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The first level data cache in modern processors has become a major consumer of energy due to 
its increasing size and high frequency access rate. In order to reduce this high energy con­
sumption, we propose in this paper a straightforward filtering technique based on a highly 
accurate forwarding predictor. Specifically, a simple structure predicts whether a load instruction 
will obtain its corresponding data via forwarding from the load-store structure — thus avoiding 
the data cache access — or if it will be provided by the data cache. This mechanism manages to 
reduce the data cache energy consumption by an average of 21.5% with a negligible performance 
penalty of less than 0.1%. Furthermore, in this paper we focus on the cache static energy 
consumption too by disabling a portion of sets of the L2 associative cache. Overall, when 
merging both proposals, the combined LI and L2 total energy consumption is reduced by an 
average of 29.2% with a performance penalty of just 0.25%. 



1. I n t r o d u c t i o n 

Continuous technical improvements in the current microprocessors field lead the 

trend toward more sophisticated chips. Nevertheless, this fact comes at the expense 

of significant increase in energy consumption, which jeopardizes the architects' goal 

of simultaneously delivering both high performance and low energy consumption. In 

order to mitigate this problem, many researchers have focused their efforts on re­

ducing the overall energy dissipation in an out-of-order processor. It can be argued 

tha t this research problem is not a major concern now due to the trend towards 

multi-core architectures made by the industry, in which in some cases the pipelines 

employed are simpler. However homogeneous multi-manycore architectures with in-

order pipelines will only provide substantial benefits for scalable applications/ 

workloads, and some researchers have recently highlighted that future designs will 

benefit from asymmetric architectures that combine simple and energy-efficient cores 

with a few complex and energy-hungry cores.1 The local inefficiencies of a complex 

core can translate into global performance/per-watt improvements since a complex 

core could accelerate the serial phases of applications when the energy-efficient cores 

are idle. This way, a single chip will be able to provide good scalability for parallel 

applications as well as ensure high serial performance. In summary, as promoted in 

Ref. 2, researchers should still investigate methods of improving sequential perfor­

mance despite we have entered into the multicore era. 

In an out-of-order microprocessor energy dissipation is spread across different 

structures including caches, register files, the branch predictor, etc. Specifically, on-

chip caches consume a significant part of the overall energy by themselves (see 

Refs. 3—9). This energy consumption is divided between active or dynamic energy, 

which is the energy used while the product is performing its various functions, and 

leakage or static energy, which is the energy consumed by unintended leakage tha t 

does not contribute to the integrated circuit (IC) function. Furthermore, it is worth 

noting tha t leakage energy has become a top concern for IC designers in deep sub-

micron process technology nodes (65 nm and below) because it has increased to a 

significant percent of the total IC energy consumption. In this paper we intend to 

reduce the cache hierarchy energy consumption in an out of order processor by 

decreasing the LI data cache (DL1) dynamic contribution as well as the L2 cache 

static part . 

The first mechanism tha t we propose — oriented to reduce the DL1 dynamic 

energy consumption — is based on an efficient management of the LSQ (load-store 

queue) and DL1 accesses. One of the main LSQ tasks is to supply the correct data to 

load instructions via a forwarding process — store to load forwarding — ruling out 

the cache da ta and therefore turning the cache access unnecessary. Taking advan­

tage of the cached load-store queue (CLSQ) proposed by Nicolaescu et al.10 — where 

the number of loads tha t receive their da ta from a previous store augment consid­

erably — and using an accurate forwarding predictor tha t suggests if a load 



instruction is likely to receive its da ta through forwarding, we manage to filter many 

accesses to the da ta cache in the target platform — an x86 architecture — while the 

performance delivered remains largely unchanged. 

Our second proposal is focused on reducing the static energy consumption in the 

cache hierarchy. To this end we disable some of the sets in the second level cache 

according to the cache array geometry and we analyze the consequent impact on 

performance and global energy consumption. 

The rest of the paper is organized as follows. Section 2 recaps related work. 

Sections 3 and 4 bring in our two proposals. Section 5 details our experimental 

environment, while Sec. 6 outlines experimental results and analyses. Finally, Sec. 7 

concludes. 

2. B a c k g r o u n d 

Many techniques for reducing the cache energy consumption have been explored 

recently. Next, we recap some of the more outstanding ones. One alternative is to 

partit ion caches into several smaller caches11 with the corresponding reduction in 

both access time and energy cost per access. Another design, known as filter 

cache,12 trades performance for energy consumption by filtering cache references 

through an unusually small LI cache. An L2 cache, which is similar in size and 

structure to a typical LI cache, is placed after the filter cache to minimize the 

performance loss. A different alternative, named selective cache ways,1 3 provides 

the ability to disable a subset of the ways in a set associative cache during periods 

of modest cache activity, whereas the full cache will be operational for more cache-

intensive periods. Another different approach takes advantage of the special be­

havior in memory references: we can replace the conventional unified da ta cache 

with multiple specialized caches. Each one handles different kinds of memory 

references according to their particular locality characteristics.14 These alternatives 

make it possible to improve in terms of performance or energy efficiency. Finally, 

