
Advanced Visualization for OLAP
Andreas S. Maniatis1

Tel. +30-210-7721436

andreas@dblab.ntua.gr

Panos Vassiliadis2
Tel. +30-26510-98814

pvassil@cs.uoi.gr

Spiros Skiadopoulos1
Tel. +30-210-7721402

spiros@dblab.ntua.gr

Yannis Vassiliou1
Tel. +30-210-7722526

yv@cs.ntua.gr

1National Technical University of Athens
Dept. of Elec. and Computer Eng.

9, Iroon Polytechneiou St.
15780 Athens, Hellas

2University of Ioannina
Dept. of Computer Science

45110 Ioannina, Hellas

ABSTRACT
Data visualization is one of the big issues of database research.
OLAP as a decision support technology is highly related to the
developments of data visualization area. In this paper we
demonstrate how the Cube Presentation Model (CPM), a novel
presentational model for OLAP screens, can be naturally mapped on
the Table Lens, which is an advanced visualization technique from
the Human-Computer Interaction area, particularly tailored for
cross-tab reports. We consider how the user interacts with an OLAP
screen and based on the particularities of Table Lens, we propose an
automated proactive users support. Finally, we discuss the necessity
and the applicability of advanced visualization techniques in the
presence of recent technological developments.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design – data models.
H.2.3 [Database Management]: Languages – report writers
H.5.2 [Information Interfaces and Presentation]: User Interfaces
– graphical user interfaces (GUI), user-centered design.

General Terms: Design, Human Factors.

Keywords: On-Line Analytical Processing, Visualization

1. INTRODUCTION
In the last years, On-Line Analytical Processing (OLAP) and data
warehousing have become major research areas in the database
community [3,7]. Although the modeling of data [16,17] has been
extensively dealt with, an equally important issue of the OLAP
domain, the visualization of data, has not been adequately
investigated. In the context of OLAP, data visualization deals with
the techniques and tools used for presenting OLAP specific
information to end-users and decision makers. The database
community expects visualization to be of significant importance in
the area, during the next years [7], and although research has
provided results dealing with the presentation of vast amounts of

data [5,4,1,15], OLAP has not been part of advanced visualization
techniques so far.

In this paper, we start by adopting a newly introduced presentation
model for OLAP called Cube Presentation Model - CPM [11] and
demonstrate how it can be combined with non-traditional
visualization techniques. The CPM model distinguishes
representation from data retrieval. It is separated in two layers: a
logical that deals with data retrieval and representation and a
presentational that provides a generic model for data representation.
In this paper, we present a quick informal overview of the main
characteristics of CPM and accompany them with its respective
UML modeling for ease of understanding. Then, we proceed with
the contributions of this paper, which can be listed as follows:
� Initially, we present a mapping of the generic presentational

scheme of CPM to the particularities of an advanced
visualization technique coming from the field of Human
Computer Interaction. The Table Lens technique [14,12] is
particularly tailored for cross-tab reports, which are most
commonly used for OLAP purposes and it is accompanied by a
set of handy features for the exploration of data sets which are
presented in this way.

� Next, we provide algorithms for the automated proactive
support of the user during his interaction with an OLAP screen,
based on the particularities of Table Lens. Specifically, Table
Lens employs a particular distortion of the presentation to
highlight areas of increasing interest to the user. We provide a
generic algorithm to support this task proactively.

� Finally, we discuss the necessity and the applicability of such
visualization techniques in the presence of current
technological developments.

The remainder of this paper is structured as follows. In Section 2,
we summarize the logical and the presentation layers of CPM.
Section 3 shows how CPM can be naturally combined with Table
Lens. Moreover, Section 3 demonstrates the automate proactive
support to the user. In Section 4, we discuss the necessity and
applicability of the proposed ideas. Finally, Section 5 concludes our
results and presents topics for future work. A longer version of this
paper, with more details can be found in [8].

2. THE CUBE PRESENTATION MODEL
Although OLAP has been an active research area for the past few
years, the efforts devoted to the visualization of OLAP screens are
very scarce. To our knowledge, only two such efforts exist [10,1].
The first is from the industrial field, where Microsoft has issued a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DOLAP ’03, November 7, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-727-3/03/0011…$5.00.

9

commercial standard for multidimensional databases and where the
presentational issues form a major part [10]. In this approach, a
powerful query language is used to provide the user with complex
reports, created from several cubes (or actually subsets of existing
cubes). The second is an academic approach, the Tape Model [1],
based on the notion of “Tapes”, called so due to their look and feel.
Tapes are infinite and can overlap (if they contain shared data
dimensions), or intersect with each other. A two dimensional
intersection is called a matrix and represents a kind of cross-tab
between the corresponding dimensions. Each tape comprises of a
variable number of tracks. The most important operations on tapes
include: (a) insertion and deletion of tracks, (b) changing the
sequence of tracks (i.e., sorting) and (c) scrolling on tracks. The
Tape Model offers the possibility of defining hierarchical structures
within a tape.

