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Topological data analysis is a relatively new branch of machine learning that excels in
studying high-dimensional data, and is theoretically known to be robust against noise.
Meanwhile, data objects with mixed numeric and categorical attributes are ubiquitous in
real-world applications. However, topological methods are usually applied to point cloud
data, and to the best of our knowledge there is no available framework for the classifica-
tion of mixed data using topological methods. In this paper, we propose a novel topolog-
ical machine learning method for mixed data classification. In the proposed method, we
use theory from topological data analysis such as persistent homology, persistence dia-
grams and Wasserstein distance to study mixed data. The performance of the proposed
method is demonstrated by experiments on a real-world heart disease dataset. Exper-
imental results show that our topological method outperforms several state-of-the-art
algorithms in the prediction of heart disease.

Keywords: Topological data analysis; machine learning; artificial intelligence; mixed data;
heart disease.

1. Introduction

Topological data analysis (TDA) is a relatively new subject that is gaining popular-

ity in many fields, such as network analysis,1,2 biomolecular chemistry,3,4 and drug

design.5,6 Topological data analysis is often referred to as studying the “shape” of

data, in order to deduce fundamental characteristics of the data. The primary tool

used in TDA is persistent homology,7,8 though there are also other tools such as

Mapper,9,10 discrete Morse theory, 11,12,13 as well as other techniques from alge-

braic topology.14,15,16,17 It is generally acknowledged that topological data analy-

sis is effective at analyzing high-dimensional noisy data.18,19 We also remark that

topological methods have also recently gained prominence in physics, with the 2016

Nobel Prize in Physics being awarded for theoretical discoveries of topological phase

transitions and topological phases of matter.20

In real-world applications, data sets often have both numeric and categorical at-

tributes. The coexistence of numeric and categorical variables often makes machine
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learning methods designed for single-type data inapplicable to mixed-type data.21,22

Traditionally, TDA is usually applied to point cloud data or spatial data.23 The

strengths of TDA include the property of being coordinate-free24,19 (independent

of the coordinate system chosen), as well as being translation-invariant and rotation-

invariant. 25,26 A drawback of these strengths is that it may be hard for TDA to

effectively analyze data that is sensitive to choice of coordinates, translation, and/or

rotation. Examples of such data include data with heterogeneous features, where

each coordinate represents a fundamentally different feature (e.g. light, temperature,

humidity).27 To the best of our knowledge, there is currently no readily available

framework for the classification of mixed numeric and categorical data using TDA.

In view of the ubiquity of mixed-type data and the rising popularity of TDA, it is

of interest to develop a topological machine learning method for mixed data.

In this paper, we propose a novel topological machine learning method for mixed

data (TopMix). In our method, the categorical variables are first converted to binary

variables via one-hot encoding. All predictor variables are subsequently standard-

ized, and a basic symmetry breaking27 technique is applied to the data for TDA to

better deal with heterogeneous features. Subsequently, each data point is converted

into a point cloud via multiple projection maps. We then generate persistence di-

agrams from the point cloud data, and calculate the Wasserstein distance between

the persistence diagrams. Lastly, we use the k-nearest neighbors algorithm (k-NN)

for supervised machine learning (classification). The basic workflow of our paper is

summarized in Figure 1.

We remark that the technique of converting each data point into a point cloud

via multiple projection maps is specialized for the setting of mixed numeric and

categorical data. Hence, it is a new innovation that is not present in the authors’

previous paper27, which focuses on the setting of multivariate time series data.

Mixed data
One-hot

encoding
Standardization

Symmetry

breaking

Projection

maps
Point

clouds

Persistence

diagrams

k-NN

(Wasserstein

distance)
Classification

Fig. 1. Basic workflow of Topological Machine Learning for Mixed Numeric and Categorical Data.

For applications, we apply our method to heart disease prediction. Heart disease

is the leading cause of death in the industrialized world.28 For instance, in 2002,

696,947 people in the United States died of heart disease, compared with 557,271

deaths from cancer.29 We use a dataset originating from the seminal paper by R.

Detrano et al.30 In the dataset, there are 14 attributes including numeric and cate-
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gorical variables. The goal is to predict whether a patient has heart disease (> 50%

luminal narrowing of any major epicardial vessel) or not. We show that topological

methods are effective in predicting heart disease using mixed data. Our topological

method outperforms several state-of-the-art algorithms in the classification of heart

disease.

The rest of the paper is organized as follows. We first review some related work

in Section 1.1. This is followed by a brief introduction to the background informa-

tion on TDA in Section 2. In Section 3, we present our topological machine learning

method for mixed numeric and categorical data. In Section 4, we report the exper-

imental results, which demonstrate the viability of the proposed method. Finally,

we draw conclusions in Section 5.

