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In this paper, the combination of unsupervised clustering algorithms with feedforward
neural networks in exchange rate time series forecasting is studied. Unsupervised clus-
tering algorithms have the desirable property of deciding on the number of partitions
required to accurately segment the input space during the clustering process, thus re-
lieving the user from making this ad hoc choice. Combining this input space partitioning
methodology with feedforward neural networks acting as local predictors for each iden-
tified cluster helps alleviate the problem of non–stationarity frequently encountered in
real–life applications. An improvement in the one–step–ahead forecasting accuracy was
achieved compared to a global feedforward neural network model for the time series of
the exchange rate of the German Mark to the US Dollar.
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1. Introduction

System identification and time series prediction are embodiments of the old problem

of function approximation [Principe et al., 1998]. A discrete time series is a set of

observations of a given variable z(t) ordered according to the parameter time, and

denoted as z1, z2, . . . , zN , where N is the size of the time series.

Conventional time series models rely on global approximation, employing tech-

niques such as linear regression, polynomial fitting and artificial neural networks.

Global models are well suited to problems with stationary dynamics. In the analysis

of real–world systems, however, two of the key problems are non–stationarity (often

in the form of switching between regimes) and overfitting (which is particularly se-

rious for noisy processes) [Weigend et al., 1995]. Non–stationarity implies that the

statistical properties of the data generator vary through time. This leads to gradual

changes in the dependency between the input and output variables.

Noise, on the other hand, refers to the unavailability of complete information

from the past behavior of the time series to fully capture the dependency between

the future and the past. Noise can be the source of overfitting, which implies that the

performance of the forecasting model will be poor when applied to new data [Cao,
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2003; Milidiu & Renteria, 1999]. Although global approximation methods can be

applied to model and forecast time series having the aforementioned characteristics,

it is reasonable to expect that the forecasting accuracy can be improved if regions

of the input space exhibiting similar dynamics are identified and subsequently a

local model is constructed for each of them. A number of researchers have proposed

alternative methodologies to perform this task effectively [Cao, 2003; Milidiu &

Renteria, 1999; Pavlidis et al., 2003; Pavlidis et al., 2005; Principe et al., 1998;

Sfetsos & Siriopoulos, 2004; Weigend et al., 1995]. In principal, these methodologies

are formed by the combination of two distinct approaches; an algorithm for the

partitioning of the input space and a function approximation model. Evidently the

partitioning of the input space is critical for the successful application of these

methodologies.

In this paper we investigate the improvement in one–step–ahead forecast-

ing accuracy that can be attained if the partitioning of the input space is per-

formed through unsupervised clustering algorithms, while the function approxima-

tion model is a feedforward neural network. Clustering can be defined as the process

of “grouping a collection of objects into subsets or clusters, such that those within

one cluster are more closely related to one another than objects assigned to differ-

ent clusters” [Hastie et al., 2001]. Unsupervised clustering algorithms automatically

approximate the number of clusters in the dataset during their execution. This prop-

erty is important in the context of partitioning the input space for the purposes of

time series forecasting, since the number of partitions corresponding to the different

regimes is typically unknown a priori.

As a benchmark we consider the time series of the spot exchange rate of

the German Mark against the US Dollar. Foreign exchange rates are among the

most important economic indices in international monetary markets. Currently,

foreign exchange markets are the most active of all financial markets with aver-

age daily trading volumes in traditional (non–electronic broker) estimated at $ 1.2

trillion [Bank of International Settlements, 2001]. Although the precise scale of

speculative trading on spot markets is unknown it is estimated that only around

15% of the trading is driven by non–dealer/financial institution trading. Approxi-

mately, 90% of all foreign currency transactions involve the US Dollar [Bank of In-

ternational Settlements, 2001]. Foreign exchange rates are affected by many highly

correlated economic, political and psychological factors, the interaction of which

is in a very complex fashion. Thus, forecasting foreign exchange rates poses many

theoretical and experimental challenges [Yao & Tan, 2000].