In [11], we have presented the Cube Presentation Model (CPM), a
novel proposal towards a presentation model for OLAP screens.
CPM is composed of two parts: (a) a logical layer which involves
the formulation of cubes and (b) a presentational layer that involves
the presentation of these cubes (normally, on a 2D screen). The
main idea behind CPM lies in the separation of logical data
retrieval (which we encapsulate in the logical layer of CPM) and
data presentation (captured from the presentational layer of CPM).
This duality provides the flexibility of possibly replacing one of the
two layers with an alternative proposal smoothly. The logical layer
that we propose is based on an extension of a previous proposal [18]
with additional functionality that allows us to incorporate more
complex cubes. In a nutshell, the logical model involves (a)
dimensions defined as lattices of dimension levels, (b) ancestor
functions (in the form of ancL1;L2) mapping values between related
levels of a dimension, (c) detailed data sets, practically modeling
fact tables at the lowest granule of information for all their
dimensions and (d) cubes, defined as aggregations over detailed data
sets. In this paper, we will not deal with the formal presentation of
the underlying logical layer of CPM (the reader is referenced to [11]
for a detailed and in depth presentation) but focus on the mapping of
our presentation layer to alternative visualization techniques from
the area of Human Computer Interaction.
Following, we give an intuitive and informal description of the
presentation layer of CPM that provides a formal model for OLAP
screens.
The most important entities – as far as display aspects are concerned
– of the presentation layer of CPM include:

− Points: A point over an axis resembles the classical notion of
points over axes in mathematics. In the simple case, a point is
characterized by an equality selection condition over a level (e.g.,
City=Seattle). Nevertheless, as we shall see, we can
multiplex several logical dimensions to one presentational axis;
therefore, a point will be formally defined to handle this kind of
situations, too.

− Axis: An axis can be viewed as a set of points. We introduce two
special purpose kinds of axes, Invisible and Content. An
Invisible axis is a placeholder for the levels of the data set
which are to be presented to the user. The Content axis has a
more elaborate role: it is a place holder for the content of the
multicube, as computed over the detailed data.

− Multicubes. A multicube is defined over (a) a multidimensional
space, comprising a set of axes, (b) an underlying data set
providing all the data which will be filtered and aggregated

before presented to the user and (c) a mapping among the
multidimensional space and the underlying data set that shows
the computation of the multicube contents.

− 2D-slice: A 2D slice is a 2D layer of data that can be presented
on the screen. Consider a multicube MC, composed of K axes. A
2D-slice over MC can be sufficiently defined by a set of (K-2)
points, each from a separate axis. Intuitively, a 2D-slice pins the
axes of the multicube to specific points, except for 2 axes, which
will be presented on the screen (or a printout). In Fig. 2, we
depict such a 2D slice over a multicube. //check whether it is the
MS picture…

− Tape: Intuitively, a tape is column or a row over a 2D-slice, i.e.,
a construct parallel to an axis. Again, if we consider a 2D-slice
SL over a multicube MC, composed of K axes, a tape is
sufficiently defined by a set of (K-1) points, where the (K-2)
points are the points of SL. A tape is always parallel to a specific
axis: out of the two "free" axis of the 2D-slice, we pin one of
them to a specific point which distinguishes the tape from the
2D-slice.

− Cross-join: Intuitively, if we take one tape parallel to the
horizontal axis and another parallel to the vertical axis, their
intersection is a cell. In the most general case, as we shall see, it
can be a set of cells. In both cases, the intersection of two non-
parallel tapes is called a cross-join. Consider a 2D-slice SL over
a multicube MC, composed of K axes and two tapes t1 and t2
which are not parallel to the same axis. A cross-join over t1 and
t2 is defined by a set of K points, where the (K-2) points are the
points of SL and each of the two remaining points is a point on a
different axis of the remaining axes of the slice.

− Content Function: At the schema level, we assume a function
assigning the computation of measures to the Content axis of
the multicube, along with ordering and other restrictions. We
also assume a function, mapping combinations of multicube
coordinates, one from each of the coordinate axis of the
multicube to the measure axis. Each such assignment is
practically a row in the result set of one of the
queries/expressions/… computing the multicube, which we call
cell1. For brevity, in the sequel, we simply tag the Content axis
with this information.

To make the discussion easier, we will use an example taken from
[10], throughout the paper (Figure 1). In this example, we assume a
cube SalesCube is defined over the dimensions Products,
Salesman, Time, and Geography, each involving several levels
of aggregation. In this query, we restrict the Time dimension to the
sales of Year 1991. We ignore the Products dimension
(Products=ALL) in the subsequent aggregation of detailed data.
Whenever we need to present a 2D screen and more than two
dimensions are involved, we need to merge (CROSSJOIN in [10]
terminology) as many dimensions as necessary in a single axis. In
this case, we combine the dimensions Salesman (restricted on two

1 The name cell stems from the regular terminology of OLAP,

referring to points in the multidimensional space. Although in
the classical tabular representation of data, cell is actually a
successful name, for other representation techniques this does
not apply (e.g., in the proposal of [4], a cell should be
represented by a line).

