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Abstrat

We present the geometry of pure states of an ensemble of N spin-J
systems using a generalisation of the Majorana representation. The

approah is based on Shur-Weyl duality that allows for simple inter-

pretation of the state transformation under the ation of general linear

and permutation groups. We show an exemplary appliation in theory

of deoherene free subspaes and noiseless subsystems.

1 Introdution

The geometrial aspets of physial theories draw attention in �elds ranging

from lassial mehanis through the general relativity to quantum mehan-

is. The elebrated Bloh sphere piture of a two-level system has its natural

appliation in quantum information theory and quantum optis delivering

elegant way of understanding a great number of physial phenomena. At-

tempts have been made to generalize the Bloh sphere approah to higher

dimensional systems [14, 9℄. The Hopf �bration leading to a nie geometrial

struture of one and two qubits has been proposed and applied in the theory

of entanglement measures [16, 17, 8, 5, 22℄. Nevertheless none of the above

approahes deliver a simple and general geometrial piture for a ensemble

of N spins J .
The Majorana representation [18, 24, 26, 2℄ gives a simple and elegant

geometry of quantum states and o�ers an easy interpretation of the state

transformations for spin-J pure states and the symmetri states of N spin-½

partiles. The representation allowed to gain deeper insight into partiular

problems of inert states of spinor ondensates [20℄ and loal estimation of

Cartesian referene frames [15℄. The basi idea of the Majorana representa-

tion is that the spin-j state an be uniquely represented as 2j points on the
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unit sphere. The positions of the points on the sphere are easy to ompute

as roots of a ertain polynomial. The beauty of the approah expresses in

the fat that under the ation of SU(2) matrix all the points rotate as a solid

body.

A modi�ation of the Majorana approah for N qubits has been applied

in ontext of separability problem [19℄ and allowed to �nd the geometry of

separable states. The method is based on observation that a state of N spin-

½ an be regarded as a state of 2N level system. Nevertheless, this approah

laks the desired behavior under the speial unitary matrix ation as the

respetive points does not transform in the simple way.

Here we present the geometry of pure states of an ensemble of N spin-J
system, whih is a diret generalization of the elebrated Bloh sphere for

a single qubit and has analogial harateristis with respet to the unitary

matrix transformations. The ation of the unitary and permutation group

is also disussed. Furthermore, we show an exemplary appliation of the

method in the ontext of deoherene free subspaes (DFS) and noiseless

subspaes (NS) for N qubit system (N spin-½ ). The presented geometry

allows to distinguish between the logial and physial states of the system

and yields further insight into the nature of quantum operations in DFS/NS.

The paper is organized as follows. In Se. 2 we reall the Majorana

representation and present its exemplary appliation in quantum phase es-

timation, entanglement lassi�ation under stohasti loal operations and

lassial ommuniation (SLOCC) and quantum optis. Next, in Se. 3, we

introdue the geometry of N spin-J states based on the Shur-Weyl duality

and disuss the general linear and permutation group transformation. The

exemplary appliation of the method for DFS/NS theory is also given.

2 The geometry of spin-J states

2.1 Majorana representation

First, let us brie�y reall the Majorana representation [18, 23, 10, 2℄, whih

allows one to uniquely represent spin-J state as 2J points on the unit sphere.

The method is a diret generalization of the Bloh sphere for spin-½ partile.

For an arbitrary state |z〉 = [cos(θ/2), sin(θ/2) exp(iφ)] a stereographi pro-

jetion an be used instead of a Bloh vetor n = [sin θ cosφ, sin θ sinφ, cos θ].
This way the state of a spin-½ an be parameterized with a single omplex

number z = e−iφ cot θ/2, where z = ∞ for θ = 0. Next, let |z⊥〉 be a state
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orthogonal to |z〉, then for a given state of spin-J :

|ψ〉 =
J∑

m=−J

ψm |J,m〉 (1)

an overlap 〈z⊥|⊗2J |ψ〉 is proportional to the Majorana polynomial:

M(|ψ〉 ; z) =
J∑

m=−J

(−1)k
(

2J
J +m

) 1

2

ψmz
J+m

(2)

up to an irrelevant funtion of z having no roots. Then by the fundamental

theorem of algebra, the polynomial M(|ψ〉 ; z) an be uniquely fatored. In

onsequene for eah spin-J state there exist a unique set of 2J omplex

numbers omposed of Ñ roots of the Majorana polynomial {z1, z2, . . . , zÑ}
supplemented by (2J − Ñ)-element set of ∞. Eah element of the set or-

responds to a spin-½ state, thus there is one to one orrespondene between

the spin-J state and 2J spin-½ states, whih an be represented as points on

a Bloh sphere. In priniple if a ertain state ours d times we shall refer

to suh a state and a orresponding point as to d-fold degenerate. Moreover,

note that the method an be applied also to the totally symmetri states of

N spin-½ as they are related to the spin-N/2 states.