The remaining paper is organized as follows: in the next section we present

the clustering and neural network algorithms employed in this study. In Section 3

experimental results regarding the spot exchange rate of the German Mark against

the US Dollar are presented. The paper ends with a short discussion of the results

and concluding remarks.
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2. Methods

In this section we briefly describe the application of unsupervised clustering and

neural networks in the context of time series modeling and prediction. Furthermore,

three unsupervised clustering algorithms, as well as three neural network training

algorithms are outlined.

2.1. Unsupervised Clustering Algorithms

A critical issue in the process of partitioning the input space for the purpose of time

series modeling and forecasting is to obtain an appropriate estimation of the number

of subsets. Over– or under–estimation of this quantity can cause the appearance

of clusters with little or no physical meaning, and/or clusters containing patterns

from regions with different dynamics, and/or clusters with very few patterns that

are insufficient for the training of a feedforward neural network.

This is a fundamental and unresolved problem in cluster analysis, independent

of the clustering technique applied. For instance, well–known and widely used iter-

ative techniques, such as the Self–Organizing Maps (SOMs) [Kohonen, 1997], the

k–means algorithm [Hartigan & Wong, 1979], as well as, the Fuzzy c–means algo-

rithm [Bezdek, 1981], require from the user to specify the number of clusters present

in the dataset prior to the execution of the algorithm.

On the other hand, algorithms that have the ability to approximate the number

of clusters present in a dataset belong to the category of unsupervised clustering

algorithms. In this study we consider only unsupervised clustering algorithms. In

particular, we employ the Growing Neural Gas [Fritzke, 1995], the DBSCAN [Ester

et al., 1996], and the unsupervised k-windows [Tasoulis & Vrahatis, 2004; Vrahatis

et al., 2002] clustering algorithms. Next, the aforementioned unsupervised algo-

rithms are briefly presented.

2.1.1. Growing Neural Gas Clustering Algorithm

The Growing Neural Gas (GNG) clustering algorithm [Fritzke, 1995] is an incremen-

tal neural network. It can be described as a graph consisting of k nodes, each of which

has an associated weight vector, defining the node’s position in the data space and

a set of edges between the node and its neighbors. During the clustering procedure,

new nodes are added to the network until a maximal number of nodes is reached.

GNG starts with two nodes, randomly positioned in the data space, connected by

an edge. Adaptation of weights, i.e. the nodes’ positions, is performed iteratively.

For each data object the closest node (winner), s1, and the closest neighbor of the

winner node, s2, are identified. These two nodes are connected by an edge. An age

variable is associated with each edge. When the edge between s1 and s2 is created its

age is set to zero. At each learning step the age variable of all edges emanating from

the winner node are increased by one. By tracing the changes of the age variable

it is possible to detect inactive nodes. Edges exceeding a maximal age, R, and any
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nodes having no emanating edges are removed. The neighborhood of the winner is

limited to its topological neighbors. The winner and its topological neighbors are

moved in the data space toward the presented object by a constant fraction of the

distance, defined separately for the winner and its topological neighbors. There is

no neighborhood function, or ranking concept and thus, all topological neighbors

are updated in the same manner.

2.1.2. The DBSCAN Clustering Algorithm

The DBSCAN clustering algorithm [Sander et al., 1998] relies on a density–based

notion of clusters and is designed to discover clusters of arbitrary shape and to dis-

tinguish noise. More specifically, the algorithm relies on the idea that for each point

in a cluster at least a minimum number of objects, MinPts, should be contained

in a neighborhood of a given radius, Eps, around it. Thus, by iteratively scanning

all the points in the dataset DBSCAN forms clusters of points that are connected

through chains of Eps–neighborhoods of at least MinPts points each.