10

salesmen) and Geography on the COLUMNS axis and leave the
dimension Time on the ROWS axis. Note that the Geography
dimension involves more than one levels of aggregation (both City
and Region). The same applies for the Time dimension, where
both Quarters and Months are employed.

In terms of CPM terminology, the query of Figure 1 is a 2D-Slice,
say SL (see also Figure 2). In SL one can identify 4 horizontal tapes
denoted as R1, R2, R3 and R4 in Figure 1) and 6 vertical tapes
(numbered from C1 to C6). The meaning of the horizontal tapes is
straightforward: they represent the Quarter dimension, expressed
either as quarters or as months. The meaning of the vertical tapes is
somewhat more complex: they represent the combination of the
dimensions Salesman and Geography, with the latter expressed
in City, Region and Country level. Moreover, two constraints
are superimposed over these tapes: the Year dimension is pinned to
a specific value (i.e., Year=1991) and the Product dimension is
ignored. One can also consider the cross-join t1 defined by the
common cells of the tapes R1 and C1.

SELECT CROSSJOIN({Venk,Netz},{USA_N.Children,USA_S,Japan}) ON COLUMNS
{Qtr1.CHILDREN,Qtr2,Qtr3,Qtr4.CHILDREN} ON ROWS
FROM SalesCube
WHERE (Sales,[1991],Products.ALL)

Year = 1991 Venk Netz
Product = ALL USA Japan USA Japan

 USA_N USA_S USA_N USA_S
 Seattle Boston Seattle Boston
 Size(city)
R1 Qtr1 Jan
 Feb C1 C2 C3 C4 C5 C6
 Mar
R2 Qtr2
R3 Qtr3
R4 Qtr4 Oct
 Nov
 Dec

Figure 1. Motivating example for the cube model [10,11].

Interpreting our motivating example in terms of CPM, we assume a
detailed data set, named SalesCube, under the schema:
S = [Quarter.Day, Salesman.Salesman,

Geography.City, Time.Day,
Product.Item, Sales, PercentChange,
BudgetedSales]

The following axis schemata can also be discerned in Figure 2:
Row_S = {[Quarter], [Month,Quarter, Quarter,

Month]}

Column_S = {[Salesman×Geography],
[Salesman]×[[City,Size(City)],
Region,Country]}

Section_S = {[Time],[Year]}

Invisible_S = {[Product],[Product.ALL]}

Content_S = {[Sales],[sum(Sales0)]}

along with their respective axes:
Rows = {Row_S,[ancmonth;day(Month)=Qtr1,

Quarter=Qtr2, Quarter=Qtr3,
ancmonth;day(Month)=Qtr4]}

Columns = {Column_S, {[Salesman='Venk',
Salesman='Netz'],
[ancregion;city(City)='USA_N',
Region='USA_S', Country='Japan']}

Sections = {Section_S,[Year=1991,Year=1992]}

Invisible = {Invisible_S,[ALL='all']}
Content = {Content_S}

ancmonthday (Month)=
Qtr1

(5)
Salesman='Netz',
Region='USA_S'

Salesman='Netz',
Country='Japan'

(6)
ancmonthday (Month)=

Qtr4

Quarter
= Qtr3

Rows

Salesman='Venk',
Region='USA_S'

(2)

(3)
Salesman='Venk',
Country='Japan'

(1)
Salesman='Venk',
ancregioncity (City) =

'USA_N'

Columns

Quarter
= Qtr2

Salesman='Netz',
ancregioncity (City) =

'USA_N'
(4)

Year=1991

Year=1992 Sections

+
Products.ALL

=
 'all'

Invisible

+
Sales,

sum(Sales0),
true

Content

 Figure 2. The 2D-Slice SL for the example of Figure 2 [11].

In Figure 2, we can also observe an exemplary point over an axis,
incorporating equality conditions for each of the involved
dimensions of the axis:

p1 = ([Salesman,[City,Size(City)]],
[Salesman='Venk',ancregion;city(City)='USA_N'])

Thus, a multicube MC can be defined as:
MC = {Rows, Columns, Sections, Invisible,

Content}

Finally, in Figure 3, we present some more comprehensive
visualization representations of multicubes, axes, points, 2D slices
and cross-joins on a 3D and 2D layout.

Store

Product

Time

Customer

Cell

Multicube (MC)

Store

Product

Time

Customer

Cell

Multicube (MC)

Store

Product

Time

Cell

2D Slice

Store

Product

Time

Cell

2D Slice

2D Slice on a screen

Axis 1

Axis 2

2D Slice on a screen

Axis 1

Axis 2

Axis 1

Axis 2

Cell

Ta
pe

 1

Tape 2

Cross Join

Tapes & Cross JoinsAxis 1

Axis 2

Cell

Ta
pe

 1

Tape 2

Cross Join

Tapes & Cross Joins

Figure 3. Mapping CPM objects to 3D and 2D Cross Tabular
layouts.

