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Abstra
t

We present the geometry of pure states of an ensemble of N spin-J
systems using a generalisation of the Majorana representation. The

approa
h is based on S
hur-Weyl duality that allows for simple inter-

pretation of the state transformation under the a
tion of general linear

and permutation groups. We show an exemplary appli
ation in theory

of de
oheren
e free subspa
es and noiseless subsystems.

1 Introdu
tion

The geometri
al aspe
ts of physi
al theories draw attention in �elds ranging

from 
lassi
al me
hani
s through the general relativity to quantum me
han-

i
s. The 
elebrated Blo
h sphere pi
ture of a two-level system has its natural

appli
ation in quantum information theory and quantum opti
s delivering

elegant way of understanding a great number of physi
al phenomena. At-

tempts have been made to generalize the Blo
h sphere approa
h to higher

dimensional systems [14, 9℄. The Hopf �bration leading to a ni
e geometri
al

stru
ture of one and two qubits has been proposed and applied in the theory

of entanglement measures [16, 17, 8, 5, 22℄. Nevertheless none of the above

approa
hes deliver a simple and general geometri
al pi
ture for a ensemble

of N spins J .
The Majorana representation [18, 24, 26, 2℄ gives a simple and elegant

geometry of quantum states and o�ers an easy interpretation of the state

transformations for spin-J pure states and the symmetri
 states of N spin-½

parti
les. The representation allowed to gain deeper insight into parti
ular

problems of inert states of spinor 
ondensates [20℄ and lo
al estimation of

Cartesian referen
e frames [15℄. The basi
 idea of the Majorana representa-

tion is that the spin-j state 
an be uniquely represented as 2j points on the
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unit sphere. The positions of the points on the sphere are easy to 
ompute

as roots of a 
ertain polynomial. The beauty of the approa
h expresses in

the fa
t that under the a
tion of SU(2) matrix all the points rotate as a solid

body.

A modi�
ation of the Majorana approa
h for N qubits has been applied

in 
ontext of separability problem [19℄ and allowed to �nd the geometry of

separable states. The method is based on observation that a state of N spin-

½ 
an be regarded as a state of 2N level system. Nevertheless, this approa
h

la
ks the desired behavior under the spe
ial unitary matrix a
tion as the

respe
tive points does not transform in the simple way.

Here we present the geometry of pure states of an ensemble of N spin-J
system, whi
h is a dire
t generalization of the 
elebrated Blo
h sphere for

a single qubit and has analogi
al 
hara
teristi
s with respe
t to the unitary

matrix transformations. The a
tion of the unitary and permutation group

is also dis
ussed. Furthermore, we show an exemplary appli
ation of the

method in the 
ontext of de
oheren
e free subspa
es (DFS) and noiseless

subspa
es (NS) for N qubit system (N spin-½ ). The presented geometry

allows to distinguish between the logi
al and physi
al states of the system

and yields further insight into the nature of quantum operations in DFS/NS.

The paper is organized as follows. In Se
. 2 we re
all the Majorana

representation and present its exemplary appli
ation in quantum phase es-

timation, entanglement 
lassi�
ation under sto
hasti
 lo
al operations and


lassi
al 
ommuni
ation (SLOCC) and quantum opti
s. Next, in Se
. 3, we

introdu
e the geometry of N spin-J states based on the S
hur-Weyl duality

and dis
uss the general linear and permutation group transformation. The

exemplary appli
ation of the method for DFS/NS theory is also given.

2 The geometry of spin-J states

2.1 Majorana representation

First, let us brie�y re
all the Majorana representation [18, 23, 10, 2℄, whi
h

allows one to uniquely represent spin-J state as 2J points on the unit sphere.

The method is a dire
t generalization of the Blo
h sphere for spin-½ parti
le.

