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In this work, we study the realization and bifurcation of Boolean functions of four variables via
a Cellular Neural Network (CNN). We characterize the basic relations between the genes and
the offsets of an uncoupled CNN as well as the basis of the binary input vectors set. Based on
the analysis, we have rigorously proved that there are exactly 1882 linearly separable Boolean
functions of four variables, and found an effective method for realizing all linearly separable
Boolean functions via an uncoupled CNN. Consequently, any kind of linearly separable Boolean
function can be implemented by an uncoupled CNN, and all CNN genes that are associated with
these Boolean functions, called the CNN gene bank of four variables, can be easily determined.
Through this work, we will show that the standard CNN invented by Chua and Yang in 1988
indeed is very essential not only in terms of engineering applications but also in the sense of
fundamental mathematics.

Keywords : CNN; CNN gene; CNN gene bank; linearly separable Boolean function; bifurcation.

1. Introduction

Cellular Neural Networks (CNN) were originally
introduced by Chua and Yang [1988a, 1988b] as an
array of dynamical systems, called cells. In a two-
dimensional (2-D) configuration, it can be described
by the following dynamical equations [Chua,
1997]:

dxi,j

dt
= −xi,j + z +

∑
Ck,l∈Si,j

ak,lyi+k,j+l

+
∑

Ck,l∈Si,j

bk,lui+k,j+l, i, j ∈ Z2 (1)

with the output equations

yi,j = f(xi,j) =
1
2
(|xi,j + 1| − |xi,j − 1|) (2)

where Si,j is the sphere of influence of radius r = 1;
xi,j, yi,j, ui,j and z are scalars, called respectively
state, output, input and threshold of cell Ci,j; ak,l

and bk,l are scalars synaptic weights.
A standard CNN is uniformly defined by a

string of “19” real numbers, called a CNN gene,
i.e. a uniform threshold z, nine feedback synap-
tic weights ak,l, and nine control synaptic weights
bk,l, because the string completely determines the
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properties of the CNN. The universe of all CNN
genes is called the CNN genome. Many real-world
applications, from image processing to brain sci-
ence to pattern recognition, can be easily imple-
mented by a single CNN gene or a CNN “program”
defined by a string of CNN genes called a CNN
chromosome.

A Boolean function of n variables is defined as
the following binary map:

F : {−1, 1}n → {−1, 1}, F (u1, u2, . . . , un) = v

(3)

where (u1, u2, . . . , un) ∈ {−1, 1}n and v ∈ {−1, 1}.
Obviously, there exist 22n

Boolean functions for any
given n ∈ N .

A CNN gene G is said to be Boolean if, and
only if, given any binary input image U = {ui,j ∈
{−1, 1}}, the steady-state output yi,j(∞) of each
cell Ci,j is also binary, and can be uniquely deter-
mined by the input pattern of only those Ck,l that
are located inside the sphere of influence Si,j of Ci,j

[Chua, 1999].
It is known that only linearly separable CNN

genes or linearly separable Boolean functions can
be realized by an uncoupled standard CNN. In
other words, the class of all uncoupled CNNs with
binary inputs and outputs is identical to the linearly
separable class of Boolean functions with respect
to Boolean input–output maps [Chua, 1997; Chua
et al., 2002; Julian et al., 2003]. It is also known that
the linearly separable genes are very important for
constructing the CNN chromosome; for example,
the well-known game-of-life chromosome contains
two linearly separable genes and a logical AND gene
[Berlekamp et al., 1982; Chua, 1999].

Observe, on the other hand, that the number
of Boolean functions quickly increases as the num-
ber of variables increases; for instance, there are
229

= 2512 ≈ 1.34078 × 10154 distinct Boolean func-
tions or Boolean genes when n = 9, which is a num-
ber tremendously greater than the size or age of the
universe [Chua et al., 2002]. Therefore, a realization
of the Boolean functions is a very important but
also extremely difficult task.

How many distinct linearly separable CNN
genes are there for n input variables? That is, how
many Boolean functions of n variables can be real-
ized by an uncoupled CNN? The known results are
that there are 14 linearly separable CNN genes of
two variables and there are 104 linearly separable
ones of three variables [Chua, 1997, 1999]. The cor-
responding results on linearly separable CNN genes

of four or more variables remain a question to be
answered today.

In this paper, we study the realization prob-
lem for linearly separable Boolean functions of four
variables via an uncoupled CNN, and analyze the
bifurcation of their genes. Because the CNN of
four input variables agrees with the simplest 2-D
network model, a realization of linearly separable
Boolean genes is very essential. In this work, we
not only rigorously prove that there are exactly
1882 linearly separable CNN genes in the family
of 224

= 65536 Boolean functions of four variables
and their bifurcations, but also build up a complete
CNN gene bank, which contains all the linearly sep-
arable genes of this kind.

The rest of this paper is organized as follows.
Section 2 characterizes some essential properties of
the input vector set and the structures of the uncou-
pled CNN of four input variables. Section 3 gives a
main method of realization and bifurcation of these
linearly separable Boolean functions. Section 4 lists
one part of linearly separable Boolean genes of four
variables and the binary decoding tapes as well as
the decimal codes of the corresponding CNN out-
put patterns. All these genes constitute a complete
CNN gene bank of four variables, a part of the CNN
genome. Finally, Sec. 5 presents some conclusions.

2. Some Essential Properties of an
Uncoupled CNN

The standard uncoupled CNN is described by
dxi,j

dt
= −xi,j + z + af(xi,j)

+
∑

|k| ≤ 1,|l| ≤ 1

bk,lui+k,j+l, i, j ∈ Z2 (4)

namely, the feedback template and the control tem-
plate in its gene z B A are

A =




0 0 0
0 a 0
0 0 0


 (5)

and

B =




b1,−1 b1,0 b1,1

b0,−1 b0,0 b0,1

b−1,−1 b−1,0 b−1,1


 (6)

respectively.
The simplest model of locally-connected net-

works on a plane is the one whose cell each links its
three nearest neighbors, i.e. the sphere of influence
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Fig. 1. Cell Ci and its three nearest locally-connected neigh-
bors on a plane.

of cell Ci is a large triangle consisting of four small
triangles as shown in Fig. 1.

In this situation, we can extend (4) to the fol-
lowing form:

dxi

dt
= −xi + z + af(xi) +

4∑
i=1

biui, i ∈ Z (7)

This is equivalent as in (6), with

B =




0 b1 0
0 b2 0
b3 0 b4


 (8)

We only consider the binary input–output opera-
tions of (7) in this paper.

Let

U = {u = (u1, u2, u3, u4)T |ui ∈ {−1, 1},
i = 1, 2, 3, 4} (9)

where U is a set of binary input vectors of (7), with

U = {−1, 1}4 = {uk|k = 0, 1, 2, . . . , 15} (10)

in which

k = u123 + u222 + u32+ u4, ui =
{

1 if ui = 1
0 if ui = −1

Namely,

u0 = (−1,−1,−1,−1)T , u1 = (−1,−1,−1, 1)T ,

u2 = (−1,−1, 1,−1)T , u3 = (−1,−1, 1, 1)T ,

u4 = (−1, 1,−1,−1)T , u5 = (−1, 1,−1, 1)T ,

u6 = (−1, 1, 1,−1)T , u7 = (−1, 1, 1, 1)T ,

u8 = (1,−1,−1,−1)T , u9 = (1,−1,−1, 1)T ,

u10 = (1,−1, 1,−1)T , u11 = (1,−1, 1, 1)T ,

u12 = (1, 1,−1,−1)T , u13 = (1, 1,−1, 1)T ,

u14 = (1, 1, 1,−1)T , u15 = (1, 1, 1, 1)T .
(11)

Lemma 1. (a) A subset of U, V = {u0, u1, u2, u4},
is a linearly independent subset of the binary input
vector set U . (b) Each vector of U can be linearly
expressed by the vectors of V, i.e. V is a basis of the
input vector set U .

Proof

(a) It can be easily seen that the matrix A, which
consists of the vectors u0, u1, u2 and u4, is
invertible, where

A =




−1 −1 −1 −1
−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1


 (12)

and

A−1 =




0.5 −0.5 −0.5 −0.5
−0.5 0 0 0.5
−0.5 0 0.5 0
−0.5 0.5 0 0


 (13)

Thus, V = {u0, u1, u2, u4} is a linearly indepen-
dent group of U .