The Majorana representation, however, annot be simply generalized for

mixed states. For spin-½ states the points inside the Bloh ball orrespond

to all possible mixed states. This idea annot be easily transferred for spin-J
states with J > 1/2, whih is the diret onlusion of the state parameter

ounting: In general a mixed state of spin-J is parameterized by (2J+1)2−1
real parameters whereas 2J points inside the ball are fully desribed by 6J
real numbers. One an see that the equality is only for J = 1/2 and in

general the number of the mixed state parameters is muh grater than the

number of parameters for 2J points in the Bloh ball.

2.2 State transformation

The geometry assoiated with the Majorana representation has beautiful

properties with respet to the transformations of the invertible matries with

a nonzero determinant that omprise the general linear group GL(2,C). It is
straightforward to see that, when the matrix representation of GL(2,C) ats
on the spin-J state, all 2J spin-½ states undergo the same transformation.

Indeed, solving the relevant Majorana polynomial M(|ψ〉 ; z) is equivalent to
searhing all the spin-½ states |z⊥〉⊗2J

that are perpendiular to the state
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|ψ〉. Hene, when the spin-J state is transformed M̂J |ψ〉 it is equivalent

with a transformation of the spin-½ states M̂1/2 |z〉 as 〈z⊥|⊗2J M̂J |ψ〉 =

(〈z⊥| M̂†

1/2)
⊗2J |ψ〉. Here M̂J denotes irreduible 2J +1 dimensional repre-

sentation of GL(2,C).
As all 2J spin-½ states undergo the same GL(2,C) ation let us look at

the transformation loser. To do so reall that any matrix M̂ ∈ GL(2,C)
an be uniquely deomposed as M̂ = ÛR̂, where Û ∈ U(2) is a unitary

matrix and R̂ is a hermitian positive semide�nite matrix. The ation of

unitary matrix is trivial as it is a simple rotation of Bloh sphere, hene

the unitary transformation of spin-J state is re�eted in the rotation of the

orresponding points all together as a rigid solid. The hermitian matrix

transformation requires more attention. Note that the resulting state is not

normalized hene its Bloh vetor neither. The hermitian matrix transforms

the sphere into an ellipsoid and moves it in the ertain diretion in suh a way

that the enter of the sphere is always inside the resulting ellipsoid. Next, the

normalization proedure amounts to shrink or lengthen the Bloh vetors.

In result, starting form unit sphere with the uniform state density (aording

to the Haar measure) the hermitian positive semide�nite matrix transforms

it to the unit sphere with the modi�ed state density. It thikens the states

in the neighborhoods of two antipodal points in the diretion haraterized

by the hermitian matrix eigenvetors.

Hene, the general linear group GL(2,C) when ating on the state of

spin-J hanges the relative orientation of its points. Nevertheless, it is not

possible to transform arbitrary state into any other this way asGL(2,C) does
not has enough degrees of freedom. Any points ombination on the Bloh

sphere an be transformed into any other only using SU(2J + 1) group.

2.3 Appliations

The Majorana representation turned out to be very useful in a great number

of problems. The inert states of spinor ondensates [20℄ and the optimal

states for loal referene frame estimation [15℄ has been found to be related

to Platoni solids. We reall below other problems that have a simple inter-

pretation in terms of Majorana representation � phase estimation, SLOCC

entanglement lasses haraterization [1℄ and the multi-photon states gener-

ation in a proess of spontaneous parametri down onversion (SPDC) [21℄.
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2.3.1 Phase estimation

In quantum estimation theory one onsiders the state that depends on the

set of parameters T̂ (p1, p2, . . . , pk) |ψ〉, where T̂ is a given transformation

and |ψ〉 is a state of the system. The question is: what is the optimal state

|ψ〉 that allows for the best estimation of small deviation of parameters from

their given initial values p
(0)
1 , p

(0)
k , . . . , p

(0)
k , see Ref. [12℄.