For an arbitrary state |z〉 = [cos(θ/2), sin(θ/2) exp(iφ)] a stereographi
 pro-

je
tion 
an be used instead of a Blo
h ve
tor n = [sin θ cosφ, sin θ sinφ, cos θ].
This way the state of a spin-½ 
an be parameterized with a single 
omplex

number z = e−iφ cot θ/2, where z = ∞ for θ = 0. Next, let |z⊥〉 be a state
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orthogonal to |z〉, then for a given state of spin-J :

|ψ〉 =
J∑

m=−J

ψm |J,m〉 (1)

an overlap 〈z⊥|⊗2J |ψ〉 is proportional to the Majorana polynomial:

M(|ψ〉 ; z) =
J∑

m=−J

(−1)k
(

2J
J +m

) 1

2

ψmz
J+m

(2)

up to an irrelevant fun
tion of z having no roots. Then by the fundamental

theorem of algebra, the polynomial M(|ψ〉 ; z) 
an be uniquely fa
tored. In


onsequen
e for ea
h spin-J state there exist a unique set of 2J 
omplex

numbers 
omposed of Ñ roots of the Majorana polynomial {z1, z2, . . . , zÑ}
supplemented by (2J − Ñ)-element set of ∞. Ea
h element of the set 
or-

responds to a spin-½ state, thus there is one to one 
orresponden
e between

the spin-J state and 2J spin-½ states, whi
h 
an be represented as points on

a Blo
h sphere. In prin
iple if a 
ertain state o

urs d times we shall refer

to su
h a state and a 
orresponding point as to d-fold degenerate. Moreover,

note that the method 
an be applied also to the totally symmetri
 states of

N spin-½ as they are related to the spin-N/2 states.

The Majorana representation, however, 
annot be simply generalized for

mixed states. For spin-½ states the points inside the Blo
h ball 
orrespond

to all possible mixed states. This idea 
annot be easily transferred for spin-J
states with J > 1/2, whi
h is the dire
t 
on
lusion of the state parameter


ounting: In general a mixed state of spin-J is parameterized by (2J+1)2−1
real parameters whereas 2J points inside the ball are fully des
ribed by 6J
real numbers. One 
an see that the equality is only for J = 1/2 and in

general the number of the mixed state parameters is mu
h grater than the

number of parameters for 2J points in the Blo
h ball.

2.2 State transformation

The geometry asso
iated with the Majorana representation has beautiful

properties with respe
t to the transformations of the invertible matri
es with

a nonzero determinant that 
omprise the general linear group GL(2,C). It is
straightforward to see that, when the matrix representation of GL(2,C) a
ts
on the spin-J state, all 2J spin-½ states undergo the same transformation.

Indeed, solving the relevant Majorana polynomial M(|ψ〉 ; z) is equivalent to
sear
hing all the spin-½ states |z⊥〉⊗2J

that are perpendi
ular to the state
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|ψ〉. Hen
e, when the spin-J state is transformed M̂J |ψ〉 it is equivalent

with a transformation of the spin-½ states M̂1/2 |z〉 as 〈z⊥|⊗2J M̂J |ψ〉 =

(〈z⊥| M̂†

1/2)
⊗2J |ψ〉. Here M̂J denotes irredu
ible 2J +1 dimensional repre-

sentation of GL(2,C).
As all 2J spin-½ states undergo the same GL(2,C) a
tion let us look at

the transformation 
loser. To do so re
all that any matrix M̂ ∈ GL(2,C)

an be uniquely de
omposed as M̂ = ÛR̂, where Û ∈ U(2) is a unitary

matrix and R̂ is a hermitian positive semide�nite matrix. The a
tion of

unitary matrix is trivial as it is a simple rotation of Blo
h sphere, hen
e

the unitary transformation of spin-J state is re�e
ted in the rotation of the


orresponding points all together as a rigid solid. The hermitian matrix

transformation requires more attention. Note that the resulting state is not

normalized hen
e its Blo
h ve
tor neither. The hermitian matrix transforms

the sphere into an ellipsoid and moves it in the 
ertain dire
tion in su
h a way

that the 
enter of the sphere is always inside the resulting ellipsoid. Next, the

normalization pro
edure amounts to shrink or lengthen the Blo
h ve
tors.

In result, starting form unit sphere with the uniform state density (a

ording

to the Haar measure) the hermitian positive semide�nite matrix transforms

it to the unit sphere with the modi�ed state density. It thi
kens the states

in the neighborhoods of two antipodal points in the dire
tion 
hara
terized

by the hermitian matrix eigenve
tors.

