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In this work, we study the realization and bifurcation of Boolean functions of four variables via
a Cellular Neural Network (CNN). We characterize the basic relations between the genes and
the offsets of an uncoupled CNN as well as the basis of the binary input vectors set. Based on
the analysis, we have rigorously proved that there are exactly 1882 linearly separable Boolean
functions of four variables, and found an effective method for realizing all linearly separable
Boolean functions via an uncoupled CNN. Consequently, any kind of linearly separable Boolean
function can be implemented by an uncoupled CNN, and all CNN genes that are associated with
these Boolean functions, called the CNN gene bank of four variables, can be easily determined.
Through this work, we will show that the standard CNN invented by Chua and Yang in 1988
indeed is very essential not only in terms of engineering applications but also in the sense of

fundamental mathematics.
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1. Introduction

Cellular Neural Networks (CNN) were originally
introduced by Chua and Yang [1988a, 1988b] as an
array of dynamical systems, called cells. In a two-
dimensional (2-D) configuration, it can be described

by the following dynamical equations [Chua,
1997]:
do:
# =—Ti;+z+ Z Ak, 1Yi+k,j+1
CkﬂlESiyj
+ Z b Uitk s 6,J € Z% (1)

CkﬂlESiﬂj

with the output equations

1
yij = f(zij) = §(|f'3z',j + 1 =z 1) (2)

where S; ; is the sphere of influence of radius r = 1;
T;j, Yij» Wi; and z are scalars, called respectively
state, output, input and threshold of cell Cj ;; ay;
and by are scalars synaptic weights.

A standard CNN is uniformly defined by a
string of “19” real numbers, called a CNN gene,
i.e. a uniform threshold z, nine feedback synap-
tic weights ay;, and nine control synaptic weights
by, because the string completely determines the
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properties of the CNN. The universe of all CNN
genes is called the CNN genome. Many real-world
applications, from image processing to brain sci-
ence to pattern recognition, can be easily imple-
mented by a single CNN gene or a CNN “program”
defined by a string of CNN genes called a CNN
chromosome.

A Boolean function of n variables is defined as
the following binary map:

F:{-1,1}" — {-1,1},

’Un) =0

3)

where (ui,us,...,u,) € {—1,1}" and v € {-1,1}.
Obviously, there exist 22" Boolean functions for any
given n € N.

A CNN gene G is said to be Boolean if, and
only if, given any binary input image U = {u;; €
{—1,1}}, the steady-state output y; j(co) of each
cell C;; is also binary, and can be uniquely deter-
mined by the input pattern of only those C}; that
are located inside the sphere of influence S; ; of C; ;
[Chua, 1999].

It is known that only linearly separable CNN
genes or linearly separable Boolean functions can
be realized by an uncoupled standard CNN. In
other words, the class of all uncoupled CNNs with
binary inputs and outputs is identical to the linearly
separable class of Boolean functions with respect
to Boolean input—output maps [Chua, 1997; Chua
et al., 2002; Julian et al., 2003]. It is also known that
the linearly separable genes are very important for
constructing the CNN chromosome; for example,
the well-known game-of-life chromosome contains
two linearly separable genes and a logical AND gene
[Berlekamp et al., 1982; Chua, 1999].

Observe, on the other hand, that the number
of Boolean functions quickly increases as the num-
ber of variables increases; for instance, there are
922" — 9512 ~ 1.34078 x 10'5 distinct Boolean func-
tions or Boolean genes when n = 9, which is a num-
ber tremendously greater than the size or age of the
universe [Chua et al., 2002]. Therefore, a realization
of the Boolean functions is a very important but
also extremely difficult task.

How many distinct linearly separable CNN
genes are there for n input variables? That is, how
many Boolean functions of n variables can be real-
ized by an uncoupled CNN? The known results are
that there are 14 linearly separable CNN genes of
two variables and there are 104 linearly separable
ones of three variables [Chua, 1997, 1999]. The cor-
responding results on linearly separable CNN genes

F(Ul,UQ,...

of four or more variables remain a question to be
answered today.

In this paper, we study the realization prob-
lem for linearly separable Boolean functions of four
variables via an uncoupled CNN, and analyze the
bifurcation of their genes. Because the CNN of
four input variables agrees with the simplest 2-D
network model, a realization of linearly separable
Boolean genes is very essential. In this work, we
not only rigorously prove that there are exactly
1882 linearly separable CNN genes in the family
of 22 = 65536 Boolean functions of four variables
and their bifurcations, but also build up a complete
CNN gene bank, which contains all the linearly sep-
arable genes of this kind.

The rest of this paper is organized as follows.
Section 2 characterizes some essential properties of
the input vector set and the structures of the uncou-
pled CNN of four input variables. Section 3 gives a
main method of realization and bifurcation of these
linearly separable Boolean functions. Section 4 lists
one part of linearly separable Boolean genes of four
variables and the binary decoding tapes as well as
the decimal codes of the corresponding CNN out-
put patterns. All these genes constitute a complete
CNN gene bank of four variables, a part of the CNN
genome. Finally, Sec. 5 presents some conclusions.

2. Some Essential Properties of an
Uncoupled CNN

The standard uncoupled CNN is described by

dﬂ?‘ .
— = w2+ af ()
+ Y brgllikgo, HJEZ0 ()
k[ <1, <1

namely, the feedback template and the control tem-

plateinitsgene‘zHB|HAHare
0 0 0
[A]=10 a0 (5)
0 0 0
and

bi,-1  bip bin
bo—1  boo  bo1 (6)
b1,1

b_10 b-11

respectively.

The simplest model of locally-connected net-
works on a plane is the one whose cell each links its
three nearest neighbors, i.e. the sphere of influence



NN NN/

Fig. 1. Cell C; and its three nearest locally-connected neigh-
bors on a plane.

of cell Cj is a large triangle consisting of four small
triangles as shown in Fig. 1.

In this situation, we can extend (4) to the fol-
lowing form:

dei

4
L = —x;,+z+ af(a:l) + Zbiui, 1€/ (7)

=1

This is equivalent as in (6), with

0 b 0
=10 b 0 (8)
bs 0 by

We only consider the binary input—output opera-
tions of (7) in this paper.
Let

U = {u= (u1,us,uz,uq) Ju; € {~1,1},
i=1,2,3,4 (9)
where U is a set of binary input vectors of (7), with
U={-1,1}*={*|k=0,1,2,...,15}  (10)

in which

s e {1 ifuj=1

k=12 +we2” +us2+uy, u; = .

0 ifu=-1

Namely,

u = (-1,-1,-1,-1)7, ' =(-1,-1,-1,1)T,
uw? = (—-1,-1,1,-1)T, w?=(-1,-1,1,1)T,
ut = (-1,1,-1,-1)T, W =(-1,1,-1,1)T,

ub = (-1,1,1,-1)T, "= (-1,1,1,1)7,
ud = (1,-1,-1,-DT, = (1,-1,-1,1)T,
u®=(1,-1,1,-D)T, o' =(1,-1,1,D)7T,
u? = (1,1, -1, -7, ¥ =(1,1,-1,1)7T,
wt = (1,1,1,-1)T, «®=(1,1,1,1)T
(11)
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Lemma 1. (a) A subset of U,V = {u®, u', u?, u'},
s a linearly independent subset of the binary input
vector set U. (b) Each vector of U can be linearly
expressed by the vectors of V, i.e. V is a basis of the
input vector set U.

Proof

(a) It can be easily seen that the matrix A, which

consists of the vectors u?, w!, u? and u?, is

invertible, where

-1 -1 -1 -1

and
0.5 —-05 —-05 =05
. —0.5 0 0 0.5 (13)
-0.5 0 0.5 0

—0.5 0.5 0 0

Thus, V = {u®,u',u? u*} is a linearly indepen-
dent group of U.
(b) From (11), it is easy to see that
W=~ +ul + 2, u = —u® 4l 4l
ub = —u® +u? + u4,
u' = —2u0 + ul +u? + o,
u® =200 —ut —u? —ut,  u =l —u? —
w0 = 0 — gl gt 1l = gt

u12:u0—u1—u2, u13_ 2

(14)
The proof of the Lemma is thus completed. W

Next, let

4

_ k

wi =z + E biu;
i=1

b1
_ AN 15
Z+(u1,u2,u3,u4) b3 ( )
b4

Here, wy, is called the offset level of the CNN (7)
with respect to the input vector u* (k =0,1,2,...,
15) [Chua, 1999].