2.1.3. Unsupervised k-windows

The unsupervised k-windows clustering algorithm [Tasoulis & Vrahatis, 2004; Vra-

hatis et al., 2002] uses a windowing technique to discover the clusters present in

a dataset. More specifically, if we suppose that the dataset lies in d dimensions, it

initializes a number of d–dimensional windows over the dataset. At a next step it

iteratively moves and enlarges these windows to enclose all the patterns that belong

to one cluster in a window. The movement and enlargement procedures are guided

by the points that lie within a window at each iteration. As soon as the movement

and enlargement procedures do not alter significantly the number of points within a

window they terminate. The final set of windows defines the clustering result of the

algorithm. The unsupervised k–windows algorithm (UKW) applies the k–windows

algorithm using a “sufficiently” large number of initial windows. The windowing

technique of the k–windows algorithm allows for a large number of initial windows

to be examined without any significant overhead in time complexity. At a final step

the windows that contain a high percentage of common points from the dataset

are considered to belong to the same cluster. Thus the number of clusters can be

determined [Alevizos et al., 2002; Alevizos et al., 2004; Tasoulis & Vrahatis, 2004].

2.2. Feedforward Neural Networks

Artificial Neural Networks (ANNs) have been widely employed in numerous fields

and have shown their strengths in solving real–world problems. ANNs are parallel

computational models comprised of interconnected adaptive processing units (neu-

rons), characterized by an inherent propensity for storing experiential knowledge.

They resemble the human brain in two fundamental respects; firstly, knowledge is
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acquired by the network from its environment through a learning process, and sec-

ondly, interneuron connection strengths (known as weights) are employed to store

the acquired knowledge [Haykin, 1999].

Numerous neural network models have been proposed, but multilayered Feedfor-

ward Neural Networks (FNNs) are the most common. In FNNs neurons are arranged

in layers and there are connections between neurons in one layer to the neurons of

the following layer. The learning rule typically used for FNNs is supervised training.

Two critical parameters for the successful application of FNNs are the appropriate

selection of the network architecture and the training algorithm. For the general

problem of function approximation, the universal approximation theorem, proved

in [White, 1990] states that:

Theorem 2.1. Standard Feedforward Networks with only a single hidden layer

can approximate any continuous function uniformly on any compact set and any

measurable function to any desired degree of accuracy.

An immediate implication of the above theorem is that any lack of success in

applications must arise from inadequate learning and/or an insufficient number

of hidden units and/or the lack of a deterministic relationship between the input

patterns and the desired response (target).

In the context of time series modeling the inputs to the FNN typically consist

of a number of delayed observations, while the target is the next value of the series.

The universal myopic mapping theorem [Sandberg & Xu, 1997a; Sandberg & Xu,

1997b] states that any shift–invariant map can be approximated arbitrarily well by

a structure consisting of a bank of linear filters feeding an FNN. An implication

of this theorem is that, in practice, FNNs alone can be insufficient to capture the

dynamics of a non–stationary system [Haykin, 1999]. This is also verified by the

results presented in this paper.

The selection of the optimal network architecture for a specific task remains up

to date an open problem. An upper bound on the architecture of an FNN designed

to approximate a continuous function defined on the unit cube in R
n is given by

the following Theorem [Pinkus, 1999]:

Theorem 2.2. On the unit cube in R
n any continuous function can be uniformly

approximated, to within any error by using a two hidden layer network having 2n+1

units in the first layer and 4n + 3 units in the second layer.

2.3. Supervised Training of Neural Networks

The supervised training process is an incremental adaptation of the weights that

propagate information between the neurons. Learning in FNNs is achieved by min-

imizing the network error using a batch, also called off–line, or a stochastic, also

called on–line, training algorithm.

