
Open Research Online

Citation

Lopes, Antónia; Wermelinger, Michel and Fiadeiro, José Luiz (2003). Higher-order
architectural connectors. ACM Transactions on Software Engineering and Methodology,
12(1) pp. 64–104.

URL

https://oro.open.ac.uk/1166/

License

None Specified

Policy

This document has been downloaded from Open Research Online, The Open University's
repository of research publications. This version is being made available in accordance
with Open Research Online policies available from Open Research Online (ORO) Policies

Versions

If this document is identified as the Author Accepted Manuscript it is the version after peer
review but before type setting, copy editing or publisher branding

https://oro.open.ac.uk/1166/
https://www5.open.ac.uk/library-research-support/open-access-publishing/open-research-online-oro-policies

Higher-Order Architectural Connectors

ANTÓNIA LOPES
University of Lisbon, Portugal
MICHEL WERMELINGER
New University of Lisbon, Portugal
and
JOSÉ LUIZ FIADEIRO
University of Leicester, United Kingdom

We develop a notion of higher-order connector towards supporting the systematic construction
of architectural connectors for software design. A higher-order connector takes connectors as pa-
rameters and allows for services such as security protocols and fault-tolerance mechanisms to be
superposed over the interactions that are handled by the connectors passed as actual arguments.
The notion is first illustrated over CommUnity, a parallel program design language that we have
been using for formalizing aspects of architectural design. A formal, algebraic semantics is then
presented which is independent of any Architectural Description Language. Finally, we discuss
how our results can impact software design methods and tools.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program
Verification—formal methods; D.2.11 [Software Engineering]: Software Architectures—
languages (interconnection); patterns; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—specification techniques

General Terms: Design, Theory, Languages

1. INTRODUCTION

Although components have always been considered to be the fundamental
building blocks of software systems, the ways the components of a system
interact are determinant for establishing the global system properties, that
is, the properties that emerge from the way the individual components are

This research was partially supported by Fundação para a Ciência e Technologia through project
POSI/32717/00 (FAST—Formal Approach to Software Architecture).
Authors’ addresses: A. Lopes, Department of Informatics, Faculty of Sciences, University of Lisbon,
1749-016 Lisboa, Portugal; email: mal@di.fc.ul.pt; M. Wermelinger, Departamento de Informática,
Univ. Nova de Lisboa, 2829-516 Caparica, Portugal; email: mw@di.fct.unl.pt; J. L. Fiadeiro, Depart-
ment of Computer Science, University of Leicester, University Road, Leicester LE1 7RH, United
Kingdom; email: jose@fiadeiro.org.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 1049-331X/03/0100-0064 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003, Pages 64–104.

Higher-Order Architectural Connectors • 65

interconnected. Hence, component interactions have been promoted to first-
class design entities as well, and architectural connectors have emerged as a
powerful tool for supporting the design of these interactions [Perry and Wolf
1992; Shaw 1993].

Although the use of connectors is widely accepted at the conceptual level,
their explicit representation at the linguistic level is not always felt to be nec-
essary. For example, the Darwin [Magee et al. 1999] Architecture Description
Language (ADL) does not include connectors. However, we feel that distinct
conceptual entities should correspond to distinct linguistic entities, so that they
can truly become first-class and be manipulated as such. In fact, as argued in
[Mehta et al. 2000], the current level of support that ADLs provide for connector
building is still far from the one awarded to components. For instance, although
a considerable amount of work can be found on several aspects of connectors
[Shaw et al. 1995; Allen and Garlan 1997; Bass et al. 1998; Spitznagel and
Garlan 2001; Hirsch et al. 1999; Mehta et al. 2000], further steps are still nec-
essary to achieve a systematic way of constructing new connectors from existing
ones. Yet, the ability to manipulate connectors in a systematic and controlled
way is essential for promoting reuse and incremental development, and to make
it easier to address complex interactions.

At an architecture level of design, component interactions can be very simple
(for instance a shared channel), but they can be very complex as well (e.g.,
database-access and networking protocols). Hence, it is very important that we
have mechanisms for designing connectors in an incremental and compositional
way, as well as principled ways of extending existing ones, promoting reuse. This
is especially important for connectors that are used at lower levels of design
because it is well known that the implementation of complex protocols is a very
difficult and error prone part of system development. Furthermore, as argued
in [Denker et al. 1999], modularising the different kinds of services involved
in interaction protocols has other advantages. It prevents interactions from
being “hard-wired” across different components and makes it easier to evolve
systems (possibly at run-time), because service modules may be added only
when necessary, hence preventing performance penalties when such complex
interactions are not required.

In this article, we take a step towards this goal by proposing a specifica-
tion mechanism that allows independent aspects such as compression, fault-
tolerance, security, monitoring, etc., to be specified separately, and then com-
posed and integrated with existing connectors. In this way, it becomes possible
to benefit from the multiple combinations of different services, ideally chosen à
la carte. We develop a notion of higher-order connector—a connector that takes
a connector as a parameter—through which it is possible to describe the su-
perposition of certain capabilities over the form of coordination that is handled
by the connector that is passed as an actual argument. In this way, we obtain
“connector stacks” that are similar in spirit to meta-object towers [Denker et al.
1999] and to network protocol stacks [O’Malley and Peterson 1992], where each
stack layer handles a given communication or interaction protocol.

More concretely, we define a higher-order connector through a (formal) pa-
rameter declaration and a body connector that models the nature of the service

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

66 • A. Lopes et al.

that is superposed on instantiation of the formal parameter. For instance, the
monitoring of messages in unidirectional communication can be captured by
a higher-order connector with a parameter Unidirectional-comm that specifies
the kind of connectors to which the service can be applied, and a body connector
that describes how an actual parameter is adapted in order to transmit certain
messages to a monitoring component.

A higher-order connector can be applied to any connector that instantiates
the formal parameter, giving rise to a connector with the new capabilities. In
the case of monitoring, the higher-order connector can be applied, for instance,
to a connector that models asynchronous communication between a sender and
a receiver. Higher-order connectors can also be applied to other high-order con-
nectors. In this case, the result is also a higher-order connector. This later form
of application of higher-order connectors can be defined as a parametric in-
stantiation (the instantiation of a parameter with a parameterized entity) and
models a noncommutative composition of high-order connectors through which
their capabilities are superposed.

The idea of defining higher-order connectors as operators through which new
connectors can be built from old ones was proposed by Garlan [1998], arguing
that, conceptually, operations on connectors allow one to factor out common
properties for reuse and to better understand the relationships between differ-
ent connector types. The notation and semantics of such connector operators
were recognised to be among the main issues to be dealt with and were later
developed by Spitznagel and Garlan [2001] in the context of the ADL Wright.

Whereas Spitznagel and Garlan define moderately complex and specialized
operations, our first attempt at systematic connector construction provided
three generic and very simple connector transformations [Fiadeiro et al. 2003].
Our second approach added the notion of higher-order connector, first presented
in [Wermelinger et al. 2000] in a preliminary, informal, and ADL-specific way.
In this article, capitalizing on our previous work on the formal underpinning
of connectors [Fiadeiro et al. 2003] and using the well-known mathematical
“technology” of parameterisation [Goguen 1996] we present a formalization of
higher-order connectors and their composition that is not specific to any ADL.
For this purpose, we use the categorical semantics of connectors presented in
[Fiadeiro et al. 2003]. Therein, we establish the semantics of architectural con-
nectors, in the style defined by Allen and Garlan [1997], independently of spe-
cific choices of design languages and behavioural models. We also make use of
the characterisation of the minimal set of features that constitutes an ADL,
presented in [Fiadeiro et al. 2003]. As a result, the reader will be able to un-
derstand and verify the extent up to which his/her favourite ADL can support
the higher-order mechanisms that we are going to present, and to extend it if
necessary and desired according to the semantics that we propose.

The article is organized as follows: Section 2 illustrates, through an example,
the key ideas of the notion of higher-order connector we wish to put forward.
It shows, in a communication service that involves compression of messages,
how the communication service can be separated from the compression service.
In Section 3, following a categorical approach, we present a parallel program
design language, inspired by Unity [Chandy and Misra 1988] and Interacting

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 67

Processes [Francez and Forman 1996], which is nearer to the abstractions used
by conventional programming languages than the process calculi used by oth-
ers [Magee et al. 1999; Allen and Garlan 1997; Spitznagel and Garlan 2001]. We
then present the way higher-order connectors can be defined over this setting
and, in Section 4, we show that the definition is not specific to the design for-
malism we have adopted in Section 3, as long as the chosen formalism satisfies
some structural properties. In Section 5, we present a notion of composition of
higher-order connectors. We finish by including a comparison with related work
(Section 6) and some concluding remarks in which we discuss how our results
can impact software design methods and tools.

2. MOTIVATION

Software Architecture has put forward connectors as first-class entities for
modelling interactions between systems components. According to Allen and
Garlan [1997], a connector is defined by a set of roles and a glue specification.
Each role describes the behaviour that is expected of each of the interacting
parts, that is, it determines the obligations that they have to fulfil to become
instances of the roles. The glue describes how the activities of the role instances
are coordinated.

For instance, asynchronous communication through a bounded channel can
be represented by a connector Async with two roles—sender and receiver. The
glue of Async is a bounded buffer with a FIFO discipline that prevents the
sender from sending a new message when there is no space and prevents the re-
ceiver from reading a new message when there are no messages. (See Figure 1.)

Fig. 1.

The use of a connector in the construction of a particular system consists
in the instantiation of its roles with specific components of the system. The
instantiation of a role with a component is possible if and only if the component
fulfils the obligations the role determines. Therefore, instantiation corresponds,
typically, to a form of refinement.

Let us suppose that in a given system, two components, say A and B, are
connected through Async, A playing the role of sender and B playing the role
of receiver. (See Figure 2.)

Fig. 2.

Suppose that, for some reason, the information transmitted from A to B must be
compressed. Clearly, we may develop, from scratch, a new connector C-Async

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

68 • A. Lopes et al.

with the required functionality, possibly keeping the same roles sender and
receiver but replacing the glue with a new one—c-async, and then replace Async
by C-Async in the instantiation to A and B. (See Figure 3.)

