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Abstract

We present the geometry of pure states of an ensemble of N spin-J
systems using a generalisation of the Majorana representation. The
approach is based on Schur-Weyl duality that allows for simple inter-
pretation of the state transformation under the action of general linear
and permutation groups. We show an exemplary application in theory
of decoherence free subspaces and noiseless subsystems.

1 Introduction

The geometrical aspects of physical theories draw attention in fields ranging
from classical mechanics through the general relativity to quantum mechan-
ics. The celebrated Bloch sphere picture of a two-level system has its natural
application in quantum information theory and quantum optics delivering
elegant way of understanding a great number of physical phenomena. At-
tempts have been made to generalize the Bloch sphere approach to higher
dimensional systems @, @] The Hopf fibration leading to a nice geometrical
structure of one and two qubits has been proposed and applied in the theory
of entanglement measures @, , , B, é] Nevertheless none of the above
approaches deliver a simple and general geometrical picture for a ensemble
of N spins J.

The Majorana representation “E, IZ—A], Iﬁ, B] gives a simple and elegant
geometry of quantum states and offers an easy interpretation of the state
transformations for spin-J pure states and the symmetric states of N spin-4
particles. The representation allowed to gain deeper insight into particular
problems of inert states of spinor condensates [20] and local estimation of
Cartesian reference frames |L5]. The basic idea of the Majorana representa-
tion is that the spin-j state can be uniquely represented as 2j points on the
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unit sphere. The positions of the points on the sphere are easy to compute
as roots of a certain polynomial. The beauty of the approach expresses in
the fact that under the action of SU(2) matrix all the points rotate as a solid
body.

A modification of the Majorana approach for N qubits has been applied
in context of separability problem [19] and allowed to find the geometry of
separable states. The method is based on observation that a state of N spin-
1 can be regarded as a state of 2V level system. Nevertheless, this approach
lacks the desired behavior under the special unitary matrix action as the
respective points does not transform in the simple way.

Here we present the geometry of pure states of an ensemble of N spin-J
system, which is a direct generalization of the celebrated Bloch sphere for
a single qubit and has analogical characteristics with respect to the unitary
matrix transformations. The action of the unitary and permutation group
is also discussed. Furthermore, we show an exemplary application of the
method in the context of decoherence free subspaces (DFS) and noiseless
subspaces (NS) for N qubit system (N spin-3 ). The presented geometry
allows to distinguish between the logical and physical states of the system
and yields further insight into the nature of quantum operations in DFS/NS.

The paper is organized as follows. In Sec. 2l we recall the Majorana
representation and present its exemplary application in quantum phase es-
timation, entanglement classification under stochastic local operations and
classical communication (SLOCC) and quantum optics. Next, in Sec. [3 we
introduce the geometry of N spin-J states based on the Schur-Weyl duality
and discuss the general linear and permutation group transformation. The
exemplary application of the method for DFS/NS theory is also given.

2 The geometry of spin-J states

2.1 Majorana representation

First, let us briefly recall the Majorana representation “E, , , E], which
allows one to uniquely represent spin-J state as 2J points on the unit sphere.
The method is a direct generalization of the Bloch sphere for spin-4 particle.
For an arbitrary state |z) = [cos(6/2),sin(6/2) exp(i¢)] a stereographic pro-
jection can be used instead of a Bloch vector n = [sin 0 cos ¢, sin 6 sin ¢, cos 6].
This way the state of a spin-4 can be parameterized with a single complex
number z = e~ cot #/2, where z = oo for § = 0. Next, let |z, ) be a state



orthogonal to |z), then for a given state of spin-J:
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an overlap <ZJ_|®2J |1} is proportional to the Majorana polynomial:
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up to an irrelevant function of z having no roots. Then by the fundamental
theorem of algebra, the polynomial M(|¢);z) can be uniquely factored. In
consequence for each spin-J state there exist a unique set of 2J complex
numbers composed of N roots of the Majorana polynomial {21, 2, ... 25}
supplemented by (2J — N)-element set of co. Each element of the set cor-
responds to a spin-% state, thus there is one to one correspondence between
the spin-J state and 2J spin-4 states, which can be represented as points on
a Bloch sphere. In principle if a certain state occurs d times we shall refer
to such a state and a corresponding point as to d-fold degenerate. Moreover,
note that the method can be applied also to the totally symmetric states of
N spin-3 as they are related to the spin-N/2 states.

