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Abstract

The paper presents the problem of choosing the representatives in an assembly when the whole

electoral region is subdivided into electoral districts. Because of the two dimensions, geographical

(districts) and political (parties), the problem is called bi-apportionment. The main focus of the

paper is to discuss fairness and proportionality axioms as well as their implementation.

Keywords Party-proportional representation, power indices, (bi-)apportionment, (bi-)divisor meth-

ods, fair shares.

JEL D70, D71.

1 Introduction

The representation problem is how to assign a fixed number of seats to different categories of a

population as a function of some data. Most important representation problems arise in the political

field under various forms, and are often called apportionments. For example the seats of an assembly

have to be distributed to the parties after an election according to some pre-specified electoral rule;

here the data consists of the number of votes obtained by each party. Another form, though not

always so explicit or transparent, pertains to the distribution of the seats among geographical areas

(districts, regions, cantons in Switzerland, countries in the European Parliament for example); here

the relevant data are the population sizes. A more complicated but common situation arises when

the two dimensions, geographical and political, matter for determining the representation. This

paper deals mainly with this two-dimensional problem, called bi-apportionment.

To make a sense of the difficulties, first note that in the apportionment debate, no method

establishes itself as a reference. However some methods prove to be ‘bad’. For example, the Italian
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‘bug’, as called by Pennisi [2006], refers to a serious flaw since the procedure itself is ill-defined and

may lead to contradictory outcomes depending on the way it is implemented. Another example

is the election of the Bundestag deputies in Germany where increasing the ballots for a party may

induce a loss in its seats. The causes of such phenomenon are due to the complexity of the procedure,

and cannot be explained in a few sentences (see Pukelsheim, [2006]). The Italian and German cases

are just two examples; in many countries, the electoral rule for choosing the representatives in an

assembly is cumbersome. The complexity often reflects the more or less explicit goal of satisfying

distinct criteria which may be conflicting, meaning that they cannot be satisfied simultaneously for

all electoral results. For instance, as we will argue, proportional representation of the parties is in

conflict with the power of local votes on the local candidates, at least when the allocation of the

seats to the districts is biased, which is the most common situation.

The paper is organized as follows. Section 2 recalls some approaches to apportionment in the uni-

dimensional setting, with a focus on fairness and proportionality. Section 3 reviews the few studies

on bi-dimensional apportionments and the methods that have been introduced to account for both

dimensions simultaneously. These methods are based on a ’target’, that we call fair share, which

must be transformed into seats, i.e., integers. This can be performed by ’controlled rounding’ as first

illustrated by Gassner [1991] for the belgian Senate election, or by bi-divisor methods as introduced

by Balinski and Demange [1989-a]. A bi-divisor method serves as a basis for the design of the New

Apportionment Procedure adopted in various cantons in Switzerland starting with Zurich. The

section ends up with some discussion and open questions.

2 Uni-dimensional apportionment

The uni-dimensional apportionment problem has been thoroughly studied. To fix the idea, let us

introduce some notation. Let H be the total number of seats to be assigned in the house. Let

us first describe apportionment problems in terms of parties. In a party-apportionment problem,

the total number of seats has to be assigned as a function of the number of votes received by the

parties, as is performed by an electoral rule. Let m be the number of parties, vj be the total votes

for party j, and v = (v1, ..., vm) the vector of all votes. A (party-)apportionment assigns the H

seats to the parties. Denoting by sj the number of seats — integer-valued – received by party j,

an apportionment is represented by a vector s = (s1, . . . , sm) where sj is an integer (possibly null)

and
∑

j sj = H. A (district)-apportionment problem is obtained by considering districts instead of

parties and by interpreting the vj as the electoral population. When unspecified, j is referred to as

a category.

A method specifies the apportionment as a function of the data: An apportionment method

assigns to each possible electoral outcome v an apportionment s.

