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ABSTRACT 
Data visualization is one of the big issues of database research. 
OLAP as a decision support technology is highly related to the 
developments of data visualization area. In this paper we 
demonstrate how the Cube Presentation Model (CPM), a novel 
presentational model for OLAP screens, can be naturally mapped on 
the Table Lens, which is an advanced visualization technique from 
the Human-Computer Interaction area, particularly tailored for 
cross-tab reports. We consider how the user interacts with an OLAP 
screen and based on the particularities of Table Lens, we propose an 
automated proactive users support. Finally, we discuss the necessity 
and the applicability of advanced visualization techniques in the 
presence of recent technological developments. 

Categories and Subject Descriptors 
H.2.1 [Database Management]: Logical Design – data models.  
H.2.3 [Database Management]: Languages – report writers  
H.5.2 [Information Interfaces and Presentation]: User Interfaces 
– graphical user interfaces (GUI), user-centered design.  

General Terms: Design, Human Factors. 

Keywords: On-Line Analytical Processing, Visualization 

1. INTRODUCTION 
In the last years, On-Line Analytical Processing (OLAP) and data 
warehousing have become major research areas in the database 
community [3,7]. Although the modeling of data [16,17] has been 
extensively dealt with, an equally important issue of the OLAP 
domain, the visualization of data, has not been adequately 
investigated. In the context of OLAP, data visualization deals with 
the techniques and tools used for presenting OLAP specific 
information to end-users and decision makers. The database 
community expects visualization to be of significant importance in 
the area, during the next years [7], and although research has 
provided results dealing with the presentation of vast amounts of 

data [5,4,1,15], OLAP has not been part of advanced visualization 
techniques so far. 

In this paper, we start by adopting a newly introduced presentation 
model for OLAP called Cube Presentation Model - CPM [11] and 
demonstrate how it can be combined with non-traditional 
visualization techniques. The CPM model distinguishes 
representation from data retrieval. It is separated in two layers: a 
logical that deals with data retrieval and representation and a 
presentational that provides a generic model for data representation. 
In this paper, we present a quick informal overview of the main 
characteristics of CPM and accompany them with its respective 
UML modeling for ease of understanding. Then, we proceed with 
the contributions of this paper, which can be listed as follows: 
� Initially, we present a mapping of the generic presentational 

scheme of CPM to the particularities of an advanced 
visualization technique coming from the field of Human 
Computer Interaction. The Table Lens technique [14,12] is 
particularly tailored for cross-tab reports, which are most 
commonly used for OLAP purposes and it is accompanied by a 
set of handy features for the exploration of data sets which are 
presented in this way. 

� Next, we provide algorithms for the automated proactive 
support of the user during his interaction with an OLAP screen, 
based on the particularities of Table Lens. Specifically, Table 
Lens employs a particular distortion of the presentation to 
highlight areas of increasing interest to the user. We provide a 
generic algorithm to support this task proactively. 

� Finally, we discuss the necessity and the applicability of such 
visualization techniques in the presence of current 
technological developments.  

The remainder of this paper is structured as follows. In Section 2, 
we summarize the logical and the presentation layers of CPM. 
Section 3 shows how CPM can be naturally combined with Table 
Lens. Moreover, Section 3 demonstrates the automate proactive 
support to the user. In Section 4, we discuss the necessity and 
applicability of the proposed ideas. Finally, Section 5 concludes our 
results and presents topics for future work. A longer version of this 
paper, with more details can be found in [8]. 

2. THE CUBE PRESENTATION MODEL 
Although OLAP has been an active research area for the past few 
years, the efforts devoted to the visualization of OLAP screens are 
very scarce. To our knowledge, only two such efforts exist [10,1]. 
The first is from the industrial field, where Microsoft has issued a 
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commercial standard for multidimensional databases and where the 
presentational issues form a major part [10]. In this approach, a 
powerful query language is used to provide the user with complex 
reports, created from several cubes (or actually subsets of existing 
cubes). The second is an academic approach, the Tape Model [1], 
based on the notion of “Tapes”, called so due to their look and feel. 
Tapes are infinite and can overlap (if they contain shared data 
dimensions), or intersect with each other. A two dimensional 
intersection is called a matrix and represents a kind of cross-tab 
between the corresponding dimensions. Each tape comprises of a 
variable number of tracks. The most important operations on tapes 
include: (a) insertion and deletion of tracks, (b) changing the 
sequence of tracks (i.e., sorting) and (c) scrolling on tracks. The 
Tape Model offers the possibility of defining hierarchical structures 
within a tape. 

