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Département de mathématique
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In this paper we show that the small world and weak ties phenomena can spontaneously
emerge in a social network of interacting agents. This dynamics is simulated in the frame-
work of a simplified model of opinion diffusion in an evolving social network where agents

are made to interact, possibly update their beliefs and modify the social relationships
according to the opinion exchange.
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1. Introduction

Modeling social phenomena represents a major challenge that has in recent years

attracted a growing interest. Insight into the problem can be gained by resorting,

among others, to the so called Agent Based Models, an approach that is well suited

to bridge the gap between hypotheses concerning the microscopic behavior of indi-

vidual agents and the emergence of collective phenomena in a population composed

of many interacting heterogeneous entities.

Constructing sound models deputed to return a reasonable approximation of

the scrutinized dynamics is a delicate operation, given the degree of arbitrariness in

assigning the rules that govern mutual interactions. In the vast majority of cases,

data are scarce and do not sufficiently constrain the model, hence the provided
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answers can be questionable. Despite this intrinsic limitation, it is however impor-

tant to inspect the emerging dynamical properties of abstract models, formulated

so to incorporate the main distinctive traits of a social interaction scheme. In this

paper we aim at discussing one of such models, by combining analytical and nu-

merical techniques. In particular, we will focus on characterizing the evolution of

the underlying social network in terms of dynamical indicators.

It is nowadays well accepted that several social groups display two main features:

the small world property [18] and the presence of weak ties [12]. The first property

implies that the network exhibits clear tendency to organize in large, densely con-

nected, clusters. As an example, the probability that two friends of mine are also,

and independently, friends to each other is large. Moreover, the shortest path be-

tween two generic individuals is small as compared to the analogous distance com-

puted for a random network made of the same number of individuals and inter-links

connections. This observation signals the existence of short cuts in the social tissue.

The second property is related to the cohesion of the group which is mediated by

small groups of well tied elements, that are conversely weakly connected to other

groups. The skeleton of a social community is hence a hierarchy of subgroups.

A natural question arise on the ubiquity of the aforementioned peculariar as-

pects, distinctive traits of a real social networks: how can they eventually emerge,

starting from an finite group of randomly connected actors? We here provide an an-

swer to this question in the framework of a minimalistic opinion dynamics model,

which exploit an underlying substrate where opinions can flow. More specifically,

the network that defines the topological structure is imagined to evolve, coupled

to the opinions and following a specific set of rules: once two agents reach a com-

promise and share a common opinion, they also increase their mutual degree of

acquaintance, so strengthing the reciprocal link. In this respect, the model that

we are shortly going to introduce hypothesize a co-evolution of opinions and social

structure, in the spirit of a genuine adaptive network [13, 19].

Working within this framework, we will show that an initially generated random

group, with respect to both opinion and social ties, can evolve towards a final state

where small worlds and weak ties effects are indeed present. The results of this

paper constitute the natural follow up of a series of papers [3, 9, 8], where the

time evolution of the opinions and affinity, together with the fragmentation vs.

polarization phenomena, have been discussed.

Different continuous opinion dynamics models have been presented in literature,

see for instance [10, 11], dealing with the general consensus problem. The aim is to

shed light onto the assumptions that can eventually yield to fixation, a final mono-

clustered configuration where all agents share the same belief, starting from an

initial condition where the inspected population is instead fragmented into several

groups. In doing so, and in most cases, a fixed network of interactions is a priori

imposed [2], and the polarization dynamics studied under the constraint of the

imposed topology. At variance, and as previously remarked, we will instead allow

the underlying network to dynamically adjust in time, so modifying its initially
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imposed characteristics. Let us start by revisiting the main ingredients of the model.

A more detailed account can be found in [3].

Consider a closed group of N agents, each one possessing its own opinion on

a given subject. We here represent the opinion of element i as a continuous real

variable Oi ∈ [0, 1]. Each agent is also characterized by its affinity score with respect

to the remaining N − 1 agents, namely a vector αij , whose entries are real number

defined in the interval [0, 1]: the larger the value of the affinity αij , the more reliable

the relation of i with the end node j.