Fig. 3.

However, it would be certainly better if we could obtain the new connector by
simply installing a compress/decompress service over the existing communica-
tion service as modeled through Async. The idea is to modify Async in a way
that messages are compressed for transmission without intruding on the origi-
nal connection, that is, without “rewiring” the connections to the buffer. Hence,
in the resulting connector, the outgoing messages should be compressed before
they are put into the buffer and decompressed when they are removed from the
buffer, before being delivered to the receiver. It is not difficult to realise that
this form of coordination of the sender and receiver activities, embodied by the
glue C-Async, can be obtained by instantiating the sender role of Async with a
component comp that compresses messages before it transmits them, and by
instantiating the receiver role with a component decomp that decompresses the
messages it receives. (See Figure 4.)

Fig. 4.

In this way, in the resulting protocol C-Async, with the same roles as before
and c-async as the new glue, a message sent by sender is first compressed by
comp, which then uses Async to transmit it to decomp. Finally, decomp decom-
presses the message and forwards the result to receiver.

It is important to realize that the procedure we described for installing
the compress/decompress service over Async can be applied to other connec-
tors. In fact, it is possible to give a parameterized description of the com-
press/decompress service such that the installation of the service over a given
connector can be obtained by a suitable instantiation of the parameter.

In this article, our aim is to introduce such parameterized entities. As we
shall see, these are connectors with a distinguished formal parameter part
and, hence, are called higher-order connectors. In the example of the com-
pression, this means that we shall define a higher-order connector Compres-
sion(Uni comm) whose formal parameter Uni comm is a connector that models
a generic unidirectional communication protocol. This formal parameter can be

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 69

instantiated by several different connectors, in particular by the asynchronous
message passing connector that we have been discussing.

3. HIGHER-ORDER CONNECTORS IN COMMUNITY

We use the parallel program design language CommUnity in order to make
the ideas put forward in the previous section more concrete, and also to moti-
vate the general categorical semantics of higher-order connectors to be given
in Section 4 as an extension to our previous work on formalizing architectural
modelling [Lopes and Fiadeiro 1999; Wermelinger et al. 2000; Fiadeiro et al.
2003].

CommUnity is a Unity-like design language that was initially presented in
Fiadeiro and Maibaum [1997] to show how programs fit into Goguen’s cate-
gorical approach to General Systems Theory [Goguen 1973]. Since then, the
language and the design framework have been extended in order to provide a
formal platform for the architectural design of open, reactive and reconfigurable
systems.

3.1 Component Design

We start by presenting an example of a CommUnity design—help. This de-
sign models a box consisting of a button, a sensor and a light. Its purpose is to
allow a patient to request help in case of medical emergency, with the transmis-
sion of the current value of the sensor (e.g., pulse). Pressing the button, which
is modeled by the execution of hreq, turns on the light, which is modeled by
channel off becoming false. The light is turned off when the help request is
acknowledged. After the button is pressed, the current value of the sensor is
read, which is modeled by the execution of the private action read, and made
available for transmission in the output channel data. The private channel rd
is used to distinguish between states in which the value in data is the value to
be transmitted or not.

design help is
in sensor:int
out data:int, off: bool
prv rd: bool
do hreq: off → off:=false
[] prv read: ¬rd ∧ ¬off→data:=sensor‖rd:=true
[] hack: rd → rd:=false‖off:=true

A CommUnity component design is of the form

design P is
out out(V)
in in(V)
prv prv(V)
do []g∈sh(0) g[D(g)]: L(g), U(g) → R(g)

[]g∈prv(0) prv g[D(g)]: L(g), U(g) → R(g)

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

70 • A. Lopes et al.

where

—V is the set of channels. Channels can be declared as input, output or pri-
vate. Input channels are used for reading data from the environment of the
component. The component has no control on the values that are made avail-
able in such channels. Moreover, reading a value from an input channel does
not “consume” it: the value remains available until the environment decides
to replace it. Output and private channels are controlled locally by the com-
ponent, that is, the values that, at any given moment, are available on these
channels cannot be modified by the environment. Output channels allow the
environment to read data produced by the component. Private channels sup-
port internal activity that does not involve the environment in any way. We
use loc(V) to denote the union prv(V)∪ out(V), that is, the set of local chan-
nels. Each channel v is typed with a sort sort(v) ∈ S.

—by 0 we denote the set of action names. The named actions can be declared
either as private or shared (for simplicity, we only declare which actions are
private). Private actions represent internal computations in the sense that
their execution is uniquely under the control of the component. Shared ac-
tions represent possible interactions between the component and the envi-
ronment, meaning that their execution is also under the control of the envi-
ronment. The significance of naming actions will become obvious below; the
idea is to provide points of rendezvous at which components can synchronize.

For each action name g , the following attributes are defined:
— D(g) is a subset of loc(V) consisting of the local channels that can be

effected by executions of the action named by g . This is what is sometimes
called the write frame of g . For simplicity, we omit the explicit reference
to the write frame when R(g) is a conditional multiple assignment (see
below), in which case D(g) can be inferred from the assignments. Given a
local channel v, we will also denote by D(v) the set of actions g such that
v ∈ D(g).

— L(g) and U (g) are two conditions such that U (g)⊃ L(g). These conditions
establish an interval in which the enabling condition of any guarded com-
mand that implements g must lie. The condition L(g) is a lower bound
for enabledness in the sense that it is implied by the enabling condition.
Therefore, its negation establishes a blocking condition. On the other hand,
U (g) is an upper bound in the sense that it implies the enabling condition,
therefore establishing a progress condition. Hence, the enabling condition
is fully determined only if L(g) and U (g) are equivalent, in which case we
write only one condition.

— R(g) is a condition on V and D(g)′ where by D(g)′ we denote the set of
primed local channels from the write frame of g . As usual, these primed
channels account for references to the values that the channels take after
the execution of the action. These conditions are usually a conjunction
of implications of the form pre⊃pos where pre does not involve primed
channels. They correspond to pre/post-condition specifications in the sense
of Hoare. When R(g) is such that the primed version of each local channel
in the write frame of g is fully determined, we obtain a conditional multiple

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 71

assignment, in which case we use the notation that is normally found in
programming languages. When the write frame D(g) is empty, R(g) is
tautological, which we denote by skip.

Notice that CommUnity supports several mechanisms for underspecifica-
tion—actions may be underspecified in the sense that their enabling conditions
may not be fully determined (subject to refinement by reducing the interval
established by L and U) and their effects on the channels may also not be fully
determined.

When, for every g ∈ 0, L(g) and U (g) coincide, and the relation R(g) defines
a conditional multiple assignment then the design is called a program. The be-
havior of a program is as follows: At each execution step, any of the actions
whose enabling condition holds of the current state can be selected. When se-
lected, the assignments associated with the actions are executed atomically as a
transaction. Private actions that are infinitely often enabled are guaranteed to
be selected infinitely often (see Lopes and Fiadeiro [1999] for a model-theoretic
semantics of CommUnity). A program with input channels is open in the sense
that it needs to be connected to other components of the system to read data.
We explain how such connections can be established in later sections.

As a language, CommUnity is independent of the actual data types that are
used and, hence, we have assumed that there are predefined sorts and functions
given by a fixed algebraic specification 4=<<S,Ä>,8> where S is a set of
sorts, Ä is a set of operations, and 8 is a set of first-order axioms specifying
the functionality of the operations [Ehrig and Mahr 1985]. For the purposes of
examples in this article, we consider an algebraic signature containing basic
data types such as Booleans (bool), integers (int), and queues (queue(−,−)),
with the usual operations.

Formally, CommUnity designs can be defined as follows:
A signature is a tuple <V , 0, tv, ta, D> where

—V is an S-indexed family of mutually disjoint finite sets,
—0 is a finite set,
—tv : V → {out, in, prv} is a total function,
—ta : 0→ {sh, prv} is a total function,
— D : 0→ 2loc(V)is a total function.

A design is a pair <θ ,1> where θ =<V , 0, tv, ta, D> is a signature and 1, the
body of the design, is a tuple <R, L, U> where:

—R assigns to every action g ∈ 0, a proposition over V ∪ D(g)′,
—L and U assign a proposition over V to every action g ∈0.

In order to support higher levels of design, a CommUnity design may also
be parameterized by an algebraic specification indicated after the name of the
component (see examples in the next section). This parameter is instantiated
at configuration time, that is, when a specific component needs to be included
in the configuration of the system being built, or as part of the reconfiguration
of an existing system.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

72 • A. Lopes et al.

3.2 Connectors

In CommUnity, a complex system is described as the interconnection of a num-
ber of interacting component designs by defining a configuration. A connector
in CommUnity consists of a set of roles, a glue specification, and a configuration
involving these designs.

Let us consider the connector Async[t + K] representing asynchronous
communication of values of type t through a bounded buffer with capacity
K . This connector has two roles—sender[t] and receiver[t]—defining the be-
havior required of the components to which the connector can be applied.
For the sender, we require that it does not produce another message before
the previous one has been processed. After producing a message, the sender
should expect an acknowledgment to produce a new message. For the re-
ceiver, we simply require that it has an action that models the reception of a
message.

design sender[t] is design receiver[t] is
out o:t in i:t
prv rd:bool do rec: true,false→skip
do prv prod[o,rd]: ¬rd,false→

rd:=true
[] send[rd]: rd,false→

rd:=false

In order to leave unspecified when and how many messages the sender (re-
ceiver) will send (receive), and in which situations the sender will produce a new
message, the progress guards of these actions are all false. Because progress
conditions establish an upper bound for enabledness, if the progress condition
of an action is false then its enabling condition can be as strong as we wish.
Furthermore, by including o in the write frame D(prod) but not including any
condition on how it can be effected, we avoid committing to a particular disci-
pline of production.

Both designs are parameterized by the algebraic specification <<{t},Ø>,
Ø> that consists just of a sort (without operations nor axioms), which we de-
noted simply by t. When the connector needs to be used in the configuration of
a specific system, the sort t is instantiated with whatever sort is appropriate.