2112 F. Chen & G. Chen

Lemma 2. Assume a > 1. If, for all uF € U (k =
0,1,2,3,...,15),

lwg| >a—1 (16)

then the CNN (7) has a constant steady-state out-
put y;(+00) = limy—, 4o yi(t) for each cell C;, which
is independent of the initial state x;(0) and can
be expressed in terms of the constant binary input
uF € U wia the following formula:

yi(+00) = sgn(wy), (k=0,1,2,3,...,15). (17)
Proof. Because the DP plot (an acronym for the
driving-point plot [Chua et al., 1985]) of #; =
—z; + af(z;) + wy depends only on two parame-
ters, namely, the self-feedback coefficient ¢ and the
offset level wy,, the proof is similar to that of Theo-
rem 2.8.1 in [Chua, 1999]. Also, y;(+00), the output
of x;, depends only on the sign of wy. For simplicity,
we omit the details. W

Theorem 1. For the uncoupled CNN (7), we have
the following:

(1) the following relations among A in (12),
consisting of V. = {u®,ut,u? u*}, the basis of U,
the offset levels wy (k = 0,1,2,4), and the thresh-
old z, where

b1 Wy — =
by wy — 2
A by = wy—2 (18)
by Wy — 2
or
b1 Wy — =%
o Y R (19)
b3 Wy — 2
b4 Wwyq — 2

(2) the offset levels wy, of (7), except wy, wy, ws
and wy, given by

w3 = —wo + wy +wa, w5 = —wo+ wi + wy,

We = —Wo + W2 + W, W7 = —Wo + W3 + Wy,

wg = 2z —wy, W9 = 2z — wg, (20)
wip = 2z — w5, W11 = 22 — Wy,

wyg = 2z — w3, w3 = 2z — wa,

W14 = 2z — w1, w15 = 2z — ()

Proof. (1) The formula (18) or (19) can be directly
obtained from (15).

(2) From (14) and (15), we have

by
b
w3:z+u3 b2
3
by
b1
0 1 o | 02
=z4+ (—u +u +u) b
3
by

=z—(wy—2)+ (w1 — 2) + (wy — 2)
(21)

= —wp + wy + w2

and the calculations of ws, wg and wy are similar to
8 7

ws. As to wg, from (14) and (15), we have u® = —u
and
by by
w8:z+u8 Zz =z Z
by ba
=z— (wr —2) =2z —wr. (22)

Similarly, we obtain other wy (k = 9,10,...,15)
as shown in (20). The proof is thus completed. W

Each binary input vector u* of U is called a
Boolean window.

If its corresponding binary output is v, vy €
{—=1,1}, then every truth table shown in Table 1
is equivalent to a Boolean function or a Boolean
CNN gene. Obviously, there are 22" = 65536 differ-
ent Boolean-function truth tables of four variables.

From Lemma 2 and Theorem 1, we know that if
|wg| > a — 1 > 0 then the truth table of the input—
output operation of CNN (7) can be obtained as
shown in Table 2.

Thus, applying Theorem 1, we can immediately
get the following result.

Theorem 2. A Boolean function F(uF) = vy (k =
0,1,2,...,15) is linearly separable if, and only if,
there exist constants wg, wi, ws, wyg and z such
that v, = sgn(wg) (wg # 0, k = 0,1,2,...,15),
where wy, satisfies formulas (20) in Theorem 1.

Theorems 1 and 2 will be the most important
results for realizing Boolean genes via the uncoupled
CNN (7), as further discussed in the next section.



Table 1. Boolean-function truth table of
four variables.

k  Boolean Window  Output Pattern

(=)

0 u o)
1 ul V2
3 u? v3
4 u? o
5 u® U5
6 uf Vg
7 u’ vy
8 u® V8
9 u? V9
10 u® V10
11 ull V11
12 ul? V12
13 uld V13
14 ul? V14
15 uld V15

Table 2. Truth table of the input—output operations of
CNN (7).
Boolean Output

k Window Pattern Wi

0 u? sgn(wo) wo any given

1 ul sgn(wy) wy any given

2 u? sgn(w2) wg any given

3 u? sgn(ws) w3 = wy + wa — Wy
4 ut sgn(wy) wy any given

5 u® sgn(ws) w5 = wy + wgq — Wy
6 ub sgn(wg) Wg = wa + wq — W
7 u’ sgn(wr) wy = w3 + wyq — Wy
8 u® sgn(wsg) wg = 22 — wy

9 u? sgn(wo) wg = 22 — wg
10 ul? sgn(wig) wig = 2z — ws
11 ull sgn(wiq) w1l = 2z — wy
12 ult? sgn(wi2) wie = 2z — w3
13 ul? sgn(wi3) w13 = 2z — w2
14 ul? sgn(wiyg) w14 = 2z —wq
15 ul® sgn(wis) wis = 2z — wy

3. Realization and Bifurcation of
Boolean Functions

Firstly, we present some elementary Lemmas.

Lemma 3. For any three different real numbers
wp, w1 and ws, let wy = w4+ we — wqg. Then, all the
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allowable orders of the four numbers wgy, wi, wo
and ws are listed as follows:

b

(b) wy < we < wy < ws,
wy < wy < wg < wiy, (d

(

(

(@) wy < w1 < we < ws,
c wy < w3z < wy < wy,

)
(c) )
(e) w1 <wp < wg <wa, (f)w <ws<wy < ws,
(9) )

g) wy < wy < wy < wp, (h)wy<ws <w < wy,
(23)
or, in a simple form,
Wiy < Wiy < Wiy < Wi,
where (ig,11,12,13) are
(a) (0,1,2,3), (b) (0,2,1,3),
() (2,0,3,1), (d) (2,3,0,1), (24)
(e) (1,0,3,2), (f)(1,3,0,2),
(9) (3,1,2,0), (h) (3,2,1,0),
respectively.

Lemma 4. For any three different real numbers
wp, wi, wa, let wy = wi + wo — wqy and for any
wy, wy # w; (j=0,1,2,3), let ws = wy + w1 —
wp, We = Wy + Wwo —wp, W7 = Wy + w3 —wgy. Then
the eight numbers wy, (k= 0,1,2,...,7) satisfy the
following two properties:

Property A

wo + wy = wp + wg = w2 + w5 = w3 + wy

and for any allowable ordering of wy (kK = 0,1,
2,...,7), namely,

Wiy < Wiy < Wiy < Wiy < Wiy < Wiy < Wi < Wiy,
we have
Wiy + Wi; = Wiy + Wig = Wiy + Wi5 = Wiy + Wiy
and
10 + 17 =11 +ig =l + 15 = i3 +ig = 7,
where (ig,i1,12,13,14, 5, 6, i7) is an arrangement of

(0,1,2,3,4,5,6,7).