Jin et al.15 obtain energy savings in LI cache by exploiting loads spatial locality. In 

their technique, loads always bring a macro da ta from the processor cache, allowing 

additional opportunities for load to load forwarding. Nicolaescu et al.10 propose to 

avoid the da ta cache access for those loads tha t receive their da ta through for­

warding. To increase the amount of this kind of loads, they modify the LSQ design 

to retain load and store instructions after their commit phase. Thereby, a later load 

in program order augments the chances of obtaining its da ta from a previous 

instruction, either an in-flight store, a committed store, or a committed load (load 

to load forwarding). The mechanism — named cached load store queue, CLSQ, 

made of the CLQ and the CSQ — is based on the low observed rate of LSQ 

occupancy for some program phases, which make it possible to earmark unoccupied 

entries to already committed load or store instructions. Our work serves of CLSQ 

to augment the amount of forwarding loads and as a result to reduce the cache 



hierarchy energy consumption, improving and significantly extending our previ­

ously published work.16 

As in our first proposal we are using a forwarding predictor, we should mention 

tha t many proposals relying on memory dependence prediction to know in advance 

which pairs of store-load instructions become dependent1 7 '1 8 exist. However, they all 

exceed the goal of our job. Finally, there are some techniques oriented to selectively 

disable a portion of cache to reduce the static energy consumption, like gated-Vdd,1 9 

and others, like Refs. 20 and 21, tha t we will describe in detail in Sec. 4 for a better 

understanding of our second proposal. 

3 . R e d u c i n g D y n a m i c Energy C o n s u m p t i o n in D L 1 

3 . 1 . Rationale 

In most conventional microprocessors each load instruction consults the first level 

da ta cache in order to move the required data into an available register. Simulta­

neously, the store-queue (SQ) is searched looking for a previous matching in-flight 

store. If it is found, the store forwards the corresponding data . Otherwise, the da ta is 

provided by the cache (see Fig. 1, Original Architecture). 

The first technique tha t we propose in this paper is based on the observation tha t 

if a load obtains the corresponding da ta directly from an earlier store, then the da ta 

cache access turns completely unnecessary, so it could be avoided for saving some 

energy. Obviously, this energy reduction will become significant only if the amount of 

loads that get the da ta from the SQ is high enough. 

In a RISC processor, the amount of store-load forwarding is relatively small (less 

than 15% on average according to Ref. 22), basically due to the fact that the number 

of architectural registers is commonly set to 32 and a register—register architecture is 

generally implemented. In such scenario, the benefits of trying to avoid the DL1 

access could turn meaningless. However, in a register—memory architecture with 

only 16 architectural registers — as in the case of x86-64, the architecture employed 

in this job — the number of store to load forwardings is considerably higher as a 

result of the extra operations due to register spilling. 

In a complementary way, we can use Nicolaescu's CLSQ from Ref. 3, which 

significantly increases the number of loads that receive their data via forwarding, 

both due to store to load forwarding from the Cached-SQ and to load forwarding 

from the Cached-LQ. 

In summary, in an x86-64 architecture using Nicolaescu's Cached-LSQ, the 

amount of forwarding can be relatively high — up to 40% of the loads — which 

makes our idea about saving energy appealing. However, in order to filter the 

accesses to DL1 performed by loads tha t may obtain the da ta directly from the LSQ, 

we need to either serialize the LSQ and DL1 searches, or to know in advance — i.e., 

make a prediction — whether the load will obtain the da ta via forwarding or not. 

This is a key issue tha t we address in the next section. 
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Fig. 1. Original architecture (with the CLSQ), Nicolaescu's architecture and our proposed architecture. 

3.2. Overall structure 

As mentioned above, an obvious implementation would be to serialize the accesses 
involved (like Nicolaescu does in Ref. 10): the load first scans the SQ, and then — 
only when the data is not found — a cache search is performed (see Fig. 1, Nico­
laescu's Proposal). However, this design is not efficient: when a previous matching 
store is not found, the delay incurred in accessing to the data cache will result in a 
significant slowdown. In this paper we will turn up with a much more convenient 
approach. 



Our proposed design (see Fig. 1, Proposed Architecture) is based on a forwarding 

predictor, which tries to identify those loads tha t will receive the corresponding da ta 

via forwarding. For convenience of discussion, we loosely refer to these loads as 

predicted-dependent loads and the remainder predicted-independent loads. 

For predicted-dependent loads, only the entire SQ — both conventional and 

cached parts — and the cached-LQ are searched, omitting the DL1 access (obviously 

at the risk tha t the predictor was wrong, in which case the cache access is launched 

with a one-cycle delay). For the remaining loads the entire SQ, the cached-LQ and 

the DL1 are searched in parallel (note that in this case, if the predictor fails the 

performed data cache access turns unnecessary). A predictor with high accuracy 

provides significant energy savings at the cost of tiny performance degradation. 

3.3 . Forwarding predictors 

There is a whole lot of research in the field of memory dependence prediction. 

However, most proposals employ sophisticated predictor structures, which are ex­

cessive for our goal of just predicting in advance whether a load will obtain the 

corresponding da ta via forwarding. For this reason, we have not considered them in 

this paper. Instead, we have evaluated two kinds of simple predictors: Bloom Filter-

based23 and Branch Predictor-based.24 

B l o o m Fi l t er -Based Predic tor: This first kind of predictor is a low-overhead 

table of counters. When a memory instruction — load or store — is issued, it accesses 

the table based on its address and increments the corresponding counter. Besides, 

and before incrementing the counter, load instructions check the table to obtain the 

prediction: if the corresponding counter is greater than zero, then potentially one or 

more memory instructions access the same memory location, so the systems con­

servatively predicts the load to obtain the corresponding data via forwarding. 