(b) From (11), it is easy to see that

u3 = −u0 + u1 + u2, u5 = −u0 + u1 + u4,

u6 = −u0 + u2 + u4,

u7 = −2u0 + u1 + u2 + u4,

u8 = 2u0 − u1 − u2 − u4, u9 = u0 − u2 − u4,

u10 = u0 − u1 − u4, u11 = −u4,

u12 = u0 − u1 − u2, u13 = −u2,

u14 = −u1, u15 = −u0.

(14)

The proof of the Lemma is thus completed. �

Next, let

wk = z +
4∑

i=1

biu
k
i

= z +
(
uk

1, uk
2 , uk

3 , uk
4

)



b1

b2

b3

b4


 (15)

Here, wk is called the offset level of the CNN (7)
with respect to the input vector uk (k = 0, 1, 2, . . . ,
15) [Chua, 1999].
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Lemma 2. Assume a > 1. If, for all uk ∈ U (k =
0, 1, 2, 3, . . . , 15),

|wk| > a − 1 (16)

then the CNN (7 ) has a constant steady-state out-
put yi(+∞) = limt→+∞yi(t) for each cell Ci, which
is independent of the initial state xi(0) and can
be expressed in terms of the constant binary input
uk ∈ U via the following formula:

yi(+∞) = sgn(wk), (k = 0, 1, 2, 3, . . . , 15). (17)

Proof. Because the DP plot (an acronym for the
driving-point plot [Chua et al., 1985]) of ẋi =
−xi + af(xi) + wk depends only on two parame-
ters, namely, the self-feedback coefficient a and the
offset level wk, the proof is similar to that of Theo-
rem 2.8.1 in [Chua, 1999]. Also, yi(+∞), the output
of xi, depends only on the sign of wk. For simplicity,
we omit the details. �

Theorem 1. For the uncoupled CNN (7 ), we have
the following:

(1) the following relations among A in (12),
consisting of V = {u0, u1, u2, u4}, the basis of U,
the offset levels wk (k = 0, 1, 2, 4), and the thresh-
old z, where

A




b1

b2

b3

b4


 =




w0 − z

w1 − z

w2 − z

w4 − z


 (18)

or 


b1

b2

b3

b4


 = A−1




w0 − z

w1 − z

w2 − z

w4 − z


 (19)

(2) the offset levels wk of (7 ), except w0, w1, w2

and w4, given by

w3 = −w0 + w1 + w2, w5 = −w0 + w1 + w4,

w6 = −w0 + w2 + w4, w7 = −w0 + w3 + w4,

w8 = 2z − w7, w9 = 2z − w6,

w10 = 2z − w5, w11 = 2z − w4,

w12 = 2z − w3, w13 = 2z − w2,

w14 = 2z − w1, w15 = 2z − w0.

(20)

Proof. (1) The formula (18) or (19) can be directly
obtained from (15).

(2) From (14) and (15), we have

w3 = z + u3




b1

b2

b3

b4




= z + (−u0 + u1 + u2)




b1

b2

b3

b4




= z − (w0 − z) + (w1 − z) + (w2 − z)

= −w0 + w1 + w2 (21)

and the calculations of w5, w6 and w7 are similar to
w3. As to w8, from (14) and (15), we have u8 = −u7

and

w8 = z + u8




b1

b2

b3

b4


 = z − u7




b1

b2

b3

b4




= z − (w7 − z) = 2z − w7. (22)

Similarly, we obtain other wk (k = 9, 10, . . . , 15)
as shown in (20). The proof is thus completed. �

Each binary input vector uk of U is called a
Boolean window.

If its corresponding binary output is vk, vk ∈
{−1, 1}, then every truth table shown in Table 1
is equivalent to a Boolean function or a Boolean
CNN gene. Obviously, there are 224

= 65536 differ-
ent Boolean-function truth tables of four variables.

From Lemma 2 and Theorem 1, we know that if
|wk| > a − 1 > 0 then the truth table of the input–
output operation of CNN (7) can be obtained as
shown in Table 2.

Thus, applying Theorem 1, we can immediately
get the following result.

Theorem 2. A Boolean function F (uk) = vk (k =
0, 1, 2, . . . , 15) is linearly separable if, and only if,
there exist constants w0, w1, w2, w4 and z such
that vk = sgn(wk) (wk �= 0, k = 0, 1, 2, . . . , 15),
where wk satisfies formulas (20) in Theorem 1.

Theorems 1 and 2 will be the most important
results for realizing Boolean genes via the uncoupled
CNN (7), as further discussed in the next section.
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Table 1. Boolean-function truth table of
four variables.

k Boolean Window Output Pattern

0 u0 v0

1 u1 v2

3 u3 v3

4 u4 v4

5 u5 v5

6 u6 v6

7 u7 v7

8 u8 v8

9 u9 v9

10 u10 v10

11 u11 v11

12 u12 v12

13 u13 v13

14 u14 v14

15 u15 v15

Table 2. Truth table of the input–output operations of
CNN (7).

Boolean Output

k Window Pattern wk

0 u0 sgn(w0) w0 any given

1 u1 sgn(w1) w1 any given

2 u2 sgn(w2) w2 any given

3 u3 sgn(w3) w3 = w1 + w2 − w0

4 u4 sgn(w4) w4 any given

5 u5 sgn(w5) w5 = w1 + w4 − w0

6 u6 sgn(w6) w6 = w2 + w4 − w0

7 u7 sgn(w7) w7 = w3 + w4 − w0

8 u8 sgn(w8) w8 = 2z − w7

9 u9 sgn(w9) w9 = 2z − w6

10 u10 sgn(w10) w10 = 2z − w5

11 u11 sgn(w11) w11 = 2z − w4

12 u12 sgn(w12) w12 = 2z − w3

13 u13 sgn(w13) w13 = 2z − w2

14 u14 sgn(w14) w14 = 2z − w1

15 u15 sgn(w15) w15 = 2z − w0

3. Realization and Bifurcation of
Boolean Functions

Firstly, we present some elementary Lemmas.

Lemma 3. For any three different real numbers
w0, w1 and w2, let w3 = w1 +w2−w0. Then, all the

allowable orders of the four numbers w0, w1, w2

and w3 are listed as follows:

(a) w0 < w1 < w2 < w3, (b) w0 < w2 < w1 < w3,

(c) w2 < w0 < w3 < w1, (d) w2 < w3 < w0 < w1,

(e) w1 < w0 < w3 < w2, (f) w1 < w3 < w0 < w2,

(g) w3 < w1 < w2 < w0, (h) w3 < w2 < w1 < w0,

(23)

or, in a simple form,

wi0 < wi1 < wi2 < wi3 ,

where (i0, i1, i2, i3) are

(a) (0, 1, 2, 3), (b) (0, 2, 1, 3),

(c) (2, 0, 3, 1), (d) (2, 3, 0, 1),

(e) (1, 0, 3, 2), (f) (1, 3, 0, 2),

(g) (3, 1, 2, 0), (h) (3, 2, 1, 0),

(24)

respectively.

Lemma 4. For any three different real numbers
w0, w1, w2, let w3 = w1 + w2 − w0 and for any
w4, w4 �= wj (j = 0, 1, 2, 3), let w5 = w4 + w1 −
w0, w6 = w4 + w2−w0, w7 = w4 + w3−w0. Then
the eight numbers wk (k = 0, 1, 2, . . . , 7) satisfy the
following two properties:

Property A

w0 + w7 = w1 + w6 = w2 + w5 = w3 + w4

and for any allowable ordering of wk (k = 0, 1,
2, . . . , 7), namely,

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < wi6 < wi7 ,

we have

wi0 + wi7 = wi1 + wi6 = wi2 + wi5 = wi3 + wi4

and

i0 + i7 = i1 + i6 = i2 + i5 = i3 + i4 = 7,

where (i0, i1, i2, i3, i4, i5, i6, i7) is an arrangement of
(0, 1, 2, 3, 4, 5, 6, 7).