Hen
e, the general linear group GL(2,C) when a
ting on the state of

spin-J 
hanges the relative orientation of its points. Nevertheless, it is not

possible to transform arbitrary state into any other this way asGL(2,C) does
not has enough degrees of freedom. Any points 
ombination on the Blo
h

sphere 
an be transformed into any other only using SU(2J + 1) group.

2.3 Appli
ations

The Majorana representation turned out to be very useful in a great number

of problems. The inert states of spinor 
ondensates [20℄ and the optimal

states for lo
al referen
e frame estimation [15℄ has been found to be related

to Platoni
 solids. We re
all below other problems that have a simple inter-

pretation in terms of Majorana representation � phase estimation, SLOCC

entanglement 
lasses 
hara
terization [1℄ and the multi-photon states gener-

ation in a pro
ess of spontaneous parametri
 down 
onversion (SPDC) [21℄.
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2.3.1 Phase estimation

In quantum estimation theory one 
onsiders the state that depends on the

set of parameters T̂ (p1, p2, . . . , pk) |ψ〉, where T̂ is a given transformation

and |ψ〉 is a state of the system. The question is: what is the optimal state

|ψ〉 that allows for the best estimation of small deviation of parameters from

their given initial values p
(0)
1 , p

(0)
k , . . . , p

(0)
k , see Ref. [12℄.

In parti
ular the question 
an be put as follows: What is the optimal N
qubit state for a phase estimation? In other words the state |ψ〉 must be

found su
h that exp(iφσ̂z)
⊗N |ψ〉 is the most sensitive for the small 
hanges

of the phase φ from its initial value φ(0) = 0. The standard notation for

Pauli matrix has been used σ̂z. The answer for the question is the NOON

[4, 11℄ state:

|ψ1〉 =
(
|0〉⊗N + |1〉⊗N

)
/
√
2 (3)

that leads to the Heisenberg limit [25℄. It 
an be rewritten in the spin

notation as a superposition of spin-N/2 up and spin-N/2 down: |ψ1〉 =
(|N/2, N/2〉 + |N/2,−N/2〉) /

√
2. It is easy to see that the NOON state

|ψ1〉 
orresponds to N equally spa
ed points on the equator, see Fig. 1(a).

(a) |ψ1〉 (b) |ψ2〉 (
) |ψ3〉

Figure 1: Representation spheres for: (a) the NOON state |ψ1〉, (b) the state
|ψ2〉 leading to shot noise limit and (
) the modi�
ation of NOON state |ψ3〉
for N = 12.

The Majorana representation allows one to gain further insight into the

nature of the optimality of the NOON state. The unitary transformation

exp(iφσ̂z)
⊗N


orresponds to the rotation of all the points with respe
t to

the z axis by an angle φ. When sear
hing for the optimal state one should

prefer those whi
h 
hange the most with respe
t to small phase 
hange. Let

us 
ompare here the geometries of the NOON state with the state leading
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to the shot noise limit [7℄:

|ψ2〉 =
1√
2N

(|0〉+ |1〉)⊗N , (4)

whi
h is represented as a single N -fold degenerated point on equator, see

Fig. 1(b). The NOON state is transformed to itself after φ = 2π/N , whereas

|ψ2〉 after the full φ = 2π rotation, thus |ψ1〉 is more sensitive for the rotations

than |ψ2〉. Hen
e 
omparing NOON state |ψ1〉 with the state leading to shot

noise limit |ψ2〉, the former one fails the 
ompetition. Moreover, the geometry

allows to easily see that using the NOON state the phase 
an be estimated

in the range (0, π/N) as the points are transformed into themselves for every

π/N rotation.

In order to gain more intuitions, we 
onsider the modi�
ation of the

NOON state:

|ψ3〉 = α |0〉⊗N + β |1〉⊗N . (5)

whi
h is represented by the N equally spa
ed points on the 
ir
le in the plain

parallel to equator, what is depi
ted in see Fig. 1(
). The position of the


ir
le depends on the 
oe�
ients α, β and the number of parti
les N . One


an see that, when α = β = 1/
√
2, then it is a NOON state: |ψ1〉 and when

α = 0, then it is a state of total angular momentum N/2 and proje
tion N/2:
|N/2, N/2〉. In Majorana representation the former situation 
orresponds to

one N fold degenerate point pla
ed on the North pole. Now it is easy to

see, that the state |ψ3〉 is less sensitive for the unitary rotation exp(iφσ̂z)
⊗N

than NOON state as in the limit of α = 0 it 
onverges to the |N/2, N/2〉,
whi
h is immune for the rotation around z axis.