Both opinion and affinity evolve in time because of binary encounters between

agents. It is likely that more interactions can potentially occur among individuals

that are more affine, as defined by the preceding indicator, or that share a close

opinion on a debated subject. Mathematically, these requirements can be accom-

modated for by favoring the encounters between agents that minimizes the social

metric Dt
ij = |∆Ot

ij |(1 − αt
ij) + Nj(0, σ), where ∆Ot

ij = Ot
i − Ot

j is the opinions’

difference of agents i and j at time t, and the last term is a stochastic contribution,

normally distributed with zero mean and variance σ. For a more detailed analysis

on the interpretation of σ as a social temperature responsible of a increased mixing

ability of the population, we refer to [3, 9, 8].

Once two agents are selected for interaction they possibly update their opinions

(if they are affine enough) and/or change their affinities (if they have close enough

opinions), following:
{

Ot+1
i = Ot

i −
1
2 ∆O

t
ij Γ1

(

αt
ij

)

αt+1
ij = αt

ij + αt
ij(1− αt

ij) Γ2

(

∆Ot
ij

)

,
(1)

being:

Γ1 (x) =
tanh(β1(x− αc)) + 1

2
and Γ2 (x) = − tanh(β2(|x| −∆Oc)) , (2)

two activating functions which formally reduce to step functions for large enough

the values of the parameters β1 and β2, as it is the case in the numerical simulations

reported below.

Despite its simplicity the model exhibits an highly non linear dependence on the

involved parameters, αc, ∆Oc and σ, with a phase transition between a polarized

and fragmented dynamics [3].

A typical run for N = 100 agents is reported in the main panel of Fig. 1, for a

choice of the parameters which yields to a consensus state. The insets represent three

successive time snapshots of the underlying social network: The N nodes are the

individuals, while the links are assigned based on the associated values of the affinity.

The figures respectively refer to a relatively early stage of the evolution t = 1000,

to an intermediate time t = 5000 and to the convergence time Tc = 10763. Time

is here calculated as the number of iterations (not normalized with respect to N).

The corresponding three networks can be characterized using standard topological

indicators [1, 5] (see Table 1), e.g. the mean degree < k >, the network clustering
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coefficient C and the average shortest path < ℓ >. An explicit definition of those

quantities will be given below.

In the forthcoming discussion we will focus on the evolution of the network

topology, limited to a choice of the parameters that yield to a final mono cluster.

Table 1. Topological indicators of the so-
cial networks presented in Fig. 1. The
mean degree < k >, the network cluster-
ing C and the average shortest path < ℓ >
are reported for the three time configura-
tions depicted in the figure.

< k > (t) C(t) < ℓ > (t)

t = 1000 0.073 0.120 3.292
t = 5000 0.244 0.337 2.013
t = Tc 0.772 0.594 1.228

Fig. 1. Opinions as function of time. The run refers to αc = 0.5, ∆Oc = 0.5 and σ = 0.01. The
underlying network is displayed at different times, testifying on its natural tendency to evolve
towards a single cluster of affine individuals. Initial opinions are uniformly distributed in the
interval [0, 1], while α0

ij are randomly assigned in [0, 1/2] with uniform distribution.
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2. The social network

The affinity matrix drives the interaction via the selection mechanism. It hence can

be interpreted as the adjacency matrix of the underlying social network, i.e. the

network of social ties that influences the exchange of opinions between acquain-

tances, as mediated by the encounters. Because the affinity is a dynamical variable

of the model, we are actually focusing on an adaptive social network [13, 19] : The

network topology influences in turn the dynamics of opinions, this latter providing

a feedback on the network itself and so modifying its topology. In other words,

the evolution of the topology is inherent to the dynamics of the model because of

the proposed self-consistent formulation and not imposed a priori as an additional,

external ingredient, (as e.g. rewire and/or add/remove links according to a given

probability [14, 15] once the state variables have been updated).

Remark 1. (Weighted network) Let us observe that the affinity assumes pos-

itive real values, hence we can consider a weighted social networks, where agents

weigh the relationships. Alternatively, one can introduce a cut-off parameter, αf :

agents i and j are socially linked if and only if the recorded relative affinity is large

enough, meaning αij > αf . Roughly, the agent chooses its closest friends among all

his neighbors.