Otherwise, the load is predicted-independent.51 

B r a n c h Pred ic tor -Based: The second kind of predictor is based on the well-

known bimodal branch predictor. Similarly to branch instructions, a large majority 

of loads have a strongly biased behavior — they either frequently or almost never 

receive the corresponding da ta via forwarding — so such a predictor performs sat­

isfactorily. A benefit of this Bimodal Predictor compared to the Bloom Filter-based 

predictor lies on the fact tha t the prediction is available as soon as the load 

instruction is decoded. On the contrary, the Bloom Filter is consulted using the load 

memory address, which needs to be calculated first, so the availability of the pre­

diction is delayed until the issue phase. 

a As explained in Ref. 25, the SQ and LQ accesses could be avoided in this case. However, since a DL1 cache 
access is much more energy consuming than an LQ—SQ access, in this job we do not consider such LQ or 
SQ filtering capability, which would require a deeper study. 



C o m b i n e d Predic tor: Finally, we should mention that we have also considered in 

our evaluation a combined predictor, merging a Bloom Filter with a Bimodal pre­

dictor. For extracting the final prediction, a load is marked as predicted-dependent 

only when both structures predict the load to be dependent. Such a structure benefits 

from both past forwarding behavior and memory address information, providing the 

best results as it will be detailed in the evaluation section. 

3.4 . Supporting coherence and consistency 

The LSQ from the baseline architecture receives invalidation requests from remote 

processors, so coherence and consistency functionalities can easily be supported in 

our technique. However, we should highlight a conflict situation tha t turns up in our 

design when implemented in a system with a MESI coherence protocol: if a da ta is 

replaced from the DL1 but remains in the Cached-LSQ, the Shared Line will not be 

activated due to a remote read request, potentially put t ing the remote da ta in an 

erroneous Exclusive State (instead of a Shared State). A possible solution is to force 

the LSQ to activate the Shared line for every remote read to a load whose da ta was 

received via forwarding. As a future work we intend to improve this management 

since — although straightforward — it is relatively inefficient. 

4. R e d u c i n g Stat ic Energy C o n s u m p t i o n in L2 

Static energy is consumed when transistors in the chip remain in the steady state. 

The relative weight of this kind of energy over the overall consumption has signifi­

cantly augmented as the technology scales down, at least until the Intel High-K 

metal gate transistor appearance. In cache structures it is usual to reduce this con­

tribution by turning off some associative sets or some cache ways tha t are considered 

as dispensable. In this context, we mean by turning off to reduce the transistors 

source-drain voltage drop, thus decreasing the leakage currents involved. Two basic 

approaches exist for this purpose: Stacking Effect-based and Drowsy Effect-based. 

Transistor stacking refers to the technique of stacking off transistors source to 

drain. Stacked off transistors significantly restrict the leakage current flowing to 

ground. This is because the voltage differential between the drain and source of the 

stacked transistors is less than V^. A popular stacking mechanism is the gated-V^ 

technique developed by Powell et al. for memory cells, which has been successfully 

employed in many architectural techniques, such as the DRI I-cache19 and cache 

decay20 among others. These techniques are collectively known as nonstate-pre-

serving (or state-destroying): the cell quickly loses its stored value going into a limbo 

state. Restoring the power supply (turning on the sleep transistor) allows the in­

ternal nodes of the cell to recharge, but they take on a random logic state. 

In response to the gated-T^jd problem of losing state, Flautner et al. proposed 

another approach to curb leakage in memory cells.21 The drowsy mode is a low 



supply voltage mode for the memory cells: memory cells which are idle, i.e., are not 

actively accessed, can be voltage-scaled into a drowsy mode. In this mode, transistors 

leak much less than with a full V^. A "drowsy" bit controls the two levels of supply 

voltage (Vjd or V^^ow) to the memory cells of a cache line. Memory cells are in 

drowsy mode when fed from Vadiow The leakage reduction of the drowsy mode is not 

as profound as tha t of the gated- V^ approach, but in return the state of the memory 

cell is preserved. However, a memory cell in drowsy mode cannot be accessed with the 

full-Vdd circuitry of the cache. It first has to be voltage-scaled back to full V^. 

Because this is not instantaneous, there is a penalty, albeit small, in accessing drowsy 

cells. 

In this work, based on the observation tha t the second level cache in a conven­

tional processor is underutilized in some benchmarks (as it will be stated in the 

evaluation section), we propose to partially turn off this level during the whole 

application. In order to determine the amount of sets to disable in each application, 

we look for a satisfactory energy-performance trade-off. Specifically, we select the 

configuration tha t exhibits the highest energy savings without degrading perfor­

mance beyond 1%. Besides, as the disabled zone remains turned off during the entire 

execution — and hence data preservation is not required — we employ a Stacking 

Effect-based technique. 

Both cache ways and associative sets could be disabled in a selective L2 turning 

off. Nevertheless, according to CACTI 5.3,26 the bits from a cache line are spread 

along a subarray row, as Fig. 2 illustrates. 

Thus, only disabling set is a feasible choice. Specifically, for our L2 configuration 

(256KB size, 64B line, 16 ways, 1 bank and 1 r / w port) , the parameters associated 

with the data array geometry are: Ndwl = 32, Ndbl = 4 and Ndsp = 1. With this 

kind of geometry it is feasible to tu rn off associative sets by 64 size modules, i.e., we 

use L2 caches with 256 (baseline), 192, 128 and 64 associative sets. 