Batch training is considered as the classical machine learning approach. In time

series applications, a set of patterns is used for modeling the system, before the
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network is actually used for prediction. In this case, the goal is to find a minimizer

w∗ = (w∗

1 , w∗

2 , . . . , w∗

n) ∈ R
n, such that:

w∗ = min
w∈Rn

E(w),

where E is the batch error measure of the FNN, whose l-th layer (l = 1, . . . ,M)

contains Nl neurons:

E =
1

2

P∑

p=1

NM∑

j=1

(
yM

j,p − tj,p
)2

=

P∑

p=1

Ep. (1)

In the above relation, the error function is based on the squared difference between

the actual output value at the j-th output layer neuron for pattern p, yM
j,p, and the

target output value, tj,p. Ep is the error of the p-th pattern and p is the index over

the input–output pairs. To predict the next value of the time series, there is only

one output neuron (NM = 1). On the other hand, when the problem is formulated

as a classification task the value of NM can vary according to the number of classes.

Supervised training is a difficult task since, in general, the dimension of the

weight space is very high and the function E generates a complicated surface, char-

acterized by multiple local minima and broad flat regions adjoined to narrow steep

ones.

In on–line training, the FNN weights are updated after the presentation of each

training pattern. On–line training may be the appropriate choice for learning a task

either because of the very large (or even redundant) training set, or because of the

slowly time–varying nature of the task. Although batch training seems faster for

small–size training sets and networks, on–line training is probably more efficient

for large training sets and FNNs. It often helps to avoid local minima and provides

a more natural approach for learning non–stationary tasks, such as time series

modeling and prediction. On–line methods seem to be more robust than batch

methods as errors, omissions, or redundant data in the training set can be corrected,

or ejected during the training phase.

In this paper we have employed and compared four algorithms for batch

training and one on–line training algorithm. The batch training algorithms were

the well–known Resilient Propagation (RPROP) [Riedmiller & Braun, 1993], a

Scaled Conjugate Gradient (SCG) [Møller, 1993] and two population based algo-

rithms, namely the Differential Evolution algorithm (DE) [Storn & Price, 1997]

and the Particle Swarm Optimization (PSO) [Eberhart et al., 1996]. We also im-

plemented the recently proposed Adaptive On–line BackPropagation training algo-

rithm (AOBP) [Magoulas et al., 2001; Plagianakos et al., 2000]. Next, we briefly

describe the AOBP, the DE, as well as, the PSO algorithms.

2.3.1. The Online Neural Network Training Algorithm

Despite the abundance of methods for learning from examples, there are only a

few that can be used effectively for on–line learning. For example, the classic batch
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training algorithms can not straightforwardly handle non–stationary data. Even

when some of them are used in on–line training the problem of “catastrophic in-

terference” appears, in which training on new examples interferes excessively with

previously learned examples, leading to saturation and slow convergence [Sutton &

Whitehead, 1993].

Methods suited to on–line learning are those that can handle time–varying data,

while at the same time, require relatively little additional memory and compu-

tation in order to process one additional example. The AOBP method proposed

in [Magoulas et al., 2001; Plagianakos et al., 2000] belongs to this class of methods.

The key features of this method are the low storage requirements and the inex-

pensive computations. At each iteration, the d-dimensional weight vector is evalu-

ated using the following update formula:

wg+1 = wg − ηg∇E(wg).

To calculate the learning rate for the next iteration, ηg+1, AOBP uses information

from the current and the previous iteration. In detail, the new learning rate is

calculated through the following relation:

ηg+1 = ηg + K
〈
∇E(wg−1),∇E(wg)

〉
,

where η is the learning rate, K is the meta–learning rate constant (typically K =

0.5), and 〈·, ·〉 stands for the usual inner product in R
d. This approach stabilizes

the learning rate adaptation process, and previous experiments [Magoulas et al.,

2001; Plagianakos et al., 2000] have shown that it allows the method to exhibit

good generalization and high convergence rate.