The first approach avoids the introduction of non–smooth functions and it is

suitable to carry on the analytical calculations. The latter results more straightfor-

ward for numerical oriented applications.

As anticipated, we are thus interested in analyzing the model, for a specific

choice of the parameters, αc, σ and ∆Oc, yielding to consensus, and studying the

evolution of the network topology, here analyzed via standard network indicators:

the average value of weighted degree, the cluster coefficient and the averaged short-

est path. These quantities will be quantified for (i) a fixed population, monitoring

their time dependence; (ii) as a function of the population size, photographing the

dynamics at convergence, namely when consensus has been reached.

2.1. Time evolution of weighted degree

The simplest and the most intensively studied one–vertex (i.e. local) characteristic

is the node degree a: the total number of its connections or its nearest neighbors.

Because we are dealing with a weighted network we can also introduce the weighted

node degree, also called node strength [4], namely si(t) =
∑

j α
t
ij/(N − 1). Its mean

aLet us observe that the affinity may not be symmetric and thus the inspected social network will
be directed. One has thus to distinguish between In–degree, kin, being the number of incoming

edges of a vertex and Out–degree, kout, being the number of its outgoing edges. In the following
we will be interested only in the outgoing degree, from here on simply referred to as to degree.
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value averaged over the whole network reads:

< s > (t) =
1

N

N
∑

i=1

si(t) . (3)

Let us observe that the normalization factor N − 1 holds for a population of N

agents, self-interaction being disregarded, < s > belongs hence to the interval [0, 1]

and having eliminated the relic of the population size, one can properly compare

quantities calculated for networks made of different number of agents.

All these quantities evolve in time because of the dynamics of the opinions

and/or affinities. Passing to continuous time and using the second relation of (1),

we obtain:

d

dt
< s >=

1

N(N − 1)

N
∑

i,j=1

d

dt
αt
ij . (4)

Let us observe that the evolution of affinity and opinion can be decoupled when

∆Oc = 1. For ∆Oc < 1, this is not formally true. However on can argue for an

approximated strategy [9], by replacing the step function Γ2 by its time average

counterpart γ2, where the dependence in ∆Ot
ij has been silenced. In this way, we

obtain form (4)

d

dt
< s >=

γ2
N(N − 1)

N
∑

i,j=1

αt
ij(1− αt

ij) = γ2(< s > − < s2 >) , (5)

where < s2 >=
∑

α2
ij/(N(N − 1)). Let us observe that γ2 is of the order of 1/N2

times, a factor taking care of the asynchronous dynamics [9].

In [6] authors proved that (5) can be analytically solved once we provide the

initial distribution of node strengths (see Appendix A for a short discussion of the

involved methods). Assuming si(0) to be uniformly distributed in [0, 1/2], we get

the following solution (see Fig. 2):

< s > (t) =
eγ2t

eγ2t − 1
−

2eγ2t

(eγ2t − 1)2
log

(

eγ2t + 1

2

)

, (6)

Using similar ideas we can prove [6] that the variance σ2
s(t) =< s2 > − < s >2

is analytically given by

σ2(t) =
2e2γ2t

(eγ2t − 1)2(eγ2t + 1)
−

4e2γ2t

(eγ2t − 1)4

[

log

(

eγ2t + 1

2

)]2

. (7)

The comparison between analytical and numerical profiles is enclosed in Fig. 2,

where the evolution of < s > (t) is traced. Let us observe that here γ2 will serve

as a fitting parameter, when testing the adequacy of the proposed analytical curves

versus direct simulations, instead of using its computed numerical value [9]. The

qualitative correspondence is rather satisfying, so confirming the correctness of the

analytical results reported above.
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Fig. 2. Evolution of < s > (t). Dashed line (blue on-line) refers to numerical simulations with
parameters αc = 0.5, ∆Oc = 0.5 and σ = 0.3. The full line (black on-line) is the analytical
solution (6) with a best fitted parameter γ2 = 1.6 10−4. The dot denotes the convergence time in
the opinion space to the consensus state, for the used parameters affinities did not yet converge.
Let us observe in fact that affinities and opinions do converge on different time scale [9].