Property B. There are 96 different kinds of allow-
able orderings of the eight numbers wy, (k= 0,1,2,
3,4,5,6,7), namely,

(a) if wy < wy < wy < ws, then wy < ws <
we < wy, and all the allowable orderings of eight
numbers wg, wi, wo, w3, W4, Ws, Wg and wy are
as follows:

Wig < Wip < Wiy < Wiy < Wiy < Wiy < Wiy < Wiy,
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where (ig, i1, 192,13, 14,15, 16, i7) are as follows:
(1) (0,1,2,3,4,5,6,7), (2)(0,1,2,4,3,5,6,7), Wiy < Wiy < Wiy < Wig < Wiy < Wi < Wi < Wiy,
(3) (0,1,4,2,5,3,6,7), (4) (0,4,1,5,2,6,3,7), where (ig, 11, 12,13, 14,15, 16, i7) are
(5) (4,0,5,1,6,2,7,3),  (6) (4,5,0,6,1,7,2,3), (37) (2,3,0,1,6,7,4,5), (38) (2.3,0,6,1,7,4,5),
(7) (4,5,6,0,7,1,2,3), (8) (4,5,6,7,0,1,2,3),  (39) (2,3,6,0,7,1,4,5), (40) (2,6,3,7,0,4,1,5),
(9) (0,1,4,5,2,3,6,7), (10) (0,4,1,2,5,6,3,7), (41) (6,2,7,3,4,0,5,1), (42) (6,7,2,4,3,5,0,1),
(11) (4,0,5,6,1,2,7,3), (12) (4,5,0,1,6,7,2,3),  (43) (6,7,4,2,5,3,0,1), (44) (6,7,4,5,2,3,0,1),
(25)  (45) (2,3,6,7,0,1,4,5), (46) (2,6,3,0,7,4,1,5),
respectively; (47) (6,2,7,4,3,0,5,1), (48) (6,7,2,3,4,5,0,1),

(b) if wy < wy < wy < ws, then wy < wg < (28)

ws < wy, and all the allowable orderings of eight  respectively;
numbers wg, wi, wo, w3, Wy, Ws, Wg and wy are

(e) if w1 < wy < wg < wa, then ws < wy <
as follows:

wr < wg, and all the allowable orderings of eight
Wiy < Wiy < Wiy < Wiy < Wiy < Wiy < Wi < Wiy numbers wp, wi, wa, w3, W4, Ws, we and wr are
as follows:

where (io,il,ig,ig,i4,i5,i6,i7) are
Wiy < Wiy < Wiy < Wiy < Wiy < Wiy < Wi < Wiy

(13) (0,2,1,3,4,6,5,7), (14) (0,2,1,4,3,6,5,7), S

(15) (0,2,4,1,6,3,5,7), (16) (0,4,2,6,1,5,3,7), where (io, i1, iz, 3, ba, 5, 85, ¥7) are

(17) (4,0,6,2,5,1,7,3), (18) (4,6,0,5,2,7,1,3), (49) (1,0,3,2,5,4,7,6), (50)(1,0,3,5,2,4,7,6),

(19) (4,6,5,0,7,2,1,3), (20) (4,6,5,7,0,2,1,3), (51) (1,0,5,3,4,2,7,6),  (52) (1,5,0,4,3,7,2,6),

(21) (0,2,4,6,1,3,5,7), (22) (0,4,2,1,6,5,3,7), (53) (5,1,4,0,7,3,6,2), (54) (5,4,1,7,0,6,3,2),

(23) (4,0,6,5,2,1,7,3), (24) (4,6,0,2,5,7,1,3), (55) (5,4,7,1,6,0,3,2),  (56) (5,4,7,6,1,0,3,2),
(26) (57) (1,0,5,4,3,2,7,6), (58) (1,5,0,3,4,7,2,6),

(59) (5,1,4,7,0,3,6,2), (60) (5,4,1,0,7,6,3,2),
respectively; (29)

(¢) if we < wy < w3 < wy, then wg < wy <
wy < ws, and all the allowable orderings of eight
numbers wg, wi, wo, w3, Wy, Ws, Wg and wy are

respectively;

(f) if w1 < w3z < wy < wa, then ws < wy <
wy < wg, and all the allowable orderings of eight

as follows:
numbers wg, wi, wo, W3, W4, Ws, Wg and wy are
Wiy < Wiy < Wiy < Wiy < Wiy < Wi < Wig < Wiy as follows:

where (ig, i1, 12,13, 14,5, 16, i7) are Wiy < Wiy < Wiy < Wiy < Wi,y < Wiy < Wi < Wi,
(25) (2,0,3,1,6,4,7,5), (26) (2,0,3,6,1,4,7,5), where (ig,i1,12,13, 14,15, i5, i7) are
(27) (2,0,6,3,4,1,7,5), (28)(2,6,0,4,3,7,1,5), (61) (1,3,0,2,5,7,4,6), (62) (1,3,0,5,2,7,4,6),
(29) (6,2,4,0,7,3,5,1), (30) (6,4,2,7,0,5,3,1), (63) (1,3,5,0,7,2,4,6), (64) (1,5,3,7,0,4,2,6),
(31) (6,4,7,2,5,0,3,1), (32)(6,4,7,5,2,0,3,1), (65) (5,1,7,3,4,0,6,2), (66) (5,7,1,4,3,6,0,2),
(33) (2,0,6,4,3,1,7,5), (34) (2,6,0,3,4,7,1,5), (67) (5,7,4,1,6,3,0,2), (68) (5,7,4,6,1,3,0,2),
(35) (6,2,4,7,0,3,5,1), (36) (6,4,2,0,7,5,3,1), (69) (1,3,5,7,0,2,4,6), (70) (1,5,3,0,7,4,2,6),

(27) (71) (5,1,7,4,3,0,6,2), (72)(5,7,1,3,4,6,0,2),
respectively; (30)

(d) if wy < w3z < wy < wy, then wg < wy < respectively,

wy < ws, and all the allowable orderings of eight (g) if ws < wy < wy < wy, then wy; < ws <
numbers wg, wi, wa, W3, wyg, Wi, We and wy are  wg < wy, and all the allowable orderings of eight



numbers wg, wi, wo, w3, Wy, Ws, Wg and wy are
as follows:
Wiy < Wiy < Wiy < Wiy < Wiy < Wiy < Wiy < Wiy
where (ig, 11,12, 13,14, 5,16, 17) are
(73) (3,1,2,0,7,5,6,4), (74) (3,1,2,7,0,5,6,4),
(75) (3,1,7,2,5,0,6,4), (76) (3,7,1,5,2,6,0,4),
(77)(7,3,5,1,6,2,4,0), (78)(7,5,3,6,1,4,2,0),
(79) (7,5,6,3,4,1,2,0), (80) (7,5,6,4,3,1,2,0),
(81) (3,1,7,5,2,0,6,4), (82)(3,7,1,2,5,6,0,4),
(83) (7,3,5,6,1,2,4,0), (84)(7,5,3,1,6,4,2,0),
(31)
respectively;
(h) if wy < wy < wy < wp, then wy < wg <
ws < wyg, and all the allowable orderings of eight

numbers wg, wi, wo, w3, wg, Ws, wg and wy are
as follows:

Wiy < Wiy < Wiy < Wiy < Wiy < Wiy < Wi < Wiy

Realization and Bifurcation of Boolean Functions 2115

14:(%711%4)7 I5:<wi47wi5>7
2 2 2 2

PR T S
27 2 2 2

For every interval I; (7 =0,1,2,...,8), and for any
given z;, z; € I, we can calculate (b, ba, b3, b4)T by
using the wo, wi, wa, wy and z; in formula (19),
as follows:

b1 wo — zj5
b .
Pleat | T, (33)
bg w2 — Zj
b4 wyq — Zj

where A1 is the inverse matrix of A in (12).
Clearly, from Lemma 4, we have

w3 = —wWo + Wy + W, W5 = —wWp + W1 + Wy,

where (io, il, ig, i3, ’i4, i5, iﬁ, i7) are

We = —Wo + wa + Wy,

wg = 2zj — wr,

w7 = —Wo + w3 + Wy,

w9 = 22j — We,

(85) (3,2,1,0,7,6,5,4), (86) (3,2,1,7,0,6,5,4),
(87) (3,2,7,1,6,0,5,4), (88) (3,7,2,6,1,5,0,4),
(89) (7,3,6,2,5,1,4,0), (90) (7,6,3,5,2,4,1,0),
(91) (7,6,5,3,4,2,1,0), (92) (7,6,5,4,3,2,1,0),
(93) (3,2,7,6,1,0,5,4), (94) (3,7,2,1,6,5,0,4),
(95) (7,3,6,5,2,1,4,0), (96) (7,6,3,2,5,4,1,0),

(32)
respectively.
Lemmas 3 and 4 can be easily proved, we omit

them for simplicity.