3. MAPPING CPM TO VISUALIZATION
TECHNIQUES
In this section, we will demonstrate how CPM can be combined
with Table Lens (TL) [14,12], a traditional cross-tabular
presentation model from the Human Computer Interaction area. This
model is widely used in applications and platforms for the
visualization of tabular, multivariate and multidimensional data and
appears to be quite appropriate for OLAP purposes. Table Lens is
based on the “focus plus context” technique that allows visualizing

11

and manipulating large 2-D tables [14]. Using Table Lens, we can
easily examine patterns and correlations in large tables and
effectively zoom in without losing the global picture of our data. We
have chosen Table Lens as an advanced visualization technique due
to the fact that it is based on a cross-tabular paradigm for the
presentation of information; a paradigm quite popular in OLAP
screens, too.

DOI

Transfer
function

Figure 4. A Table Lens example: (a) a 2x4 focus window is
defined over a space of 8x8 points; (b) Table Lens distortion of

the Columns axis

3.1 Mapping CPM to Table Lens
In this subsection, we will present the main features of Table Lens,
and then we will link it to the CPM model. The main constructs of
the Table Lens technique involve:
� Axes: The Table Lens model assumes two axes. For clarity, we

will use Rows and Columns to denote these two axes.
� 2D space: The 2D space is constructed from the Cartesian

product of the two Table Lens axes. It is a (finite) matrix of
cells.

� Degree of Interest Function (DOI): DOI is a function that
maps each axis point to a value that indicates the level of
interest for that point. For each axis a different DOI function is
prescribed.

� Transfer Function: A transfer function maps each cell to its
physical locations, indicating the level of zoom for each cell.
Practically, the transfer function is the translation of the
respective DOI function (operating at the “interest” space) to
the ”pixel” space.

One of the basic ideas behind the Table Lens technique is that not
all cells are considered equal. In fact, certain cells comprising a
concrete region of the 2D space are assigned to occupy more surface
of the screen than the rest of the cells. This is the essence of
zooming into the particular region of the 2D space. To implement
this, in the simplest setting of Table Lens, each DOI function is a
simple “pulse” function, meaning that it has a standard value for all
points, except for the points of a certain interval that are mapped to a
higher value. Remember that each axis has its own DOI function,
thus a 2D space is characterized by 2D windows of focus. In Figure
4a, we depict an 8x8 space with a 2x4 focus window. In Figure 4b
we show (i) how the originally equally important cells of the
Columns axis are assigned importance values by the DOI function:
notice the pulse on two particular cells that assigns them greater
importance than the rest of the cells and (ii) how the Transfer
function, defined as a weighted integral of the DOI function maps

the points to pixel areas. For reasons of efficient representation [14],
in Figure 4b, the produced axis is rotated by 90o.Finally, another
interesting feature of Table Lens is the ability to define more than
one windows of focus. This is quite helpful in situations where two
areas can be contrasted and compared. As we shall see in the next
section, this feature is particularly useful in the case of OLAP.
There is an easy way to map the underlying constructs of the CPM
to the ones of the Table Lens. The axis points of CPM are mapped
to axis points of Table Lens and a 2D slice in CPM is implemented
as a 2D space in Table Lens. The contents function provides the
values of the cells of the 2D space. Naturally, CPM is generic
enough to lack the particularities of the axis distortion due to the
DOI function. The naïve way to overcome the limitation is simply to
ask the user to define a certain window of focus over the presented
2D slice, specifying both its size and position. Still, we can automate
the process on the basis of the structure and the contents of a 2D
slice.

 C1 C2 C3 C4 C5 C6
 Venk Netz
 USA Japan USA Japan
 USA_N USA_S USA_N USA_S
 Seattle Boston Seattle Boston

 QTR1 Jan 20 32 62 97 23 40 75 12

R1 Feb 25 40 74 121 18 32 51 20

 Mar 18 12 36 110 42 48 65 3

R2 QRT2 56 63 150 253 50 70 280 50

R3 QTR3 52 65 147 200 53 64 270 50

 QTR4 Oct 25 24 64 98 32 12 64 76

R4 Nov 28 28 76 102 40 21 83 69

 Dec 23 30 68 150 42 29 99 77

Figure 5. Instantiation of the motivating example with values;
different shading determine different cross-joins and thick

borders highlight the cross-joins with the highest, lowest and
closest to average values.