In [11], we have presented the Cube Presentation Model (CPM), a 
novel proposal towards a presentation model for OLAP screens. 
CPM is composed of two parts: (a) a logical layer which involves 
the formulation of cubes and (b) a presentational layer that involves 
the presentation of these cubes (normally, on a 2D screen). The 
main idea behind CPM lies in the separation of logical data 
retrieval (which we encapsulate in the logical layer of CPM) and 
data presentation (captured from the presentational layer of CPM). 
This duality provides the flexibility of possibly replacing one of the 
two layers with an alternative proposal smoothly. The logical layer 
that we propose is based on an extension of a previous proposal [18] 
with additional functionality that allows us to incorporate more 
complex cubes. In a nutshell, the logical model involves (a) 
dimensions defined as lattices of dimension levels, (b) ancestor 
functions (in the form of ancL1;L2) mapping values between related 
levels of a dimension, (c) detailed data sets, practically modeling 
fact tables at the lowest granule of information for all their 
dimensions and (d) cubes, defined as aggregations over detailed data 
sets. In this paper, we will not deal with the formal presentation of 
the underlying logical layer of CPM (the reader is referenced to [11] 
for a detailed and in depth presentation) but focus on the mapping of 
our presentation layer to alternative visualization techniques from 
the area of Human Computer Interaction. 
Following, we give an intuitive and informal description of the 
presentation layer of CPM that provides a formal model for OLAP 
screens.  
The most important entities – as far as display aspects are concerned 
– of the presentation layer of CPM include: 

− Points: A point over an axis resembles the classical notion of 
points over axes in mathematics. In the simple case, a point is 
characterized by an equality selection condition over a level (e.g., 
City=Seattle). Nevertheless, as we shall see, we can 
multiplex several logical dimensions to one presentational axis; 
therefore, a point will be formally defined to handle this kind of 
situations, too. 

− Axis: An axis can be viewed as a set of points. We introduce two 
special purpose kinds of axes, Invisible and Content. An 
Invisible axis is a placeholder for the levels of the data set 
which are to be presented to the user. The Content axis has a 
more elaborate role: it is a place holder for the content of the  
multicube, as computed over the detailed data. 

− Multicubes. A multicube is defined over (a) a multidimensional 
space, comprising a set of axes, (b) an underlying data set 
providing all the data which will be filtered and aggregated 

before presented to the user and (c) a mapping among the 
multidimensional space and the underlying data set that shows 
the computation of the multicube contents. 

− 2D-slice: A 2D slice is a 2D layer of data that can be presented 
on the screen. Consider a multicube MC, composed of K axes. A 
2D-slice over MC can be sufficiently defined by a set of (K-2) 
points, each from a separate axis. Intuitively, a 2D-slice pins the 
axes of the multicube to specific points, except for 2 axes, which 
will be presented on the screen (or a printout). In Fig. 2, we 
depict such a 2D slice over a multicube. //check whether it is the 
MS picture… 

− Tape: Intuitively, a tape is column or a row over a 2D-slice, i.e., 
a construct parallel to an axis. Again, if we consider a 2D-slice 
SL over a multicube MC, composed of K axes, a tape is 
sufficiently defined by a set of (K-1) points, where the (K-2) 
points are the points of SL. A tape is always parallel to a specific 
axis: out of the two "free" axis of the 2D-slice, we pin one of 
them to a specific point which distinguishes the tape from the 
2D-slice. 

− Cross-join: Intuitively, if we take one tape parallel to the 
horizontal axis and another parallel to the vertical axis, their 
intersection is a cell. In the most general case, as we shall see, it 
can be a set of cells. In both cases, the intersection of two non-
parallel tapes is called a cross-join. Consider a 2D-slice SL over 
a multicube MC, composed of K axes and two tapes t1 and t2 
which are not parallel to the same axis. A cross-join over t1 and 
t2 is defined by a set of K points, where the (K-2) points are the 
points of SL and each of the two remaining points is a point on a 
different axis of the remaining axes of the slice. 

− Content Function: At the schema level, we assume a function 
assigning the computation of measures to the Content axis of 
the multicube, along with ordering and other restrictions. We 
also assume a function, mapping combinations of multicube 
coordinates, one from each of the coordinate axis of the 
multicube to the measure axis. Each such assignment is 
practically a row in the result set of one of the 
queries/expressions/… computing the multicube, which we call 
cell1. For brevity, in the sequel, we simply tag the Content axis 
with this information. 