Theorem 3. Nine Boolean functions can be realized
via the uncoupled CNN (7) by changing the thresh-
old z for any allowable ordering of the eight numbers
wi (k=0,1,2,3,4,5,6,7) in Lemma 4, namely,

Wiy < Wiy < Wiy < Wiy < Wiy < Wiy < Wiy < Wiy

Proof. Firstly, nine open intervals can be given
on (—oo,400) according to the numbers w;, (k =
0,1,2,3,4,5,6,7); they are:

- () ne (),
0 0072 ) 1 9 7 9

I, = (wil,“’;?>, Iy = (%,%),

w19 = 2,2]' — Ws, w11 = 2,2]' — Wy,

w12 = 22:]‘ — ws, w13 = 22:]‘ — Wy,

W14 = 2,2]' — wi, w15 = 2,2]' — wop.

Next, let
1 .
a:1+§m1n{|wk||k=0,1,2,...,15}. (34)

Then, we can construct the uncoupled CNN (7) by
using the six numbers by, by, b3, by, z; and a, its
gene is given by

Lz [bi]be[bs]ba]al

which can realize a Boolean function whose binary
output pattern is

(Sgn(w())v Sgn(wl)’ Sgn(U}Z)’ cet ’Sgn(w15))'

The proof is thus completed. W

Example 1. If wg =2, wy =6, wy = 10, wy = 18,
then wy = 14, ws = 22, wg = 26, wy; = 30. Con-
sequently, z; € I} = (wo/2,w1/2) = (1,3). Take
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z1 = 2, the center point of the interval I;. Then,

b1 Wy — 21 0
bg _ Ail w1, — 21 _ Ail 4
b3 wo — 21 8
bs Wy — 2 16
—14
8
- : 35
) (35)
2
and ws = —26, W9 = —22, wio = —18, w11 =
—14, wiz = —10, w1z = =6, wig = =2, wis = 2,

a = 14 (1/2)min{|wg|k = 0,1,2,...,15} = 2.
Therefore, we can design the uncoupled CNN (7)
with gene

[2[-14]s[4]2]2]

and output pattern

(sgn(wo),sgn(wy), ... ,sgn(wis))
=(1,1,1,1,1,1,1,1,

~1,-1,-1,-1,-1,-1,-1,1).  (36)

Similarly, we can list the other eight genes and
the corresponding output patterns, binary decod-

ing tapes, and decimal codes of the CNN. Details
are shown in Table 3.

Remark 1. If the output pattern of CNN (7) is
(vo,v1,v2,...,v15), then its binary decoding tape
is UgU1Uy - - - V15, Where U, = 1 if v, = 1, v, = 0 if
v = —1, and its decimal code is

p="102" + 112" + -+ + 0142+ V1.

Table 3.

We should pay more attention to the values
wo/2, w1/2, wa/2,...,w7/2 in the above theo-
rem and example. They are the bifurcation values
that yield Boolean functions. This bifurcation phe-
nomenon is generated by changing only one param-
eter, i.e. the threshold z of the CNN (7).

Next, we will classify all the allowable order-
ings of wy (k=0,1,2,...,7) in Lemma 4 into nine
classes where the sign of wy, is determined.

1) :

Wiy < Wiy < Wiy < Wiy < Wiy

< Wiy < Wig < Wy, < 0 (37)

where (ig, i1, . ..,47) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;

(I1) :

Wig < Wiy < Wiy < Wiy < Wiy

< Wiy < Wi < 0< Wi, (38)

where (ig, 1, ...,17) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;

(I11) -

Wig < Wiy < Wiy < Wiy < Wiy

< w;y < 0< Wig < Wiy, (39)

where (ig, 71, . ..,17) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;

(Iv):

Wig < Wiy < Wiy < Wiy < Wiy

<0< Wiy < Wig < Wi, (40)

where (ig, 1, ...,17) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;

(V) :

Wiy < Wiy < Wiy < Wiy < 0

(41)

< Wiy < Wiy < Wiy < Wiy

Genes, output patterns, binary decoding tapes and decimal codes of Example 1.

Gene

Output Pattern

Binary Code Tape Decimal Code

[6]ofsfaf2]2]
[a]-—2]s8[af2]2]
[12[-afs]4]2]2]
[o]-6[s]4]2]2]
[8]-s[s[4]2]2]
[6]-10]s]4]2]2]
[a]-12]s]4]2]2]
[2[-1afs]4]2]2]
[o[-16]s]4]2]2]

(171,171,17171717_17 _17

(171,171,17171717_17 _17 _17

(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,—1,1,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,-1, -1,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,—-1, -1, -1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,-1, -1,-1,-1,1,1,1,1)

(1,1,1,1,1,1,1,1,—1, -1,-1,-1,-1,-1,1,1)
(171,171,17171717_17 _17 _17 _17 _1, _1, _1,1)

1111111111111111 65535
1111111101111111 65407
1111111100111111 65343
1111111100011111 65311
1111111100001111 65295
—1,-1,-1,1,1,1) 1111111100000111 65287
1111111100000011 65283
1111111100000001 65281
~1,-1,-1,—1,—1)  1111111100000000 65280




where (ig, i1, ...,17) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;
(VD) wi, < wiy < wiy <0< wjy
<wiy < Wiy < Wig < Wiy (42)
where (ig, i1, ...,17) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;
(VID) : wj, < wiy <0< w;y < wjy
< wi, < Wiy < Wi < Wy, (43)
where (ig, i1, ...,17) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;
(VIIT) : wjy < 0 < wiy < wiy < Wiy
< wi, < Wiy < Wi < wji, - (44)
where (ig, i1, ...,17) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;
(IX) 1 0 < wiy < wiy < wiy < Wiy
< wiy < Wiy < Wi < Wy, (45)
where (ig, i1, ...,17) denotes all the 96 arrangements

of (1) to (96) in Lemma 4.

Lemma 5. For every one of the above ordering
classes of wy (k = 0,1,2,...,7), property A of
Lemma 4 holds. Moreover,

(i) for a pair of allowable orders (a) and (b) in the
same class, if the order (b) is obtained by exchang-
ing one pair of numbers of (a), i.e.
(a) wi, < wi; < Wiy < Wiy < Wy,
< Wiy < Wiy < W
i5 iG i7 (46)
(b) Wiy < Wiy < Wiy < Wiy < Wiy
< Wy < wjg < Wy,
then, according to Theorem 3, (b) can only realize
a new Boolean function that is different from the

Boolean functions yielded by (a). This situation is
denoted by

(a) —(b);

(ii) for a pair of allowable orders (a) and (b) in the
same class, if the order (b) is obtained by exchang-
ing two pairs of numbers of (a), i.e.

(47)

(a) wi, < wi; < wjy, < Wiy < Wi,
< Wy < wjg < Wy, (48)

(b) wiy, < Wiy, < Wiy < Wiy < Wiy < W;,

< Wi < Wy,

Realization and Bifurcation of Boolean Functions 2117
or
(a) wi, < wi; < wjy < Wiy < Wi,
< Wiy < Wi < Wy, (49)

(b) wiy, < wiy, < w;, < wiz < wj,

< Wi < Wy < Wy,

then, according to Theorem 3, (b) can only realize
two new Boolean functions that are different from
the Boolean functions yielded by (a). This situation
s denoted by

(a)—(b);

(iii) for a pair of allowable orders (a) and (b) in the
same class, if the order (b) is obtained by exchang-
ing three pairs of numbers of (a), i.e.