2.3.2 SLOCC entangled 
lasses

Re
ently Bastin et al. [1℄ have solved the problem of the entanglement 
lassi-

�
ation under SLOCC for symmetri
 N qubit states. The problem is to �nd

the 
lasses of symmetri
 states that are 
onne
ted via invertible lo
al trans-

formations. In other words, two states |ψ〉 and |φ〉 are said to belong to the

same 
lass if and only if there exist M̂ ∈ GL(2,C) su
h that |ψ〉 = M̂⊗N |φ〉.
The problem and its solution 
an be simply understood within Majorana

representation. Two states |ψ〉 and |φ〉 refer to two 
on�gurations of the

points on the Blo
h sphere. Using the invertible lo
al transformations one


an transform the 
orresponding points. However, only for states asso
iated

with 3 points it is possible 
o transform any 
on�guration into any other

as the GL(2,C) group is parameterized with 7 real numbers. On the other
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hand by GL(2,C) group one 
annot 
hange the degenera
y of the points as

it a
ts in the same way on ea
h point, hen
e it 
annot split any degenerate

one. Hen
e the ne
essary 
ondition for the states to be in the same SLOCC

entanglement 
lass in the language of Majorana representation is the same

number identi
ally degenerated points.

2.3.3 Quantum opti
s

M
Cusker and Kwiat in Ref. [21℄ have proposed a method of produ
ing multi-

photon states. The s
heme is based on repeated SPDC pro
ess where one

photon of the pair heralds the presen
e of the other whi
h is then stored in

opti
al 
avity. By repeating the pro
ess of adding the photons and manip-

ulating their polarizations, the state |ψ〉, whi
h is a produ
t of an arbitrary

polarizations, 
an be built up:

|ψ〉 =
N−1∏

n=0

(αnâ
†
H + βnâ

†
V ) |va
〉 (6)

The multi-photon state, whi
h is a superposition of two polarizations in

a single spatiotemporal mode is in one-to-one 
orresponden
e with a spin

state. This relation is know as the S
hwinger representation. The map-

ping 
an be easily done by simple 
hange of representation swit
hing from

the states |nH , nV 〉 of de�nite number nH (nV ) of horizontally (verti
ally)

polarised photons to the states |(nH + nV )/2, (nH − nV )/2〉 of de�nite sum
and di�eren
e of polarization o

upation numbers. The sum divided by two


orresponds to a total angular momentum and the di�eren
e divided by two

to its proje
tion.

The N photon state Eq. (6) 
orresponds to a spin-N/2, hen
e it 
an be

represented on the Blo
h sphere via Majorana representation. Moreover, the

orientation of the points are given by the Blo
h ve
tors of the states (αnâ
†
H+

βnâ
†
V ) |va
〉. In 
onsequen
e the experimental pro
ess of state 
onstru
tion

by 
onse
utive single photon addition is re�e
ted in the pro
ess of addition

of new points on the Blo
h sphere.

3 Geometry of N spin-J states

The Majorana representation 
an be used for N spin-J systems, when the

state is regarded as a (2J +1)N level system and as su
h 
an be represented

as (2J + 1)N − 1 points on the Blo
h sphere [2℄. This approa
h allowed to

write 
orresponding Majorana polynomial [19℄ and formulate the separability
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riteria asso
iated with an elegant geometry of separable states. However

the a
tion of unitary matrix leads to the highly nontrivial behavior of the

points on the Blo
h sphere. We dis
uss here the N spin-J state geometry

that over
omes this problem and allows for simple interpretation of state

transformation under the general linear GL(2J + 1,C) and permutation SN
groups a
tion.