1.1. Related Work

In the paper by X. Ni et al.,31 the authors proposed a clustering method for mixed

data based on a tree-structured graphical model. Their tree-structured model fac-

torizes into a product of pairwise interactions. Furthermore, the authors leverage

theory from TDA to adaptively merge trivial peaks of the density function into

larger ones in order to achieve meaningful clusterings. Persistent homology theory

is used to automatically determine the number of clusters in the data. An earlier

seminal paper by Chazal et al.32 introduced the novel idea of using topological

persistence to guide the merging of clusters. Their algorithm provides additional

feedback in the form of a persistence diagram, which the authors prove to reflect

the prominences of the modes of the density. The algorithm requires rough esti-

mates of the density at the data points, and knowledge of approximate pairwise

distances between them, and hence is applicable in any metric space. Their method

can be theoretically proven to output the correct number of clusters under certain

mild sampling conditions.

In recent years, topological techniques have been effectively combined with ma-

chine learning or statistical methods. In the paper by C. Hofer et al.,33 the au-

thors introduced a technique that enables the input of topological signatures to

deep neural networks for learning a task-optimal representation during training.

An advantage of their method is that it learns the representation instead of map-

ping topological signatures to a pre-defined representation. P. Bubenik defined the

persistence landscape,34 which is a novel topological summary for data. Since this

summary lies in a vector space, it is possible to combine it with tools from statistics

and machine learning. A number of standard statistical tests can be used for statis-

tical inference using persistence landscapes, for example the two-sample Z-test and

Hotelling’s T 2 test.

C. Wu and C. A. Hargreaves27 developed a framework for analyzing multivariate

time series using TDA. The methodology includes converting the multivariate time

series to point cloud data, calculating Wasserstein distances between the persistence

diagrams, and using the k-NN algorithm for classification. For applications, the
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authors focus on room occupancy detection based on 5 time-dependent variables

(temperature, humidity, light, CO2 and humidity ratio).

In the paper by J. Ji et al.,22 the authors proposed a new initialization method

for mixed data clustering. Prior to their paper, most of the initialization approaches

are dedicated to partitional clustering algorithms which process either categorical

or numerical data only. In the paper, the authors introduced a new definition of

density to assess the cohesiveness of data objects with mixed numeric and categorical

attributes.

A. Ahmad and L. Dey35 presented a clustering algorithm that works well for

data with mixed numeric and categorical features. The authors proposed a new cost

function and distance measure based on co-occurrence of values. In their scheme,

δ(p, q) which denotes the distance between a pair of distinct values p and q of an

attribute, is computed as a function of their co-occurrence with other attribute val-

ues. The contribution of a categorical attribute is inherent in the distance measure

itself and need not be user defined.

The paper by J. Nahar et al.36 investigates various computational intelligence

techniques in the detection of heart disease. In the paper, the Cleveland dataset30

from the UCI Machine Learning Repository37 is used. In particular, the authors

highlight the potential of a medical knowledge driven feature selection process for

heart disease diagnosis. Experiments show that the medical knowledge based feature

selection method has shown promise for use in heart disease diagnostics.

R. Das, I. Turkoglu and A. Sengur38 explored the effective diagnosis of heart

disease through neural network ensembles. Ensemble based methods can enable an

increase in performance by combining several individual neural networks to train

on the same task. The authors utilize SAS base software 9.1.3 in their methodology,

and achieved good results using three independent neural network models in the

ensemble model.

2. Background

We give a brief overview of the key concepts in TDA and persistent homology, and

refer the reader to the appropriate references for more details. A classical text for

algebraic topology is the book by A. Hatcher.39 The survey article by H. Edelsbrun-

ner and J. Harer,40 as well as the review paper by R. Ghrist,23 provide a superb

introduction to persistent homology. In addition, the paper by A. Zomorodian and

G. Carlsson8 gives a comprehensive overview of persistent homology from a math-

ematical and computational perspective.

2.1. Simplicial complexes

Simplicial complexes are one of the main objects of study in algebraic topology. A

simplicial complex can be regarded as a set composed of vertices, edges, triangles,

and higher dimensional simplices.
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More formally, a simplicial complex K is a collection of sets such that σ ∈ K

and τ ⊆ σ implies τ ∈ K. The sets σ ∈ K are called the simplices of the simplicial

complex K. We call the singleton sets {v} the vertices of K. The dimension of a

simplex σ ∈ K is defined to be dim(σ) = |σ|−1, and we call a simplex of dimension

k a k-simplex. Simplices of dimension 0, 1, 2, 3 represent a vertex, edge, triangle

and tetrahedron respectively, as shown in Figure 2.

v0

vertex {v0}

v0 v1

edge {v0, v1}

v0 v1

v2

triangle {v0, v1, v2}

v0 v1

v2

v3

tetrahedron {v0, v1, v2, v3}

Fig. 2. A 0-simplex (vertex), 1-simplex (edge), 2-simplex (triangle) and 3-simplex (tetrahedron).

A type of simplicial complex frequently used in TDA is the Vietoris-Rips complex

(or Rips complex for short).

Definition 2.1. Let {xi} be a set of points in the Euclidean space R
n. The Rips

complex Rǫ is the simplicial complex whose k-simplices consist of each subset of

k + 1 points {xj}kj=0 which are pairwise within distance ǫ.