(50)

(a) wi, < wi; < wjy < Wiy < Wi,
< Wiy < Wy < Wy,

(51)

(b) wiy, < wj, < w;y < wiy < Wi,

< Wi < Wjy < Wy,

then, according to Theorem 3, (b) can only realize
three new Boolean functions that are different from
the Boolean functions yielded by (a). This situation
s denoted by

(a) —(b);

(iv) for a pair of allowable orders (a) and (b) in the
same class, if the order (b) is obtained by exchang-
ing four of pairs numbers of (a), i.e.

(52)

(a) wi, < wiy < wjy < Wiy < Wi,
< Wiy < Wiy < Wiy

(53)
(b) wiy, < wiy < Wiy < Wiy < Wiy < W4,

< Wiy < Wig

then, according to Theorem 8, (b) can only realize
four new Boolean functions that are different from
the Boolean functions yielded by (a). This situation
s denoted by

(a) —(b);

(v) for a pair of allowable orders (a) and (b) in the
same class, assume that they can be indicated in the
following form:

(54)

{(a) Wig <0 < wyy, < Wiy < e < Wiy (55)

(b) wj, < -+ <wj, <wj,; < <wj,
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where

{il,. .. ,ip} @) {ip+1, . ,i7}
= {jl,...,jp}U{jp+1,...
— {0) 132)334)536) 7}a

Jr}

and the subscript sets {j1,...,jp} are a permuta-
tion of {i1,...,ip} and {jp41,...,J7} are a permu-
tation of {ipy1,...,i7}, respectively, then (a) and
(b) will realize the same outpul pattern when z €
(wi, /2, w;i,,,/2) in (a) and 2z € (wj,/2,wj,,,/2)
in (b).

Remark 2. 1t is allowable that one subscript set is
an empty set.

Proof. (i) Firstly, the signs of wy (k =0,1,2,...,7)
are completely determined in the order pair (a) and
(b), because they are in the same order class (I)
o (IX). If z € (wiy/2,w;, /2) in (a), then sgn(2z —
wiy) =1, sgn(2z —w;,) = —1; if z € (w;, /2, wi,/2)
in (b), then sgn(2z —w;,) = —1, sgn(2z —w;,) = 1;
but all the signs of (2z—w;, ) (k =0,1,...,7) are not
changed regardless of (a) or (b) when z belongs to
the remaining eight intervals appeared in the proof
of Theorem 3. Thus, only one output pattern of (b)
is different from those of (a).

The proofs of (ii)—(iv) are similar.

For (v), we only note that when 2z €
(wi, /2, wi,,,/2) in (a) and z € (w;,/2, wj,,,/2)
in (b), all signs of (22 —w;,) (kK = 0,1,...,7)
are fixed. The proof of the Lemma is thus
completed. H

For convenience, we denote the linearly sep-
arable Boolean functions as LSBF, and the lin-
early separable Boolean genes as LSBG, in the
following.

Lemma 6
(i) The ordering class (I) can realize 104 LSBF via
the uncoupled CNN (7);
(ii) the ordering class (II) can realize 160 LSBF via
the uncoupled CNN (7);
(iii) the ordering class (III)
via the uncoupled CNN (7);
)

(
(iv) the ordering class (I
via the uncoupled CNN (7);

(v) the ordering class (V) can realize 298 LSBF via
the uncoupled CNN (7);

(vi) the ordering class (VI) can realize 288 LSBF
via the uncoupled CNN (7);

(vii) the ordering class (VII) can realize 240 LSBF
via the uncoupled CNN (7);

(viii) the ordering class (VIII) can realize 160 LSBF
via the uncoupled CNN (7);

(ix) the ordering class (IX) can realize 104 LSBF
via the uncoupled CNN (7).

can realize 240 LSBF

can realize 288 LSBF

Proof
(i) The class (I) is
Wig < Wiy < Wiy < Wiy < Wiy
< Wiy < Wig < wi, < 0.

If we use the notations of Lemma 5, then there are
some related chains of the orderings in Lemma 4,
namely,

Applying Theorem 3 and Lemma 5, we know that the order (1) can realize 9 LSBF. The other orders in
the chain, (2)—(8), can yield 16 new LSBF. But other orders out of the chain, (9)—(12), cannot yield any
new LSBF, because the LSBFs realized do appear in the chain. Thus, the whole chain (a) can generate 25
LSBF.

Further, we have other chains of wy as shown below:

(b) : (1)——(13)— (14)——(15)—(16) — (17) — (18) — (19) — (20);

(c): (13)
(d): (25)

(25) —— (26) — (27) — (28) — (29)— (30)— (31)— (32);

[ I~

(37) — (38) — (39) — (40) — (41)— (42)— (43)— (44);

() : (1)~ (49)— (50) = (51)— (52) —— (53) — (54)— (55) — (56);
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(61) — (62) — (63) — (64) — (65)— (66)— (67)— (68);
(78) —— (74) — (75) — (76) — (77)— (78)— (79) — (80);
(h) : 73)—(85)—(86)i(87)—(88)i(89)—(90)—(91)—(92). K

Remark 3. The underline above indicates that the order has appeared in the preceding orders.
If no script on the midline between two orders, it implies that the latter cannot yield a new
LSBF.

Applying Theorem 3 and Lemma 5 repeatedly, we can see that the chain (b) can realize 9 LSBF, the
chain (c) can realize 16 LSBF, and likewise, (d) : 9, (e) : 16, (f) : 9, (g) : 16 and (h) : 4, respectively. Thus,
the class (I) can realize a total of 104 LSBF.

(ii) Similar to (i), for class (II):
Wiy < Wiy < Wiy < Wiy < Wiy < Wiy < Wi < 0 < Wy,
For the pair (a) and (b) in Lemma 4, we have two related chains:
(4)(3)(2)— (1)~ (13)— (14)—(15) —(16)
and
(5)(6) —(7) = (8) —(20)— (19) —(18) = (17);
for the pair (c) and (d) in Lemma 4, we have
(28)— (27) - (26) —— (25) - (37) — (38) —— (39)—— (40)
and
(20) - (30) - (31) — (32)— (44) — (43) — (42) — (41);
for the pair (e) and (f) in Lemma 4, we have
(52) " (51) 2 (50) — (49) — (61) — (62)— (63) — (64)
and
(53) " (54) = (55) — (56)— (68) — (67) — (66)— (65);
for the pair (g) and (h) in Lemma 4, we have
(76) == (75) 2 (74) —— (73) = (85) — (86)—— (87)—— (88)
and
(77) = (78) 2= (79) —— (80) = (92) — (91)—— (90)—— (89).

Based on Theorem 3 and Lemma 5, each pair of orders can yield 40 LSBF. Thus, the class (II) can realize
exactly 160 LSBF.

Remark 4. Other orders out of the above chains cannot yield any new LSBF.
(iii) Class (III) is:

Wiy < Wiy < Wiy < Wiy < Wiy < Wi < 0 < wig < Wiy



2120 F. Chen & G. Chen

We have 12 chains of the orders shown in Lemma 4:
<9>—<3>—<2>—<1>i<49>i<5o>i<51>—<57>,
(12) = (6) " (7)— (8) — (56) — (55)— (54) — (60),
<16>i< >i<1o>i<4>i<5> (11)-(23)—(17),
(21)—(15)— (14) — (13>i(25>_<26>_<27>_<33>,
(24)— (18) - (19) —(20)— (32) — (31) — (30)— (36),
(40)— (46) - (34) — (28) — (20) — (35) — (47)— (41),
(44)— (43) - (42) — (48)— (96) — (90) —— (91) — (92),
<45>i<39>i<38>i<37>i<85>i<86>i<87>—<93>,
(52)—— (58)— (70) ——(64)— (65) — (71) — (59)— (53),
(68)— (67) —(66) — (72)~ (84) — (78) —(79)— (80),
<69>i<63>i<62>i<61>i<73>i<74>i<75>—<81>,
(88) — (94) - (82) —— (76)— (77) —— (83) — (95) — (89).

Every one of the above chains is independent. By Theorem 3 and Lemma 5, each chain can yield 20 LSBF,
so that situation (III) can realize a total of 240 LSBF.