To make the discussion easier, we will use an example taken from 
[10], throughout the paper (Figure 1). In this example, we assume a 
cube SalesCube is defined over the dimensions Products, 
Salesman, Time, and Geography, each involving several levels 
of aggregation. In this query, we restrict the Time dimension to the 
sales of Year 1991. We ignore the Products dimension 
(Products=ALL) in the subsequent aggregation of detailed data. 
Whenever we need to present a 2D screen and more than two 
dimensions are involved, we need to merge (CROSSJOIN in [10] 
terminology) as many dimensions as necessary in a single axis. In 
this case, we combine the dimensions Salesman (restricted on two 

                                                                 
1 The name cell stems from the regular terminology of OLAP, 

referring to points in the multidimensional space. Although in 
the classical tabular representation of data, cell is actually a 
successful name, for other representation techniques this does 
not apply (e.g., in the proposal of [4], a cell should be 
represented by a line). 
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salesmen) and Geography on the COLUMNS axis and leave the 
dimension Time on the ROWS axis. Note that the Geography 
dimension involves more than one levels of aggregation (both City 
and Region). The same applies for the Time dimension, where 
both Quarters and Months are employed. 

In terms of CPM terminology, the query of Figure 1 is a 2D-Slice, 
say SL (see also Figure 2). In SL one can identify 4 horizontal tapes 
denoted as R1, R2, R3 and R4 in Figure 1) and 6 vertical tapes 
(numbered from C1 to C6). The meaning of the horizontal tapes is 
straightforward: they represent the Quarter dimension, expressed 
either as quarters or as months. The meaning of the vertical tapes is 
somewhat more complex: they represent the combination of the 
dimensions Salesman and Geography, with the latter expressed 
in City, Region and Country level. Moreover, two constraints 
are superimposed over these tapes: the Year dimension is pinned to 
a specific value (i.e., Year=1991) and the Product dimension is 
ignored. One can also consider the cross-join t1 defined by the 
common cells of the tapes R1 and C1. 

 
SELECT CROSSJOIN({Venk,Netz},{USA_N.Children,USA_S,Japan}) ON COLUMNS 
{Qtr1.CHILDREN,Qtr2,Qtr3,Qtr4.CHILDREN} ON ROWS 
FROM SalesCube 
WHERE (Sales,[1991],Products.ALL) 

Year = 1991  Venk    Netz    
Product = ALL  USA   Japan USA   Japan 

   USA_N  USA_S  USA_N  USA_S  
   Seattle Boston   Seattle Boston   
  Size(city)         
R1 Qtr1 Jan         
  Feb C1  C2 C3  C4 C5 C6 
  Mar         
R2 Qtr2          
R3 Qtr3          
R4 Qtr4 Oct         
  Nov         
  Dec         

 
Figure 1. Motivating example for the cube model [10,11]. 

 
Interpreting our motivating example in terms of CPM, we assume a 
detailed data set, named SalesCube, under the schema: 
S = [Quarter.Day, Salesman.Salesman, 

Geography.City, Time.Day, 
Product.Item, Sales, PercentChange, 
BudgetedSales]  

The following axis schemata can also be discerned in Figure 2: 
Row_S = {[Quarter], [Month,Quarter, Quarter, 

Month]} 

Column_S = {[Salesman×Geography],   
[Salesman]×[[City,Size(City)], 
Region,Country]} 

Section_S = {[Time],[Year]} 

Invisible_S = {[Product],[Product.ALL]} 

Content_S = {[Sales],[sum(Sales0)]} 

along with their respective axes: 
Rows =  {Row_S,[ancmonth;day(Month)=Qtr1, 

Quarter=Qtr2, Quarter=Qtr3,     
ancmonth;day(Month)=Qtr4]} 

Columns = {Column_S, {[Salesman='Venk', 
Salesman='Netz'],             
[ancregion;city(City)='USA_N', 
Region='USA_S', Country='Japan']} 

Sections = {Section_S,[Year=1991,Year=1992]} 

Invisible = {Invisible_S,[ALL='all']} 
Content = {Content_S} 

ancmonthday (Month)= 
Qtr1 

(5) 
Salesman='Netz', 
Region='USA_S'  

Salesman='Netz', 
Country='Japan' 

(6) 
ancmonthday (Month)= 

Qtr4 

Quarter 
= Qtr3 

Rows 

Salesman='Venk', 
Region='USA_S' 

(2) 

(3) 
Salesman='Venk', 
Country='Japan' 

(1)
Salesman='Venk', 
ancregioncity (City) = 

'USA_N' 

Columns 

Quarter 
= Qtr2 

Salesman='Netz', 
ancregioncity (City) = 

'USA_N' 
(4) 

Year=1991

Year=1992 Sections 

+ 
Products.ALL 

= 
 'all' 

Invisible 

+ 
Sales, 

sum(Sales0), 
true 

Content 

 
 Figure 2. The 2D-Slice SL for the example of Figure 2 [11]. 