In the case of parties, an apportionment method is simply an electoral rule. In the case of districts,
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the method is not always specified, but there is a trend towards more transparency. In Europe for

instance, as explained by Grimmett [2011], ‘the Committee of Constitutional Affairs commissioned

a Symposium of mathematicians to identify a mathematical formula for the distribution of the seats

which will be durable, transparent and impartial to politics.

A main approach to judge methods relies on ’axioms’ or ’properties’ that the method should

reasonably satisfy. I present the main axioms considered in the literature that relate to some form

of fairness. Some of these axioms are based on the (Hare)-quota. The (Hare)-quota of j is defined

by qj =
vj
V H, and is interpreted as the number of seats that j should receive provided the seats were

divisible and strict proportionality of the seats to category sizes was the goal of the apportionment.

2.1 Fairness axioms

• Non-reversal : If a category has a strictly smaller size than another, then it should not get

more seats.

• Exactness : If the quotas are all integers, the apportionment is given by the quotas.

• Respect of quota : Each category should receive a number of seats equal to its quota rounded

either up or down.

• Consistency (or Uniformity) : Dropping some categories and the seats they obtain, the distri-

bution of the seats to the remaining categories is unchanged.

• Population-Monotonicity : If, following an election, category i grows stronger than a category

j, others being unchanged, category i does not lose a seat.

• House-Monotonicity : If the total number of seats H increases then no category should lose a

seat.

Non-reversal does not need any comment. Exactness and respect of quota both rely on the

premise that proportionality as embodied in the quotas is the ’ideal’ or target. When this target can

be achieved, exactness requires that it is the solution. When it cannot be achieved due to the indi-

visibility of seats, quotas should be rounded to an adjacent integer to approximate proportionality.

Exactness is weaker than the property of respect of quota.

Consistency, sometimes called uniformity, is the familiar and key property in many fair division

problems that asks that any part of a (fair) allocation to be itself a (fair) allocation.

The monotonicity properties state desirable properties of the method when some parameters, the

size of the categories or the number of seats, vary. In a sense they state minimal fairness properties

on the variations in the apportionments.

The first four axioms bear on a given apportionment. As such they can be readily checked;

a reversal for example is observable at the apportionment in place. Non-monotonicity properties
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instead are more difficult to check if one does not dwell into the mathematics. A non-monotonic

behavior is only observed after an adequate sequence in the change of the parameters, population

or house sizes. Indeed it is only when some ’paradoxes’ occurred that the non-monotonicity of some

common methods was revealed.1

The interpretation and relevance of the axioms in both the geographical and political contexts

will be discussed after the presentation of some ’classical’ methods.

2.2 Some common methods

It turns out that there is a fundamental conflict between population-monotonicity and the respect

of quota, as shown by Balinski and Young [1982]. This result shows how strong the integrality

requirement is. In view of this result, no method is singled out. Let us recall briefly two classes of

methods that are exact, namely for which quotas can be seen as the ideal.

The first class is based on the natural idea of ’rounding’ each quota to an adjacent number in

such a way that the number of allocated seats is kept equal to H. The most well-known method in

this class is the largest remainders. The description is simple: first, give every party its lower quota

(i.e. round down), and second distribute the remaining seats to the parties that have the largest

remainder left. By construction these methods respect the quotas.

The second class, divisor methods, was uncovered by Huntington [1921], who showed that five

well-known methods were computed in the same way, each one associated with a specific rounding

rule.2 Thresholds serve as a basis to define thresholds for rounding: Standard rounding for example,

which rounds each number to the nearest integer, yields the so-called Webster rule. The method

works as follows: Find a scale (or ’divisor’) such that rounding all scaled data and summing yields

the right total. As a result, the necessary adjustments due to the integer requirements are made in

proportion of the numbers, and not in absolute terms as in a method that respect the quotas. This

explains why the divisor methods are monotone (in whatever sense) and not the rounding-the-quota

methods.