Property B. There are 96 different kinds of allow-
able orderings of the eight numbers wk (k = 0, 1, 2,
3, 4, 5, 6, 7), namely,

(a) if w0 < w1 < w2 < w3, then w4 < w5 <
w6 < w7, and all the allowable orderings of eight
numbers w0, w1, w2, w3, w4, w5, w6 and w7 are
as follows:

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < wi6 < wi7 ,
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where (i0, i1, i2, i3, i4, i5, i6, i7) are

(1) (0, 1, 2, 3, 4, 5, 6, 7), (2) (0, 1, 2, 4, 3, 5, 6, 7),

(3) (0, 1, 4, 2, 5, 3, 6, 7), (4) (0, 4, 1, 5, 2, 6, 3, 7),

(5) (4, 0, 5, 1, 6, 2, 7, 3), (6) (4, 5, 0, 6, 1, 7, 2, 3),

(7) (4, 5, 6, 0, 7, 1, 2, 3), (8) (4, 5, 6, 7, 0, 1, 2, 3),

(9) (0, 1, 4, 5, 2, 3, 6, 7), (10) (0, 4, 1, 2, 5, 6, 3, 7),

(11) (4, 0, 5, 6, 1, 2, 7, 3), (12) (4, 5, 0, 1, 6, 7, 2, 3),
(25)

respectively;

(b) if w0 < w2 < w1 < w3, then w4 < w6 <
w5 < w7, and all the allowable orderings of eight
numbers w0, w1, w2, w3, w4, w5, w6 and w7 are
as follows:

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < wi6 < wi7 ,

where (i0, i1, i2, i3, i4, i5, i6, i7) are

(13) (0, 2, 1, 3, 4, 6, 5, 7), (14) (0, 2, 1, 4, 3, 6, 5, 7),

(15) (0, 2, 4, 1, 6, 3, 5, 7), (16) (0, 4, 2, 6, 1, 5, 3, 7),

(17) (4, 0, 6, 2, 5, 1, 7, 3), (18) (4, 6, 0, 5, 2, 7, 1, 3),

(19) (4, 6, 5, 0, 7, 2, 1, 3), (20) (4, 6, 5, 7, 0, 2, 1, 3),

(21) (0, 2, 4, 6, 1, 3, 5, 7), (22) (0, 4, 2, 1, 6, 5, 3, 7),

(23) (4, 0, 6, 5, 2, 1, 7, 3), (24) (4, 6, 0, 2, 5, 7, 1, 3),
(26)

respectively;

(c) if w2 < w0 < w3 < w1, then w6 < w4 <
w7 < w5, and all the allowable orderings of eight
numbers w0, w1, w2, w3, w4, w5, w6 and w7 are
as follows:

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < wi6 < wi7 ,

where (i0, i1, i2, i3, i4, i5, i6, i7) are

(25) (2, 0, 3, 1, 6, 4, 7, 5), (26) (2, 0, 3, 6, 1, 4, 7, 5),

(27) (2, 0, 6, 3, 4, 1, 7, 5), (28) (2, 6, 0, 4, 3, 7, 1, 5),

(29) (6, 2, 4, 0, 7, 3, 5, 1), (30) (6, 4, 2, 7, 0, 5, 3, 1),

(31) (6, 4, 7, 2, 5, 0, 3, 1), (32) (6, 4, 7, 5, 2, 0, 3, 1),

(33) (2, 0, 6, 4, 3, 1, 7, 5), (34) (2, 6, 0, 3, 4, 7, 1, 5),

(35) (6, 2, 4, 7, 0, 3, 5, 1), (36) (6, 4, 2, 0, 7, 5, 3, 1),
(27)

respectively;

(d) if w2 < w3 < w0 < w1, then w6 < w7 <
w4 < w5, and all the allowable orderings of eight
numbers w0, w1, w2, w3, w4, w5, w6 and w7 are

as follows:

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < wi6 < wi7 ,

where (i0, i1, i2, i3, i4, i5, i6, i7) are

(37) (2, 3, 0, 1, 6, 7, 4, 5), (38) (2, 3, 0, 6, 1, 7, 4, 5),

(39) (2, 3, 6, 0, 7, 1, 4, 5), (40) (2, 6, 3, 7, 0, 4, 1, 5),

(41) (6, 2, 7, 3, 4, 0, 5, 1), (42) (6, 7, 2, 4, 3, 5, 0, 1),

(43) (6, 7, 4, 2, 5, 3, 0, 1), (44) (6, 7, 4, 5, 2, 3, 0, 1),

(45) (2, 3, 6, 7, 0, 1, 4, 5), (46) (2, 6, 3, 0, 7, 4, 1, 5),

(47) (6, 2, 7, 4, 3, 0, 5, 1), (48) (6, 7, 2, 3, 4, 5, 0, 1),
(28)

respectively;

(e) if w1 < w0 < w3 < w2, then w5 < w4 <
w7 < w6, and all the allowable orderings of eight
numbers w0, w1, w2, w3, w4, w5, w6 and w7 are
as follows:

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < wi6 < wi7 ,

where (i0, i1, i2, i3, i4, i5, i6, i7) are

(49) (1, 0, 3, 2, 5, 4, 7, 6), (50) (1, 0, 3, 5, 2, 4, 7, 6),

(51) (1, 0, 5, 3, 4, 2, 7, 6), (52) (1, 5, 0, 4, 3, 7, 2, 6),

(53) (5, 1, 4, 0, 7, 3, 6, 2), (54) (5, 4, 1, 7, 0, 6, 3, 2),

(55) (5, 4, 7, 1, 6, 0, 3, 2), (56) (5, 4, 7, 6, 1, 0, 3, 2),

(57) (1, 0, 5, 4, 3, 2, 7, 6), (58) (1, 5, 0, 3, 4, 7, 2, 6),

(59) (5, 1, 4, 7, 0, 3, 6, 2), (60) (5, 4, 1, 0, 7, 6, 3, 2),
(29)

respectively;

(f) if w1 < w3 < w0 < w2, then w5 < w7 <
w4 < w6, and all the allowable orderings of eight
numbers w0, w1, w2, w3, w4, w5, w6 and w7 are
as follows:

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < wi6 < wi7 ,

where (i0, i1, i2, i3, i4, i5, i6, i7) are

(61) (1, 3, 0, 2, 5, 7, 4, 6), (62) (1, 3, 0, 5, 2, 7, 4, 6),

(63) (1, 3, 5, 0, 7, 2, 4, 6), (64) (1, 5, 3, 7, 0, 4, 2, 6),

(65) (5, 1, 7, 3, 4, 0, 6, 2), (66) (5, 7, 1, 4, 3, 6, 0, 2),

(67) (5, 7, 4, 1, 6, 3, 0, 2), (68) (5, 7, 4, 6, 1, 3, 0, 2),

(69) (1, 3, 5, 7, 0, 2, 4, 6), (70) (1, 5, 3, 0, 7, 4, 2, 6),

(71) (5, 1, 7, 4, 3, 0, 6, 2), (72) (5, 7, 1, 3, 4, 6, 0, 2),
(30)

respectively;

(g) if w3 < w1 < w2 < w0, then w7 < w5 <
w6 < w4, and all the allowable orderings of eight
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numbers w0, w1, w2, w3, w4, w5, w6 and w7 are
as follows:

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < wi6 < wi7 ,

where (i0, i1, i2, i3, i4, i5, i6, i7) are

(73) (3, 1, 2, 0, 7, 5, 6, 4), (74) (3, 1, 2, 7, 0, 5, 6, 4),

(75) (3, 1, 7, 2, 5, 0, 6, 4), (76) (3, 7, 1, 5, 2, 6, 0, 4),

(77) (7, 3, 5, 1, 6, 2, 4, 0), (78) (7, 5, 3, 6, 1, 4, 2, 0),

(79) (7, 5, 6, 3, 4, 1, 2, 0), (80) (7, 5, 6, 4, 3, 1, 2, 0),

(81) (3, 1, 7, 5, 2, 0, 6, 4), (82) (3, 7, 1, 2, 5, 6, 0, 4),

(83) (7, 3, 5, 6, 1, 2, 4, 0), (84) (7, 5, 3, 1, 6, 4, 2, 0),
(31)

respectively;

(h) if w3 < w2 < w1 < w0, then w7 < w6 <
w5 < w4, and all the allowable orderings of eight
numbers w0, w1, w2, w3, w4, w5, w6 and w7 are
as follows:

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < wi6 < wi7 ,

where (i0, i1, i2, i3, i4, i5, i6, i7) are

(85) (3, 2, 1, 0, 7, 6, 5, 4), (86) (3, 2, 1, 7, 0, 6, 5, 4),

(87) (3, 2, 7, 1, 6, 0, 5, 4), (88) (3, 7, 2, 6, 1, 5, 0, 4),

(89) (7, 3, 6, 2, 5, 1, 4, 0), (90) (7, 6, 3, 5, 2, 4, 1, 0),

(91) (7, 6, 5, 3, 4, 2, 1, 0), (92) (7, 6, 5, 4, 3, 2, 1, 0),

(93) (3, 2, 7, 6, 1, 0, 5, 4), (94) (3, 7, 2, 1, 6, 5, 0, 4),

(95) (7, 3, 6, 5, 2, 1, 4, 0), (96) (7, 6, 3, 2, 5, 4, 1, 0),
(32)

respectively.