 
In Figure 2, we can also observe an exemplary point over an axis, 
incorporating equality conditions for each of the involved 
dimensions of the axis: 

p1 = ([Salesman,[City,Size(City)]], 
[Salesman='Venk',ancregion;city(City)='USA_N']) 

Thus, a multicube MC can be defined as: 
MC = {Rows, Columns, Sections, Invisible, 

Content}  
 
Finally, in Figure 3, we present some more comprehensive 
visualization representations of multicubes, axes, points, 2D slices 
and cross-joins on a 3D and 2D layout. 
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Figure 3. Mapping CPM objects to 3D and 2D Cross Tabular 
layouts. 

3. MAPPING CPM TO VISUALIZATION 
TECHNIQUES 
In this section, we will demonstrate how CPM can be combined 
with Table Lens (TL) [14,12], a traditional cross-tabular 
presentation model from the Human Computer Interaction area. This 
model is widely used in applications and platforms for the 
visualization of tabular, multivariate and multidimensional data and 
appears to be quite appropriate for OLAP purposes. Table Lens is 
based on the “focus plus context” technique that allows visualizing 
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and manipulating large 2-D tables [14]. Using Table Lens, we can 
easily examine patterns and correlations in large tables and 
effectively zoom in without losing the global picture of our data. We 
have chosen Table Lens as an advanced visualization technique due 
to the fact that it is based on a cross-tabular paradigm for the 
presentation of information; a paradigm quite popular in OLAP 
screens, too. 

 

 

 

DOI 

Transfer 
function 

 

Figure 4. A Table Lens example: (a) a 2x4 focus window is 
defined over a space of 8x8 points; (b) Table Lens distortion of 

the Columns axis 

3.1 Mapping CPM to Table Lens 
In this subsection, we will present the main features of Table Lens, 
and then we will link it to the CPM model. The main constructs of 
the Table Lens technique involve: 
� Axes: The Table Lens model assumes two axes. For clarity, we 

will use Rows and Columns to denote these two axes. 
� 2D space: The 2D space is constructed from the Cartesian 

product of the two Table Lens axes. It is a (finite) matrix of 
cells. 

� Degree of Interest Function (DOI): DOI is a function that 
maps each axis point to a value that indicates the level of 
interest for that point. For each axis a different DOI function is 
prescribed. 

� Transfer Function: A transfer function maps each cell to its 
physical locations, indicating the level of zoom for each cell. 
Practically, the transfer function is the translation of the 
respective DOI function (operating at the “interest” space) to 
the ”pixel” space. 

One of the basic ideas behind the Table Lens technique is that not 
all cells are considered equal. In fact, certain cells comprising a 
concrete region of the 2D space are assigned to occupy more surface 
of the screen than the rest of the cells. This is the essence of 
zooming into the particular region of the 2D space. To implement 
this, in the simplest setting of Table Lens, each DOI function is a 
simple “pulse” function, meaning that it has a standard value for all 
points, except for the points of a certain interval that are mapped to a 
higher value. Remember that each axis has its own DOI function, 
thus a 2D space is characterized by 2D windows of focus. In Figure 
4a, we depict an 8x8 space with a 2x4 focus window. In Figure 4b 
we show (i) how the originally equally important cells of the 
Columns axis are assigned importance values by the DOI function: 
notice the pulse on two particular cells that assigns them greater 
importance than the rest of the cells and (ii) how the Transfer 
function, defined as a weighted integral of the DOI function maps 

the points to pixel areas. For reasons of efficient representation [14], 
in Figure 4b, the produced axis is rotated by 90o.Finally, another 
interesting feature of Table Lens is the ability to define more than 
one windows of focus. This is quite helpful in situations where two 
areas can be contrasted and compared. As we shall see in the next 
section, this feature is particularly useful in the case of OLAP. 
There is an easy way to map the underlying constructs of the CPM 
to the ones of the Table Lens. The axis points of CPM are mapped 
to axis points of Table Lens and a 2D slice in CPM is implemented 
as a 2D space in Table Lens. The contents function provides the 
values of the cells of the 2D space. Naturally, CPM is generic 
enough to lack the particularities of the axis distortion due to the 
DOI function. The naïve way to overcome the limitation is simply to 
ask the user to define a certain window of focus over the presented 
2D slice, specifying both its size and position. Still, we can automate 
the process on the basis of the structure and the contents of a 2D 
slice. 