Definition 2.2. Let K be a simplicial complex. Suppose L is a simplicial complex

such that every face of L belongs to K, that is, L ⊆ K. We say that L is a simplicial

subcomplex of K.

We also introduce the notion of a filtration of a simplicial complex K, which is

a nested sequence of complexes ∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K. We say that K is

a filtered complex.

2.2. Homology

The kth chain group Ck of a simplicial complex K is defined to be the free abelian

group with basis to be the set of oriented k-simplices. The boundary operator ∂k :

Ck → Ck−1 is defined on an oriented simplex σ = [v0, v1, . . . , vk] by

∂k(σ) =

k
∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vk],

where v̂i denotes the deletion of the vertex vi.

Subsequently, the kth homology group is defined as the quotient Hk = Zk/Bk,

where Zk = ker∂k and Bk = Im ∂k+1 are the cycle group and the boundary group

respectively. The rank of the kth homology group βk = rank(Hk) can be said to

count the number of k-dimensional “holes” in K, as illustrated in Figure 3.
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v0 v2

v1

v3

v4

Fig. 3. For the above simplicial complex, we have β0 = 2 (2 connected components), β1 = 1 (1
“circular” hole which corresponds to the unshaded region) and β2 = 0 (no “voids”).

2.3. Persistent homology

Given a filtered complex K, we may define the corresponding boundary operators

∂i
k and groups Ci

k, Z
i
k, B

i
k and Hi

k for the ith complex Ki. The p-persistent kth

homology group of Ki is defined as

Hi,p
k = Zi

k/(B
i+p
k ∩ Zi

k).

The filtered complexK is usually obtained by the construction of Rips complexes

over a range of distances ǫ. Persistent homology detects those topological features

which persist over a parameter range, revealing meaningful structures in the data.

3. Topological Machine Learning for Mixed Numeric and

Categorical Data

In this section, we describe our approach of using topological machine learning

methods to analyze mixed data. A basic summary of the workflow can be found in

Figure 1.

3.1. Notation

We first introduce a standard notation for mixed data, following the paper by Z.

Huang and M. K. Ng,41 as well as J. Ji et al.22 Let X = {X1, X2, . . . , Xn} denote

a dataset of n data objects. Each object Xi has m attributes A1, A2, . . . , Am. We

represent each Xi as a m-tuple (xi,1, xi,2, . . . , xi,m). Each attribute Aj is associ-

ated with a domain of values, denoted by Dom(Aj), which is either numeric (real

numbers) or categorical (finite, unordered set). A categorical domain is generally

represented by Dom(Aj) = {aj,1, aj,2, . . . , aj,s}, where s is the number of possi-

ble categorical values for the categorical attribute Aj . Each data object Xi can be

logically represented as a conjunction of attribute-value pairs:

[A1 = xi,1] ∧ [A2 = xi,2] ∧ · · · ∧ [Am = xi,m].
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3.2. Methodology

3.2.1. One-hot encoding

Firstly, we apply one-hot encoding to the mixed data, converting each categorical

variable with s possible values to s binary variables. That is, each categorical at-

tribute Aj with Dom(Aj) = {aj,1, aj,2, . . . , aj,s} is replaced with s binary attributes

B1, B2, . . . , Bs, with Dom(Bi) = {0, 1} for 1 ≤ i ≤ s.

3.2.2. Standardization

We standardize all variables (including binary variables) to have zero mean and

unit variance. This is to ensure that all variables are on the same scale, preventing

a feature with larger scale from dominating other features. We remark that the

standardization of binary variables is also done in the algorithms KNNImpute (for

categorical data)42 and Lasso.43

3.2.3. Symmetry breaking

Symmetry breaking refers to adding a fixed constant vector to each data object,

with the purpose of enabling TDA methods to better distinguish point clouds that

may just differ by translation or rotation. Symmetry breaking was introduced in the

context of studying multivariate time series using topological methods.27 Basically,

symmetry breaking attempts to “disable” the translational / rotational invariance

property of TDA for data that do not require it.

Definition 3.1. Let X = (x1, x2, . . . , xm) be a data object represented as a m-

tuple in R
m. Let v = (c1, c2, . . . , cm) be a fixed vector in R

m. We define the new

data object X ′ obtained by symmetry breaking (of X) to be X ′ = X + v.

An example of the fixed vector is v = (5, 6, 7, . . . ,m+ 4). We will be using this

fixed vector in the paper. In Section 3.3, we will illustrate how symmetry breaking

can be useful in analyzing data with heterogeneous features, as well as explain our

heuristic choice of fixed vector v.

3.2.4. Projection maps

After applying symmetry breaking, the new data object

X ′ = (x1 + c1, x2 + c2, . . . , xm + cm)

is a single point in R
m. However, a single point has trivial homology and trivial

persistent homology, hence we will need a point cloud (set of multiple data points

in Euclidean space) in order for topological methods to work. In contrast, in the

authors’ previous paper on multivariate time series27, the point cloud resulting from

a time window of length w > 1 already consists of multiple data points. Hence, there
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was no need for the technique of projection maps in the setting of multivariate time

series data.