3.2 Which Window of Interest to Choose?
In this subsection, we will deal with the problem of providing the
user with proactive automated support for the exploration of an
OLAP report. Our main tool towards this end is the window of
interest as determined by the DOI functions and the basic idea is to
provide an algorithm to proactively determine the window of
interest over a 2D slice. We want to define an algorithm that
automatically determines this window whenever a user invokes an
OLAP report. It appears that we can come up with a generic
algorithm, where the stopping conditions, error range and other
parameters can be tuned by the user. Actually, we can even treat as a
parameter a choice on whether the user is simply interested of
having a window of a certain surface or he is actually interested to
see a focus on a range of cells satisfying certain statistical properties
(e.g., minimum/maximum/closest to average set of values). Having
determined algorithmically the window of interest, the two involved
DOI functions, which are independent from each other, are directly
derived.

3.3 Motivation and Assumptions
Before providing the generic algorithm, let us clarify our
contribution through a specific example. We instantiate the example
of Figure 2 with the values of Figure 5. Let us assume that when the

12

user activates this OLAP screen, he would like to be informed on
three particular cross-joins: one involving the maximum sales,
another involving the lowest and a third involving the cross-join
with behavior closest to the average of the whole screen. Practically,
this involves three windows of focus, which we depict through a
thick border around the involved cross-joins. In this particular case,
the cross-join R1/C6 is the one with the lowest summary of values,
the cross-join R4/C4 the one with the highest sum and the cross-join
R2/C3 is the one closest to the average sales per cross-join (which
amounts to 240.5 sales per cross-join).
A vanilla algorithm to compute the aforementioned quantities
proceeds as follows: (a) summarizes all cells per cross-join; (b) sorts
cross-joins and computes the average cross-join value and (c)
pinpoints the three regions of interest. This algorithm has linear
(precisely, one-pass) complexity on the number of cells and nlogn
(due to sorting) complexity on the number of cross-joins. Actually,
if we are simply to keep the max, min or closest-to-avg
cross-join, a linear single pass from all the cells is sufficient, without
any sorting. In the case of avg, each time that we summarize the
cells from a cross-join we can compute the average of the individual
cross-join summaries and compute the closest cross-join to the
current value of this average.

Assumptions: Underlying this proactive notification to the user, we
have made the following assumptions:

� Cross-joins constitute homogeneous pieces of information.
This means that we can assume a certain level of semantic
cohesion among the cells of a certain cross-join. Moreover, we
can assume that each cross-join can be considered as a distinct
semantic unit and that cross-joins are comparable to each other.
For example, we assume that it makes sense to compare sales
from Japan to the sales of Southern USA. Naturally, the user
choices for the axes points (and the produced cross-joins) may
severely affect this assumption.

� Statistically speaking, we are allowed to perform certain
aggregate operations over our data. Specifically, we assume
that the underlying detailed data set has been summarized by a
distributive aggregate function.

In [6] aggregation functions are categorized as (a) distributive
functions, like max, min, sum or count, meaning that there is a
way to compute the result of the application of the aggregation
function to the overall data set by composing the individual results
of its application to subsets of the dataset; (b) algebraic functions
that are expressed as finite algebraic expressions over distributive
functions, like avg; and (c) holistic functions for all other functions.

To forestall any possible criticism, we want to point out that the
exact result of aggregation operations over a 2D slice is handled by
the logical layer. In the case of the [18] model, all operations are
formally defined as operations over the detailed data set;
optimization results for the obvious cases are also provided.
Nevertheless, in the case of this paper, we want a quick
approximation of the statistical measures under consideration, to be
used for the determination of the focus window and not of the
values of the report. Thus, problems like the Simpson’s paradox or
the non invariance property [6] are considered as out of the scope of
this paper. Finally, as a general comment, since it is quite
cumbersome to ask the user each time to characterize the statistical
nature of his underlying data, we employ the idea that one can have

an indication of the statistical nature of the information of screen by
observing the aggregate function that has been applied to compute
them. Thus, since in our case we are starting with a sum aggregate
function, we conclude that we can apply further distributive
operations to the measure Sales in order to obtain our indicative
approximations.