Finally, it is worth to note tha t coherence and consistency can easily be supported 

in this design: at the beginning of an application, we decrease (disabling sets) or 
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Fig. 2. L2 data array geometry according to CACTI 5.3. 



increase (enabling sets) the L2 cache size. In the first case, we flush to the next cache 
level (L3) data from the disabled sets, whereas in the second case we flush to L3 data 
from the sets that are active. Given that we only perform these operations once per 
application, the impact on performance and energy consumption is almost negligible. 

5. Experimental Framework 

We have evaluated our proposed design using PTLsim,27 a performance-oriented 
simulation tool. The simulated microarchitecture follows the default PTLsim con­
figuration that results from the merging of different features of an Intel Pentium 4,28 

an AMD K8 and an Intel Core 2.29 Some of the main simulation parameters are listed 
in Table 1. 

The evaluation of our proposals is performed using 28 benchmarks from the SPEC 
CPU2006 suite,30 compiled for the x86 instruction set. The technology parameters 
correspond to 45 nm, with a 1.0 V V^. We simulate regions of 400M instructions after 
reaching a triggering point, which marks the beginning of code area in which the 
application behavior is representative of the overall execution. 

To evaluate the impact of our data cache filtering and our L2 turning off mech­
anism over the energy consumption of the cache hierarchy, we use CACTI 5.3 to 
model the caches of Table 1. Specifically, in order to estimate the caches energy 
consumption, we have developed an exhaustive energy model that will be detailed 
next. Furthermore, the simulator has been modified to incorporate in the micro­
architectural simulation the predictors from our first proposal, although their energy 
consumption is considered as negligible compared with the energy savings obtained 
in the DLL 

In the next three subsections we describe how we determine the triggering point to 
be employed for each benchmark (Sec. 5.1), we analyze the reliability of the data our 
simulations report (Sec. 5.2) and finally we detail the energy model used (Sec. 5.3). 

Table 1. Simulation parameters for default PTLsim configuration. 

Processor Caches 

- Branch predictor: Combined (Bim-2bits + — LI Instruction cache: 32 KB (4 way, 64 B line), 
Gshare), BTAC 2k 1 bank, 1 port 

- Instruction fetch queue size: 32 — LI Data cache: 16 KB (4 way, 64 B line, 
- ROB size: 128 2 cycles latency), 1 bank, 1 port 
• LSQ size: 80 (LQ: 48, SQ: 32) — L2 cache: 256 KB (16 way, 64 B line, 6 cycles 
- Physical registers: 128 latency), 1 bank, 1 port 
• Functional Units: 8, 4 ALU (2 INT, 2 FP), — L3 cache: 4 MB (32 way, 64 B line, 16 cycles 
2 Load, 2 Store latency), 2 banks, 1 port 

- Fetch/Issue/Commit width 4/4/4 

Memory 

— Main memory latency: 140 cycles 



5 .1 . Determining the triggering point for each application 

As mentioned above, we simulate regions of 400M instructions after reaching a 

triggering point, hoping that the selected simulation window deliver almost identical 

results than those derived from the whole benchmark execution. We have analyzed 

exhaustively how to determine this optimal point. To this end, we employ a me­

thodical process based on the gprof tool3 1 and direct observation, contrasting the 

obtained results with those provided by the SimPoint tool.32 The rationale behind 

this procedure is tha t as SimPoint provides several triggering point per benchmark 

and they cannot be extrapolated to be used in PTLsim, we try to determine a single 

and representative triggering point per application. 

As the simulation environment is relatively new, the simulations were made very 

meticulously. First, using the information provided by gprof as well as a manual 

track with ad hoc timing measurements, we managed to identify the dominant phase 

for each application. Second, we employ simulation windows of 100, 200, 400 and 

1,000 million instructions within the identified dominant phase trying to obtain an 

approximation to the mean value of the required metric. 

Finally, we choose a single triggering point per benchmark which delivers a mean 

value as close as possible to the mean value obtained using a more elaborated process. 

Specifically, we are interested in determining the forwarding rate for each appli­

cation under study. Thus, knowing the number of loads tha t receive the corre­

sponding data from the LSQ instead of from the da ta cache is desired in order to 

calibrate the potential benefits of our first proposal. The triggering points experi­

mentally identified for the SPEC CPU2006 benchmarks are detailed in Table 2. 

In order to determine the optimal length for the simulation window, we analyze 

the forwarding da ta obtained in runs tha t , starting from the triggering points de­

tailed in the table above, execute a different number of instructions. 

The mentioned da ta are shown in Table 3, where the percentage of loads tha t 

receive the corresponding da ta via forwarding in each application is illustrated. We 

provide the forwarding rate observed with and without using the XEN 3 3 hypervi-

sor — an infrastructure tha t provides full system x86-64 simulation, not only user 

space — over the architecture of Table 1, as well as tha t when an extended archi­

tecture (increasing processor resources) is employed. As shown, the forwarding rate 

remains quite stable across the different simulation window lengths, so based on 

simulation time requirements and simplicity, we finally choose 400M as the number 

of instructions to be executed after each triggering point is reached without XEN 

hypervisor. Besides, three applications (gobmk, sjeng and dealll) were discarded due 

to simulator failures and hence not considered from now on. 

To justify and validate our simulation method we contrasted our forwarding rate 

results with those obtained when the SimPoint tool32 is employed. We applied the 

mentioned tool to most benchmarks (some mistakes appeared for a handful of them), 

obtaining the starting addresses of the most representative execution phases. It is 



Table 2. Triggering points for SPEC CPU2006 applications. 