The Majorana representation, however, cannot be simply generalized for
mixed states. For spin-3 states the points inside the Bloch ball correspond
to all possible mixed states. This idea cannot be easily transferred for spin-.J
states with J > 1/2, which is the direct conclusion of the state parameter
counting: In general a mixed state of spin-.J is parameterized by (2.J+1)?—1
real parameters whereas 2J points inside the ball are fully described by 6.J
real numbers. One can see that the equality is only for J = 1/2 and in
general the number of the mixed state parameters is much grater than the
number of parameters for 2J points in the Bloch ball.

2.2 State transformation

The geometry associated with the Majorana representation has beautiful
properties with respect to the transformations of the invertible matrices with
a nonzero determinant that comprise the general linear group GL(2, C). It is
straightforward to see that, when the matrix representation of GL(2, C) acts
on the spin-J state, all 2.J spin-4 states undergo the same transformation.
Indeed, solving the relevant Majorana polynomial M(|1)) ; z) is equivalent to
searching all the spin-% states |z i>®2] that are perpendicular to the state



|4). Hence, when the spin-.J state is transformed My [¢) it is equivalent
with a transformation of the spin-4 states M1/2 12) as (2% My |y) =
((z_] MI /2)®2J l). Here M denotes irreducible 2J + 1 dimensional repre-
sentation of GL(2,C).

As all 2J spin-$ states undergo the same GL(2,C) action let us look at
the transformation closer. To do so recall that any matrix M € GL(2,C)
can be uniquely decomposed as M = Z;{7A€, where Y € U (2) is a unitary
matrix and R is a hermitian positive semidefinite matrix. The action of
unitary matrix is trivial as it is a simple rotation of Bloch sphere, hence
the unitary transformation of spin-J state is reflected in the rotation of the
corresponding points all together as a rigid solid. The hermitian matrix
transformation requires more attention. Note that the resulting state is not
normalized hence its Bloch vector neither. The hermitian matrix transforms
the sphere into an ellipsoid and moves it in the certain direction in such a way
that the center of the sphere is always inside the resulting ellipsoid. Next, the
normalization procedure amounts to shrink or lengthen the Bloch vectors.
In result, starting form unit sphere with the uniform state density (according
to the Haar measure) the hermitian positive semidefinite matrix transforms
it to the unit sphere with the modified state density. It thickens the states
in the neighborhoods of two antipodal points in the direction characterized
by the hermitian matrix eigenvectors.

Hence, the general linear group GL(2,C) when acting on the state of
spin-J changes the relative orientation of its points. Nevertheless, it is not
possible to transform arbitrary state into any other this way as GL(2, C) does
not has enough degrees of freedom. Any points combination on the Bloch
sphere can be transformed into any other only using SU(2J + 1) group.

2.3 Applications

The Majorana representation turned out to be very useful in a great number
of problems. The inert states of spinor condensates @] and the optimal
states for local reference frame estimation “E] has been found to be related
to Platonic solids. We recall below other problems that have a simple inter-
pretation in terms of Majorana representation — phase estimation, SLOCC
entanglement classes characterization ﬂ] and the multi-photon states gener-
ation in a process of spontaneous parametric down conversion (SPDC) ]



2.3.1 Phase estimation

In quantum estimation theory one considers the state that depends on the
set of parameters T(pl,pg, ..., PK)|¥), where T is a given transformation
and [¢) is a state of the system. The question is: what is the optimal state
|1} that allows for the best estimation of small deviation of parameters from
their given initial values pgo), p](co), e p,(co), see Ref. @]

In particular the question can be put as follows: What is the optimal N
qubit state for a phase estimation? In other words the state |¢)) must be
found such that exp(igé,)®N 1)) is the most sensitive for the small changes
of the phase ¢ from its initial value ¢(® = 0. The standard notation for
Pauli matrix has been used 6,. The answer for the question is the NOON

M, lﬁ]] state:
) = (102 + [1)2Y) /v2 (3)

that leads to the Heisenberg limit ﬂﬁ] It can be rewritten in the spin
notation as a superposition of spin-N/2 up and spin-N/2 down: [¢1) =
(IN/2,N/2) +|N/2,—N/2)) /v/2. Tt is easy to see that the NOON state
|11) corresponds to N equally spaced points on the equator, see Fig. [(a).

() [¢1) (b) [¢2) (c) Is)

Figure 1: Representation spheres for: [(a)]the NOON state [11),[(b)] the state
|12) leading to shot noise limit and [(¢)] the modification of NOON state |¢3)
for N =12.