The glue of Async[t + K] is a bounded buffer with a FIFO discipline that
prevents the sender from sending a new message when there is no space and
prevents the receiver from reading a new message when no new messages have
been sent. In CommUnity, this buffer can be designed as follows:

design buffer [4b] is
in i:t
out o:t
prv rd:bool; q:queue(K,t)
do put: ¬full(q)→ q:=enqueue(i,q)
[] prv next: ¬empty(q)∧¬rd → o:=head(q)‖q:=tail(q)‖rd:=true
[] get: rd → rd:=false

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 73

This buffer can store, through the action put, messages of sort t, received
from the environment through the input channel i, as long there is space for
them. It can also make stored messages available to the environment through
the output channel o and the action next. Naturally, this activity is possible only
when there are messages in store and the current message in o has already been
read by the environment, which is modeled by the action get and the private
channel rd.

The type of messages as well as the capacity of the buffer are part of the
parameter specification 4b defined below, where we use 4nat to represent the
subspecification of 4 that is concerned with the specification of natural num-
bers. We also use t + K to denote 4b.

spec 4b is 4nat+
sorts t
ops K: ->nat

It remains to define in which way the roles and the glue are connected. The
model of interaction between components in CommUnity is based on action
synchronisation and the interconnection of input channels of a component
with output channels of other components. Although these are common forms
of interaction, CommUnity requires interaction between components—name
bindings—to be made explicit in the systems configurations. Name bindings
are established as relationships between the signatures of the corresponding
components and are defined with the help of additional signatures (represent-
ing the interaction points) and signature maps (morphisms).

For instance, in order to establish that messages from a sender component
are sent (to a receiver) through a bounded channel, we consider the following
configuration (see Figure 5)

Fig. 5.

where cable[t] is a signature that consists of an input channel of sort t and a
shared action. The names of this channel and of this action are not relevant:
they are only placeholders used to define the name bindings, and hence, we
used • for both.

In this configuration, the input channel of cable is mapped to the output
channel o of the sender and to the input channel i of buffer. This establishes an
I/O interconnection between the sender and the buffer. Moreover, the actions
send of sender and put of buffer are mapped to the shared action of cable. This
defines that sender and buffer must synchronize each time either of them wants
to perform the corresponding action.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

74 • A. Lopes et al.

The signature morphisms involved in the configurations are defined as
follows:

A morphism σ : θ1 → θ2 between signatures θ1 = <V1, 01, tv1, ta1, D1> and
θ2 = <V2, 02, tv2, ta2, D2> is a pair <σch, σac> where

—σch : V1 → V2 is a total function satisfying:
—sort2(σch(v)) = sort1(v) for every v ∈ V1
—σch(o) ∈ out(V2) for every o ∈ out(V1)
—σch(i) ∈ out(V2) ∪ in(V2) for every i ∈ in(V1)
—σch(p) ∈ prv(V2) for every p ∈ prv(V1)

—σac : 02 → 01 is a partial mapping satisfying for every g ∈ 02 s.t. σac(g) is
defined:
— if g ∈ sh(02) then σac(g) ∈ sh(01)
— if g ∈ prv(02) then σac(g) ∈ prv(01)
—σch(D1(σac(g))) ⊆ D2(g)
—σac is total on D2(σch(v)) and σac(D2(σch(v))) ⊆ D1(v) for every v ∈ loc(V1)

Signature morphisms represent more than the projections that arise from
name bindings as illustrated above. A morphism σ from θ1 to θ2 is intended
to support the identification of a way in which a component with signature θ1
is embedded in a larger system with signature θ2. This justifies the various
constructions and constraints in the definition.

The function σch identifies for each channel of the component the correspond-
ing channel of the system. The partial mapping σac identifies the action of the
component that is involved in each action of the system, if ever. The fact that the
two mappings go in opposite directions is justified as follows: Actions of the sys-
tem constitute synchronization sets of actions of the components. Because not
every component is necessarily involved in every action of the system, the action
mapping is partial. On the other hand, because each action of the component
may participate in more than one synchronisation set, but each synchronization
set cannot induce internal synchronisations within the components, the rela-
tionship between the actions of the system and the actions of every component
is functional from the former to the latter.

The other constraints are concerned with typing. Sorts of channels have to
be preserved but, in terms of their classification, input channels of a component
may become output channels of the system. This is because, in the absence of
other constraints, the result of interconnecting an input channel of a component
with an output channel of another component in the system is an output channel
of the system. Mechanisms for internalizing communication can be applied
but they are not the default in a configuration. The last two conditions on
write frames implies that actions of the system in which a component is not
involved cannot have local channels of the component in its write frame. That
is, change within a component is completely encapsulated in the structure of
actions defined for the component.

In the case of configurations involving components parameterized with
data type specifications, the signature morphisms must satisfy an additional

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 75

property:

A morphism σ : θ1[51]→ θ2[52] between parameterized signatures is a sig-
nature morphism σ : θ1 → θ2 for which 51 is a subspecification of 52, that is, σ
defines an inclusion of sorts, operations and theorems [Ehrig and Mahr 1985].

Let us consider again the connector Async[t + K] that we have been dis-
cussing. The configuration depicted below completes its definition, establishing
how the roles and the glue are connected. (See Figure 6.)

Fig. 6.

As explained previously, the left-hand side morphisms define that sender and
buffer must synchronise on actions send and put, and establish the intercon-
nection of the output channel o of sender with the input channel i of buffer. On
the other hand, the right-hand side morphisms define that buffer and receiver
must synchronise on actions get and rec and establish the interconnection of
the output channel o of buffer with the input channel i of receiver.

Not every diagram of signatures makes sense as a configuration. There are
restrictions on the way that we can interconnect components that are not cap-
tured by the notion of morphism alone but apply to the whole diagram. The
two following rules express the restrictions on diagrams that make them well-
formed configurations:

—An output channel of a component cannot be connected (directly or indirectly
through input channels) with output channels of the same or other compo-
nents.

—Private channels and private actions cannot be involved in the connections.

It is important to notice that the second rule establishes the configuration se-
mantics of private actions and channels. It supports the intuitive semantics we
gave in Section 2.1, namely that private channels cannot be read by the envi-
ronment and that the execution of private actions is uniquely under the control
of the component.

Rather than using diagrams involving signatures and signature morphisms,
a “box and line” notation may be adopted instead. For instance, the asyn-
chronous communication defined above could be described as follows: (see
Figure 7.)

Fig. 7.

In this notation, the name bindings are still explicit but are expressed in
terms of arcs that connect channels and actions directly. These configurations

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

76 • A. Lopes et al.

can be easily translated into categorical diagrams involving signatures and
signature morphisms.

The semantics of connectors, and of configuration diagrams in general, relies
on an extension of the notion of signature morphism that allows us to estab-
lish relationships between designs. Design morphisms capture relationships
between components and the systems that they are part-of. They can be seen
to provide a formalisation for a notion of superposition that is similar to those
that have been used for parallel program design [Chandy and Misra 1988; Katz
1993].

A superposition morphism σ : P1 → P2 of designs P1 = <θ1,11> and P2 =
<θ2,12>, consists of a signature morphism σ : θ1 → θ2 such that, for every
g ∈ 02 s.t. σac(g) is defined:

(1) 8 ` (R2(g) ⊃ σ (R1(σac(g))));
(2) 8 ` (L2(g) ⊃ σ (L1(σac(g))));
(3) 8 ` (U2(g) ⊃ σ (U1(σac(g))));

where 8 is the axiomatization of the data type specification, ` denotes validity
in the first-order sense, and σ is the extension of σ to the language of expressions
and conditions. Designs and their morphisms constitute a category c-DSGN.

A morphism σ : P1 → P2 identifies a way in which P1 is “augmented” to
become P2 so that P2 can be considered as having been obtained from P1 through
the superposition of additional behavior, namely the interconnection of one or
more components. The conditions on the actions require that the computations
performed by the system reflect the interconnections established between its
components. Condition (1) reflects the fact that the effects of the actions of the
components can only be preserved or made more deterministic in the system.
This is because the other components in the system cannot interfere with the
transformations that the actions of a given component make on its state, except
possibly by removing some of the underspecification present in the component
design.

Conditions (2) and (3) allow the bounds that the component design specifies
for the enabling of the action to be strengthened but not weakened. Strengthen-
ing of the lower bound reflects the fact that all the components that participate
in the execution of a joint action have to give their permission for the action
to occur. On the other hand, it is clear that progress for a joint action can only
be guaranteed when all the designs of the components involved can locally
guarantee so.

Let us consider that we have established interactions between component
designs P1, . . . , Pn at the level of their signatures through a diagram D. Such
a diagram can be trivially lifted to a diagram D ′′ of designs and superposition
morphisms: the signature of each design is replaced by the design itself; every
cable cb in D is replaced by dsgn(cb), the design with signature cb and tauto-
logical bounds for the enabledness of each action, and the least commitment as
to the effects on the channels in the write frame of each action. More concretely,

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 77

dsgn(cb) consists of, for each action name g in cb, the action

g : true, true→ true

Defined in this way, dsgn(cb) is a design that is “neutral” with respect to the
establishment of superposition morphisms in the sense that every signature
morphism σ : cb→ sig(P) defines a superposition morphism σ : dsgn(cb)→ P .

On the account of this transformation, every configuration can be trans-
formed into a single design that represents the whole system by taking the
colimit of the diagram D ′′ in the category c-DSGN. We now describe the intu-
itive meaning of the colimit and its construction.

Consider first the simplest case, the one in which there are no interactions.
This means that any two channels of two designs are different, even if they
have the same name. Therefore, the channels of the resulting design are the
disjoint union of the components’ channels. Concerning the actions, the parallel
composition contains all possible combinations of actions that involve one at
most one action from each component. This is because there is no restriction
on their co-occurrence. More concretely, the actions of the resulting design are
the tuples of actions of the components a1| · · · |ak , containing at most one action
of each component. In this way, the colimit provides not an interleaving but a
concurrent semantics for parallel composition.