Definition 3.2. The ith projection map pi : R
m → R

m is defined by

pi(y1, y2, . . . , yi, . . . , ym) = (y1, y2, . . . , 0, . . . , ym).

The projection map pi changes the ith coordinate of a vector to 0. This is

equivalent to projecting the vector onto the hyperplane H = {(x1, x2, . . . , xm) ∈
R

m | xi = 0}. The projection map defined above is idempotent, namely pi ◦ pi = pi.

3.2.5. Point clouds

We define the point cloud S(X ′) associated to the data object X ′ ∈ R
m to be

S(X ′) = {X ′} ∪ {p1(X ′), p2(X
′), . . . , pm(X ′)}.

That is, S(X ′) consists of m + 1 points, namely the point X ′ as well as the

m projected points p1(X
′), p2(X

′), . . . , pm(X ′). We show an example for the case

m = 3 in Figure 4.

X′

p1(X
′)

p2(X
′)

p3(X
′)O

x

y

z

Fig. 4. For m = 3, the point cloud S(X′) consists of X′, as well as the 3 projected points p1(X′),
p2(X′) and p3(X′). The 3 projected points are projections of X′ onto the yz-, xz-, and xy-planes
respectively.

The point cloud S(X ′) contains intrinsic information about the data object

X ′ in the form of distances between the points in S(X ′). For instance, if X ′ =

(y1, y2, . . . , ym), we can calculate the following Euclidean distances between X ′ and

its projections:

d(X ′, pi(X
′)) = |yi|, (1)

d(pi(X
′), pj(X

′)) =
√

y2i + y2j , for i 6= j. (2)
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3.2.6. Persistence diagrams

A persistence diagram44 is a multiset of points in the space ∆ := {(b, d) ∈ R
2 |

b, d ≥ 0, b ≤ d}. Each point (b, d) represents a persistent generator (of a given

dimension), where b denotes the birth of the generator and d its death. In brief, the

persistence diagram is a visual representation of the persistent homology of a point

cloud. The persistence diagram is independent of choice of generators and hence is

unique.45 A notable result is the stability of persistence diagrams with respect to

Hausdorff distance, bottleneck distance,44 as well as Wasserstein distance.45 Such

stability results give TDA the benefit of being robust to noise.

For the consideration of readability, we include a concrete example that illus-

trates the relationship between the persistent homology of a point cloud and its

persistence diagram. Consider the point cloud S = {(0, 0), (1, 0)} consisting of two

points (0-simplices). At the start of the filtration process, there are two separate

connected components (namely the two 0-simplices in S), hence this corresponds to

two points on the persistence diagram (Figure 5) with birth time 0. At the filtra-

tion stage of ǫ = 1, the Rips complex Rǫ now consists of only one single connected

component (namely the 1-simplex consisting of the two points in S and the edge

joining them). This corresponds to a death time of 1, which explains the point (0,1)

on the persistence diagram. This 1-simplex theoretically persists to infinity (death

time of infinity), but for practical purposes in the code we have to set a maximum

value of ǫ for the Rips filtration (in this case maxscale = 5). Hence, this explains

the point (0,5) on the persistence diagram.

 

 

0 1 2 3 4 5

0
1

2
3

4
5

Birth

D
ea

th

Fig. 5. The persistence diagram (dimension 0) for the point cloud S.
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3.2.7. k-NN (Wasserstein distance)

The Wasserstein distance46,45,47 is commonly used to compare between two persis-

tence diagrams.

Definition 3.3. The p-th Wasserstein distance between two persistence diagrams

D1, D2 (of the same dimension) is defined to be

Wp(D1, D2) =

(

inf
ϕ:D1→D2

∑

x∈D1

‖x− ϕ(x)‖p
∞

)1/p

,

where the infimum is taken over all bijections ϕ between D1 and D2.

As p tends to infinity, the Wasserstein distance Wp approaches the bottleneck

distance W∞. The bottleneck distance captures the most perturbed topological

feature (or the extreme behavior) of a point cloud, and can lead to noisier results

than the Wasserstein distance.48

For this paper, we will use the Wasserstein distance with p = 1, also known as

the 1-Wasserstein distance or “earth mover’s distance”. The 1-Wasserstein distance

is widely utilized in computer science,49,50 including a recent usage in generative

adversarial networks.51

Subsequently, to carry out classification (supervised machine learning), we use

the k-nearest neighbors algorithm (k-NN) based on the Wasserstein distance. For

each point cloud S(X ′) (corresponding to a data object X ′) in the test set, we will

determine its k-nearest neighbors {S(Y1), S(Y2), . . . , S(Yk)} in the training set, with

respect to the Wasserstein distance. Finally, we classify X based on the majority

class of the elements in the set {Y1, Y2, . . . , Yk}.