The Majorana representation allows one to gain further insight into the
nature of the optimality of the NOON state. The unitary transformation
exp(ig6,)®N corresponds to the rotation of all the points with respect to
the z axis by an angle ¢. When searching for the optimal state one should
prefer those which change the most with respect to small phase change. Let
us compare here the geometries of the NOON state with the state leading



to the shot noise limit ﬁ]

1 SN
[¥2) \/2_N(|0>+|1>) : (4)
which is represented as a single N-fold degenerated point on equator, see
Fig.[[Ib). The NOON state is transformed to itself after ¢ = 27 /N, whereas
|19) after the full ¢ = 27 rotation, thus |11) is more sensitive for the rotations
than [¢2). Hence comparing NOON state |¢)1) with the state leading to shot
noise limit [¢)2), the former one fails the competition. Moreover, the geometry
allows to easily see that using the NOON state the phase can be estimated
in the range (0,7/N) as the points are transformed into themselves for every
/N rotation.
In order to gain more intuitions, we consider the modification of the
NOON state:
[5) = a|0)*Y + B[1)*Y . (5)

which is represented by the N equally spaced points on the circle in the plain
parallel to equator, what is depicted in see Fig. The position of the
circle depends on the coefficients o, § and the number of particles N. One
can see that, when o = 8 = 1/4/2, then it is a NOON state: |¢;) and when
a = 0, then it is a state of total angular momentum N/2 and projection N/2:
|N/2, N/2). In Majorana representation the former situation corresponds to
one N fold degenerate point placed on the North pole. Now it is easy to
see, that the state [1/3) is less sensitive for the unitary rotation exp(i¢a., )@V
than NOON state as in the limit of a = 0 it converges to the |N/2, N/2),
which is immune for the rotation around z axis.

2.3.2 SLOCC entangled classes

Recently Bastin et al. @] have solved the problem of the entanglement classi-
fication under SLOCC for symmetric N qubit states. The problem is to find
the classes of symmetric states that are connected via invertible local trans-
formations. In other words, two states [¢) and |¢) are said to belong to the
same class if and only if there exist M € GL(2, C) such that |¢)) = M®N |¢).

The problem and its solution can be simply understood within Majorana
representation. Two states [i) and |¢) refer to two configurations of the
points on the Bloch sphere. Using the invertible local transformations one
can transform the corresponding points. However, only for states associated
with 3 points it is possible co transform any configuration into any other
as the GL(2,C) group is parameterized with 7 real numbers. On the other



hand by GL(2,C) group one cannot change the degeneracy of the points as
it acts in the same way on each point, hence it cannot split any degenerate
one. Hence the necessary condition for the states to be in the same SLOCC
entanglement class in the language of Majorana representation is the same
number identically degenerated points.

2.3.3 Quantum optics

McCusker and Kwiat in Ref. “ﬂ] have proposed a method of producing multi-
photon states. The scheme is based on repeated SPDC process where one
photon of the pair heralds the presence of the other which is then stored in
optical cavity. By repeating the process of adding the photons and manip-
ulating their polarizations, the state |¢), which is a product of an arbitrary
polarizations, can be built up:

N-1

) = [ (endly + Buil,) [vac) (6)

n=0

The multi-photon state, which is a superposition of two polarizations in
a single spatiotemporal mode is in one-to-one correspondence with a spin
state. This relation is know as the Schwinger representation. The map-
ping can be easily done by simple change of representation switching from
the states |ng,ny) of definite number ny (ny) of horizontally (vertically)
polarised photons to the states |(ng + nv)/2, (ng — ny)/2) of definite sum
and difference of polarization occupation numbers. The sum divided by two
corresponds to a total angular momentum and the difference divided by two
to its projection.

The N photon state Eq. (@) corresponds to a spin-N/2, hence it can be
represented on the Bloch sphere via Majorana representation. Moreover, the
orientation of the points are given by the Bloch vectors of the states (ozndTH +
ﬂnd;r/) |vac). In consequence the experimental process of state construction
by consecutive single photon addition is reflected in the process of addition
of new points on the Bloch sphere.

3 Geometry of N spin-J states

The Majorana representation can be used for N spin-J systems, when the
state is regarded as a (2J + 1)V level system and as such can be represented
as (2J + 1) — 1 points on the Bloch sphere “ﬂ] This approach allowed to
write corresponding Majorana polynomial “E] and formulate the separability



criteria associated with an elegant geometry of separable states. However
the action of unitary matrix leads to the highly nontrivial behavior of the
points on the Bloch sphere. We discuss here the N spin-J state geometry
that overcomes this problem and allows for simple interpretation of state
transformation under the general linear GL(2J + 1, C) and permutation Sy
groups action.