In the presence of interactions, the colimit “merges” the input channels iden-
tified with an output channel into that output channel, and each tuple a1| · · · |ak
is retained iff, for every action ai in the tuple, every action that is required to
synchronize with ai is also in the tuple.

With or without interactions, for each action a1| · · · |ak , the bounds for en-
abledness are the conjunction of the bounds of all ai, and its assignments are
the union of the assignments of all ai.

In the case of configurations involving parameterized designs, we need first
to define the corresponding superposition morphisms.

A superposition morphism from a parameterized design P1(51) to a parame-
terized design P2(52) is a morphism of c-DSGN from P1 to P2 for which 51 is
a subspecification of 52.

In this way, in the case of a configuration involving parameterized designs,
the single design that represents the whole system is parameterized by the
union of the data type specifications involved.

As an illustration of the transformation of a system configuration into a
design that represents the whole system, we consider again the connector
Async[t + K]. The lifting of the diagram presented previously, which estab-
lishes how the roles and the glue are connected at the level of their signatures,
is (Figure 8):

Fig. 8.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

78 • A. Lopes et al.

where dsgn(cable[t]) is a design with an input channel of sort t and a shared
action whose bounds for enabledness are true.

The colimit of this diagram returns the design given, up to an isomorphism,
by the design below. This design models the parallel composition of sender,
receiver and buffer with the restrictions defined by the given configuration
diagram and defines the semantics of the connector.

design async[t+K] is
out os,ob:t
prv rds, rdr:bool; q:queue(K,t)
do prv prod[os,rds]: ¬rds, false→rds:=true
[] send|put: ¬full(q)∧ rds, false→q:=enqueue(os,q)‖rds:=false
[] prv next: ¬empty(q)∧¬rdr→ ob:=head(q)‖q:=tail(q)‖rdr:=true
[] rec|get: rdr, false → rdr:=false

This design provides the means for global properties of the protocol that it
defines to be derived. For instance, using the logical formalism for reasoning
about CommUnity designs defined in [Lopes and Fiadeiro 1999], it is possible to
conclude that async[t+K] has the following property expressed in a branching
time temporal logic:

A((send|put ∧ os = msg) ⊃ F(ob = msg∧ < rec|get > true))

This sentence expresses that if a message msg is sent, eventually msg will be
made available in the input channel of the receiver, ready to be received. In
other words, at least a copy of each message is delivered. In the same way, it is
possible to conclude that the correctness of the transmission/reception of data
(in order message delivery) does not depend on the speed at which messages
are produced and consumed.

3.3 Using Connectors in System Construction

The use of a connector in the construction of a particular system is achieved by
the instantiation of its roles with specific components of the system. To model
instantiation, we use a different kind of design morphism that ensures that
the behavior specified by a role is satisfied by the instance. These morphisms
correspond to a form of refinement and, hence, are called refinement morphisms.

A refinement morphism σ : P1 → P2 of designs P1 = <θ1,11> and P2 =
<θ2,12> is a pair <σch, σac> where

—σch : V1 → Term(V2) is a total function mapping the channels of P1 to the
class of terms built from the channels of P2 and the data type operations. This
mapping is required to satisfy, for every v ∈ V1, o ∈ out(V1), i ∈ in(V1), p ∈
prv(V1) :
—sort2(σch(v)) = sort1(v)
—σch(o) ∈ out(V2)
—σch(i) ∈ in(V2)
—σch(p) ∈ Term(loc(V2))
—σch ↓ (out(V1) ∪ in(V1)) is injective

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 79

—σac: 02 → 01 is a partial mapping satisfying for every g ∈ 02 s.t. σac(g) is
defined:
— if g ∈ sh(02), then σac(g) ∈ sh(01)
— if g ∈ prv(02), then σac(g) ∈ prv(01)
— if g ∈ sh(01), then σ−1

ac (g) 6= ∅
—σch(D1(σac(g))) ⊆ D2(g)
—σac is total on D2(σch(v)) and σac(D2(σch(v))) ⊆ D1(v) for every v ∈ loc(V1)

and, furthermore,

— for every g ∈ 02 s.t. σac(g) is defined:
(1) 8 ` (R2(g) ⊃ σ (R1(σac(g))));
(2) 8 ` (L2(g) ⊃ σ (L1(σac(g))));

— for every g1 ∈ 01,
(3) 8 ` (σ (U1(g1)) ⊃ V

σac(g2)=g1

U2(g2))

where D is the extension of D to the language of expressions. Designs and their
refinement morphisms constitute a category r-DSGN.

A refinement morphism is intended to support the identification of a way
in which a design P1 (its source) is refined by a more concrete design P2 (its
target).

The function σch identifies for each input (respectively, output) channel of P1
the corresponding input (respectively, output) channel of P2. Notice that, con-
trarily to what happens with the component-of relationship, refinement does
not change the border between the system and its environment and, hence, in-
put channels can no longer be mapped to output channels. Moreover, refinement
morphisms allow each private channel of P1 to be expressed in terms of the lo-
cal channels of P2 through an expression. The evaluation of such an expression
may involve some computation as captured through the use of operations from
the underlying data types. Naturally, it is required that the sorts of channels
be preserved.

The mapping σac identifies for each action g of P1, the set of actions of P2 that
implements g—given by σ−1

ac (g). This set is a menu of refinements for action
g and can be empty for private actions. However, every action that models
interaction between the component and its environment has to be implemented.

The actions for which σac is left undefined (the new actions) and the channels
that are not involved in σch(V1) (the new channels) introduce more detail in the
description of the component.

Conditions (2) and (3) require that the interval defined by the blocking and
progress conditions of each action (in which the enabling condition of any
guarded command that implements the action must lie) be preserved or re-
duced. This is intuitive because refinement, pointing in the direction of imple-
mentations, should reduce underspecification. This is also the reason why the
effects of the actions of the more abstract design are required to be preserved
or made more deterministic.

It is important to notice that, although refinement and superposition mor-
phisms have some conditions in common, the two relationships are very

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

80 • A. Lopes et al.

different. As evidence of this notice, the fact that in CommUnity, as in other
formalisms such as CSP [Hoare 1985], a design is not necessarily refined by a
system of which it is a component.

The component design help defined previously is an example of a refinement
of the design sender(int)—the result of the instantiation of t in sender[t] with
the sort int of 4. It refines sender(int) through the refinement morphism η:
sender(int)→ help defined by

ηch(o) = data, ηch(rd) = rd
ηac(read) = prod, ηac(hack) = send.

In help, the production of messages to be sent is modeled by the action read
and the messages are made available in the output channel data. The produc-
tion of messages, that was left unspecified in sender, corresponds to the sensor
readings.

This refinement can be represented graphically as depicted below. Notice that
nonprivate channels and actions are placed on the boundary of the component
and private ones inside. (See Figure 9.)

Fig. 9.

Let us suppose that centre is a design that models an assistance centre
that refines receiver(int) through some refinement morphism κ. The connec-
tor Async(int + 10) can be used to interconnect help and centre. The resulting
system—a system in which the help component sends the help requests to the
assistance centre through a bounded channel with capacity for ten messages—
can be represented as follows (see Figure 10):

Fig. 10.

In this case, we have used the connector Async[t+K] with t instantiated with
sort int and K instantiated with 10. In more abstract levels of design, it may
be useful to use Async[t + K] for coordinating the activities of parameterized

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 81

designs. In such cases, the instantiation of the connector has to be defined by
refinement morphisms between parameterized designs.

A refinement morphism from a parameterized design P1(51) to a parameter-
ized design P2(52) is a morphism of r-DSGN from P1 to P2 for which 51 is a
subspecification of 52.

In the next section, we shall see examples of such kind of morphisms.

3.4 Adapting Connectors

As explained before, it is important to have principled ways to adapt connec-
tors to new situations, for instance in order to incorporate features such as
compression, fault-tolerance, security and monitoring, among others.

Let us consider compression once more as an example. In this case, the goal
is to adapt a connector that represents a communication protocol in order to
compress data for transmission in a transparent way. In order to be able to give
a first-class description of this form of adaptation, the kind of communication
protocol modeled by the adapted connector needs to be made more precise. We
shall describe the compression adaptation mechanism only for connectors that
model unidirectional communication protocols.

A generic unidirectional communication protocol can be modeled by the bi-
nary connector Uni-comm[s] (see Figure 11):

Fig. 11.

where

design glue[s] is
in i:s
out o:s
do put: true,false → skip
[] prv prod[o]: true,false → true
[] get: true,false → skip

and sender[s] and receiver[s] are defined as before. Notice that this glue
leaves completely unspecified the way in which messages are processed and
transmitted.

Our aim is to install a compression/decompression service over Uni-comm.
That is to say, our aim is to apply an operator to Uni-comm such that, in the re-
sulting connector, a message sent by the sender is compressed before it is trans-
mitted through Uni-comm and then decompressed before it is delivered to the
receiver. We shall see that such an operator can be described by a higher-order
connector where the compression and decompression algorithms are taken as
parameters. More concretely, it is parameterized by the algebraic specification

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

82 • A. Lopes et al.

described below.

spec 4cd is 4nat+
sorts s,t
ops comp:t->s decomp:s->t

size s:s->nat size t:t->nat
axioms decomp(comp(x))=x, for any x:t

size s(comp(x)) ≤ size t(x), for any x:t

Sorts t and s represent the types of original and compressed messages, respec-
tively. The operation comp represents the process of compression of a single
message, and decomp the inverse process of decompression. It is required that
the size of the compressed message is not greater than the size of the original
message. At configuration time, these data elements must be instantiated with
specific sorts and operations.

The higher-order connector itself, which we name Compression(Uni-
comm)[4cd], is defined by

—the binary connector Compression[4cd] (Figure 12)

Fig. 12.

where the glue, comp-decomp[4cd], is defined in terms of a configuration with
the following two components:

design comp[4cd] is design decomp[4cd] is
in di:t in ci:s
out co:s out do:t
prv v:t; rd,msg:bool prv v:s; rd,msg:bool
do drec: ¬msg →v:=di do crec: ¬msg →v:=ci

‖msg:=true ‖msg:=true
[] prv comp:¬rd∧ msg→ [] prv dec:¬rd∧ msg→ do:=

co:=comp(v)‖rd:=true decomp(v)‖rd:=true
[] csend:rd → rd:=false [] dsend: rd → rd:=false

‖msg:=false ‖msg:=false

Design comp[4cd] models the compression of messages of type t received
through di into messages of type s that are then transmitted through co.
Design decomp[4cd] models the decompression of messages of type s received
through ci into messages of type t that are then transmitted through do.