   C1 C2 C3 C4 C5 C6 
   Venk    Netz    
   USA   Japan USA   Japan 
   USA_N  USA_S  USA_N  USA_S  
   Seattle Boston   Seattle Boston   

 QTR1 Jan 20 32 62 97 23 40 75 12 

R1  Feb 25 40 74 121 18 32 51 20 

  Mar 18 12 36 110 42 48 65 3 

R2 QRT2  56 63 150 253 50 70 280 50 

R3 QTR3  52 65 147 200 53 64 270 50 

 QTR4 Oct 25 24 64 98 32 12 64 76 

R4  Nov 28 28 76 102 40 21 83 69 

  Dec 23 30 68 150 42 29 99 77  
 

Figure 5. Instantiation of the motivating example with values; 
different shading determine different cross-joins and thick 

borders highlight the cross-joins with the highest, lowest and 
closest to average values. 

3.2 Which Window of Interest to Choose? 
In this subsection, we will deal with the problem of providing the 
user with proactive automated support for the exploration of an 
OLAP report. Our main tool towards this end is the window of 
interest as determined by the DOI functions and the basic idea is to 
provide an algorithm to proactively determine the window of 
interest over a 2D slice. We want to define an algorithm that 
automatically determines this window whenever a user invokes an 
OLAP report. It appears that we can come up with a generic 
algorithm, where the stopping conditions, error range and other 
parameters can be tuned by the user. Actually, we can even treat as a 
parameter a choice on whether the user is simply interested of 
having a window of a certain surface or he is actually interested to 
see a focus on a range of cells satisfying certain statistical properties 
(e.g., minimum/maximum/closest to average set of values). Having 
determined algorithmically the window of interest, the two involved 
DOI functions, which are independent from each other, are directly 
derived. 

3.3 Motivation and Assumptions 
Before providing the generic algorithm, let us clarify our 
contribution through a specific example. We instantiate the example 
of Figure 2 with the values of Figure 5. Let us assume that when the 
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user activates this OLAP screen, he would like to be informed on 
three particular cross-joins: one involving the maximum sales, 
another involving the lowest and a third involving the cross-join 
with behavior closest to the average of the whole screen. Practically, 
this involves three windows of focus, which we depict through a 
thick border around the involved cross-joins. In this particular case, 
the cross-join R1/C6 is the one with the lowest summary of values, 
the cross-join R4/C4 the one with the highest sum and the cross-join 
R2/C3 is the one closest to the average sales per cross-join (which 
amounts to 240.5 sales per cross-join).  
A vanilla algorithm to compute the aforementioned quantities 
proceeds as follows: (a) summarizes all cells per cross-join; (b) sorts 
cross-joins and computes the average cross-join value and (c) 
pinpoints the three regions of interest. This algorithm has linear 
(precisely, one-pass) complexity on the number of cells and nlogn 
(due to sorting) complexity on the number of cross-joins.  Actually, 
if we are simply to keep the max, min or closest-to-avg 
cross-join, a linear single pass from all the cells is sufficient, without 
any sorting. In the case of avg, each time that we summarize the 
cells from a cross-join we can compute the average of the individual 
cross-join summaries and compute the closest cross-join to the 
current value of this average.  

Assumptions: Underlying this proactive notification to the user, we 
have made the following assumptions: 

� Cross-joins constitute homogeneous pieces of information. 
This means that we can assume a certain level of semantic 
cohesion among the cells of a certain cross-join. Moreover, we 
can assume that each cross-join can be considered as a distinct 
semantic unit and that cross-joins are comparable to each other. 
For example, we assume that it makes sense to compare sales 
from Japan to the sales of Southern USA. Naturally, the user 
choices for the axes points (and the produced cross-joins) may 
severely affect this assumption. 

� Statistically speaking, we are allowed to perform certain 
aggregate operations over our data. Specifically, we assume 
that the underlying detailed data set has been summarized by a 
distributive aggregate function. 

In [6] aggregation functions are categorized as (a) distributive 
functions, like max, min, sum or count, meaning that there is a 
way to compute the result of the application of the aggregation 
function to the overall data set by composing the individual results 
of its application to subsets of the dataset; (b) algebraic functions 
that are expressed as finite algebraic expressions over distributive 
functions, like avg; and (c) holistic functions for all other functions. 