3.1 The representation

The approach is based on the Schur-Weyl duality. We consider here the per-
mutation Sy and general linear GL(2.J + 1, C) group and its representations
S and M over the Hilbert space of N spin-J states. The representation of
permutation group for a given element s € Sy is given by:

S(S) ]a1> ]a2> e ]aN> = |a8(1)> |a8(2)> . !as(N)> (7)

It refers to an interchange of the respective single particle states. Moreover,
the action of the representation of the general linear group element g €
GL(2J +1,C) is an action of the group on each particle:

~ ~ ~

M(g) lar, az, ..., an) = M(g) |ar) M(g) |az) ... M(g) |an) (8)

Next, as the representations commute we consider the joint action of both

representations, which we will denote by MS(g, s) = M(g)S(s). The Schur-
Weyl theorem states that the representation of joint action of the general
linear and the permutation groups GL(2J 4+ 1,C) x Sy can be decomposed
into irreducible representations in the following way:

MS(g.5)= P Malg) @ S8(s). (9)
AePar(N,d)

where M (g) and Sy (s) are irreducible representations (irreps) of GL(2.J + 1, C)
and Sy, respectively, and Par(N, d) is a set of all partitions of N into d parts.

In conjunction with the decomposition of Eq. (@) the following decomposition

of the Hilbert space of the system of N spins-J can be done:

W= P HFon (10)
AePar(N,d)

where HfL and ’Hf are spaces where the irreps My and Sy act, respectively.
The dimensions of the subspaces HfL and %f can be computed using Young



diagrams method. Next, with the Hilbert space decomposition in hand one
can easily express an arbitrary state of N spin-J system |¥) € ’H?N as:

) = &1 @ la)y, (11)

A«

where [¢§), € HSE and |a), € M. We assume that the states [¢§), are
normalized to unity in such way that all have the same global phase and
|y are orthonormal y(a|B), = d43. The above decomposition is unique
therefore there is one-to-one correspondence between the state of N spin-J

and the set {|1/)§>/\})\7a U {&)}, where |£) = @, D, & |a)y. We will refer

to states form the set {\¢§‘>)\})\7a as representation states and analogically
refer to [£) as multiplicity state. Furthermore, if for some « and given A
representation states are identical we will refer to the corresponding state as
degenerate one.

Next, each of the states can be easily represented on the Bloch sphere
via Majorana representation. The states {|1/)§>/\}>\’a can all be drawn on
representation sphere using different colors to distinguish between different
a and A. The state [£) can be drawn on the separate multiplicity sphere.
Note that, the split is done due to fundamental difference between the rep-
resentation and multiplicity states in context of the action of the group
GL(2J 4+ 1,C) x Sy.

3.2 Properties

Let us look now how the state transformation is reflected in its geometry on
the representation and multiplicity spheres. First, we consider a separable
state of a given A and a: [¢), ® |a),, where 1), € H{L and |a), € HY.
The geometry of such a state is particularly simple as the multiplicity state
|€) = |a), and therefore there is only one representation state |¢),. The
action of the representation MS on the state is given by:

MS(g,8) ), @ |a)y = Ma(g) [¥)y ® Sx(s) |a) (12)

The special linear group representation acts only on the representation state
whereas the permutation group representation on the multiplicity state.
However, the permutation group in general modifies the degeneracy of the
representation state as after the action of MS (g,s) the multiplicity state is
given by MS(g,s)|¢) = S 859 o’y The degeneracy of |1), is equal to
a number of nonzero amplitudes 8?\“’,.



It is easy to see that the degeneracy change caused by the permutation
group action in consequence leads to the modification of the representation
states. Indeed, when acting with the representation of identity element for
general linear group and arbitrary element s of permutation group on general
N spin-J state |U):

o =3 (Sesrr)) ol a9

pWeY o

it is seen that the new representation states are proportional to ‘1/;§>)\ x

> §§\" s‘j\"a ‘w§'> In general Sy mixes coherently the representation states.

On the other hand, the representation of an arbitrary element of general
linear group and identity element of permutation group MS(g, 1) on the
state:

M3 Z@ (M@ 105)) @ Ja), (14)
resort to the transformation of only representation states.

3.3 Applications

The presented method is particularly useful in the theory of decoherence free
subspaces and noiseless subsystems. The problem is following. Assume we
have N qubits, which experience an unknown unitary rotation usN , where
UeSUu (2). The question is how to encode a logical state into physical qubits
such that the logical state does not change after arbitrary unitary rotation
U®PN . The detailed analysis can be found in Refs. _ I E‘il and here we will
discuss the geometric aspects of the problem.