In view of the incompatibility of these axioms, Gambarelli [1999] proposes to set priorities on

the criteria. The criteria are applied in sequence until a single apportionment is obtained. (For

example one may start with the apportionments that present no-reversal). The method is called

Minimax because at each stage only the apportionments that minimize the largest differences be-

tween parties according to the specified criterion are kept. One possible drawback of this method is

its computability/complexity because one needs to evaluate all apportionments (at least when the

first criterion is applied). Computability will be addressed more generally in the next section.

1Paradoxes are often called Alabama, population and new state (or Oklahoma) paradoxes.
2Formally, a divisor method is characterized by thresholds values d(n) ∈ [n, n + 1] for each natural number n.

Each number in the interval ]d(n), d(n+ 1)[ are rounded to n. The divisor method (based on d) associates to voting

results v the apportionments that satisfy given by: {s =
(
si
)
|si = [λvj ]d for a λ ∈ R chosen so that

∑
j sj = H}.

Generically the apportionment is unique.

4



To summarize, assuming that exact proportionality as embodied in the quotas is a goal, there

is no ideal method but there are many different reasonable methods. This lesson is confirmed by

another approach based on optimization rather than axioms. The five main divisor methods and

the largest remainders introduced below all minimize the distance to the quotas, each one with a

different ’reasonable’ distance.

2.3 Discussion

Even though the just presented methods differ and the differences in the produced outcomes play

a determinant political role under some circumstances, they are all based on the same premise.

Quotas constitute a benchmark, which is not feasible only because seats are indivisible. In particular,

each method delivers the quotas when these are all integers (the exactness property). There is a

fundamental critic to this premise, which is independent of the integrality requirement. The critic

takes very different forms in the geographical and political contexts. I start with the political one.

In many countries, stability and the constitution of a majority party is the priority. Such a priority

is executed in various ways, often indirectly, by imposing a minimal threshold for representation for

example. Even for a country such as Netherlands, which aims at a proportional representation, both

a minimal requirement and the divisor rule that most favors large parties –the Jefferson rule– are

used. A relevant approach to assess whether proportionality is appropriate depends on the whole

institutional framework and the role of the representative assembly we are considering. This is out

of the scope of the paper and the next section will take as given the goal of the electoral rule, be

proportionality or whatever other criterion.

As for the geographical context, somewhat implicitly population-proportionality as described by

the Hare-quota would achieve an equitable distribution of voting power of the citizens. However

not only population-proportionality is most often far from being achieved but also there is still a

lively debate about whether the Hare-quota is indeed a good measure of equity. For example, in

the current discussion about the apportionment method for the European Parliament, the principle

of ‘degressive proportionality’ is retained (see an account of the debate in Grimmet [2011]). A

theoretical normative approach challenges the fairness property of proportionality. If fairness means

that each individual has the same ’power’, then Hare-quotas may be unfair. Penrose [1946] already

expresses this idea and justifies an apportionment in which the seats are allocated proportionally

to the square root of the population. Let us describe the basic argument, so as to make clear the

underlying assumptions. Assume the representatives of a district (country) vote as a ’block’. In

other words, these representatives do not represent the possible diversity in the opinions within their

district. Thus each district in the assembly acts as a single player with a voting weight proportional

to the number of seats it has been assigned to. ’Power’ is defined as the chances of being pivotal,

that is the power to change a decision, hence linked with decisiveness.3 The key point is that, under

3This is similar to the model underlying the well-known Banzhaf index, now called the Penrose-Banzhaf index, by
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majority rule (and under some assumptions on the preferences on the issues) the decisiveness ’power’

is increasing more steeply than the voting weight. As a result, allocating seats in proportion to size

yields disproportionally more power to citizens in districts with large size. Under the statistical

assumptions made by Penrose [1946], seats should be allocated proportionally to the square root of

the population, which now is the benchmark instead of the Hare-quotas.