3.4 A Generic Algorithm for Determining
the Window of Focus
Naturally, we can do better than the aforementioned vanilla
algorithm by adding extra criteria to the proactive selection of the
starting window of focus. We propose a guided greedy generic
algorithm, GenericFocusWindow (Figure 6), to deal with the issue.
The simple idea underlying the algorithm is that there are certain
conditions to be met for the focus window. For example, one could
require that the focus window occupies at most/least a certain
percentage of the screen size, or of a certain size of cells. Moreover,
the selected window optimizes an objective function. The property
Determining Quality of the algorithms captures exactly this
requirement in the form of a certain function. Since our algorithm is
greedy, we need an Original Pick routine to start the processing; in
general this is closely related to the Determining Quality function
and we require that it starts with a smallest value. Moreover, a
Guard Condition checks for the satisfaction of the desired property
(meaning that we can possibly allow a certain approximation error ε
to out obtained solution). Finally, a function Pick provides the
necessary details for working from the original small-in-value
solution towards the final result, practically picking the next cross-
join to enlarge the current window of focus.
One implicit assumption that our algorithm makes is that the
Original Pick fits inside the allowed window. This constraint can
easily be relaxed by an extension of the algorithm picking subparts
of a cross-join in a similar fashion with the proposed algorithm, if
we consider that we pick subparts of a 2Dslice. For lack of space we
do not incorporate this extension too.
We will give two examples for the instantiation of the
aforementioned generic algorithm. In the first case (Algorithm
FocusWindow_Min_3x3 in Figure 7), we are interested in a focus
window which (a) includes the window with the minimum summary
of values and (b) is not bigger than 3x3 (with a tolerance of the
surface ε=1). We can observe that the guided greedy algorithm
picks the window of minimum value as its starting point. The first
constraint is met by the original pick and the second by the stop
condition of the algorithm. During the expansion phase, each time
we choose a cross-join such that (a) it is neighbouring with the
current solution; (b) if merged with the current solution, it comprises
a rectangle (easily determined by comparing the lengths of the
opposite sides of the new solution and (c) has the smallest surface.
If we execute the algorithm on the data of Figure 5, the result will be
Q={R1/C6,R2/C6,R3/C6,R4/C6} which is practically the
tape C6. If instead of the minimum value, in function Pick we had
chosen the maximum, then the result would be
Q={R1/C6,R1/C5}. Another obvious extension would be to
employ a 2-greedy algorithm: in this case the small cross-joins
R2/C5 and R2/C6, each comprising a single cell, could have been
incorporated in the solution too.

13

Algorithm GenericFocusWindow
Input:
 A set of cross-joins GJ and a display grid of cells Grid related

to GJ.
 Each cell belonging to Grid is characterized by coordinates

(x,y) and each CJ belonging to GJ is characterized by the
coordinates of its upper left and lower right cell. Each cross-join
has a surface, determined by its coordinates.

Parameters:
 OriginalPick(GJ): a routine to determine the starting

cross-join of the algorithm
 GuardCondition: a routine to determine whether the

algorithm should stop
 ε: a tolerance, or error range for the acceptance of a solution or

not
 Qualifies: a Boolean function that determines whether a

solution satisfies a set of constraints
 DeterminingQuality: a property of a cross-join like

surface, sum of values, …
 Pick(GJ,Q): a routine picking a cross-join to enlarge the

produced solution
Output:
 A set of cross-joins, Q that satisfies the conditions set by the

user.
Begin
 Q = {}
 C = OriginalPick(GJ)
 Add C to Q.
 While (GuardCondition) {
 CJ = Pick(GJ,Q);
 If CJ≠NULL Then add CJ to Q Else exit the loop
 }
 Return Q
End.

Figure 6. Algorithm GenericFocusWindow
In a different example (Figure 8), we also demonstrate an algorithm
producing a focus window which (a) includes the window with the
maximum summary of values and (b) is not bigger than 3x3 (with a
tolerance of the surface •=0) and (c) optimizes a combined formula
over surface and value. Each time we pick the cross-joins that brings
us closest to the 3x3 desideratum, while having the highest
summary value. In the case of our motivating example, the solution
is Q={R4/C3,R4/C4} with an exact 3x3 surface.

4. DISCUSSION
At this point, we would like to take the time to discuss the larger
framework of the contribution of this paper. First, as the Lowell
report [7] mentions, visualization is one of the big issues of database
research for the next years. To copy from the Lowell report, “The
original Laguna-Beach report lamented that there was little research
on user interfaces to DBMSs. … There have not been comparable
advances in the last 15 years. There is a crying need for better ideas
in this area”. We claim that of all fields of database research,
decision support and OLAP are the ones to be affected most out of
this phenomenon.

Algorithm FocusWindow_Min_3x3
Input:
 A set of cross-joins GJ and a display grid of cells Grid related

to GJ.
 Each cell belonging to Grid is characterized by coordinates

(x,y) and each CJ belonging to GJ is characterized by the
coordinates of its upper left and lower right cell. Each cross-join
has a surface, determined by its coordinates.

Parameters:
 OriginalPick(GJ): start with cross-join having the

minimum summary
 GuardCondition (Q,ε): the surface is closest to 3x3
 ε: 1 cell2
 Qualifies: a Boolean function that determines whether a

solution satisfies a set of constraints
 DeterminingQuality(Q): distance from the ideal 3x3

surface
 Pick(GJ,Q): a routine picking the cross-join with minimum

distance from the ideal 3x3 surface
Output:
 A set of cross-joins, Q that satisfies the conditions set by the

user.
Begin
 Q = {}
 C = OriginalPick(GJ)
 Add C to Q.
 While (GuardCondition){
 CJ=Pick(GJ,Q);
 If CJ≠NULL Then add CJ to Q Else exit the loop
 }
 Return Q
End.
OriginalPick(GJ){
 Let the cross-join Cr s.t., |sum(Cr) | is the minimum;
 Among equals pick the upper and left-wise;
 Return (Cr);
}
DeterminingQuality(Q) {
 Return surface(Q)-surface(3x3);
}
GuardCondition (Q,1){
 If surface(Q)-surface(3x3) <1 Then Return true;
 Else Return false
}
Pick(CJ,Q){
 Let V be the subset of the cross-joins of CJ, s.t., for each
 v∈ V: Qualifies(v,CJ,Q)
 Let vP∈ V be a cross-join s.t., |DeterminingQuality(Q)|
 is minimum, if vP is added to Q.
 Return vP;
}
Qualifies(v,CJ,Q){
 If (v is adjacent to a cross-join CJ∈ CJ) &&
 (v ∪ Q forms a rectangle)
 Then Return true;
 Else Return false
}