Lemmas 3 and 4 can be easily proved, we omit
them for simplicity.

Theorem 3. Nine Boolean functions can be realized
via the uncoupled CNN (7 ) by changing the thresh-
old z for any allowable ordering of the eight numbers
wk (k = 0, 1, 2, 3, 4, 5, 6, 7) in Lemma 4, namely,

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < wi6 < wi7 .

Proof. Firstly, nine open intervals can be given
on (−∞,+∞) according to the numbers wik (k =
0, 1, 2, 3, 4, 5, 6, 7); they are:

I0 =
(
−∞,

wi0

2

)
, I1 =

(wi0

2
,
wi1

2

)
,

I2 =
(wi1

2
,
wi2

2

)
, I3 =

(wi2

2
,
wi3

2

)
,

I4 =
(wi3

2
,
wi4

2

)
, I5 =

(wi4

2
,
wi5

2

)
,

I6 =
(wi5

2
,
wi6

2

)
, I7 =

(wi6

2
,
wi7

2

)
,

I8 =
(wi7

2
,+∞

)
.

For every interval Ij (j = 0, 1, 2, . . . , 8), and for any
given zj, zj ∈ Ij, we can calculate (b1, b2, b3, b4)

T by
using the w0, w1, w2, w4 and zj in formula (19),
as follows:




b1

b2

b3

b4


 = A−1




w0 − zj

w1 − zj

w2 − zj

w4 − zj


, (33)

where A−1 is the inverse matrix of A in (12).
Clearly, from Lemma 4, we have

w3 = −w0 + w1 + w2, w5 = −w0 + w1 + w4,

w6 = −w0 + w2 + w4, w7 = −w0 + w3 + w4,

w8 = 2zj − w7, w9 = 2zj − w6,

w10 = 2zj − w5, w11 = 2zj − w4,

w12 = 2zj − w3, w13 = 2zj − w2,

w14 = 2zj − w1, w15 = 2zj − w0.

Next, let

a = 1 +
1
2

min{|wk| | k = 0, 1, 2, . . . , 15}. (34)

Then, we can construct the uncoupled CNN (7) by
using the six numbers b1, b2, b3, b4, zj and a, its
gene is given by

zj b1 b2 b3 b4 a

which can realize a Boolean function whose binary
output pattern is

(sgn(w0), sgn(w1), sgn(w2), . . . , sgn(w15)).

The proof is thus completed. �

Example 1. If w0 = 2, w1 = 6, w2 = 10, w4 = 18,
then w3 = 14, w5 = 22, w6 = 26, w7 = 30. Con-
sequently, z1 ∈ I1 = (w0/2, w1/2) = (1, 3). Take
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z1 = 2, the center point of the interval I1. Then,


b1

b2

b3

b4


 = A−1




w0 − z1

w1 − z1

w2 − z1

w4 − z1


 = A−1




0
4
8

16




=




−14
8
4
2


 , (35)

and w8 = −26, w9 = −22, w10 = −18, w11 =
−14, w12 = −10, w13 = −6, w14 = −2, w15 = 2,
a = 1 + (1/2)min{|wk‖k = 0, 1, 2, . . . , 15} = 2.
Therefore, we can design the uncoupled CNN (7)
with gene

2 −14 8 4 2 2

and output pattern

(sgn(w0), sgn(w1), . . . , sgn(w15))
= (1, 1, 1, 1, 1, 1, 1, 1,

−1,−1,−1,−1,−1,−1,−1, 1). (36)

Similarly, we can list the other eight genes and
the corresponding output patterns, binary decod-
ing tapes, and decimal codes of the CNN. Details
are shown in Table 3.

Remark 1. If the output pattern of CNN (7) is
(v0, v1, v2, . . . , v15), then its binary decoding tape
is v0v1v2 · · · v15, where vk = 1 if vk = 1, vk = 0 if
vk = −1, and its decimal code is

p = v0214 + v1213 + · · · + v142 + v15.

We should pay more attention to the values
w0/2, w1/2, w2/2, . . . , w7/2 in the above theo-
rem and example. They are the bifurcation values
that yield Boolean functions. This bifurcation phe-
nomenon is generated by changing only one param-
eter, i.e. the threshold z of the CNN (7).

Next, we will classify all the allowable order-
ings of wk (k = 0, 1, 2, . . . , 7) in Lemma 4 into nine
classes where the sign of wk is determined.

(I) : wi0 < wi1 < wi2 < wi3 < wi4

< wi5 < wi6 < wi7 < 0 (37)

where (i0, i1, . . . , i7) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;

(II) : wi0 < wi1 < wi2 < wi3 < wi4

< wi5 < wi6 < 0 < wi7 (38)

where (i0, i1, . . . , i7) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;

(III) : wi0 < wi1 < wi2 < wi3 < wi4

< wi5 < 0 < wi6 < wi7 (39)

where (i0, i1, . . . , i7) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;

(IV) : wi0 < wi1 < wi2 < wi3 < wi4

< 0 < wi5 < wi6 < wi7 (40)

where (i0, i1, . . . , i7) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;

(V) : wi0 < wi1 < wi2 < wi3 < 0

< wi4 < wi5 < wi6 < wi7 (41)

Table 3. Genes, output patterns, binary decoding tapes and decimal codes of Example 1.

Gene Output Pattern Binary Code Tape Decimal Code

16 0 8 4 2 2 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 1111111111111111 65535

14 −2 8 4 2 2 (1,1,1,1,1,1,1,1,−1,1,1,1,1,1,1,1) 1111111101111111 65407

12 −4 8 4 2 2 (1,1,1,1,1,1,1,1,−1, −1,1,1,1,1,1,1) 1111111100111111 65343

10 −6 8 4 2 2 (1,1,1,1,1,1,1,1,−1, −1,−1,1,1,1,1,1) 1111111100011111 65311

8 −8 8 4 2 2 (1,1,1,1,1,1,1,1,−1, −1,−1,−1,1,1,1,1) 1111111100001111 65295

6 −10 8 4 2 2 (1,1,1,1,1,1,1,1,−1, −1,−1,−1,−1,1,1,1) 1111111100000111 65287

4 −12 8 4 2 2 (1,1,1,1,1,1,1,1,−1, −1,−1,−1,−1,−1,1,1) 1111111100000011 65283

2 −14 8 4 2 2 (1,1,1,1,1,1,1,1,−1, −1,−1,−1,−1,−1,−1,1) 1111111100000001 65281

0 −16 8 4 2 2 (1,1,1,1,1,1,1,1,−1, −1,−1,−1,−1,−1,−1,−1) 1111111100000000 65280
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where (i0, i1, . . . , i7) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;

(VI) : wi0 < wi1 < wi2 < 0 < wi3

< wi4 < wi5 < wi6 < wi7 (42)

where (i0, i1, . . . , i7) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;

(VII) : wi0 < wi1 < 0 < wi2 < wi3

< wi4 < wi5 < wi6 < wi7 (43)

where (i0, i1, . . . , i7) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;

(VIII) : wi0 < 0 < wi1 < wi2 < wi3

< wi4 < wi5 < wi6 < wi7 (44)

where (i0, i1, . . . , i7) denotes all the 96 arrangements
of (1) to (96) in Lemma 4;

(IX) : 0 < wi0 < wi1 < wi2 < wi3

< wi4 < wi5 < wi6 < wi7 (45)

where (i0, i1, . . . , i7) denotes all the 96 arrangements
of (1) to (96) in Lemma 4.

Lemma 5. For every one of the above ordering
classes of wk (k = 0, 1, 2, . . . , 7), property A of
Lemma 4 holds. Moreover,

(i) for a pair of allowable orders (a) and (b) in the
same class, if the order (b) is obtained by exchang-
ing one pair of numbers of (a), i.e.