(iv) Class (IV) is:
Wiy < Wiy < Wiy < Wiy < Wiy < 0< Wiy < Wig < Wi, -

At this time, there are 24 independent chains of the orders shown in Lemma 4. They are:

1

(1) (2)—-(14)—(13), (3)—-(4)— (10)—(9),
(5)(6)—(12)—(11), (7)—(8)—(20)—(19),
(15)—- (16)— (22)— (21),  (17)-(18)— (24)— (23),
(25)— (26) - (38)— (37),  (27)—(28)— (34)— (33),
(20)- (30) — (36)— (35), (31>i< 2) - (44)— (43),
(30) - (40) — (46)— (45),  (41)—- (42)— (48)— (47),
(49)—(50) - (62)—(61),  (51)—(52)— (58)— (57),
(53)— (54) — (60)— (59), <55>—<56>—<68>—<67>,
(63)— (64)— (70)—(69),  (65)—(66)— (72)— (71),

(78)—— (74) — (86)—(85),  (75)— (76)— (82)— (81),
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(71) 2 (78)— (89— (83),  (79)—(80)—=(92)—(91),
(87) - (88)— (94)—(93),  (89)——(90)— (96)— (95).
From Theorem 3 and Lemma 5, this situation can realize exactly 288 LSBF.

(v) Class (V) is:
Wiy < Wiy < Wiy < Wiy < 0<wy < Wiy < Wig < Wiy

Similar to the preceding classes, there are 14 independent order chains in Lemma 4. They are:
2 4 2 4 2 4
(37)—(25)—(13)—(1)—(49)—(61)—(73)—(85),
2 4 2 4 2 4
(12)—(5)—(4)—(9)—(57)—(52)—(53)—(60),

(44) -2 (32)— (20) - (8)— (56) — (68) — (30)— (92),

(20)2- (36) — (24) - (17)—— (16) - (21)—— (33) — (28),
(48) - (41) - (40) - (45) - (93) - (88)— (89) — (96),
(72)—- (65)— (64) — (69) — (81) — (76) — (77) — (84),
(10)—(3) - (2)— (14)— (15) —(22)
(1) (6) (1) (19)—(18) — (23),
(34)— (27) " (26)——(38) — (30) — (46),
(58)— (51) — (50) ——(62)— (63) — (70),
(35)— (30) —— (31)—— (43)— (42) — (47),
(50) 2 (54) — (55) ——(67)— (66)— (T1),
(82) - (75)—— (74) — (86)— (87) — (04),
(83) == (78) — (79) —— (91) —— (90) — (95).

2121

Thus, these chains can yield exactly 298 LSBF !

according to Theorem 3 and Lemma 5.

As to the classes (VI)-(IX), since the signs
of the orders of these classes are symmetric with
respect to (IV), (III), (II) and (I), respectively,
they can realize 288, 240, 160 and 104 LSBF,
respectively.

The proof of Lemma 6 is thus completed.

From Lemma 6, we immediately obtain the fol-
lowing realization theorem for LSBF:

Theorem 4. There are only 1882 linearly sep-
arable Boolean functions or Boolean genes of
four variables, i.e. 1882 Boolean functions can be

realized by a standard uncoupled CNN of four input
variables.

We will list the binary decoding tapes, decimal
codes and genes of output patterns of classes (I) and
(IX) among these 1882 LSBF in the next section,
leaving the rest to a separate supplement [Chen &
Chen, 2004].

4. Genes, Binary Decoding Tapes
and Decimal Codes of LSBF

Based on the analysis and results given in the
preceding sections, we are now able to realize
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exactly 1882 LSBF via the CNN (7), and cal-
culate the corresponding genes, binary decoding
tapes and decimal codes. The procedure is as
follows.

Step 1. Take three different real numbers, wy,
wy and wo, and let wg = —wg + wy + wo. After
that, take another real number w4 such that wy #
w; (1 = 0,1,2,3), and let ws = —wy + w1 + wy,
weg = —wWo + wg + wy, wy = —wo + w3z + wy.
Then, the eight numbers wy, (k = 0,1,2,...,7) form
one of the 96 orders in the nine classes shown in
Lemma 4:

Wig < Wiy < Wiy < Wiy < Wiy < Wiy < Wiy < Wiy

Step 2. Divide (—00, +00) into nine open intervals
by w;; /2 (j =0,1,2,...,7), as follows:

2 2 2
I2 = <w11 ) wi2>) -[3 = (wZQ’wZS)’
2 2 2 2
L= (550, = (50,
4 22 ° 272
IG = (wl57wi6>, I7 = (w’%‘? ww)?
2 2 2 2
W
18:(227,4-00).

Step 3. For every interval I; (j = 0,1,2,...,7),
take a number z; € I; and calculate by, b2, b3
and by by using wp, wy, we, ws and z; in the
formula (19):

b1 wo — zj
bz _ Ail w1 — Zj
b3 w2 — Zj
b4 wyq — Zj

Then, let

wg — 22:]‘ — wry,
w10 = 22:]‘ — Ws,
wig = 2z; — w3,

W14 = 2,2]' — w1,

W9 — 22j — Weg,
w11 = 22:]‘ — W4,
wiz = 2z; — wa,

w15 = 2,2]' — wop.

At last, calculate the self-feedback coefficient a:
T .
a=1+ 5m1n{|wk|]k: =0,1,2,...,15}.

Thus, the six numbers, z;, b1, b2, b3, b4 and a, con-
stitute a gene of CNN (7):

Lz [bi]be [t ]ba]a]

Step 4. Calculate the output pattern of the cor-
responding gene in Step 3:

- v15) = (sgn(wo), sgn(wi),
sgn(wa), ..., sgn(ws))

(UO)UlaUQa ..

and its binary decoding tapes vgv1v9---U15 and
decimal code

p =102 + 512" + - + 5142 + Ty,
where 7, = 1if v, =1, 7, =0 if v, = —1.

Remark 5. (1) It is easy to see that we can obtain
96 x 9 x 9 = 7776 CNN genes from Steps 1 to
4, based on Theorem 3, but there are only 1882
output pattern of the CNN (7) according to Lemma
5 and Theorem 4. In other words, different genes
can connect to the same output pattern. In such
a situation, we only take a gene as the representa-
tive of the output pattern in the gene bank of the
CNN (7).

(2) To be more precise, in general, eight num-
bers w; (i = 0,1,2,3,4,5,6,7) are taken as even
numbers, such that ¢ = 1 + (1/2) min{|wg||k =
0,1,2,...,15} = 2, and let z; be the center value of
the interval I (j # 0,8).

(3) The gene (or template) design method
described above in this paper may be referred to
as a threshold bifurcation method, which is differ-
ent from the nine design tools provided in [Chua
et al., 2002]. Obviously, the method presented here
is more mathematically rigorous.

It would be desirable to list all the genes, binary
decoding tapes, and decimal codes of the 1882
LSBF that can be realized via CNN. However, since
the list is too long, only two classes (I) and (IX) will
be shown in Tables 4 and 5, respectively, for demon-
stration. The rest will be supplied elsewhere [Chen
& Chen, 2004].
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Table 4. Genes, binary decoding tapes, and decimal codes of LSBF of class (I).