3.3. Elaboration on symmetry breaking

In this section, we illustrate how symmetry breaking, together with projection maps,

can be helpful in analyzing data with heterogeneous features.

Consider two data objects X = (1, 2) and Y (2, 1). Their associated point clouds

are S(X) = {(1, 2), (0, 2), (1, 0)} and S(Y ) = {(2, 1), (0, 1), (2, 0)}. We note that

the pairwise distances between points in S(X) are exactly the same as the respec-

tive pairwise distances between points in S(Y ), namely 1, 2 and
√
5. This would

mean that topological methods will not be able to distinguish between S(X) and

S(Y ). The basic principle is that topological methods does not distinguish between

point clouds that are related by “symmetry” (e.g. differ by rotation, translation,

reflection).

Now, consider v = (5, 6) such that we have

X ′ = X + v = (6, 8)

and

Y ′ = Y + v = (7, 7).
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Then, the associated point clouds become S(X ′) = {(6, 8), (0, 8), (6, 0)} and S(Y ′) =

{(7, 7), (0, 7), (7, 0)}. The pairwise distances between points in S(X ′) are 6, 8 and

10, while the pairwise distances between points in S(Y ′) are 7, 7 and 7
√
2. Due to

the difference in distances, TDA will be able to tell apart the point clouds S(X ′)

and S(Y ′), which is the desired outcome.

Next, we will explain our heuristic choice of fixed vector v = (5, 6, 7, . . . ,m+4) as

mentioned in Section 3.2.3. The main reason is to try to make the components yi in

the data object X ′ = (y1, y2, . . . , ym) all positive (or mostly positive). By observing

Equations 1 and 2 in Section 3.2.5, we see that the distances |yi| and
√

y2i + y2j are

not sensitive to signs (positive/negative) of the components yi. For instance, there

would be difficulty in distinguishing between say, X ′ = (1, 2) and Y ′ = (−1, 2).

Thus, we can see that our proposed method works better if components in the data

objects are all positive (or mostly positive).

After the standardization step, each component xi of the data object X =

(x1, x2, . . . , xm) comes from a distribution with mean 0 and standard deviation 1.

Hence, by adding the fixed vector v = (5, 6, 7, . . . ,m + 4) (note that all compo-

nents of v are 5 and above) to X , we have taken reasonable steps to try to make

components of X ′ = X + v mostly positive, since only components that are more

than 5 standard deviations below the mean (in X) would remain negative in X ′.

We remark that the above choice of fixed vector v is not unique (there could be

other choices of v that work as well).

4. Experimental Results

To evaluate the effectiveness of our proposed method, we use a real-world

mixed dataset on heart disease30 taken from the UCI Machine Learning

Repository.37 We focus on the Cleveland dataset, which comprises of data

from patients referred for coronary angiography at the Cleveland Clinic. The

algorithms were mostly implemented in Python, with the exception of com-

puting persistence diagrams and Wasserstein distances using the R pack-

age TDA.52 The codes in the paper are made publicly available on GitHub:

https://github.com/wuchengyuan88/topology-mixed-data.

The 14 attributes of the heart disease dataset along with their data types and a

brief description are presented in Table 1. For this dataset, heart disease is defined

as greater than 50% luminal narrowing of any major epicardial vessel.

After one-hot encoding, there are a total of 25 predictive attributes. Hence, each

patient is represented as a data object X in R
m, where m = 25. Each patient will

then be represented by a point cloud S(X ′) consisting of 25+1 = 26 points in R
25.

For the construction of persistence diagrams, we use the ripsDiag function in

the R package TDA. We show examples of two persistence diagrams from different

classes in Figure 6. Qualitatively, we can visually observe some differences, for in-

stance the persistence diagram for the patient of class 1 (heart disease) contains

a denser cluster of points in the region corresponding to low death times of ap-
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Table 1. Attributes of the heart disease dataset (6 numeric and 7 categorical predictive attributes, and 1
categorical target attribute).

Attribute Data type Brief description

1 age numeric Age in years
2 sex categorical Gender of patient (1 = male; 0 = female)
3 cp categorical Chest pain type (1 = typical angina; 2 = atypical angina;

3 = non-anginal pain; 4 = asymptomatic)
4 trestbps numeric Resting blood pressure in mmHg
5 chol numeric Serum cholesterol in mg/dl

6 fbs categorical Fasting blood sugar > 120 mg/dl (1 = true; 0 = false)
7 restecg categorical Resting electrocardiographic results (0 = normal;

1 = having ST-T wave abnormality;
2 = left ventricular hypertrophy)

8 thalach numeric Maximum heart rate achieved
9 exang categorical Exercise induced angina (1 = yes; 0 = no)
10 oldpeak numeric ST depression induced by exercise relative to rest
11 slope categorical Slope of the peak exercise ST segment (1 = upsloping;

2 = flat; 3 = downsloping)
12 ca numeric Number of major vessels (0-3) colored by fluoroscopy
13 thal categorical Heart status (3 = normal; 6 = fixed defect;

7 = reversible defect)
14 num (target attribute) categorical Presence of heart disease (0 = healthy; 1 = heart disease)

proximately 5 to 8. Quantitatively, the difference between persistence diagrams is

measured by the Wasserstein distance, using the wasserstein function from the R

package TDA. For this paper, distances between persistence diagrams are computed

using 0 dimensional features, as we experimentally observe that 1 dimensional and

higher features rarely appear in the persistence diagrams for our dataset.