(a) wi0 < wi1 < wi2 < wi3 < wi4

< wi5 < wi6 < wi7

(b) wi0 < wi1 < wi2 < wi4 < wi3

< wi5 < wi6 < wi7

(46)

then, according to Theorem 3, (b) can only realize
a new Boolean function that is different from the
Boolean functions yielded by (a). This situation is
denoted by

(a)
1

(b); (47)

(ii) for a pair of allowable orders (a) and (b) in the
same class, if the order (b) is obtained by exchang-
ing two pairs of numbers of (a), i.e.



(a) wi0 < wi1 < wi2 < wi3 < wi4

< wi5 < wi6 < wi7

(b) wi0 < wi1 < wi3 < wi2 < wi5 < wi4

< wi6 < wi7

(48)

or 


(a) wi0 < wi1 < wi2 < wi3 < wi4

< wi5 < wi6 < wi7

(b) wi0 < wi2 < wi1 < wi3 < wi4

< wi6 < wi5 < wi7

(49)

then, according to Theorem 3, (b) can only realize
two new Boolean functions that are different from
the Boolean functions yielded by (a). This situation
is denoted by

(a)
2

(b); (50)

(iii) for a pair of allowable orders (a) and (b) in the
same class, if the order (b) is obtained by exchang-
ing three pairs of numbers of (a), i.e.



(a) wi0 < wi1 < wi2 < wi3 < wi4

< wi5 < wi6 < wi7

(b) wi0 < wi2 < wi1 < wi4 < wi3

< wi6 < wi5 < wi7

(51)

then, according to Theorem 3, (b) can only realize
three new Boolean functions that are different from
the Boolean functions yielded by (a). This situation
is denoted by

(a)
3

(b); (52)

(iv) for a pair of allowable orders (a) and (b) in the
same class, if the order (b) is obtained by exchang-
ing four of pairs numbers of (a), i.e.



(a) wi0 < wi1 < wi2 < wi3 < wi4

< wi5 < wi6 < wi7

(b) wi1 < wi0 < wi3 < wi2 < wi5 < wi4

< wi7 < wi6

(53)

then, according to Theorem 3, (b) can only realize
four new Boolean functions that are different from
the Boolean functions yielded by (a). This situation
is denoted by

(a)
4

(b); (54)

(v) for a pair of allowable orders (a) and (b) in the
same class, assume that they can be indicated in the
following form:{

(a) wi0 < · · · < wip < wip+1 < · · · < wi7

(b) wj1 < · · · < wjp < wjp+1 < · · · < wj7

(55)
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where

{i1, . . . , ip} ∪ {ip+1, . . . , i7}
= {j1, . . . , jp} ∪ {jp+1, . . . , j7}
= {0, 1, 2, 3, 4, 5, 6, 7},

and the subscript sets {j1, . . . , jp} are a permuta-
tion of {i1, . . . , ip} and {jp+1, . . . , j7} are a permu-
tation of {ip+1, . . . , i7}, respectively, then (a) and
(b) will realize the same output pattern when z ∈
(wip/2, wip+1/2) in (a) and z ∈ (wjp/2, wjp+1/2)
in (b).

Remark 2. It is allowable that one subscript set is
an empty set.

Proof. (i) Firstly, the signs of wk (k = 0, 1, 2, . . . , 7)
are completely determined in the order pair (a) and
(b), because they are in the same order class (I)
to (IX). If z ∈ (wi3/2, wi4/2) in (a), then sgn(2z −
wi3) = 1, sgn(2z − wi4) = −1; if z ∈ (wi4/2, wi3/2)
in (b), then sgn(2z −wi3) = −1, sgn(2z −wi4) = 1;
but all the signs of (2z−wik ) (k = 0, 1, . . . , 7) are not
changed regardless of (a) or (b) when z belongs to
the remaining eight intervals appeared in the proof
of Theorem 3. Thus, only one output pattern of (b)
is different from those of (a).

The proofs of (ii)–(iv) are similar.
For (v), we only note that when z ∈

(wip/2, wip+1/2) in (a) and z ∈ (wjp/2, wjp+1/2)
in (b), all signs of (2z − wik) (k = 0, 1, . . . , 7)
are fixed. The proof of the Lemma is thus
completed. �

For convenience, we denote the linearly sep-
arable Boolean functions as LSBF, and the lin-
early separable Boolean genes as LSBG, in the
following.

Lemma 6

(i) The ordering class (I) can realize 104 LSBF via
the uncoupled CNN (7 );
(ii) the ordering class (II) can realize 160 LSBF via
the uncoupled CNN (7 );
(iii) the ordering class (III) can realize 240 LSBF
via the uncoupled CNN (7 );
(iv) the ordering class (IV) can realize 288 LSBF
via the uncoupled CNN (7 );
(v) the ordering class (V) can realize 298 LSBF via
the uncoupled CNN (7 );
(vi) the ordering class (VI) can realize 288 LSBF
via the uncoupled CNN (7 );
(vii) the ordering class (VII) can realize 240 LSBF
via the uncoupled CNN (7 );
(viii) the ordering class (VIII) can realize 160 LSBF
via the uncoupled CNN (7 );
(ix) the ordering class (IX) can realize 104 LSBF
via the uncoupled CNN (7 ).

Proof

(i) The class (I) is

wi0 < wi1 < wi2 < wi3 < wi4

< wi5 < wi6 < wi7 < 0.

If we use the notations of Lemma 5, then there are
some related chains of the orderings in Lemma 4,
namely,

(a) : (1)
1

(2)
2

(3)
3

(4)
4

(5)
3

(6)
2

(7)
1

(8),

Applying Theorem 3 and Lemma 5, we know that the order (1) can realize 9 LSBF. The other orders in
the chain, (2)–(8), can yield 16 new LSBF. But other orders out of the chain, (9)–(12), cannot yield any
new LSBF, because the LSBFs realized do appear in the chain. Thus, the whole chain (a) can generate 25
LSBF.

Further, we have other chains of wk as shown below:

(b) : (1)
2

(13) (14)
2

(15)
1

(16)
2

(17) (18) (19) (20);

(c) : (13)
4

(25)
1

(26)
2

(27)
2

(28)
4

(29)
1

(30)
2

(31) (32);

(d) : (25)
2

(37) (38)
2

(39)
1

(40)
2

(41)
2

(42) (43) (44);

(e) : (1)
4

(49)
1

(50)
2

(51)
2

(52)
4

(53)
1

(54)
2

(55) (56);
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(f) : (49)
2

(61) (62)
2

(63)
1

(64)
2

(65)
2

(66) (67) (68);

(g) : (61)
4

(73)
1

(74)
2

(75)
2

(76)
4

(77)
1

(78)
2

(79) (80);

(h) : (73) (85) (86)
2

(87) (88)
2

(89) (90) (91) (92). �

Remark 3. The underline above indicates that the order has appeared in the preceding orders.
If no script on the midline between two orders, it implies that the latter cannot yield a new
LSBF.

Applying Theorem 3 and Lemma 5 repeatedly, we can see that the chain (b) can realize 9 LSBF, the
chain (c) can realize 16 LSBF, and likewise, (d) : 9, (e) : 16, (f) : 9, (g) : 16 and (h) : 4, respectively. Thus,
the class (I) can realize a total of 104 LSBF.

(ii) Similar to (i), for class (II):

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < wi6 < 0 < wi7 .

For the pair (a) and (b) in Lemma 4, we have two related chains:

(4)
3

(3)
2

(2)
1

(1)
2

(13) (14)
2

(15)
1

(16)

and

(5)
3

(6)
2

(7)
1

(8)
2

(20) (19)
2

(18)
1

(17);

for the pair (c) and (d) in Lemma 4, we have

(28)
3

(27)
2

(26)
1

(25)
2

(37) (38)
2

(39)
1

(40)

and

(29)
3

(30)
2

(31)
1

(32)
2

(44) (43)
2

(42)
1

(41);

for the pair (e) and (f) in Lemma 4, we have

(52)
3

(51)
2

(50)
1

(49)
2

(61) (62)
2

(63)
1

(64)

and

(53)
3

(54)
2

(55)
1

(56)
2

(68) (67)
2

(66)
1

(65);

for the pair (g) and (h) in Lemma 4, we have

(76)
3

(75)
2

(74)
1

(73)
2

(85) (86)
2

(87)
1

(88)

and

(77)
3

(78)
2

(79)
1

(80)
2

(92) (91)
2

(90)
1

(89).

Based on Theorem 3 and Lemma 5, each pair of orders can yield 40 LSBF. Thus, the class (II) can realize
exactly 160 LSBF.