3.1 The representation

The approa
h is based on the S
hur-Weyl duality. We 
onsider here the per-

mutation SN and general linear GL(2J + 1,C) group and its representations

Ŝ and M̂ over the Hilbert spa
e of N spin-J states. The representation of

permutation group for a given element s ∈ SN is given by:

Ŝ(s) |a1〉 |a2〉 . . . |aN 〉 =
∣∣as(1)

〉 ∣∣as(2)
〉
. . .
∣∣as(N)

〉
(7)

It refers to an inter
hange of the respe
tive single parti
le states. Moreover,

the a
tion of the representation of the general linear group element g ∈
GL(2J + 1,C) is an a
tion of the group on ea
h parti
le:

M̂(g) |a1, a2, . . . , aN 〉 = M̂(g) |a1〉 M̂(g) |a2〉 . . . M̂(g) |aN 〉 (8)

Next, as the representations 
ommute we 
onsider the joint a
tion of both

representations, whi
h we will denote by M̂S(g, s) = M̂(g)Ŝ(s). The S
hur-
Weyl theorem states that the representation of joint a
tion of the general

linear and the permutation groups GL(2J + 1,C)× SN 
an be de
omposed

into irredu
ible representations in the following way:

M̂S(g, s) ∼=
⊕

λ∈Par(N,d)

M̂λ(g)⊗ Ŝλ(s), (9)

where M̂λ(g) and Ŝλ(s) are irredu
ible representations (irreps) ofGL(2J + 1,C)
and SN , respe
tively, and Par(N, d) is a set of all partitions of N into d parts.
In 
onjun
tion with the de
omposition of Eq. (9) the following de
omposition

of the Hilbert spa
e of the system of N spins-J 
an be done:

H⊗N
J =

⊕

λ∈Par(N,d)

HGL
λ ⊗HS

λ (10)

where HGL
λ and HS

λ are spa
es where the irreps M̂λ and Ŝλ a
t, respe
tively.

The dimensions of the subspa
es HGL
λ and HS

λ 
an be 
omputed using Young
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diagrams method. Next, with the Hilbert spa
e de
omposition in hand one


an easily express an arbitrary state of N spin-J system |Ψ〉 ∈ H⊗N
J as:

|Ψ〉 =
∑

λ,α

ξαλ |ψα
λ 〉λ ⊗ |α〉λ , (11)

where |ψα
λ 〉λ ∈ HGL

λ and |α〉λ ∈ HS
λ . We assume that the states |ψα

λ 〉λ are

normalized to unity in su
h way that all have the same global phase and

|α〉λ are orthonormal λ〈α |β〉λ = δαβ . The above de
omposition is unique

therefore there is one-to-one 
orresponden
e between the state of N spin-J
and the set

{
|ψα

λ 〉λ
}
λ,α

∪ {|ξ〉}, where |ξ〉 =
⊕

λ

∑
α ξ

α
λ |α〉λ. We will refer

to states form the set

{
|ψα

λ 〉λ
}
λ,α

as representation states and analogi
ally

refer to |ξ〉 as multipli
ity state. Furthermore, if for some α and given λ
representation states are identi
al we will refer to the 
orresponding state as

degenerate one.

Next, ea
h of the states 
an be easily represented on the Blo
h sphere

via Majorana representation. The states

{
|ψα

λ 〉λ
}
λ,α


an all be drawn on

representation sphere using di�erent 
olors to distinguish between di�erent

α and λ. The state |ξ〉 
an be drawn on the separate multipli
ity sphere.

Note that, the split is done due to fundamental di�eren
e between the rep-

resentation and multipli
ity states in 
ontext of the a
tion of the group

GL(2J + 1,C)× SN .

3.2 Properties

Let us look now how the state transformation is re�e
ted in its geometry on

the representation and multipli
ity spheres. First, we 
onsider a separable

state of a given λ and α: |ψ〉λ ⊗ |α〉λ, where |ψ〉λ ∈ HGL
λ and |α〉λ ∈ HS

λ .