2.3.2. Differential Evolution Training Algorithm

DE [Storn & Price, 1997] is a novel minimization method designed to handle non–

differentiable, nonlinear and multimodal objective functions, by exploiting a popu-

lation of NP potential solutions, that is d–dimensional vectors, to probe the search

space. At each iteration of the algorithm, called generation, g, three steps, muta-

tion, recombination and selection, are performed to obtain more accurate approxi-

mations [Plagianakos & Vrahatis, 2002]. Initially, all weight vectors are initialized

by using a random number generator. At the mutation step, for each i = 1, . . . ,NP a

new mutant weight vector vi
g+1 is generated by combining weight vectors, randomly

chosen from the population, and exploiting the following variation operator:

vi
g+1 = ωi

g + µ(ωbest
g − ωi

g + ωr1
g − ωr2

g ), (2)

where ωr1
g and ωr2

g are randomly selected vectors, different from ωi
g, and ωbest

g is

the member of the current generation that yielded the lowest error function value.

Finally, the positive mutation constant µ, controls the magnification of the difference

between two weight vectors (typically µ = 0.8).

The resulting mutant vectors are mixed with a predetermined weight vector,

called target vector. This operation is called recombination, and it gives rise to the
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trial vector. At the recombination step, for each component j = 1, 2, ..., d of the

mutant weight vector a random number r ∈ [0, 1] is generated. If r is smaller than

the predefined recombination constant p (typically p = 0.9), the j-th component of

the mutant vector vi
g+1 becomes the j-th component of the trial vector. Otherwise,

the j-th component of the target vector, ωi
g, is selected as the j–th component of

the trial vector. Finally, at the selection step, the trial weight vector obtained after

the recombination step is accepted for the next generation, if and only if, it yields

a reduction of the value of the error function relative to the previous weight vector;

otherwise, the previous weight vector is retained.

2.3.3. Particle Swarm Optimization Training Algorithm

PSO is a swarm–intelligence optimization algorithm capable of minimizing non–

differentiable, nonlinear and multimodal objective functions. Each member of the

swarm, called particle, moves with an adaptable velocity within the search space,

and retains in its memory the best position it ever encountered. At each iteration,

the best position ever attained by the swarm is communicated among the parti-

cles [Eberhart et al., 1996].

Assume a d-dimensional search space, S ⊂ R
d, and a swarm of NP particles.

Both the position and the velocity of the i-th particle are d-dimensional vectors,

xi ∈ S and vi ∈ R
d, respectively. The best previous position ever encountered by

the i-th particle is denoted by pi, while the best previous position attained by the

swarm is denoted by pg. The velocity [Clerc & Kennedy, 2002] of the i-th particle

at the (g + 1)-th iteration is obtained through Eq. (3). The new position of this

particle is determined by simply adding the velocity vector to the previous position

vector, Eq. (4).

v
(g+1)
i = χ

(
v
(g)
i + c1r1(p

(g)
i − x

(g)
i ) + c2r2(p

(g)
g − x

(g)
i )
)

, (3)

x
(g+1)
i = x

(g)
i + v

(g+1)
i , (4)

where i = 1, . . . ,NP ; c1 and c2 are positive constants (typically c1 = c2 = 2.05);

r1, r2 are random numbers uniformly distributed in [0, 1]; and χ is the constriction

factor (typically χ = 0.729). In general, PSO has proved to be very efficient and

effective in tackling various difficult problems [Parsopoulos & Vrahatis, 2002].

3. Presentation of Experimental Results

The time series considered was that of the daily spot prices of the exchange rate

of the German Mark relative to the US Dollar [Keogh & Folias, 2002]. The time

period considered extends from 10/9/1986 to 8/9/1996, covering approximately ten

years. The total number of observations was 2567. The first 2317 were used to

evaluate the parameters of the predictive models, while the remaining 250, covering

approximately the final year of the dataset, were used to evaluate their performance.
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At a first step we attempted to train a single FNNs to model and forecast the time

series.