Assume Tc to label the time needed for the consensus to be reached. Clearly,

Tc depends on the size of the simulated system b. From the above relation (6), the

average node strength at convergence as an implicit function of the population size

N reads:

< s > (Tc(N)) =
eγ2(N)Tc(N)

eγ2(N)Tc(N) − 1
−

2eγ2(N)Tc(N)

(eγ2(N)Tc(N) − 1)2
log

(

eγ2(N)Tc(N) + 1

2

)

,

(8)

where we emphasized the dependence of γ2 and Tc on N . However, as already

observed γ2(N) = O
(

N−2
)

and Tc(N) = O (Na), with a ∈ (1, 2). Hence

γ2(N)Tc(N) → 0 when N → ∞ and thus < s > (Tc(N)) is predicted to be a

decreasing function of the population size N , which converges to the asymptotic

value 1/4, a value identical to the initial average node strength (see Fig. 3), given

the selected initial condition. In sociological terms this means that even when con-

sensus is achieved the larger the group the smaller, on average, the number of local

bIn [3, 7] it was shown that Tc scales faster than linearly but slower than quadratically with respect
to the population size N .
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acquaintances. This is a second conclusion that one can reach on the basis of the

above analytical developments.

5 55 105 155 205 255 305 355 405 455 505 550
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

<
s

>
(T

c
)

 

 

Fig. 3. Average node strength at convergence as a function of the population size. Parameters

are ∆Oc = 0.5, σ = 0.5 and four values of αc have been used : (♦) αc = 0, (△) αc = 0.25, (�)
αc = 0.5 and (©) αc = 0.75. Vertical bars are standard deviations computed over 10 replicas of
the numerical simulation using the same initial conditions.

2.2. Small world

Several social networks exhibit the remarkable property that one can reach an arbi-

trary far member of the community, via a relatively small number of intermediate

acquaintances. This holds true irrespectively of the size of the underlying network.

Experiments [16] have been devised to quantify the “degree of separation”in real

system, and such phenomenon is nowadays termed the “small world”effect, also

referred to as the “six degree of separation”.

On the other hand several, models have been proposed [18, 17] to construct

complex networks with the small world property. Mathematically, one requires that

the average shortest path grows at most logarithmic with respect to the network size,

while the network still displays a large clustering coefficient. Namely, the network

has an average shortest path comparable to that of a random network, with the same

number of nodes and links, while the clustering coefficient is instead significantly

larger.
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In this section we present numerical results aimed at describing the time evo-

lution of both the average shortest path and the clustering coefficient of the social

network emerging from the model. As before, the parameters are set so to induce

the convergence to a consensus state in the opinion space.

We will be particularly interested in their asymptotic solutions, terming the

associated values respectively < ℓ > (Tc) and C(Tc) once the consensus state has

been achieved.

In Fig. 4 we report these quantities (normalized to the homologous values esti-

mated for a random network with identical number of nodes and links) versus the

system size. The (normalized) clustering coefficient is sensibly larger than one, this

effect being more pronounced the smaller the value of αc. On the other hand the

(normalized) average shortest path is always very close to 1.

Based on the above we are hence brought to conclude that the social network

emerging from the opinion exchanges, has the small world property. This is a re-

markable feature because the social network evolves guided by the opinions, as it

does in reality, and not result from an artificially imposed recipe.
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Fig. 4. Normalized clustering coefficient (left panel) and normalized average mean path (right
panel) as functions of the network size at the convergence time. Parameters are ∆Oc = 0.5,
σ = 0.5 and four values of αc have been used : (♦) αc = 0, (△) αc = 0.25, (�) αc = 0.5 and (©)
αc = 0.75. Vertical bars are standard deviations computed over 10 repetitions.
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2.3. Weak ties

Social networks are characterized by the presence of hierarchies of well tied small

groups of acquaintances, that are possibly linked to other such groups via “weak

ties”. According to Granovetter [12] these weak links are fundamental for the cohe-

sion of the society, being at the basis of the social tissue, so motivating the statement

“the strength of weak ties”.

The smallest group in a social network is composed by three individuals sharing

high mutual affinities, in term of network theory they form a clique [1], i.e. a maximal

complete graph composed by three nodes. This can of course be generalized to larger

maximal complete graphs, defining thus m-cliques.