No. Decimal Code Gene:| zZ | by | bs | b3 | by | a | Binary Decoding Tape

1 0 [-16]o]s|4a]2]2] 0000000000000000
2 1 [—1af2]s8]4]2]2] 0000000000000001
3 2 |[-14]2[8[4]-2]2] 0000000000000010
4 3 [-12[2]s8]4]2]2] 0000000000000011
5 4 |-14[2]8]-2]4]2] 0000000000000100
6 5 |-12]a]s]2]4]2] 0000000000000101
7 7 |-10]6]s]4a]2]2] 0000000000000111
8 8 [-1a]2]8]-2[-4]2] 0000000000001000
9 10 [-12]4a]8]2]-4]2] 0000000000001010
10 11 [-10]6]s8]4a]-2]2] 0000000000001011
11 12 [-12]4a]8]-4]2]2] 0000000000001100
12 13 [-10]6]8]-2[4]2] 0000000000001101
13 14 [-1w0]6[s]-2[-4]2] 0000000000001110
14 15 |-s[s]s8]a]2]2] 0000000000001111
15 16 [—1af2]-2[8]2]2] 0000000000010000
16 17 [—12]a]2[s8]2]2] 0000000000010001
17 19 [-12[s]6]s8]a]2] 0000000000010011
18 21 [-12[s]6]4]8]2] 0000000000010101
19 23 121210 ][8]4]2] 0000000000010111
20 31 |-6]w0]s]4]2]2] 0000000000011111
21 32 [—1af2]-2[8]4]2] 0000000000100000
22 34 [-12[4f2]s8]-4]2] 0000000000100010
23 35 |-12]8]6|8]-4]2] 0000000000100011
24 42 [-12[4f6]4a]-4]2] 0000000000101010
25 43 |-12]12]10[8][-4]2] 0000000000101011
26 47 |-6]10]8]4]-2]2] 0000000000101111
27 48 [-14]6]-6[8][2]2] 0000000000110000
28 49 [-10]6]-2[8]2]2] 0000000000110001
29 50 [-10]6]-2[8[4]2] 0000000000110010
30 51 -8 ]8]2]8]2]2] 0000000000110011
31 55 |-8]12]6|s[4]2] 0000000000110111
32 59 |-8]12]6[8]-4]2] 0000000000111011
33 63 |—4]12]s8f4]2]2] 0000000000111111
34 64 [—1af2]-2]-4]s8]2] 0000000001000000
35 68 [—12[4f2]-4[8]2] 0000000001000100
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Table 4. (Continued)

Decimal Code

Gene:| z | by | ba | b3 | by | a | Binary Decoding Tape

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

69
76
7
79
80
81
84
85
87
93
95
112
113
115
117
119
127
128
136
138
140
142
143
160
162
168
170
171
174
175
176
178
179
186
187
191

[—12[8[6[-a[8]2]
[—12[86[-8[4]2]
[—12]12]10]-4[8]2]
EIENEIEIENE
EUHEIEIEIE
EUKIEIEIEIE]
EUREIERIEIE]
| -8[8[2[4[8]2
[8[12]6[4[8]2]
[-8[12]6[-4[8]2
[—4f12]8[2[4]2]
[—14]10]-10]8[2]2]
[-10]1w0]-6][8]2]2]
6] 2[8][2]2]
[6[1w0]-2[a]8]2]
[-4[12]2[8[2]2]
[2[14[8[4]2]2]
EUERIEIEIEIE
EUEIEIEIE]
|12 ]s[6[-a[-8[2]
|12 |86 -8[-4[2]

|-12]12]10]-4]-8]2]
[6lw[s[-2[-4]2]
[ufe[-6[a]s]2]

[-0f6[-2[af-s[2]

[wofe[-2[-a[-s]>
[-s[s[2]a]-s]>2
[-s[sf6fa]-a]>
[sfrf6[-af-s[2]
[afr2]s[2]-a]>

[-14]10]-10]8]-4]2]
|-10]10]-6]8]-4]2]
|-6]w0]-2[8]4]2]
|-6]1w0][-2]4[-8]2]
[4l12][2]8]
[2]1a[s[4]-2

2 |
2 |

0000000001000101
0000000001001100
0000000001001101
0000000001001111
0000000001010000
0000000001010001
0000000001010100
0000000001010101
0000000001010111
0000000001011101
0000000001011111
0000000001110000
0000000001110001
0000000001110011
0000000001110101
0000000001110111
0000000001111111
0000000010000000
0000000010001000
0000000010001010
0000000010001100
0000000010001110
0000000010001111
0000000010100000
0000000010100010
0000000010101000
0000000010101010
0000000010101011
0000000010101110
0000000010101111
0000000010110000
0000000010110010
0000000010110011
0000000010111010
0000000010111011
0000000010111111
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Table 4. (Continued )

No. Decimal Code Gene:| zZ | by | bs | b3 | by | a | Binary Decoding Tape

72 192 |-14]6]-6][-8]4]2] 0000000011000000
73 196 [-10]6]-2[-8]4]2] 0000000011000100
74 200 [-10]6[-2]-8]-4]2] 0000000011001000
75 204 |-8|s[2]-8]4]2] 0000000011001100
76 205 |-8]12]6]-8]a]2] 0000000011001101
7 206 |-s]12]6]-8]-4]2] 0000000011001110
78 207 |—a]12]8]-4[2]2] 0000000011001111
79 208 |-14]10]-10]-4]8]2] 0000000011010000
80 212 [-10]10]-6]-4][8]2] 0000000011010100
81 213 |-6]10]-2]-4]8]2] 0000000011010101
82 220 |-6]10]-2][-8]4]2] 0000000011011100
83 221 |—a]12]2]-a[s8]2] 0000000011011101
84 223 |2]1a|s]-2[4]2] 0000000011011111
85 224 |-14]10]-10]-4]-8[2]  0000000011100000
86 232 [-10]10]-6]-4[-8]2]  0000000011101000
87 234 |-6]10]-2]-4]-8]2] 0000000011101010
88 236 |-6]1w0]-2]-8]-4]2] 0000000011101100
89 238 |-6]1w0]2]-4][-8]2] 0000000011101110
90 239 |2f1a[s]-2[-4]2] 0000000011101111
91 240 [-s[s]-8]4]2]2] 0000000011110000
92 241 [-10][14a[-10]8]2]2] 0000000011110001
93 242 [-10][14]-10]8]-4]2] 0000000011110010
94 243 |-6]1a|-6][-8]2]2] 0000000011110011
95 244 |10 ]1a]-10]-4]8]2] 0000000011110100
96 245 |-6]1a]-6[4a][8]2] 0000000011110101
97 247 [2]ua[-2[8]2]2] 0000000011110111
98 248 |10 14 ]-10]-4]-8]2]  0000000011111000
99 250 |-6]1a]-6[4a][8]2] 0000000011111010
100 251 [2]ua[-2[8]4]2] 0000000011111011
101 252 |-6]1a|-6][-8]4a]2] 0000000011111100
102 253 |2]1a|-2[-4]8]2] 0000000011111101
103 254 |2]ua|-2[-a]-8[2] 0000000011111110

104 255 [0J16][8[4]2]2] 0000000011111111
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Table 5. Genes, binary decoding tapes, and decimal codes of LSBF of class (IX).

No.  Decimal Code Gene:| zZ | by | bs | b3 | by | a | Binary Decoding Tape

1779 65280 lo]-16]8[4]2]2] 1111111100000000
1780 65281 [2[-1a]s8]a]2]2] 1111111100000001
1781 65282 [2]-1a]8]4a]-2]2] 1111111100000010
1782 65283 [2[-12]8]4]2]2] 1111111100000011
1783 65284 [2]-1a]8]-2[4]2] 1111111100000100
1784 65285 [a]-12]8]2]4]2] 1111111100000101
1785 65287 (6 ]-10]8]4]2]2] 1111111100000111
1786 65288 [2]-1a]8]-2][-4]2] 1111111100001000
1787 65290 [4]-12]8]2]-4]2] 1111111100001010
1788 65291 [6[-10]8]4a]-2]2] 1111111100001011
1789 65292 [4]-12]8]-4]2]2] 1111111100001100
1790 65293 [6[-10]8]-2]4]2] 1111111100001101
1791 65294 [6]-10]8]-2]-4]2] 1111111100001110
1792 65295 [s]-8]s8la2]2] 1111111100001111
1793 65296 [2]-1a]-2[8]2]2] 1111111100010000
1794 65297 [4[-12]2]s]2]2] 1111111100010001
1795 65299 [s[-12]6]s8]4]2] 1111111100010011
1796 65301 [s[-12]6]4]s8]2] 1111111100010101
1797 65303 [12[-12]10[8]4a]2] 1111111100010111
1798 65311 l10[-6]s8]4]2]2] 1111111100011111
1799 65312 [2]-14]-2[8]4]2] 1111111100100000
1800 65314 [4]-12]2]8]-4]2] 1111111100100010
1801 65315 [s]-12]6]8]-4]2] 1111111100100011
1802 65322 [a]-12]6]4]-4]2] 1111111100101010
1803 65323 (1212108 ]-4]2] 1111111100101011
1804 65327 [10[-6]8]4]-2]2] 1111111100101111
1805 65328 [6]-14]-6[8]2]2] 1111111100110000
1806 65329 [6]-10]-2[8]2]2] 1111111100110001
1807 65330 [6]-10]-2[8[4]2] 1111111100110010
1808 65331 [s]-8]2]8]2]2] 1111111100110011
1809 65335 [12]-8]6[s8[4]2] 1111111100110111
1810 65339 [12]-8[6][s8]-4]2] 1111111100111011
1811 65343 [12]-4[8]4]2]2] 1111111100111111
1812 65344 [2]-14a]-2[-4]8]2] 1111111101000000
1813 65348 [4]-12]2]-4[8]2] 1111111101000100