Figure 7. Algorithm FocusWindow_Min_3x3

14

Algorithm FocusWindow_Max_Weighted
Input:
 Same as in Algorithm FocusWindow_Min_3x3
Parameters:
 OriginalPick(GJ): start with cross-join having the

maximum summary
 GuardCondition (Q,ε): the surface is closest to

3x3
 ε: 0 cell2
 Qualifies: a Boolean function that determines

whether a solution satisfies a set of constraints
 DeterminingQuality(Q): a combined formula each

time picking the cross-join that brings us closest to the
3x3 desideratum, while having the highest summary
value.

 Pick(GJ,Q): a routine picking the cross-join with
maximum Determining Quality

Output:
 A set of cross-joins, Q that satisfies the conditions set by
the user.
Begin
 Q = {}
 C = OriginalPick(GJ)
 Add C to Q.
 While (GuardCondition){
 CJ=Pick(GJ,Q);
 If CJ≠NULL Then add CJ to Q Else exit the loop
 }
 Return Q
End.
OriginalPick(GJ){
 Let the cross-join Cr s.t., |sum(Cr) | is the maximum;
 Among equals pick the upper and left-wise;
 Return (Cr);
}
DeterminingQuality(Q) {
 Return (1 - [surface(3x3)-surface(Q)] / 9)*
 [sum(Q)-sum(OriginalPick(CJ))];
}
GuardCondition (Q,0){
 If surface(Q)-surface(3x3) < 0 Then
 Return true;
 Else Return false;
}
Pick(CJ,Q){
 Let V be the subset of the cross-joins of CJ, s.t., for each

v∈ V: Qualifies(v,CJ,Q)
 Let vP ∈ V be a cross-join s.t.,

|DeterminingQuality(v ∪ Q)| is maximum
 Return vP;
}
Qualifies(v,CJ,Q){
 If (v is adjacent to a cross-join CJ∈ CJ) &&
 (v ∪ Q forms a rectangle) &&
 (surface(v∪ Q)-surface(3x3)) < 0
 Then Return true;
 Else Return false
}

Figure 8. Algorithm FocusWindow_Max_Weighted

Someone could possibly question the need for a new model. For us
it is clear that one of the main reasons for the research community
not dealing with visualization issues so far, is the heritage of the
computing paradigm of the past three decades. This paradigm
silently made the assumption that the user sitting in front of a
console makes one query and retrieves one answer (as would have
happened in a UNIX terminal thirty years ago). This is not the case
with modern user interfaces for datasets, especially in the context of
OLAP. The user makes simultaneously many queries, combined in
one or more screens; nevertheless, all our modeling techniques and
languages so far (from the relational model, to SQL and the OLAP
modeling efforts proposed in the academia) simply ignore this fact.
Our effort tries to formalize the simultaneous presence of more than
one queries and this is done in two layers. In the presentational layer
we provide a uniform and generic model for the user interface,
which hides the complexity of answer retrieval, detached in the
logical layer. As a second interesting difference, note that the users
work in sessions of queries, as opposed to sequences of unrelated
queries. OLAP is a typical, but not the only, case for this behavior.
As a first attempt towards the issue, we have carefully selected a
visualization technique from the fields of Human-Computer
Interaction and Information Visualization with the particularity of
being crafted specifically for tabular data and we have customized it
for OLAP. Naturally, we do not claim that this is the ultimate
solution to the problem, but rather we wish to indicate that there is
quite an interesting research field in this area and a supportive body
of knowledge from other disciplines, such as Human-Computer
Interaction and Information Visualization.
At the same time, new hardware developments pose new
requirements for our visualization techniques. One of our goals is to
implement OLAP visualization techniques for particularly small
devices such mobile phones and palmtops. Although the processing
power of these gadgets is no more negligible (actually, the buzzword
‘thin client’ seems to disappear from the standard vocabulary of the
area) their screen sizes shrink over time. To make OLAP screens
presentable to such devices one can follow several paths, such as:
(a) show only high level summaries which involve small 2D slices
or (b) show simply pie- or bar-charts. We choose an alternative
approach where (a) the contents of the screen do not have to be
squeezed in size in order to fit in the screen, and most importantly
(b) the report does not have to be rewritten neither do we have to
check for the aggregation level of the presented data. On the
contrary, a certain part of the report is presented depending on the
particularities of the device. Here, we make the reasonable
assumption that either the device has the computational power to
determine the amount of cells that can be presented to the user or, if
this is not an option, the device can at least piggy-back its
characteristics to the OLAP server and let the server decide on the
focus window.
Third, making the discussion a little broader, we bring up the Table
Lens technique to highlight the possibility of making proactive user
decision support in the presence of large datasets (in our case, the
value axis is quite larger than the size that someone can handle
efficiently). Clearly, as report screens are limited not only due to
hardware constraints, but also due to the particularities of human
nature (e.g., the classical discussion on the limited capacity of
persons in processing information [9]), it comes quite natural that
automated proactive support to the users is thus one of the new
requirements that decision support tools have to provide. Thus, this