To forestall any possible criticism, we want to point out that the 
exact result of aggregation operations over a 2D slice is handled by 
the logical layer. In the case of the [18] model, all operations are 
formally defined as operations over the detailed data set; 
optimization results for the obvious cases are also provided. 
Nevertheless, in the case of this paper, we want a quick 
approximation of the statistical measures under consideration, to be 
used for the determination of the focus window and not of the 
values of the report. Thus, problems like the Simpson’s paradox or 
the non invariance property [6] are considered as out of the scope of 
this paper. Finally, as a general comment, since it is quite 
cumbersome to ask the user each time to characterize the statistical 
nature of his underlying data, we employ the idea that one can have 

an indication of the statistical nature of the information of screen by 
observing the aggregate function that has been applied to compute 
them. Thus, since in our case we are starting with a sum aggregate 
function, we conclude that we can apply further distributive 
operations to the measure Sales in order to obtain our indicative 
approximations. 

3.4 A Generic Algorithm for Determining  
the Window of Focus 
Naturally, we can do better than the aforementioned vanilla 
algorithm by adding extra criteria to the proactive selection of the 
starting window of focus. We propose a guided greedy generic 
algorithm, GenericFocusWindow (Figure 6), to deal with the issue. 
The simple idea underlying the algorithm is that there are certain 
conditions to be met for the focus window. For example, one could 
require that the focus window occupies at most/least a certain 
percentage of the screen size, or of a certain size of cells. Moreover, 
the selected window optimizes an objective function. The property 
Determining Quality of the algorithms captures exactly this 
requirement in the form of a certain function. Since our algorithm is 
greedy, we need an Original Pick routine to start the processing; in 
general this is closely related to the Determining Quality function 
and we require that it starts with a smallest value. Moreover, a 
Guard Condition checks for the satisfaction of the desired property 
(meaning that we can possibly allow a certain approximation error ε 
to out obtained solution). Finally, a function Pick provides the 
necessary details for working from the original small-in-value 
solution towards the final result, practically picking the next cross-
join to enlarge the current window of focus. 
One implicit assumption that our algorithm makes is that the 
Original Pick fits inside the allowed window. This constraint can 
easily be relaxed by an extension of the algorithm picking subparts 
of a cross-join in a similar fashion with the proposed algorithm, if 
we consider that we pick subparts of a 2Dslice. For lack of space we 
do not incorporate this extension too. 
We will give two examples for the instantiation of the 
aforementioned generic algorithm. In the first case (Algorithm 
FocusWindow_Min_3x3 in Figure 7), we are interested in a focus 
window which (a) includes the window with the minimum summary 
of values and (b) is not bigger than 3x3 (with a tolerance of the 
surface ε=1). We can observe that the guided greedy algorithm 
picks the window of minimum value as its starting point. The first 
constraint is met by the original pick and the second by the stop 
condition of the algorithm. During the expansion phase, each time 
we choose a cross-join such that (a) it is neighbouring with the 
current solution; (b) if merged with the current solution, it comprises 
a rectangle (easily determined by comparing the lengths of the 
opposite sides of the new solution and (c) has the smallest surface.  
If we execute the algorithm on the data of Figure 5, the result will be 
Q={R1/C6,R2/C6,R3/C6,R4/C6} which is practically the 
tape C6. If instead of the minimum value, in function Pick we had 
chosen the maximum, then the result would be 
Q={R1/C6,R1/C5}. Another obvious extension would be to 
employ a 2-greedy algorithm: in this case the small cross-joins 
R2/C5 and R2/C6, each comprising a single cell, could have been 
incorporated in the solution too. 
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Algorithm GenericFocusWindow 
Input:  
 A set of cross-joins GJ and a display grid of cells Grid related 

to GJ.  
 Each cell belonging to Grid is characterized by coordinates 

(x,y) and each CJ belonging to GJ is characterized by the 
coordinates of its upper left and lower right cell. Each cross-join 
has a surface, determined by its coordinates. 

Parameters:  
 OriginalPick(GJ): a routine to determine the starting 

cross-join of the algorithm 
 GuardCondition: a routine to determine whether the 

algorithm should stop 
 ε: a tolerance, or error range for the acceptance of a solution or 

not 
 Qualifies: a Boolean function that determines whether a 

solution satisfies a set of constraints 
 DeterminingQuality: a property of a cross-join like 

surface, sum of values, … 
 Pick(GJ,Q): a routine picking a cross-join to enlarge the 

produced solution 
Output:  
 A set of cross-joins, Q that satisfies the conditions set by the 

user. 
Begin 
 Q = {} 
 C = OriginalPick(GJ) 
 Add C to Q. 
 While (GuardCondition) { 
  CJ = Pick(GJ,Q);  
  If CJ≠NULL Then add CJ to Q Else exit the loop 
 } 
 Return Q 
End. 