Bench File Line Function Bench File Line Function 

perlben. perlmain.c 97 perl_run 
(my.perl) 

zeusmp lorentz.f 421 first 
instruction 

bzip2 spec.c 332 spec_ 
compress 

gromacs md.c 407 while (.. .) 

gcc toplev.c 2405 i f ( . . . ) cactus PUGH/ 
Evolve.c 

88 while (.. .) 

mcf mcf.c 157 globaLopt leslie3d tml.f 324 DO WHILE 
( . . . ) 

for ( . . . ) gobmk interface/ 828 Switch namd spec_namd.c 181 

DO WHILE 
( . . . ) 

for ( . . . ) 
main.c (playmode) 

hmmer hmmsearch.c 621 while (. . .) dealll step-14.ee 4060 for ( . . . ) 
sjeng search, c 1656 for( . . . ) soplex spxsolve.ee 186 do {...} while 

( . . . ) 
for ( . . . ) libquan. shor.c 103 quantum_exp_ povray render, epp 1327 

do {...} while 
( . . . ) 

for ( . . . ) 
mod_n 

h264ref lencod.c 307 for( . . . ) 
[iter. 2] 

calculix nonlingeo.c 773 while (.. .) 

omnetpp libs/emdenv/ 
cmdenv.ee 

293 i f ( . . . ) GemsF. leapfrog.f90 231 CALL UPML 
updateE 

astar Library.epp 293 for( . . . ) tonto mol.F90 8726 select case (.. .) 
bwaves shelLlam.f 297 call bi_cgstab_ 

block 
lbm main.c 28 for ( . . . ) 

gamess rhfufh.F 2223 DO 300 
ITER = 1, 
MAXIT 

wrf solve_em.F90 532 DO 

mile gauge_stuff.c 227 for( . . . ) sphinx3 spec_main_ 
live_ 
pretend.c 

166 for ( . . . ) 

Table 3. Forwarding rate (%) for SPEC CPU2006 applications. 

With XEN Without XEN 
Without XENa 

400M Benchmark 100M 200M 400M 1000M 100M 400M 
Without XENa 

400M 

400.perlbench 34.6 36.3 36.7 43.8 34.4 37.1 45.9 
401.bzip2 49.5 45.0 42.3 42.7 49.7 43.3 51.2 
403.gcc 44.7 47.0 47.9 46.7 46.2 49.1 59.5 
429.mcf 22.8 22.8 24.1 24.7 22.6 25.0 27.8 
445.gobmk 44.8 44.9 43.8 43.1 45.1 b b 

456.hmmer 27.3 27.0 26.9 26.7 35.2 35.4 55.7 
458.sjeng 34.1 34.1 34.3 34.1 35.3 35.5 45.8 
462.1ibquantum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
464.h264ref 26.1 27.7 28.6 28.6 26.1 28.4 33.3 
471.omnetpp 36.5 36.2 36.2 35.2 36.6 36.2 42.3 
473.astar 60.9 61.6 61.6 61.9 63.9 61.3 74.7 
410.bwaves 25.7 26.6 26.8 26.1 23.1 24.7 27.6 
416.gamess 36.2 34.9 34.3 33.8 37.1 35.2 54.1 
433. mile 44.4 49.8 48.0 43.0 47.0 44.2 31.6 

http://step-14.ee
http://spxsolve.ee
http://cmdenv.ee


Table 3. (Continued) 

With XEN Without XEN 
Without XENa 

400M Benchmark 100M 200M 400M 1000M 100M 400M 
Without XENa 

400M 

434.zeusmp 56.1 60.3 61.5 61.0C 58.7 61.8 51.4 
435.gromacs 41.4 39.8 38.8 37.8 48.7 45.0 59.5 
436.cactusADM 25.9 25.7 25.6 25.5 26.3 25.6 38.8 
437.1eslie3d 28.7 29.1 34.7 32.9 30.4 35.7 38.1 
444.namd 33.3 33.5 33.6 33.6 35.0 35.2 44.4 
447.dealII 15.0 14.2 d d 17.2 d 24.0e 

450.soplex 41.7 41.2 41.2 41.3 47.7 46.7 51.3 
453.povray 45.3 45.1 45.2 45.1 46.7 46.7 57.5 
454.calculix 45.6 45.8 45.8 45.9 45.0 45.0 49.4 
459.GemsFDTD 9.9 9.5 9.4f f 10.7 9.5 18.3 
465.tonto 37.3 37.2 37.4 37.3 40.8 39.1 52.2 
470.1bm 54.8 55.0 55.4 55.3 51.1 52.1 48.7 
481.wrf 32.1 38.9 28.8 30.2 33.3 27.9 29.2 
482.sphinx3 10.2 10.5 10.7 10.0 10.4 10.4 16.9 
AVERAGE 34.5 35.0 34.8 34.6 35.9 35.7 41.8 

aUsing an extended architecture: ROB size: 256, LSQ size: 160 (96/64), Issue Queue size: 32, 
Number of physical registers: 256. 
bSimulation failure in ooocore.cpp:1095. 
cWith 983M instructions the application is executed until completion. 
dSimulation problems appear after 300M instructions. 
Torwarding rate with a 200M instruction simulation window due to problems appeared 
after 300M. 
fWith 399M instructions the application is executed until completion. 

worth noting that we collect a total amount of 215 triggering points for 24 bench­
marks, i.e., 9 points per application on average, although some applications, like 
omnetpp and cactusADM, just exhibit 1 and 2 triggering points, respectively, 
whereas for other benchmarks, like zeusmp, 15 points were detected. For each trig­
gering point the forwarding rate was measured, although in an approximated fashion 
since, due to a simulation framework constraint, a triggering point was established 
when the address of this point is reached for the first time. In Fig. 3 we show 

Fig. 3. Forwarding ratio (%) for SPEC CPU2006 applications (Manual value/SimPoint value). 



a comparison between the load forwarding rate reported by our method and 

tha t when using SimPoint. Specifically, the figure illustrates, for each application, 

the percentage tha t the forwarding rate obtained with our simulation method 

represents with respect to the forwarding rate reported by the SimPoint tool.32 As 

illustrated, there is a high correlation degree between data reported by the two 

methods. 