Remark 4. Other orders out of the above chains cannot yield any new LSBF.

(iii) Class (III) is:

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < 0 < wi6 < wi7 .
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We have 12 chains of the orders shown in Lemma 4:

(9)
1

(3)
2

(2)
1

(1)
4

(49)
1

(50)
2

(51) (57),

(12)
1

(6)
2

(7)
1

(8)
4

(56)
1

(55)
2

(54) (60),

(16)
1

(22)
2

(10)
1

(4)
4

(5)
1

(11)
2

(23) (17),

(21)
1

(15)
2

(14)
1

(13)
4

(25)
1

(26)
2

(27) (33),

(24)
1

(18)
2

(19)
1

(20)
4

(32)
1

(31)
2

(30) (36),

(40)
1

(46)
2

(34)
1

(28)
4

(29)
1

(35)
2

(47) (41),

(44)
1

(43)
2

(42)
1

(48)
4

(96)
1

(90)
2

(91) (92),

(45)
1

(39)
2

(38)
1

(37)
4

(85)
1

(86)
2

(87) (93),

(52)
1

(58)
2

(70)
1

(64)
4

(65)
1

(71)
2

(59) (53),

(68)
1

(67)
2

(66)
1

(72)
4

(84)
1

(78)
2

(79) (80),

(69)
1

(63)
2

(62)
1

(61)
4

(73)
1

(74)
2

(75) (81),

(88)
1

(94)
2

(82)
1

(76)
4

(77)
1

(83)
2

(95) (89).

Every one of the above chains is independent. By Theorem 3 and Lemma 5, each chain can yield 20 LSBF,
so that situation (III) can realize a total of 240 LSBF.

(iv) Class (IV) is:

wi0 < wi1 < wi2 < wi3 < wi4 < 0 < wi5 < wi6 < wi7 .

At this time, there are 24 independent chains of the orders shown in Lemma 4. They are:

(1)
1

(2)
2

(14) (13), (3)
3

(4) (10) (9),

(5)
3

(6) (12) (11), (7)
1

(8)
2

(20) (19),

(15)
3

(16) (22) (21), (17)
3

(18) (24) (23),

(25)
1

(26)
2

(38) (37), (27)
3

(28) (34) (33),

(29)
3

(30) (36) (35), (31)
1

(32)
2

(44) (43),

(39)
3

(40) (46) (45), (41)
3

(42) (48) (47),

(49)
1

(50)
2

(62) (61), (51)
3

(52) (58) (57),

(53)
3

(54) (60) (59), (55)
1

(56)
2

(68) (67),

(63)
3

(64) (70) (69), (65)
3

(66) (72) (71),

(73)
1

(74)
2

(86) (85), (75)
3

(76) (82) (81),



August 2, 2005 9:45 01327

Realization and Bifurcation of Boolean Functions 2121

(77)
3

(78) (84) (83), (79)
1

(80)
2

(92) (91),

(87)
3

(88) (94) (93), (89)
3

(90) (96) (95).

From Theorem 3 and Lemma 5, this situation can realize exactly 288 LSBF.

(v) Class (V) is:

wi0 < wi1 < wi2 < wi3 < 0 < wi4 < wi5 < wi6 < wi7 .

Similar to the preceding classes, there are 14 independent order chains in Lemma 4. They are:

(37)
2

(25)
4

(13)
2

(1)
4

(49)
2

(61)
4

(73) (85),

(12)
2

(5)
4

(4)
2

(9)
4

(57)
2

(52)
4

(53) (60),

(44)
2

(32)
4

(20)
2

(8)
4

(56)
2

(68)
4

(80) (92),

(29)
2

(36)
4

(24)
2

(17)
4

(16)
2

(21)
4

(33) (28),

(48)
2

(41)
4

(40)
2

(45)
4

(93)
2

(88)
4

(89) (96),

(72)
2

(65)
4

(64)
2

(69)
4

(81)
2

(76)
4

(77) (84),

(10)
2

(3)
2

(2)
2

(14)
2

(15) (22),

(11)
2

(6)
2

(7)
2

(19)
2

(18) (23),

(34)
2

(27)
2

(26)
2

(38)
2

(39) (46),

(58)
2

(51)
2

(50)
2

(62)
2

(63) (70),

(35)
2

(30)
2

(31)
2

(43)
2

(42) (47),

(59)
2

(54)
2

(55)
2

(67)
2

(66) (71),

(82)
2

(75)
2

(74)
2

(86)
2

(87) (94),

(83)
2

(78)
2

(79)
2

(91)
2

(90) (95).

Thus, these chains can yield exactly 298 LSBF
according to Theorem 3 and Lemma 5.

As to the classes (VI)–(IX), since the signs
of the orders of these classes are symmetric with
respect to (IV), (III), (II) and (I), respectively,
they can realize 288, 240, 160 and 104 LSBF,
respectively.

The proof of Lemma 6 is thus completed.
From Lemma 6, we immediately obtain the fol-

lowing realization theorem for LSBF:

Theorem 4. There are only 1882 linearly sep-
arable Boolean functions or Boolean genes of
four variables, i.e. 1882 Boolean functions can be

realized by a standard uncoupled CNN of four input
variables.

We will list the binary decoding tapes, decimal
codes and genes of output patterns of classes (I) and
(IX) among these 1882 LSBF in the next section,
leaving the rest to a separate supplement [Chen &
Chen, 2004].

4. Genes, Binary Decoding Tapes
and Decimal Codes of LSBF

Based on the analysis and results given in the
preceding sections, we are now able to realize
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exactly 1882 LSBF via the CNN (7), and cal-
culate the corresponding genes, binary decoding
tapes and decimal codes. The procedure is as
follows.

Step 1. Take three different real numbers, w0,
w1 and w2, and let w3 = −w0 + w1 + w2. After
that, take another real number w4 such that w4 �=
wi (i = 0, 1, 2, 3), and let w5 = −w0 + w1 + w4,
w6 = −w0 + w2 + w4, w7 = −w0 + w3 + w4.
Then, the eight numbers wk (k = 0, 1, 2, . . . , 7) form
one of the 96 orders in the nine classes shown in
Lemma 4:

wi0 < wi1 < wi2 < wi3 < wi4 < wi5 < wi6 < wi7 .

Step 2. Divide (−∞,+∞) into nine open intervals
by wij/2 (j = 0, 1, 2, . . . , 7), as follows:

I0 =
(
−∞,

wi0

2

)
, I1 =

(wi0

2
,
wi1

2

)
,

I2 =
(wi1

2
,
wi2

2

)
, I3 =

(wi2

2
,
wi3

2

)
,

I4 =
(wi3

2
,
wi4

2

)
, I5 =

(wi4

2
,
wi5

2

)
,

I6 =
(wi5

2
,
wi6

2

)
, I7 =

(wi6

2
,
wi7

2

)
,

I8 =
(wi7

2
,+∞

)
.

Step 3. For every interval Ij (j = 0, 1, 2, . . . , 7),
take a number zj ∈ Ij and calculate b1, b2, b3

and b4 by using w0, w1, w2, w4 and zj in the
formula (19):




b1

b2

b3

b4


 = A−1




w0 − zj

w1 − zj

w2 − zj

w4 − zj


.

Then, let

w8 = 2zj − w7, w9 = 2zj − w6,

w10 = 2zj − w5, w11 = 2zj − w4,

w12 = 2zj − w3, w13 = 2zj − w2,

w14 = 2zj − w1, w15 = 2zj − w0.

At last, calculate the self-feedback coefficient a:

a = 1 +
1
2

min{|wk‖k = 0, 1, 2, . . . , 15}.

Thus, the six numbers, zj , b1, b2, b3, b4 and a, con-
stitute a gene of CNN (7):

zj b1 b2 b3 b4 a

Step 4. Calculate the output pattern of the cor-
responding gene in Step 3:

(v0, v1, v2, . . . , v15) = (sgn(w0), sgn(w1),
sgn(w2), . . . , sgn(w15))

and its binary decoding tapes v0v1v2 · · · v15 and
decimal code

p = v0214 + v1213 + · · · + v142 + v15,

where vk = 1 if vk = 1, vk = 0 if vk = −1.