This line has been followed up recently by promoting the use of power indices to help to design

fair rules. A ’fair’ rule is defined as one that gives an equal power to each citizen. It should be clear

that this approach crucially depends on the chosen index. Power is linked with decisiveness, that is

the chances of being pivotal, which in turn depend on the assumptions one makes on representatives’

voting behavior, both within a district (block vote or not) and across districts such as the possible

correlations of the votes (see Widgren [2005] for a survey). Power also depends on the electoral rule

in the assembly since the chances of being pivotal depend on the set of ’winning’ coalitions. To sum

up, rules using power indices may incorporate important features that make them more fair, under

the important proviso that the underlying modeling assumptions hold and are stable. Nonetheless,

now that a benchmark has been defined, there still remains to convert it into integers for obtaining

an apportionment. An inspection of the axioms reveal that they still make sense, but for exactness

or respect of the quotas where quotas are replaced by the relevant benchmark. The various rounding

methods apply. I do not know any study, but the basic conflict between population-monotonicity

and respect of the benchmark is likely to be still present.

3 Bi-apportionment

In many elections for choosing representatives in an assembly, the electoral body is divided into

several electoral districts. The results obtained in each district matter for electing the representatives

of that district in the assembly but, at the same time, the elections in the districts cannot be

viewed as separate elections. These representatives, who will all gather in the assembly, are in most

circumstances affiliated to parties. So the outcome not only determines the representatives but also

the strength of the different parties and ultimately, in some countries, the prime minister. This

explains why some electoral laws account for both the local and global levels.

The difference with the analysis in the previous section is that the number of votes are distin-

guished by district and party. This is called a bi-apportionment problem.

Formally, let H be the total number of seats to be assigned in the house, n be the number of

districts, m the number of parties. The result of an electoral outcome is now described by a n×m
matrix v = (vij) in which row i represents district i, column j party j, and vij the votes obtained

by j in district i. To simplify the presentation, the matrix v is assumed to have all its elements

positive (otherwise additional conditions are needed for defining the methods).

some authors.
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The district-apportionment is fixed prior to the election, specified by the number of representa-

tives that each district is entitled to, hi for district i. The district-apportionment is thus described

by h = (h1, h2, . . . , hn), a n-tuple of positive integers that sum to H, H =
∑
hi. Now, given an

electoral outcome v, the electoral rule assigns seats to parties in each district so as to satisfy the

district constraints. Let bij represent the number of seats received by j in district i.

Definition 1 Let the district-apportionment h be given. A bi-apportionment is represented by a

matrix b = (bij) where the bij are non-negative integer and satisfy the district constraints:
∑

j bij =

hi for each i. A bi-apportionment method A assigns to each voting matrix v a bi-apportionment.

There has been so far few studies on bi-apportionment methods. Of course, there is the possibility

of full ‘decentralization’, under which an apportionment method is used separately in each district.

But there are various arguments for taking into account also of the global results, which make the

problem truly bi-dimensional.

3.1 Two-step procedures: priority to aggregate results

We present first two arguments against full decentralization.

When each district has a single representative (or a small number), separate elections may lead

to rather extreme outcomes and drastically diminish the representation of intermediate parties due

to the rounding effects. Furthermore, if party-proportional representation is the goal, a simple fact is

that party-proportionality cannot be achieved by allocating seats district per district when there are

distortions in the district apportionment. This result is independent of any integer requirement (see

Demange [2011]). This difficulty is at the root of complex additional features in electoral rules that

aim at achieving party-proportionality. For example there are rules that allow for a variable number

of seats, as for the Faroese Parliament (Zachariassen and Zachariassen [2006]) or the Bundestag in

Germany with the ‘overhang’ seats (Pukelsheim [2006]). Without entering into details, these rules

allocate the seats on a district basis to the parties and then may add extra seats if the parties

apportionment is too ’unfair’.