Figure 6. Algorithm GenericFocusWindow 
In a different example (Figure 8), we also demonstrate an algorithm 
producing a focus window which (a) includes the window with the 
maximum summary of values and (b) is not bigger than 3x3 (with a 
tolerance of the surface •=0) and (c) optimizes a combined formula 
over surface and value. Each time we pick the cross-joins that brings 
us closest to the 3x3 desideratum, while having the highest 
summary value. In the case of our motivating example, the solution 
is Q={R4/C3,R4/C4} with an exact 3x3 surface. 

4. DISCUSSION 
At this point, we would like to take the time to discuss the larger 
framework of the contribution of this paper. First, as the Lowell 
report [7] mentions, visualization is one of the big issues of database 
research for the next years. To copy from the Lowell report, “The 
original Laguna-Beach report lamented that there was little research 
on user interfaces to DBMSs. … There have not been comparable 
advances in the last 15 years. There is a crying need for better ideas 
in this area”. We claim that of all fields of database research, 
decision support and OLAP are the ones to be affected most out of 
this phenomenon. 

Algorithm FocusWindow_Min_3x3 
Input:  
 A set of cross-joins GJ and a display grid of cells Grid related 

to GJ.  
 Each cell belonging to Grid is characterized by coordinates 

(x,y) and each CJ belonging to GJ is characterized by the 
coordinates of its upper left and lower right cell. Each cross-join 
has a surface, determined by its coordinates. 

Parameters:  
 OriginalPick(GJ): start with cross-join having the 

minimum summary 
 GuardCondition (Q,ε): the surface is closest to 3x3 
 ε: 1 cell2 
 Qualifies: a Boolean function that determines whether a 

solution satisfies a set of constraints 
  DeterminingQuality(Q): distance from the ideal 3x3 

surface  
 Pick(GJ,Q): a routine picking the cross-join with minimum 

distance from the ideal 3x3 surface 
Output:  
 A set of cross-joins, Q that satisfies the conditions set by the 

user. 
Begin 
 Q = {} 
 C = OriginalPick(GJ) 
 Add C to Q. 
 While (GuardCondition){ 
  CJ=Pick(GJ,Q);  
  If CJ≠NULL Then add CJ to Q Else exit the loop 
 } 
 Return Q 
End. 
OriginalPick(GJ){ 
 Let the cross-join Cr s.t., |sum(Cr) | is the minimum; 
 Among equals pick the upper and left-wise; 
 Return (Cr);  
} 
DeterminingQuality(Q) { 
 Return surface(Q)-surface(3x3);  
} 
GuardCondition (Q,1){ 
 If  surface(Q)-surface(3x3) <1 Then Return true; 
 Else Return false  
} 
Pick(CJ,Q){ 
 Let V be the subset of the cross-joins of CJ, s.t., for each  
  v∈ V: Qualifies(v,CJ,Q) 
 Let vP∈ V be a cross-join s.t., |DeterminingQuality(Q)|  
  is minimum, if vP is added to Q. 
 Return vP;  
} 
Qualifies(v,CJ,Q){ 
 If    (v is adjacent to a cross-join CJ∈ CJ) && 
  (v ∪  Q  forms a rectangle) 
 Then Return true; 
 Else Return false 
} 

Figure 7. Algorithm FocusWindow_Min_3x3 
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Algorithm FocusWindow_Max_Weighted 
Input:  
 Same as in Algorithm FocusWindow_Min_3x3 
Parameters:  
  OriginalPick(GJ): start with cross-join having the 

maximum summary 
 GuardCondition (Q,ε): the surface is closest to 

3x3  
 ε: 0 cell2 
  Qualifies: a Boolean function that determines 

whether a solution satisfies a set of constraints 
  DeterminingQuality(Q): a combined formula each 

time picking the cross-join that brings us closest to the 
3x3 desideratum, while having the highest summary 
value. 

 Pick(GJ,Q): a routine picking the cross-join with 
maximum Determining Quality 

Output:  
 A set of cross-joins, Q that satisfies the conditions set by 
the user. 
Begin 
 Q = {} 
 C = OriginalPick(GJ) 
 Add C to Q. 
 While (GuardCondition){ 
  CJ=Pick(GJ,Q);  
  If CJ≠NULL Then add CJ to Q Else exit the loop 
 } 
 Return Q 
End. 
OriginalPick(GJ){ 
 Let the cross-join Cr s.t., |sum(Cr) | is the maximum; 
 Among equals pick the upper and left-wise; 
 Return (Cr); 
} 
DeterminingQuality(Q) { 
 Return (1 - [surface(3x3)-surface(Q)] / 9 )*  
  [sum(Q)-sum(OriginalPick(CJ))]; 
} 
GuardCondition (Q,0){ 
 If  surface(Q)-surface(3x3) < 0 Then  
  Return true; 
 Else Return false; 
} 
Pick(CJ,Q){ 
 Let V be the subset of the cross-joins of CJ, s.t., for each  

v∈ V: Qualifies(v,CJ,Q) 
 Let vP ∈ V be a cross-join s.t., 

|DeterminingQuality(v ∪  Q)|  is maximum  
 Return vP; 
} 
Qualifies(v,CJ,Q){ 
 If  (v is adjacent to a cross-join CJ∈ CJ) && 
  (v ∪  Q  forms a rectangle) && 
  (surface(v∪ Q)-surface(3x3) ) < 0 
 Then Return true; 
 Else Return false 
} 