The degree of cliqueness of a social network is hence a measure of its cohe-

sion/fragmentation: the presence of a large number of m-cliques together with very

few, m′-cliques, for m′ > m, means that the population is actually fragmented into

small pieces, of size m not strongly interacting each other.

We are interested in studying such phenomenon within the social network emerg-

ing from the opinion dynamics model here considered, still operating in consensus

regime. To this end we proceed as follows. We introduce a cut–off parameter αf

used to binarize the affinity matrix, which hence transforms into a an adjacency

matrix a. More precisely, agents i and j will be connected, i.e. aij = 1, if and only

if αij ≥ αf . Once the adjacency matrix is being constructed, we compute the num-

ber of m–cliques in the network. Let us observe that this last step is highly time

consuming, being the clique problem NP-complete. We thus restrict our analysis to

the cases m ∈ {3, 4, 5}.

For small values of αf the network is almost complete, while for large ones it can

in principle fragment into a vast number of finite small groups of agents. As reported

in the inset of right panel of Fig. 5, for αf ∼ 1 only 3–cliques are present. Their

number rapidly increases as αf is lowered. On the other hand for αf ∼ 0.98 few 4–

cliques emerge while 5–cliques appear around αf ∼ 0.73. This means that the social

networks is mainly composed by 3–cliques, i.e. agents sharing high mutual affinities,

that are connected together to form larger cliques, for instance 4 and 5–cliques by

weaker links, i.e. whose mutual affinities are lower than the above ones.

Results reported in left panel of Fig. 5 show that for specific parameter values,

still falling into the class deputed to the consensus dynamics, the model does not

present the weak ties phenomenon: 3, 4 and 5-cliques are all present at the same

time for large values of αf . This is an important point that will deserve future

investigations. Let us observe here that the observed differences stem from the

social temperature.

3. Conclusion

Social system and opinion dynamics models are intensively investigated within sim-

plified mathematical schemes. One of such model is here revisited and analyzed.

The evolution of the underlying network of connections, here emblematized by the
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Fig. 5. Number of 3, 4 and 5–cliques in the social network once consensus has been achieved.
Parameters are N = 100, ∆Oc = 0.5, αc = 0.5. Right panel, σ = 0.5, the network exhibits the
weak ties property. Left panel, σ = 0.1, the network does not display the weak ties phenomenon.

mutual affinity score, is in particular studied. This is a dynamical quantity which

adjusts all along the system evolution, as follows a complex coupling with the opin-

ion variables. In other words, the embedding social structure is adaptively created

and not a priori assigned, as it is customarily done. Starting from this setting, the

model is solved analytically, under specific approximations. The functional depen-

dence on time of the networks mean characteristics are consequently elucidated. The

obtained solutions correlate with direct simulations, returning a satisfying agree-

ment. Moreover, the structure of the social network is numerically monitored, via

a set of classical indicators. Small world effects, as well weak ties connections, are

found as an emerging property of the model. It is remarkable that such proper-

ties, ubiquitous in nature, are spontaneously generated within a simple scenario

which accounts for a minimal number of ingredients, in the context of a genuine

self-consistent formulation.

Appendix A. On the momenta evolution

The aim of this section if to present and sketch the proof of the result used to study

the evolution of the momenta of the affinity distribution. We refer the interested

reader to [6] where a more detailed analysis is presented in a general setting.

For the sake of simplicity, let us label the N(N − 1) affinities values αij by

xl, upon assigning a specific re-ordering of the entries. Hence ~x is a vector with

M = N(N − 1) elements. As previously recalled (5), we assume each xl to obey

a first order differential equation of the logistic type, once time has been rescaled,

namely:

dxl
dt

= xl(1− xl) . (A.1)
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The initial conditions will be denoted as x0l .

Let us observe that each component xl evolves independently from the other.

We can hence imagine to deal with M replicas of a process ruled by by (A.1) whose

initial conditions are distributed according to some given function. We are interested

in computing the momenta of the x variable as functions of the initial distribution.