We consider the subgroup SU(2) of general linear group GL(2,C). The
properties of GL(2, C) discussed in the previous section are valid with respect
to SU(2). For this special case the decomposition of Hilbert space according
to Eq. (I0) amounts to the direct sum of tensor product of a total angular
momentum subspace H; and a multiplicity subspace C%. The dimensions of
the subspaces are respectively 25 + 1 and d; = (2j + 1)(_ )/(] + +1).

Then, in general, the action of U®N on the state of N qubits is an umtary
rotation of its representation states:

N/2

U)oy = Y (9)[¥5); ®1a);, (15)

j=(N mod 2)/

10



where aj(g) is 2j + 1 dimensional irrep of g € SU(2). In Majorana represen-
tation this can be seen as the rotation of all the representation points as a
solid body, whereas the points on the multiplicity sphere do not experience
any modification. In consequence all the information about the logical state
must be encoded in multiplicity sphere. Hence all interesting logical qubit
dynamics can be investigated there.

As an example, let us look at the simplest DFS for three qubits. The
most general form of the state is given by:

W) = &2 [U3/2) + €1 o ‘7/)(1)/2> +&1 ) ‘?/)i/g> (16)

When the logical qubit is encoded in the spaces of total angular momentum
j = 1/2 it is immune to the strong collective noise. Typically arbitrary states
of spin-3 : ‘¢? /2> and ‘1/1% /2> can represent logical 0 and 1. The logical qubit
can be encoded entirely in the multiplicity state:

02) = &0 [85)0) +ELja |02 - (17)

Then its multiplicity state is given by |{1) = (0,5?/2,5%/2).

As was observed in Ref. E] for 3 spin-% system, the hamiltonians that
can be used for physical realisation of unitary transformation of logical qubit
can be constructed based on the algebra of quantum operators X L, YL, 7 I
The operators are a linear combinations of physical spins permutations. For
example the logical Zr operator is a combination of three permutations:

. 1 . . .
1 = 3(33214 + S1324 — 252134) (18)

where 32-12-2@-32-4 denotes the permutation operator which changes physical
qubit number 1 with ¢, number 2 with i and so on. In consequence the
SU(2) rotation of logical qubit can be obtained byﬂa]:

Uy, = exp (iaZL) exp (zﬂf@) exp (z’vZAL) (19)

where «, 5 and v are the Euler angels.
A diagram summarising the presented discussion is depicted in Fig.

For an exemplary state:
W) = 2—\1/6 (2(|110> +1001)) — (14 v3)(]101) 4 100))+ (20)

(—1+V3)(|011) + |01o>))

11



one can easily find the multiplicity state:
1 1
0= (0.55.75) (21)

and representation states:

(b) U W) (c) Ur |Vr)

Figure 2: a) The geometry of an exemplary state |¥ 1) depicted in the repre-
sentation (left) and multiplicity (right) spheres. b) Under the action of /®3
only the representation sphere experiences a modification. c¢) The logical
qubit transformation, in general, changes the representation states.

The state |Vz) is depicted in Fig. the representation states are
presented on the left sphere and the multiplicity state on the right one.
Under the action of arbitrary U3 only the representation sphere experiences
modification. The logical qubit is immune for this kind of operation as it
can be seen in the lower left box in Fig. 2l Moreover, let us consider a simple

unitary rotation of the logical qubit around the z axis Uy = exp (iaZ L).
It is easy to check that this transformation modifies the multiplicity state:

12



L?L(o,g?/2,§}/2) = (0,{?/26ia,§%/2e_i°‘), what is depicted in the right box in

Fig. Rlfor « = 7. The logical qubit transformation Uy, in general changes the
orientation of the points on both spheres.

4 Conclusions

We discussed the Majorana representation, which allows one to represent
arbitrary pure state of multilevel system as points on Bloch sphere, which
are rotated as a rigid body under the action of special unitary group SU(2).
The method cannot be considered as a tool providing the solution. However,
it proved to be very useful offering deeper insight and understanding of the
problem.

The main result presented in Sec. 3 was a generalisation of the Majorana
representation for the pure states of N spin-J systems. When applied to the
theory of decoherence free subspaces, it allowed as to geometrically separate
the noisy dynamics and the logical state transformation.

The main drawback of the Majorana representation and presented geom-
etry of the states N spin-J systems is that both work only for pure states.
Hence, in is very desirable to construct the mixed states geometry that allows
one for simple understanding of the problem under consideration.
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