5.2 . Reliability of reported data 

As it will be detailed in the evaluation section, we carried out many simulations 

changing some microarchitectural details and configuration parameters in order to 

determine how these changes impact on performance and energy consumption. It is 

important to discriminate between which part of IPC and energy savings is related 

with the intrinsic variability associated to different execution runs and which one is 

derived from changes in the processor microarchitecture. 

For this purpose we repeat, over the same machine, a whole simulation of all 

benchmarks to obtain four measurements per application (using a simulation 

window of 400M instructions). Figure 4 illustrates the range of fluctuation (per­

centage) in the number of execution cycles with respect to the arithmetic mean 

obtained from the four runs. As shown, most applications exhibit a high stability. 

Only astar moves away from this trend, so it is not included in the following 

experiments. 

We also analyze the variability associated with energy model parameters 

(they will be described in detail in Sec. 5.3). Again we repeat (four times) a 

whole simulation of all benchmarks over the same machine, using a simulation 

window of 400M instructions. Figure 5 illustrates the average variability for each 

parameter. Although few benchmarks exhibit moderate variability for some par­

ticular parameters, average values considering all applications, as shown, remain 

notably low. 

Fig. 4. Execution cycles variability (simulation runs over the same machine). 



Fig. 5. Variability of energy model parameters. 

5.3 . Energy model 

In the evaluation section we report da ta about the energy impact of our proposals 

over the cache hierarchy. In order to accurately provide these results, we developed 

an energy model which allows to estimate the overall hierarchy consumption as well 

as to perform an energy breakdown tha t includes individual values for all of the levels 

involved in our simulated microarchitecture: da ta level 1, instruction level 1, level 2 

and level 3. 

To estimate the energy associated with load instructions we measure, for each 

level of the cache (that we generically denote as L), the amount of times a da ta is 

searched [L.Lookup), the amount of hits experienced (L.Hit) as well as the number of 

misses (L.Miss). Related with this last parameter, the amount of writings (L.De­

livery) performed when a required data is not found in the corresponding level is also 

recorded. 

Regarding store instructions energy consumption, as we simulate a micro­

architecture with inclusive caches and therefore writing in first level data cache 

implies writing in upper levels too, we record the amount of stores that consolidate 

the corresponding data, i.e., the number of committed stores (denoted as Stores in 

our model). 

For load instructions, we analyzed two different ways for accessing to tag and 

da ta cache arrays: parallel and sequential fashion, although we finally choose parallel 

access to instruction cache and sequential access to da ta caches.34 

We denote the consumption per tag array access involved as L.r.tag and the 

consumption per da ta array reading as L.r.line. The sum of the two prior values is 

referred to L.r and the consumption involved in accessing the cache to perform a 

writing as L.w. Considering the previous definitions, the dynamic energy consump­

tion for each L level cache in our model is: 

Lparallelconsumpt. = L.Lookup * L.r + (L.Delivery + Stores) * L.w (1) 



Lsequentialconsumpt. = Lookup * L.r.tag + Hits * L.r.line 

+ (L.Delivery + Stores) * L.ui. (2) 

In order to clarify this model, Fig. 6 illustrates the memory hierarchy of the 

simulated microarchitecture where — apart from the three levels of cache — the 

LSQ, the line fill request queue (LFRQ), the miss buffer (MB) and the main memory 

are shown too. This figure includes quanti tat ive information about the amount of 

loads, stores and instruction fetchs tha t travel for the different structures involved in 

a 400M instructions simulation of gcc application. The Delivery parameter is 

represented with thick arrows going from an upper level to the lower one in order to 

satisfy the missing data or instruction. The Stores parameter is represented with an 

arrow going from DL1 to L3 (touching also the L2). 

Regarding static energy consumption, it is calculated based on the amount of 

execution cycles reported by the simulation runs. 

To complete our energy model, we extract the da ta shown in Table 4 from CACTI 

5.326 using 45 nm technology, 360 K temperature, ITRS-HP memory type, a con­

servative interconnect projection type and semi-global wire outside mat . 

116,964,913 

predictorMiss 

61,317,2392 

3,405,1153l 

2,218,982« I 

1,085,119* 

Total Consumption 

ILl -> 179 281 192' * A + 
174 487 849" * B + 
4 793 336° * C 

849b 

4,793,336= 

DL1 -» 66, 974, 9821 * a + 
61 317 2392 * b + 
3 405 1153 * c + 
57 035 745° * c 

L2 -» 8 198 6474 * d + 
5 979 537= * e + 
2 218 9826 * f + 
57 035 745° * f 

570.186(d)8+ 563,756(il 

hit 
l,078,502(d) + 6,666(i) 

L3 -» 2 219 HO 7 * q + 
1 133 9428 * h + 
1 085 119* * i + 
57 035 745° * i 

Consumption per access 
A = ILl.r.tag d = L2.r.tag 
B = ILl.r.line e = L2.r.line 
C = ILl.w.line f = L2.w.line 
a = DL1.r.tag g = L3.r.tag 
b = DLL r. line h = L3.r.line 
c = DLL w. line i = L3.w.line 

57,035,745° 

Fig. 6. Energy model applied to gcc application case. (<2) and (i) refer to da t a and instructions, 

respectively. 