—the connector Uni-comm[s]—the formal parameter;
—the refinement morphisms

ηs:sender[s]→ comp-decomp[4cd] and ηr : receiver[s]→ comp-decomp[4cd]

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 83

induced, respectively, by the refinement morphisms

η∗s : sender[s]→ comp[4cd]
η∗s (o) = co, η∗s (rd) = rd, η∗s (comp) = prod, η∗s (csend) = send

η∗r : receiver[s]→ decomp[4cd]
η∗r (i) = ci, η∗r (crec) = rec

Because components comp and decomp do not interact, any component re-
fined by one of them is also refined by their composition comp-decomp[4cd].
The corresponding induced morphisms have only to take into account the
renaming of channels and actions that takes place in composition.

Putting the two previous pictures together we get a graphical representation
of the higher-order connector Compression(Uni-comm)[4cd] (Figure 13).

Fig. 13.

In summary, Compression(Uni-comm)[4cd] has the formal parameter Uni-
comm[s], which restricts the actual connectors to which the service of com-
pression/decompression can be applied—it requires that the actual connector
models a unidirectional communication protocol. The connector Compression
describes, on the one hand, that messages sent by the actual sender are trans-
mitted to comp which compresses them and, on the other hand, that decomp
decompresses the messages it receives and delivers the result to the actual
receiver. Finally, the two refinement morphisms establish the instantiation of
Uni-comm[s] with comp[s] in the role of sender and decomp[s] in the role of
receiver. In this way, it is established that the formal parameter Uni-comm[s]
is the connector used to transmit compressed messages.

Fig. 14.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

84 • A. Lopes et al.

Now it remains to explain the procedure of parameter passing, that is, how
the service just described can be installed over a specific connector and how the
resulting connector is obtained.

We consider again the Async connector. In this case, it is not difficult to real-
ize that we may replace the formal parameter of Compression(Uni-comm)[4cd]
by Async because this connector does model a unidirectional communication
protocol. More concretely, Async has exactly the same roles that Uni-comm and
its glue is a refinement of Uni-comm’s glue (see Figure 14).

In a more general situation, the instantiation of a higher-order connector
is established by a suitable fitting morphism from the formal to the actual
connector. Such a morphism formulates the correspondence between the roles
and glue of the formal parameter with those of the actual parameter connector.
In the next section, we present and discuss these morphisms in more detail.

The construction of a new connector from the given higher-order connector
and the actual parameter connector is straightforward. We only need to compose
the interconnections of the buffer to sender and receiver with the refinements
ηs and ηr that define the instantiation of Uni-comm with comp and decomp,
respectively. For example, channel co of comp becomes connected to the input
channel i of buffer because co corresponds to the channel o of sender which in
turn is, in Async, connected to i. The resulting configuration fully defines the
connector Compression(Async)[4cd + K]. Its roles are sender and receiver and
its glue c-buffer-d [4cd + K] is defined in terms of a configuration involving
comp, decomp and buffer as shown below. (See Figure 15.)

Fig. 15.

Summarizing, in this section, we have described the installation of a
compression-decompression service over a unidirectional communication pro-
tocol as a parameterized entity that has connectors as parameters and result
and, thus, is called a higher-order connector. Then we have explained how the
higher-order connector can be instantiated with a specific connector and, finally,
we showed how the resulting connector is obtained.

We end this section by presenting another example of a higher-order
connector—monitoring. The aim is to model the adaptation of a unidirectional
communication protocol in order to transmit certain kind of messages (e.g.,
error messages) to a monitoring component.

The kind of messages that should be transmitted to the monitoring compo-
nent is taken as a parameter. More concretely, we define a higher-order connec-
tor that is parameterized by the following algebraic specification:

spec 4m is 4bool+
sorts s
ops to monitor:s->bool

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 85

Sort s represents the type of messages, and operation to monitor identifies the
special kind of messages that are to be monitored. We use4bool to represent the
subspecification of 4 that is concerned with the specification of Booleans.

In order to simplify the presentation, we shall consider that the commu-
nication with the monitoring component is achieved by synchronous message
passing. However, it would be more appropriate to model monitoring with a
higher-order connector with two formal parameters, both modelling a unidi-
rectional communication protocol. One of them would be used for the normal
transmission of messages and the other for the transmission to the monitoring
component.

The higher-order connector itself, Monitoring(Uni-comm)[4m], consists of

—the connector Monitoring[4m] defined by Figure 16,

Fig. 16.

where the glue, observer-mpass[4m], is defined in terms of a configuration
with the following two components:

design observer[4m] is design mpass[s] is
in i:s in i:s
out o,o*:s out o:s
prv v:s; rd,rd*,msg:bool prv rd:bool
do rec: ¬msg→ v:=i do rec:¬rd→ o := i

‖msg:=true ‖rd:=true
[] prv obsv:¬rd∧¬rd*∧msg → [] send:rd→ rd:=false

msg:=false‖o:=v‖rd:=true‖
o*:=v‖rd*:=to monitor(i)

[] send:rd → rd:=false
[] send*:rd*→ rd* :=false

Component observer[4m] observes the messages to be transmitted and for-
wards a copy of certain transmitted messages to a third component. More
precisely, it sends through o the messages received in i, and sends through
o* those messages that satisfy to monitor. Component mpass[s] just trans-
mits through o the messages received in i.

The connector has three roles—sender, receiver and monitor. The role
monitor[s] is similar to receiver[s]:

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

86 • A. Lopes et al.

design monitor[s] is
in i: s
do rec: true → skip

Notice, however, that the progress condition of rec is true in monitor and
false in receiver. This means that any component that acts as monitor must be
always willing to read the values that are input through i whereas the actual
receiving component may decide when and how many times it will read the
values sent to it. In this way, it is ensured that the monitoring component
listens to (part of) the communication between the connected components
without affecting it.

—the connector Uni-comm[s]—the formal parameter;
—the refinement morphisms depicted in Figure 17.

Fig. 17.

4. AN ADL-INDEPENDENT NOTION OF HIGHER-ORDER CONNECTOR

The notion of higher-order connector presented for CommUnity can be gen-
eralized to other design formalisms. In this section, based on previous work
[Fiadeiro et al. 2003], we start by identifying the properties that such for-
malisms need to satisfy to support the architectural concepts and mecha-
nisms that we have illustrated for CommUnity. Then, we shall present ADL-
independent notions of connector and higher-order connector.

First, we need to fix a framework in which designs, configurations and rela-
tionships between designs, such as refinement, can be formally described. Our
experience in formalizing notions of structure in Computing, building on previ-
ous work of J. Goguen on General Systems Theory, suggests that, as illustrated
in Section 3, Category Theory provides a convenient framework for our purpose.
More concretely, we shall consider that a formalism supporting system design
includes:

—a category c-DESC of component designs in which systems of interconnected
components are modeled through diagrams;

—for every set CD of component designs, a set Conf (CD) consisting of all well-
formed configurations that can be built from the components in CD. Each
such configuration is a diagram in c-DESC that is guaranteed to have a

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 87

colimit. Typically, Conf is given through a set of rules that govern the inter-
connection of components in the formalism.

—a category r-DESC with the same objects as c-DESC, but in which mor-
phisms model refinement, that is, a morphism η : S → S′ in r-DESC ex-
presses that S′ refines S, identifying the design decisions that lead from S to
S′. Because the design of a composite system is given by a colimit of a diagram
in c-DESC and, hence, is defined up to an isomorphism in c-DESC, refine-
ment morphisms must be such that designs that are isomorphic in c-DESC
refine, and are refined exactly by, the same designs. Hence, it is required that
Isomorph(c-DESC)⊆ Isomorph(r-DESC).

Summarizing, all that we require is a notion of system design, a relationship
between designs that captures components of systems, another relationship
that captures refinement, and criteria for determining when a diagram of in-
terconnected components is a well-formed configuration.

4.1 Architectural Schools

In the context of this categorical framework, we shall now present the prop-
erties of a design formalism for supporting the architectural concepts that we
have illustrated for CommUnity. These properties define what we call an archi-
tectural school.

The categorical properties that a formalism needs to satisfy for support-
ing the notion of connector and its instantiation mechanism are identified and
discussed in detail in Fiadeiro et al. [2003]. We shall summarize this charac-
terization and extend it in order to support higher-order connectors, too.

4.1.1 Coordination. A key property of a formalism for supporting archi-
tectural design is that it provides a clear separation between the description
of the individual behavior of components and that of their interaction in the
overall system organisation.

We shall take the separation between coordination and computation to be
materialized through a functor sig: c-DESC → SIG mapping designs to signa-
tures, forgetting their computational aspects. The fact that the computational
side does not play any role in the interconnection of systems can be captured
by the following properties of this functor:

—sig is faithful;
—sig lifts colimits of well-formed configurations;
—sig has discrete structures;

together with the following property on the well-formed configuration criterion

—given any pair of configuration diagrams dia1, dia2 s.t. dia1; sig=dia2; sig,
either both are well-formed or both are ill-formed.

The first property states that morphisms of systems cannot induce more re-
lationships than those that can be established between their underlying signa-
tures. The second property means that if we interconnect system components

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

88 • A. Lopes et al.

through a well-formed configuration, then any colimit of the underlying di-
agram of signatures establishes a signature for which a computational part
exists that captures the joint behavior of the interconnected components. The
third property implies that every signature θ has a realization as a system com-
ponent desc (θ). In a sense, sources of morphisms in diagrams of designs are,
essentially, signatures.