15

end of our contribution is related to a broader line of research
[2,13].

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated how the Cube Presentation
Model, a novel presentation model for OLAP data can be naturally
mapped into an advanced visualization technique, the Table Lens.
Initially, we have defined the mapping scheme from the Cube
Presentation Model to Table Lens entities and objects. Then, we
have introduced suitable algorithms for proactive automated support
of the user towards the highlighting of interesting areas of a report.
Finally, we have discussed on the usefulness and applicability of the
proposed techniques to modern technological developments.
Next steps in our research include the introduction of suitable, CPM
specific, visualization techniques that comply to current standards
and recommendations as far as usability and user interface design is
concerned and its extension to address the specific visualization
requirements of mobile and wireless OLAP, as this notion can be
supported and implemented on mobile devices and palmtops.

6. REFERENCES
[1] M. Gebhardt, M. Jarke, S. Jacobs: A Toolkit for Negotiation

Support Interfaces to Multi-Dimensional Data. ACM
SIGMOD 1997, pp. 348 – 356.

[2] J. Han. Towards On-Line Analytical Mining in Large
Databases. SIGMOD Record, 27(1): 97-107, 1998.

[3] W.H. Inmon: Building the Data Warehouse. John Wiley &
Sons, 1996.

[4] Alfred Inselberg: Visualization and Knowledge Discovery for
High Dimensional Data. 2nd Workshop Proceedings UIDIS,
IEEE, 2001.

[5] D.A. Keim. Visual Data Mining. Tutorials of the 23rd
International Conference on Very Large Data Bases, Athens,
Greece, 1997.

[6] Hans-J. Lenz, Bernhard Thalheim. OLAP Databases and
Aggregation Functions. In Proc. of the 13th International
Conference on Scientific and Statistical Database Management
(SSDBM’01), 2001.

[7] Various Authors: The Lowell Database Research Self
Assessment. Lowell, Massachusetts USA, May 4-6, 2003.
Available at: http://research.microsoft.com/~Gray/lowell/.

[8] Andreas Maniatis, Panos Vassiliadis, Spiros Skiadopoulos,
Yannis Vassiliou: Advanced Visualization for OLAP (long
version).

[9] George A. Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing information.
Psychological Review, 63, 81-97 (1956).

[10] Microsoft Corp. OLEDB for OLAP February 1998. Available
at: http://www.microsoft.com/data/oledb/olap/.

[11] Andreas Maniatis, Panos Vassiliadis, Spiros Skiadopoulos,
Yannis Vassiliou: CPM: A Cube Presentation Model for
OLAP. DaWaK 2003, Prague, Czech Republic, September 3 –
5 2003.

[12] Peter Pirollo, Ramana Rao: Table Lens as a Tool for Making
Sense of Data. Proceedings of the AVI ’96 Workshop, Gubbio,
Italy, June 1996.

[13] S. Sarawagi, R. Agrawal, N. Megiddo: Discovery-Driven
Exploration of OLAP data Cubes, Proceedings of the 6th
International Conference on Extending Database Technology
(EDBT’98), Valencia, Spain, March 1998.

[14] Ramana Rao, Stuart K. Card: The Table Lens: Merging
Graphical and Symbolic Representations in an effective Focus
+ Context Visualization for Tabular Information. Proceedings
of the ACM SIGCHI (CHI ’94), Boston, Massachusetts USA,
April 24-28, 1994.

[15] Thomas Ruf, Juergen Georlich, Ingo Reinfells: Dealing with
Complex Reports in OLAP Applications. DaWaK ‘99,
Florence, Italy, August 30th – September 1st 1999.

[16] Aris Tsois, Nikos Karayannidis, Timos Sellis: MAC:
Conceptual Data Modeling for OLAP. Proc. of the
International Workshop on DMDW 2001.

[17] P. Vassiliadis, T. Sellis: A Survey on Logical Models for OLAP
Databases. SIGMOD Record, vol. 28, no. 4, December 1999.

[18] Panos Vassiliadis, Spiros Skiadopoulos: Modeling and
Optimization Issues for Multidimensional Databases. Proc. of
CAiSE’00, Stockholm, Sweden, 2000.

16