Table 4. Energy parameters extracted from CACTI 5.3, being "L" the generic level cache. 

IL1 32KB DL1 16KB L2 256KB L3 4MB 

1 bank 

1 port 

1 bank 

1 port 2 ports 

1 bank 

1 port 

2 banks 4 banks 

1 port 

L.r(nJ) 
L.w(nJ) 
Leakage(nJ) 
L.r.tag(nJ) 
L.r.line(nJ) 

0.147759 
0.140818 
0.021913 
0.00401904 
0.14373995 

0.141283 
0.135473 
0.014391 
0.00331957 
0.20811842 

0.211438 
0.205607 
0.046448 
0.0023258 
0.2091121 

1.20518 
1.17885 
0.237133 
0.01084662 
1.19433338 

2.59934 
2.5136 
4.85672 
0.03509109 
2.56424891 

3.92063 
3.78945 
6.292948 
0.0259934 
2.5733466 

6. E v a l u a t i o n 

In Sec. 6.1 we detail the results obtained from our DL1 filtering proposal whereas 

those from simultaneously disabling sets in L2 cache and filtering DL1 accesses are 

analyzed in Sec. 6.2. 

6 .1 . Dynamic energy reduction in DL1 

In this section, first we analyze the effectiveness of the studied forwarding predictors 

and then the main results derived from our first proposed technique. 

6.1.1. Forwarding predictors 

In order to compare the accuracy of the forwarding predictors evaluated — Bloom 

Filter, Bimodal (with 1 and 2 bits per entry) and Bimodal (2 bits) plus Bloom 

Filter — we follow Grunwald et al. and employ the following metrics used in con­

fidence estimation for speculation control35: 

P r e d i c t i v e V a l u e of a P o s i t i v e T e s t ( P V P ) : It identifies the probability tha t the 

prediction of a load as dependent is correct. It is computed as the ratio between the 

number of correctly dependent-predicted loads and the total number of loads pre­

dicted as dependent. 

P r e d i c t i v e V a l u e of a N e g a t i v e Tes t ( P V N ) : It identifies the probability tha t 

the prediction of a load as independent is incorrect. It is computed as the ratio 

between the number of mispredicted independent loads and the total number of 

loads predicted as independent. 

In our case, using predictors with a high P V P avoids degrading performance. On 

the other hand, if many loads are incorrectly independent-predicted (high PVN) , 

many cache accesses are carried out unnecessarily, resulting in missed opportunities 

to reduce the DL1 energy consumption. Therefore, in our design, only very high P V P 

values are acceptable. 

In Fig. 7, we visually present the measurements of P V P and PVN for different 

sizes in all studied predictors. Intuitively, as we increase the size of any predictor, 
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Fig. 7. PVP and PVN values for studied predictors. The results shown are the average values for all 
applications. For Bimodal Predictors (1 and 2 bits) the data points reflect sizes of 256, 512, IK and 2K. 
For Bloom Filter we show results for 64, 128 and 256 entries. Finally, the combined predictor uses a 
64-entry Bloom Filter and a Bimodal Predictor (2 bits) with 256, 512, IK and 2K entries. 

P V P augments and PVN decrease, leading to a better predictor behavior. Note that 

PVN for Bloom Filter is always zero, since no false negatives exist — when a load is 

independent-predicted, the predictor is never mistaken. 

From this figure we can conclude — according to the intuition — tha t combining 

the past forwarding information (Bimodal predictor) and memory addresses (Bloom 

Filter) result in the most accurate predictor (up to 95% of hits for predicted-

dependent loads and only around 6% of misses for predicted-independent loads). Thus, 

we focus on this combined predictor (specifically, we choose a lK-entry bimodal pre­

dictor and a 64-entry Bloom Filter) for thorough analysis reported in next section. 

6.1.2. Main results 

First, we inspect in Fig. 8 the amount of forwarding available in each of the archi­

tectures considered (baseline, Nicolaescu's proposal and our architecture). As the 

I 
/ ' * > / / / / / / / ' / / / * " / / / ' 

I Nicolaescu-Our arch. 

Baseline 

'W 
Fig. 8. Forwarding rate: CLSQ contribution. 



forwarding rate in both our proposed architecture and tha t of Nicolaescu is almost 

exactly the same, in the figure we illustrate the same total rate observed in each 

application employing these two architectures, as well as the baseline contribution. 

As shown, the average forwarding rate rises from 8% to 36% for the considered 

applications when the CLSQ is introduced in the design, so the contribution of 

Nicolaescu's idea becomes very significant. 

Second, a key aspect to be considered is to know how the forwarding rate incre­

ment impacts on performance and energy consumption when our proposed D L l 

filtering technique is implemented. In Fig. 9 the slowdown observed with respect to 

the baseline is shown for both Nicolaescu's proposal and ours. 