These three properties ensure that any interconnection of systems can be
established via their signatures, legitimizing the use of signatures as channels
in configuration diagrams. By requiring that any two configuration diagrams
that establish the same interconnections at the level of signatures be either both
well formed or both ill formed, the fourth property ensures that the criteria for
well-formed configurations do not rely on the computational parts of designs.

In such situation, we say that the formalism <c-DESC, Conf, r-DESC> is
coordinated over SIG through the functor sig.

4.1.2 Compositionality. Another crucial property for supporting architec-
tural design is in the interplay between structuring systems in architectural
terms and refinement.

We start by noticing that, in order to support the refinement of an abstract
description of a system, it must be possible to propagate the interactions be-
tween the components of the system when their designs are replaced by more
concrete ones. This situation can be characterized by the existence, for every
well-formed configuration dia involving designs {S1, . . . , Sk} and every set of
refinements morphisms {ηi : Si → S′i : i ∈ 1..k}, of a well-formed configuration
diagram dia + (ηi)i∈1..k obtained by “composing” in some way each refinement
morphism ηi with the morphisms of dia whose target is Si. The diagram dia +
(ηi)i∈1..k describes the system obtained by replacing the designs of the compo-
nents of the system (Si) by more concrete ones (S′i). (See Figures 18 and 19.)

Fig. 18.

Fig. 19.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 89

Naturally, a method of propagation of the interactions between the compo-
nents of the system when their designs are replaced by more concrete ones is
only significant if all decisions made previously are respected. In other words,
the correctness criterion for this form of “configuration refinement” is that the
colimit of dia + (ηi)i∈1..k provides a refinement for the colimit of dia. (See
Figure 20.)

Fig. 20.

As explained in [Fiadeiro et al. 2003], a formalism supports the notion of
connector if it is coordinated and has a correct method of propagation of the
interactions between the components of the system when their designs are
replaced by more concrete ones.

To characterize the formalisms that support the notion of higher-order con-
nector we have illustrated for CommUnity, it is necessary to know exactly which
is the notion of configuration refinement of the formalism, that is, in which sit-
uations a configuration is considered a refinement of another configuration.
Given that configurations are made of components and interconnections, it is
natural that a design formalism supports a notion of configuration refinement
CR that, in addition to an operator + for the refinement of components, also
allows the refinement of interconnections.

We require CR to be correct, that is,

For every dia and dia’ such that dia’ refines dia according to CR, the colimit
of dia’ provides a refinement for the colimit of dia.

Furthermore, the configurations of the form dia + (ηi) must be considered,
according to CR, refinements of dia. In this situation, we shall say that the
formalism is compositional with respect to CR.

In summary, a formalism F =<c-DESC, Conf, r-DESC> is called an archi-
tectural school over a functor sig: c-DESC→SIG and a configuration refinement
notion CR if

—F is coordinated over SIG through sig;
—F is compositional with respect to CR.

Besides CommUnity, other formalisms define architectural schools. In
[Fiadeiro et al. 2003], we show this is the case of the coordination language
Gamma [Banâtre and Le Métayer 1993]. Also the concurrency models that

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

90 • A. Lopes et al.

are formalized in Sassone et al. [1993] using categorical techniques satisfy the
properties that we have laid down for architectural schools.

4.2 Connectors

Consider given an architectural school F =<c-DESC, Conf, r-DESC> over sig:
c-DESC→SIG and CR. The generalization of the notion of connector presented
for CommUnity in Section 3.2 is straightforward.

—A connection consists of
—two designs G and R, called the glue and the role of the connection, respec-

tively;
—a signature θ and two morphisms σ : desc (θ) → G, µ: desc (θ) → R in

c-DESC connecting the glue and the role.
—A connector is a finite set of connections with the same glue that, together,

constitute a well-formed configuration. (See Figure 21.)

Fig. 21.

—The semantics of a connector is the colimit of the diagram formed by its con-
nections.

A connector can be applied to specific components of a system under construc-
tion, establishing the intended interactions between them, by instantiating the
roles of the connector with those components. Role instantiation has to obey a
compatibility requirement, which is expressed via the refinement morphisms
of r-DESC.

An instantiation of a connector is defined as follows:

—An instantiation of a connection with role R consists of a design P together
with a refinement morphism η : R → P in r-DESC.

Fig. 22.

—An instantiation of a connector consists of an instantiation for each of its
connections such that the diagram in c-DESC connecting the role instances to
the glue, obtained by composing the role morphism of each connection with its

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 91

instantiation (given by<σi, µi>+ ηi), constitutes a well-formed configuration.
(See Figure 22.)

—The semantics of a connector instantiation is the colimit of the diagram in
c-DESC formed as described above.

The compositionality of the design formalism ensures that the system that
results from a instantiation of a connector C refines the semantics of C. In this
way, the properties of connectors can be understood independently of specific
contexts in which they are used.

Notice that, as illustrated for CommUnity, refinement morphisms are de-
fined between designs, not just signatures, that is, they can take into account
more or less complex behavioral properties. Hence, our notion of instantiation
and, therefore, parameter checking is not just “syntatic”. In fact, it is general
enough to offer whoever is defining the architectural school the possibility of
capturing the semantic conditions that are associated with whatever is consid-
ered to be the “right” notion of instantiation.

4.3 Higher-Order Connectors

The notion of higher-order connector, as a connector that takes one connector
as parameter and delivers another as a result, can be defined as follows:

—A higher-order connector (hoc) consists of
—a connector pC, called the formal parameter of the hoc; its roles, glue and

connections are called, respectively, the parametric roles, the parametric
glue and the parametric connections of the hoc;

—a connector C—its roles and glue are also called the roles and the glue of
the hoc;

—an instantiation of the formal parameter connector with the glue of the hoc,
that is, a refinement morphism ηi from each of the parametric roles to the
glue, such that the diagram in c-DESC obtained by composing the role
morphism of each parametric connection with its instantiation (Figure 23)

Fig. 23.

constitutes a well-formed configuration.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

92 • A. Lopes et al.

—The semantics of a higher-order connector is the connector depicted below. Its
roles are the roles of C and its glue is G’, a design returned by the colimit of
the configuration pC + (ηi) (Figure 24).

Fig. 24.

For simplicity, we have imposed one single parameter to the higher-order con-
nector. However, the definition can be extended to the case of several parameters
in a straightforward way.

Intuitively, the instantiation of the formal parameter of a higher-order con-
nector can be regarded as the replacement of a connector (the formal parameter
pC) that was instantiated to given components of a system (the glue of the hoc)
by another connector (the actual parameter). In addition, the type of intercon-
nection that pC ensures must be preserved. In other words, the design that
results from the replacement must be a refinement of the design from which
we started.

Like for connectors, the instantiation of the formal parameter of a higher-
order connector is established via a fitting morphism from the formal to the
actual parameter. These morphisms, on the one hand, formulate the correspon-
dence between roles and glue of the formal with those of the actual parameter
and, on the other hand, capture conditions under which the “functionality” of
the formal parameter is preserved.

In order to be able to use, in the design of a given system, a connector C
in place of a connector C′, it is obvious that the two connectors must have the
same number of roles. Furthermore, C′ has to admit to be instantiated with the
same components than C. That is to say, every restriction on the components
to which C′ can be applied must also be a restriction imposed by C. In this way,
fitting morphisms must require that each of the roles of C′ is refined by the
corresponding role of C.

For instance, we cannot replace a connector Sync by a Monitoring at once.
We first have to provide the component that will play the role monitor in the
system and then encapsulate this component by making it part of the glue (see

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 93

Fiadeiro et al. [2003]). The resulting connector has only two roles, which are
exactly the same of Sync, and hence, it can be used as a Sync connector.

As shown in Section 3, namely with the connector Uni-comm, connectors may
be based on glues that are not fully developed as designs (may be underspecified)
and, nevertheless, the concrete commitments that have already been made
determine to some extent the type of interconnection that the connector will
ensure. The type of interconnection is clearly preserved if we simply consider
a more concrete glue, that is, if we refine the glue. Hence, fitting morphisms
must allow for arbitrary refinements of the glue.

Having this in mind, we arrive at the following notion of fitting morphism:

—A fitting morphism φ from a connection <σ1 : desc (θ1) → G1, µ1 : desc
(θ1)→ R1> to a connection <σ2 : desc (θ2)→ G2, µ2 : desc (θ2)→ R2> con-
sists of a pair <φG : G1 → G2, φR : R2 → R1> of refinement morphisms in
r-DESC such that the interconnection <σ1, µ1>+ φG of R1 with G2 is, in ac-
cordance with the configuration refinement CR, refined by the interconnection
<σ2, µ2>+ φR . (See Figure 25.)

Fig. 25.

—A fitting morphism φ from a connector C1 to a connector C2 with the same
number of connections consists of a fitting morphism φ from each of C1’s
connections to each of C2’s connections, all with the same glue refinement φG .

If there exists a fitting morphism from a connector C1 to a connectorC2, then we
may replace each occurrence of the connector C1 in an architectural description
of a system by an occurrence of C2. The compositionality of the design formalism
with respect to the configuration refinement CR ensures that every coordination
decision made previously is preserved.

Based on fitting morphisms between connectors, we define an instantiation
of a higher-order connector.

—An instantiation of a higher-order connector with formal parameter pC
(Figure 26) consists of a connector CA (the actual parameter) together with
a fitting morphism φ : pC→ CA, such that the diagram in c-DESC obtained
by composing the role morphisms of each actual connection with the corre-
sponding fitting component and then with the role instantiation (Figure 27)
constitutes a well-formed configuration.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

94 • A. Lopes et al.

Fig. 26.

Fig. 27.

—The semantics of a higher-order connector instantiation is the connector with
the same roles as C and its glue is a design returned by the colimit of the
configuration CA + (φi; ηi).

5. COMPOSITION OF HIGHER-ORDER CONNECTORS

Higher-order connectors facilitate the separation of concerns in the develop-
ment of complex connectors and their compositional construction. For instance,
we have seen that compression and monitoring can be modeled separately as
higher-order connectors. Although we have not shown it, it is not very difficult
to realize that compression can be applied to a connector that models a uni-
directional communication protocol and then monitoring can be applied to the
resulting connector.