Remark 5. (1) It is easy to see that we can obtain
96 × 9 × 9 = 7776 CNN genes from Steps 1 to
4, based on Theorem 3, but there are only 1882
output pattern of the CNN (7) according to Lemma
5 and Theorem 4. In other words, different genes
can connect to the same output pattern. In such
a situation, we only take a gene as the representa-
tive of the output pattern in the gene bank of the
CNN (7).

(2) To be more precise, in general, eight num-
bers wi (i = 0, 1, 2, 3, 4, 5, 6, 7) are taken as even
numbers, such that a = 1 + (1/2)min{|wk‖k =
0, 1, 2, . . . , 15} = 2, and let zj be the center value of
the interval Ij (j �= 0, 8).

(3) The gene (or template) design method
described above in this paper may be referred to
as a threshold bifurcation method, which is differ-
ent from the nine design tools provided in [Chua
et al., 2002]. Obviously, the method presented here
is more mathematically rigorous.

It would be desirable to list all the genes, binary
decoding tapes, and decimal codes of the 1882
LSBF that can be realized via CNN. However, since
the list is too long, only two classes (I) and (IX) will
be shown in Tables 4 and 5, respectively, for demon-
stration. The rest will be supplied elsewhere [Chen
& Chen, 2004].
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Table 4. Genes, binary decoding tapes, and decimal codes of LSBF of class (I).

No. Decimal Code Gene: z b1 b2 b3 b4 a Binary Decoding Tape

1 0 −16 0 8 4 2 2 0000000000000000

2 1 −14 2 8 4 2 2 0000000000000001

3 2 −14 2 8 4 −2 2 0000000000000010

4 3 −12 2 8 4 2 2 0000000000000011

5 4 −14 2 8 −2 4 2 0000000000000100

6 5 −12 4 8 2 4 2 0000000000000101

7 7 −10 6 8 4 2 2 0000000000000111

8 8 −14 2 8 −2 −4 2 0000000000001000

9 10 −12 4 8 2 −4 2 0000000000001010

10 11 −10 6 8 4 −2 2 0000000000001011

11 12 −12 4 8 −4 2 2 0000000000001100

12 13 −10 6 8 −2 4 2 0000000000001101

13 14 −10 6 8 −2 −4 2 0000000000001110

14 15 −8 8 8 4 2 2 0000000000001111

15 16 −14 2 −2 8 2 2 0000000000010000

16 17 −12 4 2 8 2 2 0000000000010001

17 19 −12 8 6 8 4 2 0000000000010011

18 21 −12 8 6 4 8 2 0000000000010101

19 23 −12 12 10 8 4 2 0000000000010111

20 31 −6 10 8 4 2 2 0000000000011111

21 32 −14 2 −2 8 4 2 0000000000100000

22 34 −12 4 2 8 −4 2 0000000000100010

23 35 −12 8 6 8 −4 2 0000000000100011

24 42 −12 4 6 4 −4 2 0000000000101010

25 43 −12 12 10 8 −4 2 0000000000101011

26 47 −6 10 8 4 −2 2 0000000000101111

27 48 −14 6 −6 8 2 2 0000000000110000

28 49 −10 6 −2 8 2 2 0000000000110001

29 50 −10 6 −2 8 4 2 0000000000110010

30 51 −8 8 2 8 2 2 0000000000110011

31 55 −8 12 6 8 4 2 0000000000110111

32 59 −8 12 6 8 −4 2 0000000000111011

33 63 −4 12 8 4 2 2 0000000000111111

34 64 −14 2 −2 −4 8 2 0000000001000000

35 68 −12 4 2 −4 8 2 0000000001000100
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Table 4. (Continued )

No. Decimal Code Gene: z b1 b2 b3 b4 a Binary Decoding Tape

36 69 −12 8 6 −4 8 2 0000000001000101

37 76 −12 8 6 −8 4 2 0000000001001100

38 77 −12 12 10 −4 8 2 0000000001001101

39 79 −6 10 8 −2 4 2 0000000001001111

40 80 −14 6 −6 4 8 2 0000000001010000

41 81 −10 6 −2 4 8 2 0000000001010001

42 84 −10 6 −2 −4 8 2 0000000001010100

43 85 −8 8 2 4 8 2 0000000001010101

44 87 −8 12 6 4 8 2 0000000001010111

45 93 −8 12 6 −4 8 2 0000000001011101

46 95 −4 12 8 2 4 2 0000000001011111

47 112 −14 10 −10 8 2 2 0000000001110000

48 113 −10 10 −6 8 2 2 0000000001110001

49 115 −6 10 −2 8 2 2 0000000001110011

50 117 −6 10 −2 4 8 2 0000000001110101

51 119 −4 12 2 8 2 2 0000000001110111

52 127 −2 14 8 4 2 2 0000000001111111

53 128 −14 2 −2 −4 −8 2 0000000010000000

54 136 −10 6 2 −4 −8 2 0000000010001000

55 138 −12 8 6 −4 −8 2 0000000010001010

56 140 −12 8 6 −8 −4 2 0000000010001100

57 142 −12 12 10 −4 −8 2 0000000010001110

58 143 −6 10 8 −2 −4 2 0000000010001111

59 160 −14 6 −6 4 8 2 0000000010100000

60 162 −10 6 −2 4 −8 2 0000000010100010

61 168 −10 6 −2 −4 −8 2 0000000010101000

62 170 −8 8 2 4 −8 2 0000000010101010

63 171 −8 8 6 4 −4 2 0000000010101011

64 174 −8 12 6 −4 −8 2 0000000010101110

65 175 −4 12 8 2 −4 2 0000000010101111

66 176 −14 10 −10 8 −4 2 0000000010110000

67 178 −10 10 −6 8 −4 2 0000000010110010

68 179 −6 10 −2 8 4 2 0000000010110011

69 186 −6 10 −2 4 −8 2 0000000010111010

70 187 −4 12 2 8 −4 2 0000000010111011

71 191 −2 14 8 4 −2 2 0000000010111111
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Table 4. (Continued )

No. Decimal Code Gene: z b1 b2 b3 b4 a Binary Decoding Tape

72 192 −14 6 −6 −8 4 2 0000000011000000

73 196 −10 6 −2 −8 4 2 0000000011000100

74 200 −10 6 −2 −8 −4 2 0000000011001000

75 204 −8 8 2 −8 4 2 0000000011001100

76 205 −8 12 6 −8 4 2 0000000011001101

77 206 −8 12 6 −8 −4 2 0000000011001110

78 207 −4 12 8 −4 2 2 0000000011001111

79 208 −14 10 −10 −4 8 2 0000000011010000

80 212 −10 10 −6 −4 8 2 0000000011010100

81 213 −6 10 −2 −4 8 2 0000000011010101

82 220 −6 10 −2 −8 4 2 0000000011011100

83 221 −4 12 2 −4 8 2 0000000011011101

84 223 −2 14 8 −2 4 2 0000000011011111

85 224 −14 10 −10 −4 −8 2 0000000011100000

86 232 −10 10 −6 −4 −8 2 0000000011101000

87 234 −6 10 −2 −4 −8 2 0000000011101010

88 236 −6 10 −2 −8 −4 2 0000000011101100

89 238 −6 10 2 −4 −8 2 0000000011101110

90 239 −2 14 8 −2 −4 2 0000000011101111

91 240 −8 8 −8 4 2 2 0000000011110000

92 241 −10 14 −10 8 2 2 0000000011110001

93 242 −10 14 −10 8 −4 2 0000000011110010

94 243 −6 14 −6 −8 2 2 0000000011110011

95 244 −10 14 −10 −4 8 2 0000000011110100

96 245 −6 14 −6 4 8 2 0000000011110101

97 247 −2 14 −2 8 2 2 0000000011110111

98 248 −10 14 −10 −4 −8 2 0000000011111000

99 250 −6 14 −6 4 8 2 0000000011111010

100 251 −2 14 −2 8 4 2 0000000011111011

101 252 −6 14 −6 −8 4 2 0000000011111100

102 253 −2 14 −2 −4 8 2 0000000011111101

103 254 −2 14 −2 −4 −8 2 0000000011111110

104 255 0 16 8 4 2 2 0000000011111111
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Table 5. Genes, binary decoding tapes, and decimal codes of LSBF of class (IX).

