.8Gb/s3

UCLA [3] 128n 32 90 32*freq=2.88Gb/s
U/Crete[13] 128n 32 340 32*freq=10.8Gb/s

Figure 9: Throughput and total work performed, e.g., the total number of comparisons made (considers only
a single stream, regardless of how many streams are processed in the original work)

Unit Size Performance
Design Throughput 16 char 32 char 16 char 32 char
USC(no pipeline) 1.8Gb/s 92 102 19.6 17.6
USC(pipeline) 2.4Gb/s/2 120/2 130/2 20.0 18.4
Los Alamos[5] 2.2Gb/s 243 486 9.1 4.5
Wash U. - DFA[9] 0.952Gb/s 260 520 3.7 1.8
Wash U. - Bloom[4] 0.8Gb/s 0.764 0.76 1058 1058
UCLA [3] 2.88Gb/s 160 320 18.0 9.0
U/Crete[13] 10.8Gb/s 269 538 40.1 20.1

Figure 10: Pattern size, unit size (in logic cells; one slice is two logic cells), and performance (in Mb/s/logic
cell). Throughput is assumed to be constant over variations in pattern size

same rate as the flow of the input packet into the buffer. One
troubling aspect of other designs in the field is the amount
of time required to change the patterns in the unit. Recent
viruses have infected hundreds of thousands of hosts in the
first few minutes of activity. Given the power of modern
worms and other hacking attacks, waiting for a complete
place and route of a hard-wired design while a network is
overrun is not ideal. Thus, fast reconfiguration is useful
in dynamic network environments. In other situations, fast
reconfiguration is necessary to support the entire rule set.
For instance, in the Snort ruleset [12], rules are sorted into
categories based on port number and protocol. All current
systems, including our design, cannot support all of the pos-
sible rules in a single device. By allowing the device to be
reconfigured for every new type of packet the system would
actually be practical for fully protecting a network.

The architecture of our system is dependent on several
small banks of memory that hold the various patterns and
jump tables. These buffers give us the leeway necessary to
load new patterns. The pipelined system allows us to accept
a character into the buffer in every cycle. In order to support
on-the-fly reconfiguration we must be able to load the new
pattern into the unit memory in k/2 cycles, because if the
first k incoming characters happens to match the pattern, it
will finish in k/2 cycles due to the two comparators. How-
ever, there is an active comparison cycle only every other
system cycle due to the pipelining. Thus we only need k

cycles to reconfigure, and that reconfiguration can be done
between the end of a packet and the next packet, without
delay.

By providing a pattern and jump table input bus for each
of the units, we easily fulfill the system requirements for re-
configuration. By daisy-chaining the units together into a
linear array, shown in Figure 8, the pattern information can
pass from unit to unit without system-level control. After
the leftmost unit’s pattern memory is full, the unit imme-
diately sends the incoming patterns to the next unit in the
chain. Because the incoming packet has to pass though each
unit’s buffer before it is sent to the next unit we are guaran-
teed that each pattern will be fully loaded in unit i before
the new input fully loads unit i’s buffer and matching can
start. By switching the currently matching characters to the
next element, we can fill the i + 1 buffer without dropping
any characters or matching less than one character per cy-
cle, on average. Using this strategy, a row of the pipelined
units can be reconfigured in pk cycles given a 16 bit pattern
data path. However, on-the-fly reconfiguration comes at a
price; the front-to-back latency for the pipelined system is
also pk. It is possible to reconfigure the architecture such
that the total latency is p+k, but in this configuration only
a single unit can be reconfigured on-the-fly.

In Figure 9, we compare the total work performed for
various implementations, and its relation to the number of
input bits and throughput. We find that hardwired, fast 32-

231

bit implementations can perform remarkably well in terms
of throughput. However, they do not offer the reconfigura-
bility that we can offer, nor can they compete area-wise. An
important consideration in our design strategy is in byte par-
allelism. Increasing input size by p times, while increasing
the throughput by p times, increases the number of com-
parators by p2 times. This allows our architecture to main-
tain a larger number of matching units, even though our
architecture is not hard-wired. Moreover, our architecture,
due to the linear array of elements and careful buffer de-
sign, can provide on-the-fly reconfiguration of a new ruleset
at the same time a new packet is loaded into the buffers.
Because our performance metrics measure both throughput
and area efficiency, we consider exchanging a linear increase
in throughput for a quadratic increase in area to be not
in our best interest. This leaves us with state machine
based implementations such as [9], and creative architec-
tures based on traditional string matching algorithms such
as KMP.