Another argument in favor of accounting for national parties’ votes to some extent arises when

some districts have very few representatives relative to others. Citizens in small districts in favor

of a minor party are almost sure to have no influence on the final outcome in case of separate

calculations while it might not be true in larger districts. Equity of citizens then would require for

some adjustment mechanism, as called for by the Swiss federal court in 2002. As a result, some

electoral rules take into account the party-representation at the national/global level and aims at

achieving some amount of proportional representation.

In what follows, whatever method, the priority is given to results at the aggregate level. This

is achieved by carrying out the method in two steps. In the first step, the H seats are apportioned
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to the parties on the basis of their overall vote totals: s = (sj) would be the result of a national

election if districts did not matter.

The second step computes a bi-apportionment assigned to the votes v under the district and

party constraints given by h and s: each district i is entitled to hi seats and each party j to sj seats.

The chosen (uni-)apportionment method in the first step allows to achieve the desired properties

on the parties’ representation. When party-proportionality is a goal,4 a ‘proportional’ method should

be chosen among the ones described in Section 2. If party-proportionality is not a goal and another

apportionment method is chosen to determine this first party-apportionment, the second step goes

through. The only difference is that the bi-apportionment will satisfy some properties that differ

from party-proportionality but that will meet other pre-defined requirements.

The second step can be stated as follows: given (v, h, s) how to transform v into integers so as

to meet the constraints. This problem differs from the uni-dimensional problem. Even without the

integer requirement, it is not obvious what the solution should be. So we first start by considering

the (bi)-allocation problem, i.e. the (bi)-apportionment problem where the integer assumption is

relaxed.

3.2 The fair share benchmark

Given (h, s) the feasible bi-allocations are represented by a = (aij), non-negative, that satisfy∑
j

aij = hi for each i,
∑
i

aij = sj for each j. (1)

Feasible bi-allocations exist because
∑

i hi =
∑

j sj = H. Among them, the fair share matrix

is a good candidate to represent the idea of proportionality to v while accounting for a priori

constraints. It is obtained by multiplying rows and columns by appropriate multipliers so as to

satisfy the constraints:

Definition 2 The fair share (matrix) to problem (v, h, s) is the unique matrix f of the form(
fij = λivijµj

)
that matches the row and column sums (1).

The fair share method, which assigns to a problem (v, h, s) its fair share is characterized by

three axioms, exactness, homogeneity, and uniformity, as shown by Balinski and Demange [1989-a].

The fair share corresponds to a common solution for adjusting a matrix used in various areas

such as in statistics for adjusting contingencies tables or in economics for balancing international

trade accounts (in the RAS model, see e.g. Bacharach [1965]). It is sometimes called bi-proportional

matrix, but bi-proportionality may introduce some confusion as it may suggest that the row and

4Gassner [1991], motivated by the severe drawbacks of the Belgian electoral law, expresses the idea of apportioning

seats first at the global level. This idea is used in the new Apportionment method applied in Zurich. In both case

proportionality is the goal in both dimensions.
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column sums are proportional apportionments respectively for districts and parties. In addition the

fair share can be defined in the more general setting in which row and column sums may be only

constrained to belong to some intervals rather than being assigned some values. The properties of

the fair share method described above extend (Balinski and Demange [1989-a]).

3.3 Bi-apportionments based on fair shares

Fair shares provide a natural benchmark or target, which constitutes the basis for bi-apportionment

methods. Recall that a bi-apportionment must be integer-valued. Starting from the fair share

benchmark, a solution would be to ‘round’ its elements say to the nearest integer (standard method).

However the obtained matrix may not meet the row and column totals (the same is true for any

specified rounding method). Two main approaches have been followed, which parallel to some extent

those used in a uni-dimensional setting.

The first approach is based on the idea of ‘rounding’ each element of the fair share matrix to an

adjacent number in some way while still satisfying the desired constraints on the row and column

sums. The rounding method is not pre-specified and may differ across elements. It should be first

noted that there are indeed bi-apportionments that ‘respect fair shares’. This is due to the special

structure of the linear system described by (1) which makes all extreme points integer-valued when

the h and the s are integer-valued.5 For an electoral rule the outcome should be determinate. One

can use for example a well-defined procedure, known as controlled rounding, as developed by Cox

and Ernst [1982] (see also Gassner [1991] who applies an alternative rounding method).