According to Fig. 9, where Nicolaescu's proposal applied to the base architecture 

drops performance by 1.04% on average (due to the one-cycle delay associated with 

loads tha t do not find the corresponding da ta in the LSQ structure), our prediction 

mechanism — since no delay occurs in accessing the da ta cache when a load is 

predicted as independent — manages to reduce the slowdown to just 0.09% with 

respect to the baseline. 

In order to evaluate the impact of our filtering technique on energy consumption, 

we track the amount of events detailed in our energy model (Lookup, Hits, Miss and 

Delivery as well as the number of store instructions) for each level cache. In Fig. 

we show some of these parameters values for both Nicolaescu's proposal and our 

filtering technique normalized to those obtained in the baseline. 

As shown in the figure, the mechanism proposed by Nicolaescu allows to reduce 

the amount of D L l accesses by 30% without significantly affecting the remaining 

levels. With our proposal the reduction is slightly lower, around 26%, due to the 

contribution of those loads erroneously predicted as independent tha t unnecessarily 

access the D L l . 

Considering da ta collected in Figs. 9 and 10, and applying our described energy 

model, we may obtain the energy reduction derived from our mechanism imple­

mentation. In Fig. 11 we show the dynamic energy consumption (mj) of D L l for the 

three microarchitectures under study (baseline, tha t of Nicolaescu and ours) and 

L L L l • LI I Li • I Mil 
I Nicolaescu's proposal 

I Our proposal 

Fig. 9. Performance impact of both our proposed technique and that of Nicolaescu. 
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Fig. 10. Energy model parameters for the studied architectures. 

I Baseline 

I Nicolaescu's proposal 

I Our proposal 

Configuration A Configuration B 

Fig. 11. DL1 dynamic energy consumption for considered proposals. 

varying the number of ports in the first level cache. Thus, configuration A is the 

configuration detailed in the experimental framework section whereas configuration 

B employs a dual ported DL1 instead of a single one. 

From this figure we derive tha t our filtering proposal manages to reduce the DL1 

dynamic energy consumption by around 21.5% compared to the baseline in the two 

studied configurations. The energy savings employing Nicolaescu's proposal is 

slightly higher, around 24%, at the expense of a significantly higher slowdown with 

respect to our proposal as previously shown. Moreover, as a consequence of the 

reduced slowdown, whereas with our filtering technique the static consumption in 

the cache hierarchy remains largely unchanged, Nicolaescu's proposal leads to a 

considerable increment. 

6.2. Static energy reduction in L2 

As established in Sec. 4, we try to reduce the static contribution to cache hierarchy 

energy consumption by turning off some associative sets in L2. The effect observed 
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Fig. 12. Performance impact of our combined proposals. 
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over execution time is shown in Fig. 12, which reports the system slowdown — 

compared to the baseline — when 256 (full L2 cache), 192,128 and 64 associative sets 

are employed. One thing worth noting is tha t these results are obtained including the 

filtering DL1 mechanism proposed in Sec. 3. 

From the figure above, we extract the average slowdown considering all appli­

cations when we turn off different amount of associative sets. Our entire L2 cache 

(256 sets) in conjunction with our DL1 filtering proposal, according to results shown 

in the previous subsection too, just drops performance by 0.09% on average com­

pared to the baseline. When just 192, 128 and 64 associative sets are working, this 

average slowdown rises to 0.41%, 0.45% and 0.72%, respectively. 

In Fig. 12 we also zoom into particular applications to analyze individual be­

havior. Considering the observed slowdown per benchmark when turning off different 

amount of associative sets, and according to the energy-performance trade-off stated 

in Sec. 4, we may choose a specific L2 turning off. Recall tha t for each application we 

choose the configuration tha t using the smallest amount of L2 sets — and including 

our DL1 filtering proposal — reports a slowdown under 1% compared to baseline. 

Thus, for example, perlbench and hmmer meet the trade-off using just 128 and 64 

sets respectively, whereas for sphinx?, all the available sets must be employed to keep 

performance drop below 1%. 

Overall, according to our energy model, by disabling L2 sets in this selective 

fashion — to cut static L2 energy consumption — and simultaneously applying our 

DL1 filtering mechanism — that reduces DL1 dynamic energy — the static L2 and 

the dynamic DL1 contributions to energy consumption drop by 62.2% and 21.5%, 

respectively on average, leading to a reduction in the combined LI and L2 total 

energy consumption of 29.2%, whereas the performance penalty is just 0.25%. As 

inferred from this reduced slowdown, the increase in L3 accesses due to turning off L2 

sets has an almost negligible impact on system performance and even total L3 energy 

consumption remains largely unchanged (it augments by just 0.3%). 



7. Conc lus ions 

In this paper we have proposed a LI da ta cache filtering mechanism oriented to 

reduce the energy consumption. Using the idea of CLSQ to augment the forwarding 

available in the applications, we manage to cut the dynamic energy consumption of 

the first level data cache by 21.5% with a negligible slowdown. Furthermore, we also 

propose to selectively turn off some L2 associative sets in order to reduce the static 

energy consumption. Combining both techniques a reduction in overall LI and L2 

energy consumption close to 29.2% is achieved, with just a 0.25% performance 

penalty. In this paper we have focused on just cache energy consumption, since 

determining the impact of these approaches over the whole processor energy con­

sumption exceeds the goal of this work. 

Besides, we have introduced a detailed energy model and a meticulous simulation 

method to obtain single triggering points for simulation in SPEC CPU2006 appli­

cations on an x86-64 architecture. 
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