An important feature of our notion of higher-order connector is that different
kinds of functionality, modeled separately by different higher-order connectors,
can be combined, giving rise also to a higher-order connector. In this way, it
is possible to analyze the properties that such compositions exhibit, namely

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 95

to investigate whether undesirable properties emerge and desirable properties
are preserved.

The key idea for composition of hocs is the instantiation of a hoc with
a hoc. In this section, we shall present this more general form of instan-
tiation—parameterized instantiation. So, for instance, Monitoring(Uni-comm)
can be instantiated with Compress(Uni-comm), giving rise to the hoc
Monitoring&Compress(Uni-comm), which corresponds to a form of composi-
tion of Monitoring and Compress in which the messages are first observed, and
possibly transmitted to the monitoring component, then are compressed and
finally are transmitted via Uni-comm.

The definition of parameterized instantiation of a hoc is similar to the defi-
nition of the standard instantiation.

—A parameterized instantiation of a higher-order connector HC with formal
parameter pC consists of a higher-order connector HC′ together with a fitting
morphism φ : pC → Con′ (Figure 28), where Con′ is the connector that gives
the semantics of HC′, such that it is possible to extend, in a unique way, the
instantiation of pC′ with G ′ to an instantiation of pC′ with the colimit of the
diagram C′+(φi; ηi)i∈1..k (Figure 29), which connects the glues of HC′ and HC.

Fig. 28.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

96 • A. Lopes et al.

In Figure 29, Gnew is the colimit of the diagram C′ + (φi; ηi)i∈1..k and we
have used dotted lines for the refinement morphisms whose existence we are
requiring.

Fig. 29.

—The semantics of a parameterized instantiation is the higher-order connector
depicted in Figure 30.

Fig. 30.

For instance, consider that we want to combine the service of compression of
messages with monitoring. If we consider the parameterized instantiation of
Monitoring(Uni-comm)[4m] with Compress(Uni-comm)[4cd] defined by the fit-
ting morphism (Figure 31)

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 97

Fig. 31.

where the refinement morphism

η : glue[t]→ comp-glue-decomp[4cd]

is defined by

η(i) = σc(di), η(o) = σd (do),
η
(
σ−1

c (drec)
) = put, η

(
σ−1

d (dec)
) = prod, η

(
σ−1

d (dsend)
) = get

where σc : comp → comp-glue-decomp[4cd] and σd : decomp → comp-glue-
decomp[4cd] are the morphisms in c-DSGN returned by the colimit of the dia-
gram (Figure 32)

Fig. 32.

This composition gives rise to the hoc Monitoring&Compress(Uni-comm)[4cd+
4m] that is constituted by

—the connector Monitoring&Compress[4cd +4m] defined in Figure 33;

Fig. 33.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

98 • A. Lopes et al.

—the connector Uni-comm[s]—the formal parameter;
—the refinement morphisms

ηs : sender[s]→ obs-c-d-mpass[4cd +4m] and
ηr : receiver[s]→ obs-c-d-mpass[4cd +4m]

obtained by composing, at the level of signatures, the morphisms sender[s]→
comp[4cd] and receiver[s] → decomp[4m] of Compression(Uni-comm)[4cd]
with the morphisms, respectively, comp[4cd] → obs-c-d-mpass[4cd + 4m]
and decomp[4cd] → obs-c-d-mpass[4cd + 4m] which are given by the col-
imit construction (for the sake of space, we omit the proof of the fact that
these signatures morphisms do define refinement morphisms).

It is not difficult to realize this hoc works as described before: first messages
are observed and possibly transmitted to the monitoring component, then are
compressed and finally are transmitted via Uni-comm.

6. RELATED WORK

Our definitions agree with Garlan’s original proposal [Garlan 1998] of a hoc
as an operator over connectors for supporting connector construction through
incremental transformation, hence allowing one to define more complex inter-
actions in a more systematic way. More concretely, Spitznagel and Garlan [2001]
propose that a connector transformation be modeled as a function—from one
or more connectors to a new connector—defined in terms of its inputs, precon-
ditions on its application and postconditions on its result. They formalize these
ideas in the context of a particular ADL, namely Wright, relying on the specific
language and semantics of CSP.

6.1 Adaptation of Connectors vs. Adaptation of Components

As explained, hocs may be used to represent connector adaptation and, in partic-
ular, the installation of additional services, such as security or fault-tolerance.
For the same purpose, a radically different approach is to apply component
adaptation, for instance by using wrappers or packaging (e.g., Katz [1993],
Bosch [1999], and Denker et al. [1999]).

There are several reasons to point out in favor of our approach. For instance,
as argued in Garlan [1998], it is not always possible to adapt components to
work with the existing connectors. Even in those cases where it is feasible, a
better alternative is to modify the connectors because usually there are fewer
connector types than components types. Despite the obvious methodological
differences, the two approaches bring about equivalent transformations in the
sense that we explain below.

Consider again the compression example. As explained before, the instanti-
ation of the hoc Compression with connector Async gives rise to the following
configuration (Figure 34):

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 99

Fig. 34.

This configuration is equivalent to the one below (Figure 35). This configura-
tion represents a system where the compression service is installed by adding
(different) wrappers to the sender and receiver. The connector Async is used
once again to connect the two components.

Fig. 35.

The two configurations (Figures 34 and 35) are equivalent in the sense that,
from a categorical point of view, they correspond to two different ways of calcu-
lating the colimit of the same diagram and, hence, they give rise to equivalent
designs (i.e., designs considered isomorphic in c-DESC).

6.2 Integrating Extrafunctional Requirements in Connectors

The notion of architectural connector in the style defined by Allen and Garlan is
also the basis for a completely different approach to the specification of extra-
functional properties of software architectures descriptions, such as security
and fault-tolerance. Issarny and colleagues [1998] propose an extension of ar-
chitectural connectors with a set of first-order formulas specifying the extra-
functional properties offered by the connector. This extension relies on the spe-
cific language and semantics of CSP and is based on the fact that the behavior
of the protocol can be formally defined in terms of the predicates according to
Hoare’s logic. These predicates essentially characterize the coordination actions
that are carried out by the protocol. This approach is mainly tailored to ana-
lyze whether a given architecture has some desired extrafunctional properties
whereas our approach is geared towards system construction.

6.3 Behavioral Analysis

Many existing ADLs have some associated technique or tool to analyze the
resulting behavior of the designed system. For example, ADLs that use process
calculi to specify components and connectors typically use some model-checking
tool: Darwin uses LTSA [Magee et al. 1999] and Wright uses FDR [Allen and
Garlan 1997], just to mention two better-known examples. Our current support
for behavioral analysis is twofold.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

100 • A. Lopes et al.

On the one hand, the CommUnity Workbench [Wermelinger and Oliveira
2002] is being developed (in Java) as a proof of concept of the theoretical frame-
work, hiding the underlying “mathematical machinery” from the user. Cur-
rently, the tool provides a graphical integrated development environment to
write CommUnity programs (with fixed data types), define connectors, draw
an architecture, calculate automatically its colimit, and run it. The workbench
prevents the creation of ill-formed configurations (like binding output channels
with each other) and gives great flexibility in testing CommUnity programs
(like channel initialization, choice of which actions and channels to trace, and
verification of invariants during execution). Higher-order connectors and some
advanced features of CommUnity are not yet supported.

On the other hand, as mentioned in the end of Section 3.2, we defined a logic
formalism for expressing the properties of CommUnity designs, namely the co-
operation properties of a design in regard to its environment. We also developed
a proof method for reasoning about CommUnity designs in a compositional way,
that is, that allows us to reason about a system described through a configu-
ration diagram, without requiring the calculation of the colimit design. This
method can be also applied to connectors and hocs (given that they are defined
by configuration diagrams) and allow us to reason about their capabilities. In
future work, we would like to include an implementation of the logic formalism,
possibly using an existing theorem prover, into the CommUnity Workbench.

6.4 Implementation

Given that hocs are parameterized entities, programming features that support
parametrization can be very useful for their implementation. For instance, the
implementation of network protocol stacks through the composition of modular
protocol elements was shown to be naturally supported by the concept of mod-
ule offered by SML [Biagioni et al. 1994]. In this work, protocols (connectors)
are taken simply as collections of types, values and functions, which is a very
restrictive implementation of the notion of connector.

7. CONCLUDING REMARKS

In this article, we continued our previous work on providing formal support
to the definition and use of architectural techniques for software development.
Building on the categorical semantics for the notion of architectural connector
that, since 1995, we have developed in several papers (summarized in Fiadeiro
et al. [2003]), we formalized a notion of higher-order connector that can be
used for defining new connectors from existing ones by superposing aspects like
security, fault-tolerance, etc. We showed that a transformation of a connector
can be modeled by a parameterized entity that is essentially constituted by two
connectors. One of these connectors is the formal parameter that defines the
kind of connectors the transformation can be applied to. The other connector—
the body of the hoc—concerns the transformation itself. Owing to the formal
semantics of hocs, the transformation can be understood and analyzed.

For simplicity, we defined hocs with one parameter only, but the extension
to several parameters is straightforward. However, this fact limited the kind

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 101

of examples we have used throughout the artilce, namely it prevented us from
showing that hocs can be used to model operators that represent more than
an adaptation of connectors. For instance, it is necessary to consider an n-
ary hoc in order to model an operation on n connectors so that the output of
the first connector goes into the input of the second connector, etc. Another
operation that requires more parameters is the aggregation of n connectors
[Spitznagel and Garlan 2001], a combination of n connectors with a controller
that determines which connector is active at a time. Such an operation can be
useful for systems with transient interactions, for example, due to mobility of
the components.

Although we first used CommUnity to illustrate the concept, we then pre-
sented a generalisation of these ideas which is applicable to any language that
supports architectural design in a sense that was made precise in Section 4.1.
These are criteria that we have checked to be met not only by CommUnity, but
also by formalisms such as CSP which support well-known ADLs like Wright
[Allen and Garlan 1997], as well as concurrency models like the ones that
support, for instance, the Darwin approach [Magee et al. 1999], and specifica-
tion logics like the one that is used, for instance, in Moriconi and Qian [1994].
Architectural approaches that are based on coordination languages and mod-
els [Gelernter and Carriero 1992] also comply with these criteria as shown in
Fiadeiro et al. [2003] for Gamma [Banâtre and Le Métayer 1993].