The m-th momentum is given by:

< xm > (t) =
(x1(t))

m
+ · · ·+ (xM (t))

m

M
, (A.2)

and its time evolution is straightforwardly obtained deriving (A.2) and making use

of Eq. (A.1):

d

dt
< xm > (t) =

1

M

M
∑

i=1

dxml
dt

=
m

M

N
∑

l=1

xm−1
l

dxl
dt

=
m

M

N
∑

l=1

xm−1
l xl(1− xl) = m

(

< xm > − < xm+1 >
)

. (A.3)

To solve this equation we introduce the time dependent moment generating func-

tion, G(ξ, t),

G(ξ, t) :=
∞
∑

m=1

ξm < xm > (t) . (A.4)

This is a formal power series whose Taylor coefficients are the momenta of the

distribution that we are willing to reconstruct, task that can be accomplished using

the following relation:

< xm > (t) :=
1

m!

∂mG

∂ξm

∣

∣

∣

ξ=0
. (A.5)

By exploiting the evolution’s law for each xl, we shall here obtain a partial

differential equation governing the behavior of G. KnowingG will eventually enables

us to calculate any sought momentum via multiple differentiation with respect to ξ

as stated in (A.5).

On the other hand, by differentiating (A.4) with respect to time, one obtains :

∂G

∂t
=

∑

m≥1

ξm
d < xm >

dt
=

∑

m≥1

mξm
(

< xm > − < xm+1 >
)

, (A.6)

where used has been made of Eq. (A.3). We can now re-order the terms so to

express the right hand side as a function of G c and finally obtain the following

non–homogeneous linear partial differential equation:

∂tG− (ξ − 1)∂ξG =
G

ξ
. (A.7)

cHere the following algebraic relations are being used:

ξ∂ξG(ξ, t) = ξ
∑

m≥1

mξm−1 < xm >=
∑

m≥1

mξm < xm >,
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Such an equation can be solved for ξ close to zero (as in the end of the procedure

we shall be interested in evaluating the derivatives at ξ = 0, see Eq. (A.5) ) and for

all positive t. To this end we shall specify the initial datum:

G(ξ, 0) =
∑

m≥1

ξm < xm > (0) = Φ(ξ) , (A.8)

i.e. the initial momenta or their distribution.

Before turning to solve (A.7), we first simplify it by introducing

G = eg namely g = logG , (A.9)

then for any derivative we have ∂∗G = G∂∗g, where ∗ = ξ or ∗ = t, thus (A.7) is

equivalent to

∂tg − (ξ − 1)∂ξg =
1

ξ
, (A.10)

with the initial datum

g(ξ, 0) = φ(ξ) ≡ logΦ(ξ) . (A.11)

This latter equation can be solved using the method of the characteristics, here

represented by:

dξ

dt
= −(ξ − 1) , (A.12)

which are explicitly integrated to give:

ξ(t) = 1 + (ξ(0)− 1)e−t , (A.13)

where ξ(0) denotes ξ(t) at t = 0. Then the function u(ξ(t), t) defined by:

u(ξ(t), t) := φ(ξ(0)) +

∫ t

0

1

1 + (ξ(0)− 1)e−s
ds , (A.14)

is the solution of (A.10), restricted to the characteristics. Observe that u(ξ(0), 0) =

φ(ξ(0)), so (A.14) solves also the initial value problem.

Finally the solution of (A.11) is obtained from u by reversing the relation be-

tween ξ(t) and ξ(0), i.e. ξ(0) = (ξ(t)− 1)et + 1:

g(ξ, t) = φ
(

(ξ − 1)et + 1
)

+ λ(ξ, t) , (A.15)

and

ξ∂ξ
G(ξ, t)

ξ
= ξ∂ξ

∑

m≥1

ξm−1 < xm >= ξ
∑

m≥1

(m − 1)ξm−2 < xm >

=
∑

m≥1

(m− 1)ξm−1 < xm >

Renaming the summation index, m − 1 → m, one finally gets (note the sum still begins with
m = 1):

ξ∂ξ
G(ξ, t)

ξ
=

∑

m≥1

mξm < xm+1 > .
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where λ(ξ, t) is the value of the integral in the right hand side of (A.14).