In partiular the question an be put as follows: What is the optimal N
qubit state for a phase estimation? In other words the state |ψ〉 must be

found suh that exp(iφσ̂z)
⊗N |ψ〉 is the most sensitive for the small hanges

of the phase φ from its initial value φ(0) = 0. The standard notation for

Pauli matrix has been used σ̂z. The answer for the question is the NOON

[4, 11℄ state:

|ψ1〉 =
(
|0〉⊗N + |1〉⊗N

)
/
√
2 (3)

that leads to the Heisenberg limit [25℄. It an be rewritten in the spin

notation as a superposition of spin-N/2 up and spin-N/2 down: |ψ1〉 =
(|N/2, N/2〉 + |N/2,−N/2〉) /

√
2. It is easy to see that the NOON state

|ψ1〉 orresponds to N equally spaed points on the equator, see Fig. 1(a).

(a) |ψ1〉 (b) |ψ2〉 () |ψ3〉

Figure 1: Representation spheres for: (a) the NOON state |ψ1〉, (b) the state
|ψ2〉 leading to shot noise limit and () the modi�ation of NOON state |ψ3〉
for N = 12.

The Majorana representation allows one to gain further insight into the

nature of the optimality of the NOON state. The unitary transformation

exp(iφσ̂z)
⊗N

orresponds to the rotation of all the points with respet to

the z axis by an angle φ. When searhing for the optimal state one should

prefer those whih hange the most with respet to small phase hange. Let

us ompare here the geometries of the NOON state with the state leading
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to the shot noise limit [7℄:

|ψ2〉 =
1√
2N

(|0〉+ |1〉)⊗N , (4)

whih is represented as a single N -fold degenerated point on equator, see

Fig. 1(b). The NOON state is transformed to itself after φ = 2π/N , whereas

|ψ2〉 after the full φ = 2π rotation, thus |ψ1〉 is more sensitive for the rotations

than |ψ2〉. Hene omparing NOON state |ψ1〉 with the state leading to shot

noise limit |ψ2〉, the former one fails the ompetition. Moreover, the geometry

allows to easily see that using the NOON state the phase an be estimated

in the range (0, π/N) as the points are transformed into themselves for every

π/N rotation.

In order to gain more intuitions, we onsider the modi�ation of the

NOON state:

|ψ3〉 = α |0〉⊗N + β |1〉⊗N . (5)

whih is represented by the N equally spaed points on the irle in the plain

parallel to equator, what is depited in see Fig. 1(). The position of the

irle depends on the oe�ients α, β and the number of partiles N . One

an see that, when α = β = 1/
√
2, then it is a NOON state: |ψ1〉 and when

α = 0, then it is a state of total angular momentum N/2 and projetion N/2:
|N/2, N/2〉. In Majorana representation the former situation orresponds to

one N fold degenerate point plaed on the North pole. Now it is easy to

see, that the state |ψ3〉 is less sensitive for the unitary rotation exp(iφσ̂z)
⊗N

than NOON state as in the limit of α = 0 it onverges to the |N/2, N/2〉,
whih is immune for the rotation around z axis.

2.3.2 SLOCC entangled lasses

Reently Bastin et al. [1℄ have solved the problem of the entanglement lassi-

�ation under SLOCC for symmetri N qubit states. The problem is to �nd

the lasses of symmetri states that are onneted via invertible loal trans-

formations. In other words, two states |ψ〉 and |φ〉 are said to belong to the

same lass if and only if there exist M̂ ∈ GL(2,C) suh that |ψ〉 = M̂⊗N |φ〉.
The problem and its solution an be simply understood within Majorana

representation. Two states |ψ〉 and |φ〉 refer to two on�gurations of the

points on the Bloh sphere. Using the invertible loal transformations one

an transform the orresponding points. However, only for states assoiated

with 3 points it is possible o transform any on�guration into any other

as the GL(2,C) group is parameterized with 7 real numbers. On the other
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hand by GL(2,C) group one annot hange the degeneray of the points as

it ats in the same way on eah point, hene it annot split any degenerate

one. Hene the neessary ondition for the states to be in the same SLOCC

entanglement lass in the language of Majorana representation is the same

number identially degenerated points.