No. Decimal Code Gene: z b1 b2 b3 b4 a Binary Decoding Tape

1779 65280 0 −16 8 4 2 2 1111111100000000

1780 65281 2 −14 8 4 2 2 1111111100000001

1781 65282 2 −14 8 4 −2 2 1111111100000010

1782 65283 2 −12 8 4 2 2 1111111100000011

1783 65284 2 −14 8 −2 4 2 1111111100000100

1784 65285 4 −12 8 2 4 2 1111111100000101

1785 65287 6 −10 8 4 2 2 1111111100000111

1786 65288 2 −14 8 −2 −4 2 1111111100001000

1787 65290 4 −12 8 2 −4 2 1111111100001010

1788 65291 6 −10 8 4 −2 2 1111111100001011

1789 65292 4 −12 8 −4 2 2 1111111100001100

1790 65293 6 −10 8 −2 4 2 1111111100001101

1791 65294 6 −10 8 −2 −4 2 1111111100001110

1792 65295 8 −8 8 4 2 2 1111111100001111

1793 65296 2 −14 −2 8 2 2 1111111100010000

1794 65297 4 −12 2 8 2 2 1111111100010001

1795 65299 8 −12 6 8 4 2 1111111100010011

1796 65301 8 −12 6 4 8 2 1111111100010101

1797 65303 12 −12 10 8 4 2 1111111100010111

1798 65311 10 −6 8 4 2 2 1111111100011111

1799 65312 2 −14 −2 8 4 2 1111111100100000

1800 65314 4 −12 2 8 −4 2 1111111100100010

1801 65315 8 −12 6 8 −4 2 1111111100100011

1802 65322 4 −12 6 4 −4 2 1111111100101010

1803 65323 12 −12 10 8 −4 2 1111111100101011

1804 65327 10 −6 8 4 −2 2 1111111100101111

1805 65328 6 −14 −6 8 2 2 1111111100110000

1806 65329 6 −10 −2 8 2 2 1111111100110001

1807 65330 6 −10 −2 8 4 2 1111111100110010

1808 65331 8 −8 2 8 2 2 1111111100110011

1809 65335 12 −8 6 8 4 2 1111111100110111

1810 65339 12 −8 6 8 −4 2 1111111100111011

1811 65343 12 −4 8 4 2 2 1111111100111111

1812 65344 2 −14 −2 −4 8 2 1111111101000000

1813 65348 4 −12 2 −4 8 2 1111111101000100

1814 65349 8 −12 6 −4 8 2 1111111101000101
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Table 5. (Continued )

No. Decimal Code Gene: z b1 b2 b3 b4 a Binary Decoding Tape

1815 65356 8 −12 6 −8 4 2 1111111101001100

1816 65357 12 −12 10 −4 8 2 1111111101001101

1817 65359 10 −6 8 −2 4 2 1111111101001111

1818 65360 6 −14 −6 4 8 2 1111111101010000

1819 65361 6 −10 −2 4 8 2 1111111101010001

1820 65364 6 −10 −2 −4 8 2 1111111101010100

1821 65365 8 −8 2 4 8 2 1111111101010101

1822 65367 12 −8 6 4 8 2 1111111101010111

1823 65373 12 −8 6 −4 8 2 1111111101011101

1824 65375 12 −4 8 2 4 2 1111111101011111

1825 65392 10 −14 −10 8 2 2 1111111101110000

1826 65393 10 −10 −6 8 2 2 1111111101110001

1827 65395 10 −6 −2 8 2 2 1111111101110011

1828 65397 10 −6 −2 4 8 2 1111111101110101

1829 65399 12 −4 2 8 2 2 1111111101110111

1830 65407 14 −2 8 4 2 2 1111111101111111

1831 65408 2 −14 −2 −4 −8 2 1111111110000000

1832 65416 6 −10 2 −4 −8 2 1111111110001000

1833 65418 8 −12 6 −4 −8 2 1111111110001010

1834 65420 8 −12 6 −8 −4 2 1111111110001100

1835 65422 12 −12 10 −4 −8 2 1111111110001110

1836 65423 10 −6 8 −2 −4 2 1111111110001111

1837 65440 6 −14 −6 4 8 2 1111111110100000

1838 65442 6 −10 −2 4 −8 2 1111111110100010

1839 65448 6 −10 −2 −4 −8 2 1111111110101000

1840 65450 8 −8 2 4 −8 2 1111111110101010

1841 65451 8 −8 6 4 −4 2 1111111110101011

1842 65454 12 −8 6 −4 −8 2 1111111110101110

1843 65455 12 −4 8 2 −4 2 1111111110101111

1844 65456 10 −14 −10 8 −4 2 1111111110110000

1845 65458 10 −10 −6 8 −4 2 1111111110110010

1846 65459 10 −6 −2 8 4 2 1111111110110011

1847 65466 10 −6 −2 4 −8 2 1111111110111010

1848 65467 12 −4 2 8 −4 2 1111111110111011

1849 65471 14 −2 8 4 −2 2 1111111110111111

1850 65472 6 −14 −6 −8 4 2 1111111111000000
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Table 5. (Continued )

No. Decimal Code Gene: z b1 b2 b3 b4 a Binary Decoding Tape

1851 65476 6 −10 −2 −8 4 2 1111111111000100

1852 65480 6 −10 −2 −8 −4 2 1111111111001000

1853 65484 8 −8 2 −8 4 2 1111111111001100

1854 65485 12 −8 6 −8 4 2 1111111111001101

1855 65486 12 −8 6 −8 −4 2 1111111111001110

1856 65487 12 −4 8 −4 2 2 1111111111001111

1857 65488 10 −14 −10 −4 8 2 1111111111010000

1858 65492 10 −10 −6 −4 8 2 1111111111010100

1859 65493 10 −6 −2 −4 8 2 1111111111010101

1860 65500 10 −6 −2 −8 4 2 1111111111011100

1861 65501 12 −4 2 −4 8 2 1111111111011101

1862 65503 14 −2 8 −2 4 2 1111111111011111

1863 65504 10 −14 −10 −4 −8 2 1111111111100000

1864 65512 10 −10 −6 −4 −8 2 1111111111101000

1865 65514 10 −6 −2 −4 −8 2 1111111111101010

1866 65516 10 −6 −2 −8 −4 2 1111111111101100

1867 65518 10 −6 2 −4 −8 2 1111111111101110

1868 65519 14 −2 8 −2 −4 2 1111111111101111

1869 65520 8 −8 −8 4 2 2 1111111111110000

1870 65521 14 −10 −10 8 2 2 1111111111110001

1871 65522 14 −10 −10 8 −4 2 1111111111110010

1872 65523 14 −6 −6 −8 2 2 1111111111110011

1873 65524 14 −10 −10 −4 8 2 1111111111110100

1874 65525 14 −6 −6 4 8 2 1111111111110101

1875 65527 14 −2 −2 8 2 2 1111111111110111

1876 65528 14 −10 −10 −4 −8 2 1111111111111000

1877 65530 14 −6 −6 4 8 2 1111111111111010

1878 65531 14 −2 −2 8 4 2 1111111111111011

1879 65532 14 −6 −6 −8 4 2 1111111111111100

1880 65533 14 −2 −2 −4 8 2 1111111111111101

1881 65534 14 −2 −2 −4 −8 2 1111111111111110

1882 65535 16 0 8 4 2 2 1111111111111111
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5. Conclusions

In this paper, we have characterized some essen-
tial properties of an uncoupled CNN of four input
variables. We have not only rigorously proved that
the uncoupled CNN can realize exactly 1882 linearly
separable Boolean functions (LSBF) or linearly sep-
arable Boolean genes (LSBG), but have also devel-
oped an effective method for generating all these
CNN genes. In particular, we have established the
CNN gene bank of four input variables, which con-
tains all LSBG.

It is well known that a single CNN gene is the
most important element for constructing the CNN
chromosome. The more the CNN genes, the shorter
the length of the corresponding CNN chromosome,
and the more convenient the corresponding imple-
mentation task. The game-of-life chromosome, for
example, consists of only two LSBG and one logical
AND gene, which is already very powerful.

The CNN considered in this paper is the
simplest possible two-dimensional locally-connected
network. It can be easily implemented in applica-
tions such as image processing, brain science and
pattern recognition. It is also possible that some
functions of input–output operations of the CNN
with nine input variables can be replaced by that of
the CNN with four input variables studied in this
paper.

Future research along the same line includes
the establishment of more general results about the
standard CNN of n input variables and the discov-
ery of more CNN genes that can realize all LSBF of
n variables, especially for the case of n = 9. Such a
huge bank of CNN genes is needed to be built, with
which the CNN technology will find more engineer-
ing and technological applications.
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