The geometry of su
h a state is parti
ularly simple as the multipli
ity state

|ξ〉 = |α〉λ and therefore there is only one representation state |ψ〉λ. The

a
tion of the representation M̂S on the state is given by:

M̂S(g, s) |ψ〉λ ⊗ |α〉λ = M̂λ(g) |ψ〉λ ⊗ Ŝλ(s) |α〉λ (12)

The spe
ial linear group representation a
ts only on the representation state

whereas the permutation group representation on the multipli
ity state.

However, the permutation group in general modi�es the degenera
y of the

representation state as after the a
tion of M̂S(g, s) the multipli
ity state is

given by M̂S(g, s) |ξ〉 = ∑α′ sαα
′

λ |α′〉λ. The degenera
y of |ψ〉λ is equal to

a number of nonzero amplitudes sαα
′

λ .

9



It is easy to see that the degenera
y 
hange 
aused by the permutation

group a
tion in 
onsequen
e leads to the modi�
ation of the representation

states. Indeed, when a
ting with the representation of identity element for

general linear group and arbitrary element s of permutation group on general

N spin-J state |Ψ〉:

M̂S(1, s) |Ψ〉 =
∑

λ,α

(∑

α′

ξα
′

λ s
α′α
λ

∣∣∣ψα′

λ

〉)
⊗ |α〉λ , (13)

it is seen that the new representation states are proportional to

∣∣∣ψ̃α
λ

〉
λ
∝

∑
α′ ξα

′

λ s
α′α
λ

∣∣∣ψα′

λ

〉
. In general SN mixes 
oherently the representation states.

On the other hand, the representation of an arbitrary element of general

linear group and identity element of permutation group M̂S(g, 1) on the

state:

M̂S(g, 1) |Ψ〉 =
∑

λ,α

ξαλ

(
M̂λ(g) |ψα

λ 〉
)
⊗ |α〉λ , (14)

resort to the transformation of only representation states.

3.3 Appli
ations

The presented method is parti
ularly useful in the theory of de
oheren
e free

subspa
es and noiseless subsystems. The problem is following. Assume we

have N qubits, whi
h experien
e an unknown unitary rotation Û⊗N
, where

Û ∈ SU(2). The question is how to en
ode a logi
al state into physi
al qubits

su
h that the logi
al state does not 
hange after arbitrary unitary rotation

Û⊗N
. The detailed analysis 
an be found in Refs. [13, 6, 3℄ and here we will

dis
uss the geometri
 aspe
ts of the problem.

We 
onsider the subgroup SU(2) of general linear group GL(2,C). The
properties ofGL(2,C) dis
ussed in the previous se
tion are valid with respe
t
to SU(2). For this spe
ial 
ase the de
omposition of Hilbert spa
e a

ording

to Eq. (10) amounts to the dire
t sum of tensor produ
t of a total angular

momentum subspa
e Hj and a multipli
ity subspa
e C

dj
. The dimensions of

the subspa
es are respe
tively 2j + 1 and dj = (2j + 1)
( N

N
2
−j

)
/(j + N

2 + 1).

Then, in general, the a
tion of Û⊗N
on the state of N qubits is an unitary

rotation of its representation states:

Û(g)⊗N |Ψ〉 =
N/2∑

j=(N mod 2)/2

ξαj Ûj(g)
∣∣ψα

j

〉
j
⊗ |α〉j , (15)

10



where Ûj(g) is 2j+1 dimensional irrep of g ∈ SU(2). In Majorana represen-

tation this 
an be seen as the rotation of all the representation points as a

solid body, whereas the points on the multipli
ity sphere do not experien
e

any modi�
ation. In 
onsequen
e all the information about the logi
al state

must be en
oded in multipli
ity sphere. Hen
e all interesting logi
al qubit

dynami
s 
an be investigated there.

As an example, let us look at the simplest DFS for three qubits. The

most general form of the state is given by:

|Ψ〉 = ξ3/2
∣∣ψ3/2

〉
+ ξ01/2

∣∣∣ψ0
1/2

〉
+ ξ11/2

∣∣∣ψ1
1/2

〉
(16)

When the logi
al qubit is en
oded in the spa
es of total angular momentum

j = 1/2 it is immune to the strong 
olle
tive noise. Typi
ally arbitrary states

of spin-½ :

∣∣∣ψ0
1/2

〉
and

∣∣∣ψ1
1/2

〉

an represent logi
al 0 and 1. The logi
al qubit


an be en
oded entirely in the multipli
ity state:

|ΨL〉 = ξ01/2

∣∣∣ψ0
1/2

〉
+ ξ11/2

∣∣∣ψ1
1/2

〉
. (17)

Then its multipli
ity state is given by |ξL〉 = (0, ξ01/2, ξ
1
1/2).