The second approach performs simultaneously the rounding and the adjustment through scale

factors (divisors). This leads to a variety of bi-divisor methods, each one characterized by a distinct

rounding method, as introduced and characterized in Balinski and Demange [1989-a]. The idea

is to use divisors as in the uni-dimensional case, but now there is one for each constraint.6 The

adjustment through the multipliers and the rounding are ‘simultaneous’ so that the bi-apportionment

is not necessarily a rounding of the fair share. Formally, just as in the one-dimensional case, bi-

dimensional divisor methods are based on a d-rounding function. One looks for multipliers λi for

district i, µj for party j such that d-rounding each element of the matrix with general element λivijµj

is a bi-apportionment, namely the constraints on row- and column-totals are met. The obtained

bi-apportionment exists and is typically unique.7 Formally a bi-divisor method (based on d) assigns

5Such a result is often referred to as Birkhoff theorem. A well-known example is the matching or assignment game

where n = m and all the components of h and s are equal to 1.
6The uni-dimensional setting considered in Section 2 has only one overall constraint corresponding to the total

number of the seats. When there are additional constraints, say a minimum number of seats per districts, additional

divisors are introduced.
7More precisely, this is true for divisor methods that assign no seat to small enough numbers, i.e., that satisfy

d(0) > 0 where d is defined as in footnote 2. This is a reasonable assumption since otherwise, for d(0) = 0, each party

should receive at least one seat in each district.
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to any positive problem (v,h, s) the bi-apportionment(s) b (typically unique) that satisfy

b =
(
bij
)
|bij = [λivijµj ]d,

∑
j

bij = hi each i and
∑
i

bij = sj each j. (2)

A bi-divisor method satisfies exactness, monotony, uniformity, proportionality. Furthermore, if s is

obtained by applying a proportional apportionment method to the global parties votes, the bi-divisor

method satisfies party-proportionality.

The New Apportionment Procedure developed by Pukelsheim [2006] and adopted by several

cantons in Switzerland is based on a bi-divisor method. Algorithms have been designed to compute

the bi-apportionment, starting with the Tie and Transfer algorithm using a formulation in terms

of transportation flows (Balinski and Demange [1989-b]). Alternative algorithms are defined and

compared in Maier, Zachariassen, and Zachariassen [2010].8

As far as I know, there are no studies comparing the various bi-apportionment methods we have

just described (see however the analysis of Zachariassen and Zachariassen [2006] applied to Faroese

Parliament.) Intuitively the outcomes should not differ that much. Once the party and district

apportionments are fixed, there is less flexibility than in the general uni-dimensional problem (in

particular restricting the problem to a single district, the second step becomes a vacuous problem).

The standard comparison between Jefferson and Adam’s methods for example do not apply here.

Gambarelli and Palestini [2007] recently extends the Minimax method to bi-apportionments (for

which the district apportionment is fixed). Recall that the minimax method is based on an ordering

of priority on criteria. In particular, as the authors recommend, criteria bearing on the global votes

can be applied first. This is in the same spirit as fixing the party-apportionment.

Finally, when the party-proportionality is not the goal, the same methodology applies if the party-

apportionment is determined by the total votes for each party through a non-proportional method.

Given the values for the district- and party- apportionments, the h and the s, one computes the

associated fair share. The various ways for rounding the cells in the matrix and their properties

apply. Hence the methodology carries over whatever district- and party- apportionments.

3.4 Discussion and open problems

I discuss first the issue of the complexity of a bi-dimensional method and the rationale for district

distortions.