2.3.3 Quantum optis

MCusker and Kwiat in Ref. [21℄ have proposed a method of produing multi-

photon states. The sheme is based on repeated SPDC proess where one

photon of the pair heralds the presene of the other whih is then stored in

optial avity. By repeating the proess of adding the photons and manip-

ulating their polarizations, the state |ψ〉, whih is a produt of an arbitrary

polarizations, an be built up:

|ψ〉 =
N−1∏

n=0

(αnâ
†
H + βnâ

†
V ) |va〉 (6)

The multi-photon state, whih is a superposition of two polarizations in

a single spatiotemporal mode is in one-to-one orrespondene with a spin

state. This relation is know as the Shwinger representation. The map-

ping an be easily done by simple hange of representation swithing from

the states |nH , nV 〉 of de�nite number nH (nV ) of horizontally (vertially)

polarised photons to the states |(nH + nV )/2, (nH − nV )/2〉 of de�nite sum
and di�erene of polarization oupation numbers. The sum divided by two

orresponds to a total angular momentum and the di�erene divided by two

to its projetion.

The N photon state Eq. (6) orresponds to a spin-N/2, hene it an be

represented on the Bloh sphere via Majorana representation. Moreover, the

orientation of the points are given by the Bloh vetors of the states (αnâ
†
H+

βnâ
†
V ) |va〉. In onsequene the experimental proess of state onstrution

by onseutive single photon addition is re�eted in the proess of addition

of new points on the Bloh sphere.

3 Geometry of N spin-J states

The Majorana representation an be used for N spin-J systems, when the

state is regarded as a (2J +1)N level system and as suh an be represented

as (2J + 1)N − 1 points on the Bloh sphere [2℄. This approah allowed to

write orresponding Majorana polynomial [19℄ and formulate the separability
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riteria assoiated with an elegant geometry of separable states. However

the ation of unitary matrix leads to the highly nontrivial behavior of the

points on the Bloh sphere. We disuss here the N spin-J state geometry

that overomes this problem and allows for simple interpretation of state

transformation under the general linear GL(2J + 1,C) and permutation SN
groups ation.

3.1 The representation

The approah is based on the Shur-Weyl duality. We onsider here the per-

mutation SN and general linear GL(2J + 1,C) group and its representations

Ŝ and M̂ over the Hilbert spae of N spin-J states. The representation of

permutation group for a given element s ∈ SN is given by:

Ŝ(s) |a1〉 |a2〉 . . . |aN 〉 =
∣∣as(1)

〉 ∣∣as(2)
〉
. . .
∣∣as(N)

〉
(7)

It refers to an interhange of the respetive single partile states. Moreover,

the ation of the representation of the general linear group element g ∈
GL(2J + 1,C) is an ation of the group on eah partile:

M̂(g) |a1, a2, . . . , aN 〉 = M̂(g) |a1〉 M̂(g) |a2〉 . . . M̂(g) |aN 〉 (8)

Next, as the representations ommute we onsider the joint ation of both

representations, whih we will denote by M̂S(g, s) = M̂(g)Ŝ(s). The Shur-
Weyl theorem states that the representation of joint ation of the general

linear and the permutation groups GL(2J + 1,C)× SN an be deomposed

into irreduible representations in the following way:

M̂S(g, s) ∼=
⊕

λ∈Par(N,d)

M̂λ(g)⊗ Ŝλ(s), (9)

where M̂λ(g) and Ŝλ(s) are irreduible representations (irreps) ofGL(2J + 1,C)
and SN , respetively, and Par(N, d) is a set of all partitions of N into d parts.
In onjuntion with the deomposition of Eq. (9) the following deomposition

of the Hilbert spae of the system of N spins-J an be done:

H⊗N
J =

⊕

λ∈Par(N,d)

HGL
λ ⊗HS

λ (10)

where HGL
λ and HS

λ are spaes where the irreps M̂λ and Ŝλ at, respetively.

The dimensions of the subspaes HGL
λ and HS

λ an be omputed using Young
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diagrams method. Next, with the Hilbert spae deomposition in hand one

an easily express an arbitrary state of N spin-J system |Ψ〉 ∈ H⊗N
J as:

|Ψ〉 =
∑

λ,α

ξαλ |ψα
λ 〉λ ⊗ |α〉λ , (11)

where |ψα
λ 〉λ ∈ HGL

λ and |α〉λ ∈ HS
λ . We assume that the states |ψα

λ 〉λ are

normalized to unity in suh way that all have the same global phase and

|α〉λ are orthonormal λ〈α |β〉λ = δαβ . The above deomposition is unique

therefore there is one-to-one orrespondene between the state of N spin-J
and the set

{
|ψα

λ 〉λ
}
λ,α

∪ {|ξ〉}, where |ξ〉 =
⊕

λ

∑
α ξ

α
λ |α〉λ. We will refer

to states form the set

{
|ψα

λ 〉λ
}
λ,α

as representation states and analogially

refer to |ξ〉 as multipliity state. Furthermore, if for some α and given λ
representation states are idential we will refer to the orresponding state as

degenerate one.