As was observed in Ref. [3℄ for 3 spin-½ system, the hamiltonians that


an be used for physi
al realisation of unitary transformation of logi
al qubit


an be 
onstru
ted based on the algebra of quantum operators X̂L, ŶL, ẐL.

The operators are a linear 
ombinations of physi
al spins permutations. For

example the logi
al ẐL operator is a 
ombination of three permutations:

ẐL =
1

3
(Ŝ3214 + Ŝ1324 − 2Ŝ2134) (18)

where Ŝi1i2i3i4 denotes the permutation operator whi
h 
hanges physi
al

qubit number 1 with i1, number 2 with i2 and so on. In 
onsequen
e the

SU(2) rotation of logi
al qubit 
an be obtained by[3℄:

ÛL = exp
(
iαẐL

)
exp

(
iβŶL

)
exp

(
iγẐL

)
(19)

where α, β and γ are the Euler angels.

A diagram summarising the presented dis
ussion is depi
ted in Fig. 2.

For an exemplary state:

|ΨL〉 =
1

2
√
6

(
2(|110〉 + |001〉)− (1 +

√
3)(|101〉 + |100〉)+ (20)

(−1 +
√
3)(|011〉 + |010〉)

)

11



one 
an easily �nd the multipli
ity state:

|ξ〉 =
(
0,

1√
2
,
1√
2

)
(21)

and representation states:

∣∣∣ψ0
1/2

〉
1/2

=
1√
2
(|0〉+ |1〉) (22)

∣∣∣ψ1
1/2

〉
1/2

=
1√
2
(|0〉 − |1〉). (23)

(a) |ΨL〉

(b) Û⊗3 |ΨL〉 (
) ÛL |ΨL〉

Figure 2: a) The geometry of an exemplary state |ΨL〉 depi
ted in the repre-

sentation (left) and multipli
ity (right) spheres. b) Under the a
tion of Û⊗3

only the representation sphere experien
es a modi�
ation. 
) The logi
al

qubit transformation, in general, 
hanges the representation states.

The state |ΨL〉 is depi
ted in Fig. 2(a): the representation states are

presented on the left sphere and the multipli
ity state on the right one.

Under the a
tion of arbitrary Û⊗3
only the representation sphere experien
es

modi�
ation. The logi
al qubit is immune for this kind of operation as it


an be seen in the lower left box in Fig. 2. Moreover, let us 
onsider a simple

unitary rotation of the logi
al qubit around the z axis ÛL = exp
(
iαẐL

)
.

It is easy to 
he
k that this transformation modi�es the multipli
ity state:

12



ÛL(0, ξ
0
1/2, ξ

1
1/2) = (0, ξ01/2e

iα, ξ11/2e
−iα), what is depi
ted in the right box in

Fig. 2 for α = π. The logi
al qubit transformation ÛL in general 
hanges the

orientation of the points on both spheres.

4 Con
lusions

We dis
ussed the Majorana representation, whi
h allows one to represent

arbitrary pure state of multilevel system as points on Blo
h sphere, whi
h

are rotated as a rigid body under the a
tion of spe
ial unitary group SU(2).

The method 
annot be 
onsidered as a tool providing the solution. However,

it proved to be very useful o�ering deeper insight and understanding of the

problem.

The main result presented in Se
. 3 was a generalisation of the Majorana

representation for the pure states of N spin-J systems. When applied to the

theory of de
oheren
e free subspa
es, it allowed as to geometri
ally separate

the noisy dynami
s and the logi
al state transformation.

The main drawba
k of the Majorana representation and presented geom-

etry of the states N spin-J systems is that both work only for pure states.

Hen
e, in is very desirable to 
onstru
t the mixed states geometry that allows

one for simple understanding of the problem under 
onsideration.
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