Figure 8. Algorithm FocusWindow_Max_Weighted 

Someone could possibly question the need for a new model. For us 
it is clear that one of the main reasons for the research community 
not dealing with visualization issues so far, is the heritage of the 
computing paradigm of the past three decades. This paradigm 
silently made the assumption that the user sitting in front of a 
console makes one query and retrieves one answer (as would have 
happened in a UNIX terminal thirty years ago). This is not the case 
with modern user interfaces for datasets, especially in the context of 
OLAP. The user makes simultaneously many queries, combined in 
one or more screens; nevertheless, all our modeling techniques and 
languages so far (from the relational model, to SQL and the OLAP 
modeling efforts proposed in the academia) simply ignore this fact. 
Our effort tries to formalize the simultaneous presence of more than 
one queries and this is done in two layers. In the presentational layer 
we provide a uniform and generic model for the user interface, 
which hides the complexity of answer retrieval, detached in the 
logical layer. As a second interesting difference, note that the users 
work in sessions of queries, as opposed to sequences of unrelated 
queries. OLAP is a typical, but not the only, case for this behavior. 
As a first attempt towards the issue, we have carefully selected a 
visualization technique from the fields of Human-Computer 
Interaction and Information Visualization with the particularity of 
being crafted specifically for tabular data and we have customized it 
for OLAP. Naturally, we do not claim that this is the ultimate 
solution to the problem, but rather we wish to indicate that there is 
quite an interesting research field in this area and a supportive body 
of knowledge from other disciplines, such as Human-Computer 
Interaction and Information Visualization. 
At the same time, new hardware developments pose new 
requirements for our visualization techniques. One of our goals is to 
implement OLAP visualization techniques for particularly small 
devices such mobile phones and palmtops. Although the processing 
power of these gadgets is no more negligible (actually, the buzzword 
‘thin client’ seems to disappear from the standard vocabulary of the 
area) their screen sizes shrink over time. To make OLAP screens 
presentable to such devices one can follow several paths, such as: 
(a) show only high level summaries which involve small 2D slices 
or (b) show simply pie- or bar-charts. We choose an alternative 
approach where (a) the contents of the screen do not have to be 
squeezed in size in order to fit in the screen, and most importantly 
(b) the report does not have to be rewritten neither do we have to 
check for the aggregation level of the presented data. On the 
contrary, a certain part of the report is presented depending on the 
particularities of the device. Here, we make the reasonable 
assumption that either the device has the computational power to 
determine the amount of cells that can be presented to the user or, if 
this is not an option, the device can at least piggy-back its 
characteristics to the OLAP server and let the server decide on the 
focus window. 
Third, making the discussion a little broader, we bring up the Table 
Lens technique to highlight the possibility of making proactive user 
decision support in the presence of large datasets (in our case, the 
value axis is quite larger than the size that someone can handle 
efficiently).  Clearly, as report screens are limited not only due to 
hardware constraints, but also due to the particularities of human 
nature (e.g., the classical discussion on the limited capacity of 
persons in processing information [9]), it comes quite natural that 
automated proactive support to the users is thus one of the new 
requirements that decision support tools have to provide. Thus, this 
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end of our contribution is related to a broader line of research 
[2,13]. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we have demonstrated how the Cube Presentation 
Model, a novel presentation model for OLAP data can be naturally 
mapped into an advanced visualization technique, the Table Lens. 
Initially, we have defined the mapping scheme from the Cube 
Presentation Model to Table Lens entities and objects. Then, we 
have introduced suitable algorithms for proactive automated support 
of the user towards the highlighting of interesting areas of a report. 
Finally, we have discussed on the usefulness and applicability of the 
proposed techniques to modern technological developments. 
Next steps in our research include the introduction of suitable, CPM 
specific, visualization techniques that comply to current standards 
and recommendations as far as usability and user interface design is 
concerned and its extension to address the specific visualization 
requirements of mobile and wireless OLAP, as this notion can be 
supported and implemented on mobile devices and palmtops. 
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