Many previous papers on network string matching have
provided fast throughput on a few patterns but have not
been able to scale well because of fanout delays and the
complexity of their matching units. This puts a severe lim-
itation to their application in real network security appli-
cations, where hundreds if not thousands of rules must be
simultaneously matched at line rates. Other designs [3,
13], with their small, simple pipelined and hardwired de-
sign, have come closer to producing efficient designs as the
they can fit one hundred or so of the most common pat-
terns on a device. Unfortunately, as the number of pattern
matching units increases the system speed drops dramati-
cally, and, as parallelism increases, the area requirements
increase quadratically. Because of these concerns we define
our performance metric as throughput (freq * number of bits
per cycle) divided by the size of a 16 or 32 character unit
(using the per-character numbers from [13]). This metric re-
wards systems that have small and highly efficient units, but
also those with high operational frequency and parallelism.
In Figure 10 we can see that in terms of Megabit/sec/slice,
our design compares favorably with designs in the 32 char-
acter category.

9. CONCLUSION
This paper has presented a novel linear-array string match-

ing architecture using a buffered, two-comparator variation
on the Knuth-Morris-Pratt algorithm. For small (16 charac-
ter) patterns, it competes favorably with the state-of-the-art
while providing on-the-fly reconfiguration, better scalability
due to the simplicity of the linear architecture, and more effi-
cient hardware utilization. For patterns of size 32 characters
it competes with any current published results, even parallel
hardwired comparator approaches, without requiring place-
and-route between pattern configurations. Our future work
includes context-sensitive on-the-fly partial reconfiguration
of patterns and on-board π-table generation.

2Two comparators use the same hardware due to the pipelin-
ing
3Each unit in this design advances by one byte in each cycle,
but the system is composed of four units working in paral-
lel, increasing the total throughput to at least 2.4Gb. We
consider only a single unit.
4Unit size determined by converting block RAM to equiva-
lent distributed RAM structures for area comparisons

10. REFERENCES
[1] Global Velocity, http://www.globalvelocity.info/,

2003.

[2] Z. K. Baker and V. K. Prasanna. Automatic Synthesis
of Efficient Intrusion Detection Systems on FPGAs.
Submitted to DAC ’04, 2004.

[3] Y.H. Cho, S. Navab, and W.H. Mangione-Smith.
Specialized Hardware for Deep Network Packet
Filtering. In Proceedings FPL 2002: 12th
International Converence on Field-Programmable
Logic and Applications, Sept 2002.

[4] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and
J. Lockwood. Implementation of a Deep Packet
Inspection Circuit using Parallel Bloom Filters in
Reconfigurable Hardware. In Proceedings of HOTi03,
2003.

[5] M. Gokhake, D. Dubois, A. Dubois, M. Boorman,
S. Poole, and V. Hogsett. Granidt: Towards Gigabit
Rate Network Intrusion Detection. In Proceedings of
FPL2002, 2002.

[6] B. L. Hutchings, R. Franklin, and D. Carver. Assisting
Network Intrusion Detection with Reconfigurable
Hardware. In Proceedings of Field-Programmable
Custom Computing Machines (FCCM ’02), 2002.

[7] D.E. Knuth, J. Morris, and V.R. Pratt. Fast Pattern
Matching in Strings. In SIAM Journal on Computing,
1977.

[8] C. E. Leiserson and J. B. Saxe. Retiming Synchronous
Circuitry. Technical Report 13, Digital Systems
Research Center, 1986.

[9] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos.
Implementation of a Content-Scanning Module for an
Internet Firewall. In Proceedings of FCCM 2003, April
2003.

[10] R. Sidhu, A. Mei, and V. K. Prasanna. String
Matching on Multicontext FPGAs using
Self-Reconfiguration. In ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Feb
1999.

[11] R. Sidhu and V. K. Prasanna. Fast Regular
Expression Matching using FPGAs. In IEEE
Symposium on Field-Programmable Custom
Computing Machines (FCCM 2001), April 2001.

[12] Sourcefire. Snort: The Open Source Network Intrusion
Detection System. http://www.snort.org, 2003.

[13] I. Sourdis and D. Pnevmatikatos. Fast, Large-Scale
String Match for a 10Gbps FPGA-Based Network
Intrusion Detection System. In Proceedings of
FPL2003, 2003.

[14] T.H.Cormen, C.E.Leiserson, and R.L.Rivest.
Introduction to Algorithms. MIT Press, McGraw-Hill,
1990.

232

	Main Page
	FPGA04
	Front Matter
	Table of Contents
	Author Index