Next, eah of the states an be easily represented on the Bloh sphere

via Majorana representation. The states

{
|ψα

λ 〉λ
}
λ,α

an all be drawn on

representation sphere using di�erent olors to distinguish between di�erent

α and λ. The state |ξ〉 an be drawn on the separate multipliity sphere.

Note that, the split is done due to fundamental di�erene between the rep-

resentation and multipliity states in ontext of the ation of the group

GL(2J + 1,C)× SN .

3.2 Properties

Let us look now how the state transformation is re�eted in its geometry on

the representation and multipliity spheres. First, we onsider a separable

state of a given λ and α: |ψ〉λ ⊗ |α〉λ, where |ψ〉λ ∈ HGL
λ and |α〉λ ∈ HS

λ .

The geometry of suh a state is partiularly simple as the multipliity state

|ξ〉 = |α〉λ and therefore there is only one representation state |ψ〉λ. The

ation of the representation M̂S on the state is given by:

M̂S(g, s) |ψ〉λ ⊗ |α〉λ = M̂λ(g) |ψ〉λ ⊗ Ŝλ(s) |α〉λ (12)

The speial linear group representation ats only on the representation state

whereas the permutation group representation on the multipliity state.

However, the permutation group in general modi�es the degeneray of the

representation state as after the ation of M̂S(g, s) the multipliity state is

given by M̂S(g, s) |ξ〉 = ∑α′ sαα
′

λ |α′〉λ. The degeneray of |ψ〉λ is equal to

a number of nonzero amplitudes sαα
′

λ .
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It is easy to see that the degeneray hange aused by the permutation

group ation in onsequene leads to the modi�ation of the representation

states. Indeed, when ating with the representation of identity element for

general linear group and arbitrary element s of permutation group on general

N spin-J state |Ψ〉:

M̂S(1, s) |Ψ〉 =
∑

λ,α

(∑

α′

ξα
′

λ s
α′α
λ

∣∣∣ψα′

λ

〉)
⊗ |α〉λ , (13)

it is seen that the new representation states are proportional to

∣∣∣ψ̃α
λ

〉
λ
∝

∑
α′ ξα

′

λ s
α′α
λ

∣∣∣ψα′

λ

〉
. In general SN mixes oherently the representation states.

On the other hand, the representation of an arbitrary element of general

linear group and identity element of permutation group M̂S(g, 1) on the

state:

M̂S(g, 1) |Ψ〉 =
∑

λ,α

ξαλ

(
M̂λ(g) |ψα

λ 〉
)
⊗ |α〉λ , (14)

resort to the transformation of only representation states.

3.3 Appliations

The presented method is partiularly useful in the theory of deoherene free

subspaes and noiseless subsystems. The problem is following. Assume we

have N qubits, whih experiene an unknown unitary rotation Û⊗N
, where

Û ∈ SU(2). The question is how to enode a logial state into physial qubits

suh that the logial state does not hange after arbitrary unitary rotation

Û⊗N
. The detailed analysis an be found in Refs. [13, 6, 3℄ and here we will

disuss the geometri aspets of the problem.

We onsider the subgroup SU(2) of general linear group GL(2,C). The
properties ofGL(2,C) disussed in the previous setion are valid with respet
to SU(2). For this speial ase the deomposition of Hilbert spae aording

to Eq. (10) amounts to the diret sum of tensor produt of a total angular

momentum subspae Hj and a multipliity subspae C

dj
. The dimensions of

the subspaes are respetively 2j + 1 and dj = (2j + 1)
( N

N
2
−j

)
/(j + N

2 + 1).

Then, in general, the ation of Û⊗N
on the state of N qubits is an unitary

rotation of its representation states:

Û(g)⊗N |Ψ〉 =
N/2∑

j=(N mod 2)/2

ξαj Ûj(g)
∣∣ψα

j

〉
j
⊗ |α〉j , (15)
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where Ûj(g) is 2j+1 dimensional irrep of g ∈ SU(2). In Majorana represen-

tation this an be seen as the rotation of all the representation points as a

solid body, whereas the points on the multipliity sphere do not experiene

any modi�ation. In onsequene all the information about the logial state

must be enoded in multipliity sphere. Hene all interesting logial qubit

dynamis an be investigated there.