The first step in the analysis and prediction of time series originating from real–

world systems is the choice of an appropriate time delay, T , and the determination

of the embedding dimension, D. To select T an established approach is to use the

value that yields the first minimum of the mutual information function [Fraser,

1989]. For the considered time series no minimum occurs for T = 1, . . . , 20, as illus-

trated in Fig. 1. In this case a time delay of one is typically selected. To determine

the minimum embedding dimension for state space reconstruction we applied the

method of “False Nearest Neighbors” [Hegger et al., 1999; Kennel et al., 1992]. As

illustrated in Fig. 1 the proportion of false nearest neighbors as a function of D

drops sharply to the value of 0.006 for D equal to five, which is the embedding

dimension that we selected, and it becomes zero for dimensions higher than seven.

With this embedding dimension the number of patterns used to evaluate the pa-

rameters of the predictive models was 2312 while the performance of the models

was evaluated on the last 250 patterns.
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Fig. 1. Mutual information as a function of T (left) and proportion of “false nearest neighbors”
as a function of D (right).

Having selected an embedding dimension, we tested numerous FNNs with dif-

ferent architectures and training algorithms, but no FNN was capable of produc-

ing a satisfactory test set prediction accuracy. In fact, the forecasts resembled a

time–lagged version of the original series. Next, the three unsupervised clustering

algorithms, namely GNG, DBSCAN and UKW, were applied on the patterns of

training set to obtain a partition of the input space. Note that the value to be pre-

dicted (target value) by the FNNs acting as local approximators, was also included

in the patterns comprising the dataset supplied to the clustering algorithms. Our

experience suggests that this approach slightly improves the overall forecasting per-

formance. Once the clusters present in the training set are identified, each pattern

from the test set is assigned to one of the clusters. Since the target value for patterns

in the test set is unknown the assignment is performed by not taking into consid-
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eration the additional dimension that corresponds to the target component. A test

set pattern is assigned to the cluster to which the nearest (in terms of Euclidean

distance) node, pattern, window center, belongs for the GNG, DBSCAN, and UKW

algorithms, respectively.

We evaluate the accuracy of the FNNs by the percentage of correct sign predic-

tion [de Bodt et al., 2001; Giles et al., 2001; Walczak, 2001]. This measure captures

the percentage of forecasts in the test set for which the following inequality is sat-

isfied:

(x̂t+d − xt+d−1) · (xt+d − xt+d−1) > 0, (5)

where, x̂t+d represents the prediction generated by the FNN, xt+d refers to the true

value of the exchange rate at period t+d and, finally, xt+d−1 stands for the value of

the exchange rate at the current period, t + d − 1. Correct sign prediction in effect

captures the percentage of profitable trades enabled by the forecasting system. To

successfully train FNNs capable of forecasting the direction of change of the time

series, a modified, nondifferentiable, error function was implemented:

Ek =

{
0.5 · |xt+d − x̂t+d| , if (x̂t+d − xt+d−1) · (xt+d − xt+d−1) > 0

|xt+d − x̂t+d| , otherwise.
(6)

Since RPROP, SCG and AOBP are gradient based algorithms, this function is

employed only when the FNNs are trained through the DE and PSO algorithms.

Numerical experiments were performed using a Clustering and a Neural Network

C++ Interface, built under the Fedora Core Linux 3.0 operating system using the

GNU compiler collection (gcc) version 3.4.2. The results obtained are reported in

Tables 1–3 and the accompanying figures. Each table reports the total number of

clusters identified in the training set. Furthermore, it reports the number of clusters

to which test set patterns were assigned. For each such cluster the number of pat-

terns from the training set and the test set assigned to this cluster are also reported.