One may worry about the complexity of the bi-dimensional methods for voters. A method that

is truly bi-dimensional involves handling matrices and furthermore the rounding issue adds another

difficulty in computing the outcomes. Voters should be able to check the outcome following an

8For a systematic treatment of the problem in terms of network flows, see Pukelsheim et al. [2011]. ’BAZI’,

A Free Computer Program for Proportional Representation provides useful programs at http://www.math.uni-

augsburg.de/stochastik/bazi/welcome.html.
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election. As such, both types of methods, although ‘transparent’ in theory, may appear quite obscure

to many voters or politicians, who cannot compute the outcome without an adequate software.

There is nevertheless a difference between the controlled rounding and the bi-divisor methods. For

the latter, once the multipliers are made public, the outcome can be checked by hand. For the

controlled rounding method, which minimizes some distance measure to the ‘target’, this is not the

case. Recently Serafini and Simeone [2011-a] and [2011-b] have proposed to use a different distance

measure for rounding the target. The computation of the optimal apportionment relies on flow

techniques and some ’certificates’, produced by the Max Flow-Min Cut Theorem, allow voters to

check the optimality of the outcome.

In the previous section, the district-apportionment is taken as ’given’. The party-apportionment

was then determined, say to achieve proportional party-representation (modulo the variations in

the proportional methods) or another goal. The interaction between the constraints on district-

and parties- apportionments, the h and the s has not been tackled, as far as I know. This issue

deserves some discussion. Consider the main theoretical argument against proportionality in district-

apportionments, which justifies the Penrose square root law. It is based on the fact that the citizens’

preferences in a district are not well represented because their representatives vote in ’block’. This

argument is no longer valid when citizens vote for parties, hence express their preferences related to

’general issues’ handled by parties. Citizens are represented not only by their district representatives

but also by their parties’ representatives. This suggests that the rationale for favoring districts with

small population sizes is much weaker. The answer should depend on the type of issues handled by

the ‘representative’ assembly, but in any case is worth studying.

The representation problem, prominent in the setting of electoral rules, arises in many other

contexts as well. Still in the political domain, Hylland [2000] suggests a representation for the

Parliament of the Federation of Bosnia and Herzegovina. There are ten Cantons and three ‘Con-

stituent people’, Bosniacs, Croats and Others. Here the matrix gathers the population of the three

Constituent people (instead of parties) in the ten cantons according to the census.

Representation problems also abound outside politics, in business for designing the board of

directors, in schools or universities for the constitution of assemblies representing the various bodies

–students parents, teachers, administrative-, in world institutions such as IMF, ONU for representing

countries. In these frameworks, institutions often use more flexible rules than in politics. In a

uni-dimensional setting, a simple way to approximate proportionality (assuming it is a target) is

to assign weights to representatives, hence avoiding difficulties due to the indivisibility of seats.

Weighted voting is used in international institutions such as the International Monetary Fund, in

which each Member State receives a weighted vote proportional to its contribution to the Fund

(which is determined by its economy) or the World Bank (members received a fixed part plus a part

proportional to their shares in the Bank). In most publicly owned companies, shareholders have

votes proportional to their shares. In condominium, owners votes are functions of the size of their
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flats etc. In politics the European Council also uses weighted voting. All these contexts consider a

single category. It is unclear how to extend weighted voting to a bi-dimensional context, especially

if one wants to favor some categories.

We have restricted our analysis to a somewhat poor set of data, in which each person casts a

single vote. In the context of a scientific association, Brams [1990] proposed to use approval voting.

The association wanted to find a way to achieve a more equitable representation of regions and

specialties, making the problem bi-dimensional. Extending such a procedure (i.e., using approval

voting) to a political setting needs to be investigating.

Finally a further development would be to investigate the more general following formulation

of the representation problem. Given a partition of a population into categories, find a set of

representatives that meets some constraints or achieves some goal. In the presented bi-dimensional

setting, a category is characterized by the pair district-party with constraints on the totals in each

dimension. Considering more than two dimensions is worth investigating.9
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