As an example, let us look at the simplest DFS for three qubits. The

most general form of the state is given by:

|Ψ〉 = ξ3/2
∣∣ψ3/2

〉
+ ξ01/2

∣∣∣ψ0
1/2

〉
+ ξ11/2

∣∣∣ψ1
1/2

〉
(16)

When the logial qubit is enoded in the spaes of total angular momentum

j = 1/2 it is immune to the strong olletive noise. Typially arbitrary states

of spin-½ :

∣∣∣ψ0
1/2

〉
and

∣∣∣ψ1
1/2

〉
an represent logial 0 and 1. The logial qubit

an be enoded entirely in the multipliity state:

|ΨL〉 = ξ01/2

∣∣∣ψ0
1/2

〉
+ ξ11/2

∣∣∣ψ1
1/2

〉
. (17)

Then its multipliity state is given by |ξL〉 = (0, ξ01/2, ξ
1
1/2).

As was observed in Ref. [3℄ for 3 spin-½ system, the hamiltonians that

an be used for physial realisation of unitary transformation of logial qubit

an be onstruted based on the algebra of quantum operators X̂L, ŶL, ẐL.

The operators are a linear ombinations of physial spins permutations. For

example the logial ẐL operator is a ombination of three permutations:

ẐL =
1

3
(Ŝ3214 + Ŝ1324 − 2Ŝ2134) (18)

where Ŝi1i2i3i4 denotes the permutation operator whih hanges physial

qubit number 1 with i1, number 2 with i2 and so on. In onsequene the

SU(2) rotation of logial qubit an be obtained by[3℄:

ÛL = exp
(
iαẐL

)
exp

(
iβŶL

)
exp

(
iγẐL

)
(19)

where α, β and γ are the Euler angels.

A diagram summarising the presented disussion is depited in Fig. 2.

For an exemplary state:

|ΨL〉 =
1

2
√
6

(
2(|110〉 + |001〉)− (1 +

√
3)(|101〉 + |100〉)+ (20)

(−1 +
√
3)(|011〉 + |010〉)

)

11



one an easily �nd the multipliity state:

|ξ〉 =
(
0,

1√
2
,
1√
2

)
(21)

and representation states:

∣∣∣ψ0
1/2

〉
1/2

=
1√
2
(|0〉+ |1〉) (22)

∣∣∣ψ1
1/2

〉
1/2

=
1√
2
(|0〉 − |1〉). (23)

(a) |ΨL〉

(b) Û⊗3 |ΨL〉 () ÛL |ΨL〉

Figure 2: a) The geometry of an exemplary state |ΨL〉 depited in the repre-

sentation (left) and multipliity (right) spheres. b) Under the ation of Û⊗3

only the representation sphere experienes a modi�ation. ) The logial

qubit transformation, in general, hanges the representation states.

The state |ΨL〉 is depited in Fig. 2(a): the representation states are

presented on the left sphere and the multipliity state on the right one.

Under the ation of arbitrary Û⊗3
only the representation sphere experienes

modi�ation. The logial qubit is immune for this kind of operation as it

an be seen in the lower left box in Fig. 2. Moreover, let us onsider a simple

unitary rotation of the logial qubit around the z axis ÛL = exp
(
iαẐL

)
.

It is easy to hek that this transformation modi�es the multipliity state:

12



ÛL(0, ξ
0
1/2, ξ

1
1/2) = (0, ξ01/2e

iα, ξ11/2e
−iα), what is depited in the right box in

Fig. 2 for α = π. The logial qubit transformation ÛL in general hanges the

orientation of the points on both spheres.

4 Conlusions

We disussed the Majorana representation, whih allows one to represent

arbitrary pure state of multilevel system as points on Bloh sphere, whih

are rotated as a rigid body under the ation of speial unitary group SU(2).

The method annot be onsidered as a tool providing the solution. However,

it proved to be very useful o�ering deeper insight and understanding of the

problem.

The main result presented in Se. 3 was a generalisation of the Majorana

representation for the pure states of N spin-J systems. When applied to the

theory of deoherene free subspaes, it allowed as to geometrially separate

the noisy dynamis and the logial state transformation.

The main drawbak of the Majorana representation and presented geom-

etry of the states N spin-J systems is that both work only for pure states.

Hene, in is very desirable to onstrut the mixed states geometry that allows

one for simple understanding of the problem under onsideration.
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