We split our initial dataset (consisting of 297 patients in the Cleveland heart

disease dataset) randomly into training, validation and test sets in a 60:20:20 ratio.

A further summary of the split data sets can be found in Table 2.

Table 2. Description of split data sets.

Data class distribution (%)

Data set Number of patients 0 (healthy) 1 (heart disease)

Training set 179 54.19 45.81
Validation set 59 52.54 47.46
Test set 59 54.24 45.76

To choose a suitable value for the parameter k in the k-NN algorithm, we ex-

periment with various values of k on the validation set. The k nearest neighbors

will be selected from the training set based on the Wasserstein distance. We show

the accuracy, sensitivity (true positive rate) and specificity (true negative rate) for

various values of k in Table 3. We select k = 5 as it corresponds to the highest

accuracy, as well as relatively high sensitivity and specificity (above 70%).

With the chosen value of k = 5, we show the results for the test set in Table 4. We

achieve a high level of accuracy, sensitivity (recall of positive class) and specificity
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Fig. 6. The persistence diagram on the left belongs to a patient of class 0 (healthy), while that
on the right belongs to a patient of class 1 (heart disease). The points refer to homological features
in dimension 0.

Table 3. Accuracy, sensitivity and specificity for different values of k on the validation set.

Value of k 1 2 3 4 5 6 7 8 9 10

Accuracy (%) 69.49 74.58 76.27 77.97 81.36 79.66 77.97 76.27 77.97 79.66
Sensitivity (%) 64.29 85.71 78.57 82.14 75.00 78.57 71.43 71.43 67.86 75.00
Specificity (%) 74.19 64.52 74.19 74.19 87.10 80.65 83.87 80.65 87.10 83.87

(recall of negative class) on the test set.

Table 4. Results for test set (using k = 5).

Precision (%) F1 score (%)
Accuracy (%) Sensitivity (%) Specificity (%) (class 0) (class 1) (class 0) (class 1)

89.83 88.89 90.62 90.62 88.89 90.62 88.89

Following best practices in machine learning, we also report the results for 10-

fold cross-validation. The optimal value of k (for the k-NN algorithm) in the case

of 10-fold cross-validation is found to be k = 16. We list the results in Table 5.

Table 5. Results for 10-fold cross-validation (using k = 16).

Precision (%) F1 score (%)
Accuracy (%) Sensitivity (%) Specificity (%) (class 0) (class 1) (class 0) (class 1)

82.52 79.51 85.54 82.89 82.10 83.90 80.37

For reference, the accuracy of state-of-the-art algorithms reported in the lit-

erature typically ranges from around 60% to 90%.53,38,54,36,55,56 We compare our
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test set results with some previous results reported in literature. We remark that

some of the accuracy results in the literature are based on 10-fold cross-validation

on the total data, while other results are based on train-test splits. The 10-fold

cross-validation methodology has the advantage of reduced bias as every data point

gets to be tested exactly once and is used in training 9 times. However, some au-

thors also argued that selecting the best training parameters on a validation set

and reporting prediction on a test set (which is how we obtained our test accuracy)

is more authentic than simply performing a 10-fold cross-validation on a training

set.36

Table 6 gives the classification accuracies of our method and other previous

approaches. Our Topological Machine Learning for Mixed Data method (TopMix)

outperforms a number of other algorithms, including several state-of-the-art algo-

rithms.

We remark that the Cleveland dataset in the UCI Machine Learning Repository

consists of 303 original instances (including 297 complete instances and 6 instances

with missing attributes). We only use the 297 complete instances (approximately

98% of the full dataset) for confirming the efficiency of our method. For the results

listed in Table 6, it is not clearly specified whether the authors used the reduced

dataset of 297 instances or the full dataset. Hence, we also reprogram some of

the methods in the list and show their accuracy for a fairer comparison. We use the

Scikit-learn package in Python and reprogram 5 methods (SVM, Logistic regression,

Decision tree, Naive Bayes, and Multi-layer Perceptron) using the reduced dataset.

The results are recorded in Table 6 as well.

5. Conclusions

Data objects with mixed numeric and categorical attributes are common in real-

world applications. However, many algorithms are not compatible with mixed data

and can only work on single-type data, that is, either numeric or categorical data.

On the other hand, TDA is a rapidly emerging machine learning method that has

benefits of robustness to noise and effectiveness in high dimensions. However, tra-

ditionally TDA is applied to point cloud data, not mixed data.

In this paper, we proposed a novel topological machine learning method to

classify mixed numeric and categorical data. In our method, we utilize theory from

TDA such as persistent homology, persistence diagrams and Wasserstein distance

in order to study mixed data. In doing so, we expand the repertoire of TDA to

include mixed data.