This integral can be straightforwardly computed as follows (use the change of

variable z = e−s):

λ =

∫ t

0

1

1 + (ξ(0)− 1)e−s
ds =

∫ e−t

1

−dz

z

1

1 + (ξ(0)− 1)z
, (A.16)

which implies

λ = −

∫ e−t

1

dz

(

1

z
−

ξ(0)− 1

1 + (ξ(0)− 1)z

)

= − log z + log(1 + (ξ(0)− 1)z)
∣

∣

∣

e−t

1

= t+ log(1 + (ξ(0)− 1)e−t)− log ξ(0) . (A.17)

According to (A.15) the solution g is then

g(ξ, t) = φ
(

(ξ − 1)et + 1
)

+ t+ log ξ − log((ξ − 1)et + 1) , (A.18)

from which G straightforwardly follows:

G(ξ, t) = Φ
(

(ξ − 1)et + 1
) ξet

(ξ − 1)et + 1
. (A.19)

As anticipated, the function G makes it possible to estimate any momentum

(A.5). As an example, the mean value correspond to setting m = 1, reads:

< x > (t) = ∂ξG
∣

∣

∣

ξ=0
=

[

Φ′
(

1 + (ξ − 1)et
)

et
ξet

(ξ − 1)et + 1

+ Φ
(

1 + (ξ − 1)et
)

et
(ξ − 1)et + 1− ξet

(1 + (ξ − 1)et)
2

]
∣

∣

∣

ξ=0

=
et

1− et
Φ(1− et) . (A.20)

In the following section we shall turn to considering a specific application in the

case of uniformly distributed values of affinities.

A.1. Uniform distributed initial conditions

The initial data x0l are assumed to span uniformly the bound interval [0, 0.5], thus

the probability distribution ψ(x) clearly reads d:

ψ(x) =

{

2 if x ∈ [0, 1/2]

0 otherwise
, (A.21)

and consequently the initial momenta are:

< xm > (0) =

∫ 1

0

ξmψ(ξ)dξ =

∫ 1/2

0

2ξm dξ =
1

m+ 1

1

2m
. (A.22)

dWe hereby assume to sample over a large collection of independent replica of the system under
scrutiny (M is large). Under this hypothesis one can safely adopt a continuous approximation for
the distribution of allowed initial data. Conversely, if the number of realizations is small, finite
size corrections need to be included [6].
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Hence the function Φ as defined in (A.8) takes the form:

Φ(ξ) =
∑

m≥1

1

m+ 1

ξm

2m
. (A.23)

A straightforward algebraic manipulation allows us to re-write (A.23) as follows:

∑

m≥1

ym

m+ 1
=

1

y

∫ y

0

∑

m≥1

zm dz =
1

y

∫ y

0

z

1− z
dz = −1−

1

y
log(1− y) , (A.24)

thus

Φ(ξ) = −1−
2

ξ
log

(

1−
ξ

2

)

. (A.25)

We can now compute the time dependent moment generating function, G(ξ, t),

given by (A.19) as:

G(ξ, t) =
ξet

(ξ − 1)et + 1

[

−1−
2

(ξ − 1)et + 1
log

(

1−
(ξ − 1)et + 1

2

)]

, (A.26)

and thus recalling (A.5) we get

< x > (t) =
et

et − 1
−

2et

(et − 1)2
log

(

et + 1

2

)

(A.27)

< x2 > (t) =
e2t

(et − 1)2
+

4e2t

(et − 1)3
log

(

et + 1

2

)

+
2e2t

(et − 1)2(et + 1)
.

Let us observe that < x > (t) deviates from the logistic growth to which all the

single variable xi(t) does obey.

For large enough times, the distribution of the variable outputs is in fact con-

centrated around the asymptotic value 1 with an associated variance (calculated

from the above momenta) which decreases monotonously with time.

Let us observe that a naive approach would suggest interpolating the averaged

numerical profile with a solution of the logistic model whose initial datum x̂0 acts

as a free parameter to be adjusted to its best fitted value: as it is proven in [6] this

procedure yields a significant discrepancy, which could be possibly misinterpreted

as a failure of the underlying logistic evolution law. For this reason, and to avoid

drawing erroneous conclusions when ensemble averages are computed, attention has

to be payed on the role of initial conditions.
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