1814 65349 8] -12]6]-4]8]2] 1111111101000101
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Table 5. (Continued )

No.  Decimal Code Gene:| Z | by | bs | b3 | by | a | Binary Decoding Tape

1815 65356 [s[-12]6]-8]4]2] 1111111101001100
1816 65357 [12[-12]10[-4]8]2] 1111111101001101
1817 65359 [10]-6]8]-2]4]2] 1111111101001111
1818 65360 |6 [-14]-6[4]8]2] 1111111101010000
1819 65361 [6[-10]-2[4]8]2] 1111111101010001
1820 65364 [6[-10]-2][-4a]s8]2] 1111111101010100
1821 65365 [8]-8]2]a]s]2] 1111111101010101
1822 65367 l12]-8]6]a]s]2] 1111111101010111
1823 65373 |12 -8]6[-4]s8]2] 1111111101011101
1824 65375 |12 [-a]s8]2]4]2] 1111111101011111
1825 65392 [10]-14]-10]8]2]2] 1111111101110000
1826 65393 [10]-10]-6[8]2]2] 1111111101110001
1827 65395 l10]-6]-2[s8]2]2] 1111111101110011
1828 65397 [10]-6]-2[4]8]2] 1111111101110101
1829 65399 l12]-4]2]8]2]2] 1111111101110111
1830 65407 l14a[-2]s8]4]2]2] 1111111101111111
1831 65408 [2[-14]-2[-4a]-8[2] 1111111110000000
1832 65416 [6]-10]2]-4][-8]2] 1111111110001000
1833 65418 [s]-12]6]-4][-8]2] 1111111110001010
1834 65420 [s]-12]6]-8][-4]2] 1111111110001100
1835 65422 [12[-12]10[-4]-8[2] 1111111110001110
1836 65423 [10[-6]8]-2][-4]2] 1111111110001111
1837 65440 [6]-14]-6[4]8]2] 1111111110100000
1838 65442 [6]-10]-2[4]-8]2] 1111111110100010
1839 65448 [6][-10]-2[-4a]-8[2] 1111111110101000
1840 65450 [s[-8]2]a]-8]2] 1111111110101010
1841 65451 [s[-8]6]a]-4]2] 1111111110101011
1842 65454 [12]-8[6]-4[-8]2] 1111111110101110
1843 65455 [12]-4[s8]2]-4]2] 1111111110101111
1844 65456 [10[-14]-10]8]-4]2] 1111111110110000
1845 65458 [10[-10]-6]8]-4]2] 1111111110110010
1846 65459 [10]-6]-2[8]4]2] 1111111110110011
1847 65466 l10]-6]-2]4[-8]2] 1111111110111010
1848 65467 [12]-4f2]8]-4]2] 1111111110111011
1849 65471 l1a]-2]s8]4]-2]2] 1111111110111111

1850 65472 [6]-14]-6][-8]4]2] 1111111111000000
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Table 5. (Continued )

No.  Decimal Code Gene:| zZ | by | bs | b3 | by | a | Binary Decoding Tape

1851 65476 [6]-10]-2][-8]4]2] 1111111111000100
1852 65480 [6]-10]-2[-8]-4]2] 1111111111001000
1853 65484 [8]-s8]2]-8]4]2] 1111111111001100
1854 65485 [12]-s8]6]-8[4]2] 1111111111001101
1855 65486 (12| -8]6]-8]-4]2] 1111111111001110
1856 65487 [12[-a]8]-4[2]2] 1111111111001111
1857 65488 |10 ]-14|-10]-4]8]2] 1111111111010000
1858 65492 [10]-10]-6]-4][8]2] 1111111111010100
1859 65493 l10]-6]-2[-4a]s8]2] 1111111111010101
1860 65500 l10]-6]-2[-8]4]2] 1111111111011100
1861 65501 12 -4]2]-4]8]2] 1111111111011101
1862 65503 [1a[-2]8]-2[4]2] 1111111111011111
1863 65504 (10| -14[-10]-4]-8]2]  1111111111100000
1864 65512 [10]-10]-6]-4]-8]2] 1111111111101000
1865 65514 l10] 6] 2]-4]-=8]2] 1111111111101010
1866 65516 [10]-6]-2]-8]-4]2] 1111111111101100
1867 65518 [10][-6]2]-4][-8]2] 1111111111101110
1868 65519 |14[-2]8]-2][-4]2] 1111111111101111
1869 65520 [s]-s[-8]4]2]2] 1111111111110000
1870 65521 [14]-10][-10]8]2]2] 1111111111110001
1871 65522 [14[-10]-10]8]-4]2] 1111111111110010
1872 65523 [14[-6]-6][-8]2]2] 1111111111110011
1873 65524 [14[-10]-10]-4]8]2] 1111111111110100
1874 65525 luu|-6]-6]4]8]2] 1111111111110101
1875 65527 uu|-—2]-2[8]2]2] 1111111111110111
1876 65528 (14 ]-10 [-10 [-4 [-8 [2]  1111111111111000
1877 65530 |14[-6]-6[4][8]2] 1111111111111010
1878 65531 ] -—2]-2[8]4]2] 1111111111111011
1879 65532 [14]-6]-6][-8]4a]2] 1111111111111100
1880 65533 | -2]-2[-4]8]2] 1111111111111101
1881 65534 4] -2]2]-4]-8]2] 1111111111111110

1882 65535 16 o][8]a]2]2] T111111111111111




5. Conclusions

In this paper, we have characterized some essen-
tial properties of an uncoupled CNN of four input
variables. We have not only rigorously proved that
the uncoupled CNN can realize exactly 1882 linearly
separable Boolean functions (LSBF) or linearly sep-
arable Boolean genes (LSBG), but have also devel-
oped an effective method for generating all these
CNN genes. In particular, we have established the
CNN gene bank of four input variables, which con-
tains all LSBG.

It is well known that a single CNN gene is the
most important element for constructing the CNN
chromosome. The more the CNN genes, the shorter
the length of the corresponding CNN chromosome,
and the more convenient the corresponding imple-
mentation task. The game-of-life chromosome, for
example, consists of only two LSBG and one logical
AND gene, which is already very powerful.

The CNN considered in this paper is the
simplest possible two-dimensional locally-connected
network. It can be easily implemented in applica-
tions such as image processing, brain science and
pattern recognition. It is also possible that some
functions of input—output operations of the CNN
with nine input variables can be replaced by that of
the CNN with four input variables studied in this
paper.

Future research along the same line includes
the establishment of more general results about the
standard CNN of n input variables and the discov-
ery of more CNN genes that can realize all LSBF of
n variables, especially for the case of n = 9. Such a
huge bank of CNN genes is needed to be built, with
which the CNN technology will find more engineer-
ing and technological applications.
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