We test our proposed method on a heart disease dataset from the UCI ma-

chine learning repository. The experimental results demonstrate that the proposed

method is effective at predicting heart disease, and also outperforms several state-

of-the-art algorithms.

In conclusion, our paper represents a first step towards using TDA to classify

mixed numeric and categorical data and can be viewed as a proof of concept that
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Table 6. Classification accuracies obtained with our proposed Topological Ma-

chine Learning for Mixed Data method (TopMix) and other classifiers from liter-
ature. We have also reprogrammed some of the methods ourselves using classifiers
from Scikit-learn, labelled as Scikit-learn (2020) under the “Source” column.

Source Method Accuracy (%)
ToolDiag IB1-4 50.00
WEKA, RA InductH 58.50
ToolDiag, RA RBF 60.00
WEKA, RA FOIL 64.00
ToolDiag, RA MLP+BP 65.60
Scikit-learn (2020) Decision tree 67.80
WEKA, RA T2 68.10
S. Pouriyeh et al. (2017) SCRL 69.96
WEKA, RA 1R 71.40
WEKA, RA IB1c 74.00
Scikit-learn (2020) Naive Bayes 76.27
J. Nahar et al. (2013) J48 76.57

WEKA, RA K* 76.70
J. Nahar et al. (2013) IBK 76.90
R. Detrano Logistic regression 77.00
S. Pouriyeh et al. (2017) Decision tree 77.55
J. Nahar et al. (2013) AdaBoostM1+CFS 77.94
J. Nahar et al. (2013) SMO+MFS 77.95
N. Cheung (2001) BNNF 80.96
N. Cheung (2001) BNND 81.11
N. Cheung (2001) C4.5 81.11
N. Cheung (2001) Naive Bayes 81.48
J. Nahar et al. (2013) PART 81.52
S. Pouriyeh et al. (2017) SVM 84.15
Scikit-learn (2020) Multi-layer Perceptron 84.75
J. Nahar et al. (2013) PART+MFS 86.77
Polat et al. (2006) Fuzzy-AIRS-Knn based system 87.00
Scikit-learn (2020) Logistic regression 88.14
Scikit-learn (2020) SVM 88.14
R. Das et al. (2009) Neural networks ensemble 89.01
TopMix (Test accuracy) Topological machine learning 89.83

methods from TDA are effective in the domain of mixed data, as well as in heart

disease prediction.
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2. D. Horak, S. Maletić and M. Rajković, Persistent homology of complex networks,
Journal of Statistical Mechanics: Theory and Experiment 2009(03) (2009) p. P03034.

3. K. Xia, Z. Li and L. Mu, Multiscale persistent functions for biomolecular structure
characterization, Bulletin of Mathematical Biology 80(1) (2018) 1–31.

4. K. Xia, Z. Zhao and G.-W. Wei, Multiresolution persistent homology for excessively
large biomolecular datasets, The Journal of Chemical Physics 143(13) (2015) p.
10B603 1.

5. Z. Cang and G.-W. Wei, Integration of element specific persistent homology and ma-



16 C. Wu & C. A. Hargreaves

chine learning for protein-ligand binding affinity prediction, International journal for
numerical methods in biomedical engineering 34(2) (2018) p. e2914.

6. K. Wu, Z. Zhao, R. Wang and G.-W. Wei, TopP–S: Persistent homology-based multi-
task deep neural networks for simultaneous predictions of partition coefficient and
aqueous solubility, Journal of computational chemistry 39(20) (2018) 1444–1454.

7. H. Edelsbrunner and D. Morozov, Persistent homology: theory and practice, tech. rep.,
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US) (2012).

8. A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete & Com-
putational Geometry 33(2) (2005) 249–274.

9. M. Nicolau, A. J. Levine and G. Carlsson, Topology based data analysis identifies a
subgroup of breast cancers with a unique mutational profile and excellent survival,
Proceedings of the National Academy of Sciences 108(17) (2011) 7265–7270.

10. G. Singh, F. Mémoli and G. E. Carlsson, Topological methods for the analysis of high
dimensional data sets and 3D object recognition., in SPBG2007, pp. 91–100.

11. R. Forman, A user’s guide to discrete Morse theory, Sém. Lothar. Combin 48 (2002)
p. 35pp.

12. J. Reininghaus, D. Günther, I. Hotz, S. Prohaska and H.-C. Hege, TADD: A com-
putational framework for data analysis using discrete Morse theory, in International
Congress on Mathematical Software Springer2010, pp. 198–208.

13. C. Wu, S. Ren, J. Wu and K. Xia, Discrete Morse theory for weighted simplicial
complexes, Topology and its Applications 270 (2020) p. 107038.

14. J. Hansen and R. Ghrist, Toward a spectral theory of cellular sheaves, Journal of
Applied and Computational Topology 3(4) (2019) 315–358.