Notice that irrespective of the clustering algorithm, a relatively small proportion

of the patterns contained in the training set was actually used to generate the pre-

dictions, since training only the FNNs corresponding to the particular clusters is

necessary. The accompanying figures provide candlestick plots. Each candlestick de-

picts for a cluster and a training algorithm the forecasting accuracy with respect to

sign prediction, obtained over 100 experiments. A filled box is plotted between the

first and third quartile of the data. The lines extending from each end of the box

(whiskers) show the range of the data. The black line inside the box stands for the

mean value of the measurements. An immediate observation from the inspection of

the figures is that there are significant differences in the predictability of the dif-

ferent clusters, irrespective of the clustering algorithm. Moreover, within the same

cluster, different training algorithms produced FNNs yielding different predictive

accuracy.

For clusters 1, 3, 5 identified by the UKW algorithm and the having the corre-

sponding FNNs trained by the DE and PSO algorithms, a mean predictive accuracy
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Table 1. UKW: results

Patterns in the
train set test set

Cluster 1 84 33
Cluster 2 82 57
Cluster 3 65 3
Cluster 4 239 67
Cluster 5 210 90
Total number of clusters: 13.
Clusters used in test set: 5.
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Fig. 2. Proportion of correct sign prediction based on the clus-
tering of the input space using the UKW algorithm.

exceeding 60% was achieved. These three clusters together comprise more than 50%

of the test set. However, the predictability of cluster 4 (26.8% of the test set) is

rather low. As previously mentioned, DBSCAN has the ability to identify outliers

in a dataset. In this case close to 50% of the patterns of the test set were character-

ized as outliers. The FNN trained on these patterns produced a poor performance.

On the other hand, the mean predictability for clusters 1 and 2 was around 55%.

Note that cluster 3 (to which four test patterns were assigned) exhibited extremely

high predictability. The GNG algorithm distinguished cluster 2 for which the corre-

sponding FNN produced a mean accuracy close to 60% irrespective of the training

algorithm used. For cluster 4, PSO and DE exhibited good performance, but the

other three algorithms yielded the worst performance witnessed in this study.

4. Discussion and Concluding Remarks

In this study, we report results from the application of unsupervised clustering al-

gorithms, combined with feedforward neural networks in exchange rate time series

forecasting. The desirable property of unsupervised clustering algorithms is that

they can automatically approximate the number of partitions (clusters), thus re-

lieving the user from making this critical, problem–specific, choice.

Combining this input space partitioning methodology with feedforward neural

networks acting as local predictors for each identified cluster helps alleviate the

problem of non–stationarity frequently encountered in real–life applications. Feed-

forward neural networks are selected as local approximation models due to their

ability to cope with noise. Through this approach an improvement, compared to a

global feedforward neural networks, in the one–step–ahead prediction of the direc-

tion of change of the daily spot exchange rate of the German Mark to the US Dollar

was achieved.
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Table 2. DBSCAN: results

Patterns in the
train set test set

Outliers 1353 123
Cluster 1 95 59
Cluster 2 81 53
Cluster 3 4 4
Cluster 4 11 11
Total number of clusters: 12.
Clusters used in test set: 5.
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Fig. 3. Proportion of correct sign prediction based on the clus-
tering of the input space using the DBSCAN algorithm.

Table 3. GNG: results

Patterns in the
train set test set

Cluster 1 90 57
Cluster 2 61 29
Cluster 3 94 6
Cluster 4 496 158

Total number of clusters: 9.
Clusters used in test set: 4.
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Fig. 4. Proportion of correct sign prediction based on the clus-
tering of the input space using the GNG algorithm.

Among the unsupervised clustering algorithms considered, UKW’s performance

is more robust. Both the DBSCAN and the GNG algorithms however, were capable

of identifying meaningful clusters that yielded increased predictability in the test set.

From the training algorithms considered, FNNs trained using the AOBP training

algorithm exhibited the highest maximum performance. The performance of the

population based algorithms, DE and PSO, exhibited wide variations.

Future work will include the synthesis of the results of the different clustering

algorithms to improve the forecasting performance in larger regions of the input

space, and also the examination of other real–life time series.
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