Indeed, the use of Category Theory in the article is not an end in itself but,
rather, a means of characterizing the proposed concepts and techniques in a
way that, on the one hand, is independent of the way it can be offered to users
in specific ADLs and, on the other hand, is amenable to formal analysis. As a
result, we are able to compare how different ADLs support these notions and
suggest ways in which they can be extended by incorporating constructions
developed for other ADLs. For instance, the categorical framework led naturally
to a notion of composition of higher-order connectors that turned out to be useful
for combining orthogonal properties.

This level of formality also has important practical consequences. For in-
stance, by enabling formal relationships (functors) to be established with logics
for specification and verification (see Fiadeiro et al. [2003] for details and exam-
ples), the proposed semantics can be used to support the automatic derivation
of properties that can be used to test the consistency and correctness of de-
signs. As illustrated in Section 6, the categorical semantics of hocs can also be
used to clarify the relationship between different methodological approaches,
for instance adaptation of connectors vs adaptation of components.

Another important contribution of the proposed formalization is the pos-
sibility of using graph rewriting techniques for specifying runtime architec-
tural changes. Previous work [Wermelinger et al. 2001] addressed the sup-
port that is required for an architectural-driven process of reconfiguration in
which connectors, as well as components, can be replaced, added or deleted.
The individual specification of independent aspects such as compression and
fault-tolerance as higher-order connectors makes it easier to evolve systems at
run-time. Through run-time reconfiguration of the system architecture, namely
through the replacement of connectors, such services may be added only when

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

102 • A. Lopes et al.

necessary, hence preventing performance penalties when such complex inter-
actions are not required.

Still on the more practical side of our work, we are now in the process of
transposing these results to a “proof-of-concept”—the Coordination Develop-
ment Environment [Gouveia et al. 2001]—that we have built with ATX Soft-
ware for rigorously testing and validating the proposed approach and show how
it can be realized in Java-based development platforms. This environment is
based on a micro-architecture that transposes, into Java, the separation be-
tween Computation and Coordination that we formalized with the notion of
architectural school [Andrade et al. 2000]. It has been used by us and ATX
Software as a means of early and quick prototyping, to assess the practicality
of our coordination-based approach to architectures, namely its scalability, and
progressively gather methodological awareness that can lead to a systematic
support to architectural construction. The idea now is to support the construc-
tion of new coordination contracts through the higher-order mechanisms that
we have characterized and continue the process of maturing the technology in
all its aspects.

We hope that these concluding paragraphs make clear how the results that
we exposed in the article can impact software design methods and tools. To-
gether, they constitute the foundations of the work that we have been develop-
ing towards our long term goal: to make available a rich toolbox that can assist
software architects in systematizing and controlling the way they design, de-
ploy and evolve architectures.

ACKNOWLEDGMENTS

We would like to thank Luı́s Andrade from ATX Software SA for the opportunity
to discuss and validate many of these ideas. We would also like to thank the
referees for their challenging requests.

REFERENCES

ALLEN, R. AND GARLAN, D. 1997. A formal basis for architectural connectors. ACM Trans. Softw.
Eng. Meth. 6, 3 (July), 213–249.

ANDRADE, L., FIADEIRO, J. L., GOUVEIA, J., LOPES, A. AND WERMELINGER, M. 2000. Patterns for coor-
dination. In Proceedings of COORDINATION’00, G. Catalin-Roman and A. Porto, Eds. Lecture
Notes in Computer Science, vol. 1906. Springer-Verlag, New York, 317–322.

BANÂTRE, J. P. AND LE MÉTAYER, D. 1993. Programming by multiset transformation. Commun.
ACM 16, 1, 55–77.

BASS, L., CLEMENTS, P., AND KASMAN, R. 1998. Software Architecture in Practice. Addison-Wesley,
Reading, Mass.

BIAGIONI, E., HARPER, R., LEE, P., AND MILNES, B. 1994. Signatures for a network protocol stack:
A system application of standard ML. In Proceedings of the ACM Conference on LISP and Func-
tional Programming. ACM, New York, pp. 55–64.

BOSCH, J. 1999. Superimposition: A component adaptation technique. Inf. Softw. Tech.
CHANDY, K. AND MISRA, J. 1988. Parallel Program Design—A Foundation. Addison-Wesley,

Reading, Mass.
DENKER, G., MESEGUER, J., AND TALCOTT, C. 1999. Rewriting semantics of meta-objects and com-

posable distributed services. Internal report, Computer Science Laboratory, SRI International.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

Higher-Order Architectural Connectors • 103

EHRIG, H. AND MAHR, B. 1985. Fundamentals of Algebraic Specification I: Equations and Initial
Semantics. Springer-Verlag, New York.

FIADEIRO, J. L., LOPES, A., AND WERMELINGER, M. 2003. A mathematical semantics for architec-
tural connectors. In Generic Programming, R. Backhouse and J. Gibbons, Eds. Lecture Notes in
Computer Science. Springer-Verlag, in print.

FIADEIRO, J. L. AND MAIBAUM, T. 1997. Categorical semantics of parallel program design. Sci.
Comput. Prog. 28, 111–138.

FRANCEZ, N. AND FORMAN, I. 1996. Interacting Processes. Addison-Wesley, Reading, Mass.
GARLAN, D. 1998. Higher-order connectors. Position paper for the Workshop on Compositional

Software Architectures, Jan.
GELERNTER, D. AND CARRIERO, N. 1992. Coordination languages and their significance. Commun.

ACM 35, 2, 97–107.
GOGUEN, J. 1973. Categorical foundations for general systems theory. In Advances in Cybernetics

and Systems Research, F. Pichler and R. Trappl, Eds. Transcripta Books, pp. 121–130.
GOGUEN, J. 1996. Parametrised programming and software architecture. In Symposium on Soft-

ware Reusability. IEEE Computer Society Press, Los Alamitos, Calif.
GOUVEIA, J., KOUTSOUKOS, G., ANDRADE, L., AND FIADEIRO, J. L. 2001. Tool support for coordination-

based software evolution. In Technology of Object-Oriented Languages and Systems—TOOLS 38,
W. Pree, Ed. IEEE Computer Society Press, Los Alamitos, Calif., pp. 184–196.

HIRSCH, D., UCHITEL, S., AND YANKELEVICH, D. 1999. Towards a periodic table of connectors. In
Proceedings of Simposio en Tecnologı́a de Software (Buenos Aires, Argentina).

HOARE, C. A. R. 1985. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs.,
N.J.

ISSARNY, V., BIDAN, C., AND SARIDAKIS, T. 1998. Characterizing coordination architectures according
to their non-functional execution properties. In Proceedings of the 31st Annual Hawaii Interna-
tional Conference on System Sciences (Jan.). IEEE Computer Society Press, Los Alamitos, Calif.,
pp. 275–283.

KATZ, S. 1993. A superimposition control construct for distributed systems. ACM Trans. Prog.
Lang. Syst. 15, 2, 337–356.

LOPES, A. AND FIADEIRO, J. L. 1999. Using explicit state to describe architectures. In FASE’99,
E. Astesiano, Ed. Lecture Notes in Computer Science, vol. 1577. Springer-Verlag, New York, pp.
144–160.

MAGEE, J., KRAMER, J., AND GIANNAKOPOULOU, D. 1999. Behaviour analysis of software architec-
tures. In Software Architecture, Kluwer Academic Publishers, pp. 35–50.

MEHTA, N., MEDVIDOVIC, N., AND PHADKE, S. 2000. Towards a taxonomy of software connectors.
In Proceedings of the 22nd International Conference on Software Engineering. ACM, New York,
pp. 178–187.

MORICONI, M. AND QIAN, X. 1994. Correctness and composition of software architectures. In Pro-
ceedings of the 2nd Symposium on the Foundations of Software Engineering. ACM, New York,
pp. 164–174.

O’MALLEY, S. W. AND PETERSON, L. L. 1992. A dynamic network architecture. ACM Trans. Comput.
Syst. 10, 2, 110–143.

PERRY, D. AND WOLF, A. 1992. Foundations for the study of software architectures. ACM SIGSOFT
Softw. Eng. Notes 17, 4, 40–52.

SASSONE, V., NIELSEN, M., AND WINSKEL, G. 1993. A classification of models for concurrency. In
CONCUR’93, E. Best, Ed. Lecture Notes in Computer Science, vol. 715. Springer-Verlag, New
York, pp. 82–96.

SHAW, M. 1993. Procedure calls are the assembly language of system interconnection: Connectors
deserve first-class status. In Proceedings of the Workshop on Studies of Software Design (May).

SHAW, M., DELINE, R., KLEIN, D. V., ROSS, T. L., YOUNG, D. M., AND ZELESNIK, G. 1995. Abstractions
for software architecture and tools to support them. IEEE Trans. Softw. Eng. 21, 4 (Apr.), 314–
335.

SPITZNAGEL, B. AND GARLAN, D. 2001. A compositional approach for constructing connectors. In
The Working IEEE/IFIP Conference on Software Architecture (WICSA’01). Royal Netherlands
Academy of Arts and Sciences Amsterdam, The Netherlands.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

104 • A. Lopes et al.

WERMELINGER, M., LOPES, A. AND FIADEIRO, J. L. 2000. Superposing connectors. In Proceedings of
the 10th International Workshop on Software Specification and Design. IEEE Computer Society
Press, Los Alamitos, Calif., pp. 87–94.

WERMELINGER, M., LOPES, A., AND FIADEIRO, J. L. 2001. A graph based architectural
(re)configuration language. In Proceedings of ESEC/FSE’01. ACM, New York, pp. 21–32.

WERMELINGER, M. AND OLIVEIRA, C. 2002. The CommUnity workbench. In Proceedings of the 24th
International Conference on Software Engineering (May), ACM, New York, p. 713.

Received November 2001; revised October 2002; accepted May 2003

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.