15. D. Letscher, On persistent homotopy, knotted complexes and the Alexander module,
in Proceedings of the 3rd Innovations in Theoretical computer Science Conference2012,
pp. 428–441.

16. C. Wu, S. Ren, J. Wu and K. Xia, Weighted fundamental group, Bulletin of the
Malaysian Mathematical Sciences Society (2020) 1–24.

17. C. Wu, S. Ren, J. Wu and K. Xia, Magnus representation of genome sequences, Journal
of theoretical biology 480 (2019) 104–111.

18. H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepush-
tanova, E. Hanson, F. Motta and L. Ziegelmeier, Persistence images: a stable vector
representation of persistent homology, Journal of Machine Learning Research 18(8)
(2017) 1–35.

19. M. Offroy and L. Duponchel, Topological data analysis: A promising big data explo-
ration tool in biology, analytical chemistry and physical chemistry, Analytica chimica
acta 910 (2016) 1–11.

20. F. D. M. Haldane, Nobel lecture: Topological quantum matter, Reviews of Modern
Physics 89(4) (2017) p. 040502.

21. C.-C. Hsu, Y.-P. Huang and K.-W. Chang, Extended naive Bayes classifier for mixed
data, Expert Systems with Applications 35(3) (2008) 1080–1083.

22. J. Ji, W. Pang, Y. Zheng, Z. Wang and Z. Ma, An initialization method for clustering
mixed numeric and categorical data based on the density and distance, International
Journal of Pattern Recognition and Artificial Intelligence 29(07) (2015) p. 1550024.

23. R. Ghrist, Barcodes: the persistent topology of data, Bulletin of the American Math-
ematical Society 45(1) (2008) 61–75.

24. P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan,
J. Carlsson and G. Carlsson, Extracting insights from the shape of complex data using
topology, Scientific reports 3 (2013) p. 1236.

25. T. Bonis, M. Ovsjanikov, S. Oudot and F. Chazal, Persistence-based pooling for shape



Topological Machine Learning for Mixed Numeric and Categorical Data 17

pose recognition, in International Workshop on Computational Topology in Image
Context Springer2016, pp. 19–29.

26. F. A. Khasawneh and E. Munch, Chatter detection in turning using persistent homol-
ogy, Mechanical Systems and Signal Processing 70 (2016) 527–541.

27. C. Wu and C. A. Hargreaves, Topological machine learning for multivariate time series,
arXiv preprint arXiv:1911.12082 (2019).

28. M. S. Lauer, E. H. Blackstone, J. B. Young and E. J. Topol, Cause of death in clinical
research: time for a reassessment?, Journal of the American College of Cardiology
34(3) (1999) 618–620.

29. R. Twombly, Cancer surpasses heart disease as leading cause of death for all but the
very elderly, Journal of the National Cancer Institute 97(5) (2005) 330–331.

30. R. Detrano, A. Janosi, W. Steinbrunn, M. Pfisterer, J.-J. Schmid, S. Sandhu, K. H.
Guppy, S. Lee and V. Froelicher, International application of a new probability algo-
rithm for the diagnosis of coronary artery disease, The American journal of cardiology
64(5) (1989) 304–310.

31. X. Ni, N. Quadrianto, Y. Wang and C. Chen, Composing tree graphical models with
persistent homology features for clustering mixed-type data, in Proceedings of the
34th International Conference on Machine Learning-Volume 70 JMLR. org2017, pp.
2622–2631.

32. F. Chazal, L. J. Guibas, S. Y. Oudot and P. Skraba, Persistence-based clustering in
Riemannian manifolds, Journal of the ACM (JACM) 60(6) (2013) 1–38.

33. C. Hofer, R. Kwitt, M. Niethammer and A. Uhl, Deep learning with topological sig-
natures, in Advances in Neural Information Processing Systems2017, pp. 1634–1644.

34. P. Bubenik, Statistical topological data analysis using persistence landscapes, The
Journal of Machine Learning Research 16(1) (2015) 77–102.

35. A. Ahmad and L. Dey, A k-mean clustering algorithm for mixed numeric and cate-
gorical data, Data & Knowledge Engineering 63(2) (2007) 503–527.

36. J. Nahar, T. Imam, K. S. Tickle and Y.-P. P. Chen, Computational intelligence for
heart disease diagnosis: A medical knowledge driven approach, Expert Systems with
Applications 40(1) (2013) 96–104.

37. D. Dua and C. Graff, UCI machine learning repository (2017).
38. R. Das, I. Turkoglu and A. Sengur, Effective diagnosis of heart disease through neural

networks ensembles, Expert systems with applications 36(4) (2009) 7675–7680.
39. A. Hatcher, Algebraic topology. 2002, Cambridge UP, Cambridge 606(9) (2002).
40. H. Edelsbrunner and J. Harer, Persistent homology–a survey, Contemporary mathe-

matics 453 (2008) 257–282.
41. Z. Huang and M. K. Ng, A fuzzy k-modes algorithm for clustering categorical data,

IEEE transactions on Fuzzy Systems 7(4) (1999) 446–452.
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