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Abstract

This paper studies the convex isotonic regression with generalized order restrictions induced
by a directed tree. The proposed model covers various intriguing optimization problems with
shape or order restrictions, including the generalized nearly isotonic optimization and the total
variation on a tree. Inspired by the success of the pool-adjacent-violator algorithm and its active-
set interpretation, we propose an active-set based recursive approach for solving the underlying
model. Unlike the brute-force approach that traverses an exponential number of possible active-
set combinations, our algorithm has a polynomial time computational complexity under mild
assumptions.
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1 Introduction

Given a directed tree G = (V,E), we consider the following convex isotonic regression problem with
generalized order restrictions:

min
x∈ℜ|V |

∑

i∈V

fi(xi) +
∑

(i,j)∈E

λi,j(xi − xj)+ +
∑

(i,j)∈E

µi,j(xj − xi)+, (1)

where for each i ∈ V, fi : ℜ → ℜ is a convex loss function, λi,j and µi,j for (i, j) ∈ E, are possibly
infinite nonnegative scalars, i.e., 0 ≤ λi,j, µi,j ≤ +∞, and (x)+ = max(0, x) is the nonnegative
part of x for any x ∈ ℜ. In (1), when λi,j = +∞ (respectively, µi,j = +∞), the corresponding
term λi,j(xi − xj)+ (respectively, µi,j(xj − xi)+) should be understood as the indicator function
δ(xi, xj | xi−xj ≤ 0) (respectively, δ(xi, xj | xi−xj ≥ 0)), or equivalently the constraint xi−xj ≤ 0
(respectively, xi − xj ≥ 0). See Figure 1 for some simple examples of directed trees.

As one can observe, the involvement of the directed tree G makes problem (1) a rather general
model containing many interesting variants as special cases. Here, for simplicity, we only mention

∗School of Mathematical Sciences, Fudan University, Shanghai, 200433, China, chenxy18@fudan.edu.cn
†School of Data Science, Fudan University, Shanghai, 200433, China, lixudong@fudan.edu.cn
‡School of Mathematical Sciences, Fudan University, Shanghai, 200433, China, yfsu@fudan.edu.cn

1

http://arxiv.org/abs/2304.00244v1


1 2 · · · n

(a) chain

1

23

45 6

(b) arborescence

1

2 3

4 5

(c) general directed tree

Figure 1: Examples of directed trees. A directed tree is a directed graph whose underlying graph
is a tree, and the directed trees are also referred to as directed acyclic graphs.

two of them. The first one is the generalized nearly isotonic optimization (GNIO) problem proposed
in [26]:

min
x∈ℜn

n∑

i=1

fi(xi) +

n−1∑

i=1

λi(xi − xi+1)+ +

n−1∑

i=1

µi(xi+1 − xi)+, (2)

which is clearly a special case of (1) with G chosen as a chain, as illustrated in Figure 1a. As is
mentioned in [26], model (2) recovers, as special cases, many classic problems in shape restricted
statistical regression, including isotonic regression [6, 7], unimodal regression [12, 21], and nearly
isotonic regression [22]. The second one is the total variation on a tree considered in [15]:

min
x∈ℜ|V |

∑

i∈V

fi(xi) +
∑

(i,j)∈E

wi,j|xi − xj |, (3)

where G = (V,E) is a directed tree and each fi is assumed to be piecewise linear or piecewise
quadratic. Other special cases of model (1) have also been examined in the literature, for example,
[8, 25] studied the isotonic regression problems with partial order restrictions induced by an ar-
borescence. These special cases, as well as their applications in statistic inference [20], operations
research [1], signal processing [17, 9], medical prognosis [19], and traffic and climate data analysis
[16, 24], reveal the importance and necessity of studying model (1).

To the best of our knowledge, there is currently no efficient algorithm available for directly
solving the general model (1). However, certain special cases of the model can be solved by existing
algorithms. For example, the GNIO problem (2) can be efficiently solved by employing a dynamic
programming approach designed in [26]. Moreover, assuming boundedness of the decision variables,
the KKT based fast algorithm proposed in [13] can also solve the GNIO problem. However, both
algorithms rely heavily on the underlying chain structure, and therefore cannot be applied to solve
the general model (1) that involves a directed tree. If G is a chain and each fi is quadratic,
the total variation problem (3) reduces to the well-known ℓ2 total variation denoising problem,
which has been extensively studied in signal processing [10, 14]. The direct algorithm [10] and the
taut-string algorithms [2] are considered to be the state-of-the-art for solving the ℓ2 total variation
denoising problem. Meanwhile, if G is assumed to be a directed tree and each fi is assumed to
be continuous piecewise linear or piecewise quadratic with a finite number of breakpoints in (3),
the message passing algorithm studied in [15] can be applied. However, these algorithms can not
handle problem (1) with general convex loss functions fi involved.

There is also another line of work dedicated to solving special cases of problem (1). In the
1950s, Ayer in [1] proposed the famous Pool-Adjacent-Violator algorithm (PAVA) for solving the
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following isotonic regression problem:

min
x∈ℜn

1

2

n∑

i=1

(xi − yi)
2,

s.t. x1 ≤ x2 ≤ . . . ≤ xn,

(4)

which is clearly a special case of problem (1). The PAVA has been widely regarded as the state-of-
the-art technique for solving the isotonic regression problem since its inception. Later in [4], Best
and Chakravarti discovered that the PAVA is, in fact, a dual feasible active set method for solving
(4). In [5], the PAVA was generalized to handle (4) but with the least squares objectives replaced
by general separable convex loss functions. In [25], Yu and Xing further generalized the PAVA to
solve convex separable minimization with order constraints induced by an arborescence. However,
the generalized regularizers present in the objective of model (1) were not studied in [25]. As far
as we know, it remains unclear whether the ideas behind the PAVA can be adopted to solve the
more general model (1).

Encouraged by the successes of the PAVA and its variants in solving special cases of the
generalized convex isotonic regression problem (1), we propose a novel active-set based algorithm in
this paper. Our approach differs from the brute-force method that explores a potentially exponential
number of different active sets. Instead, a recursive approach is proposed to accelerate the search for
the desired active sets. We show that problem (1) can be tackled via recursively solving a sequence
of smaller subproblems. For these subproblems, special recursive structures of the corresponding
Karush-Kuhn-Tucker (KKT) conditions are carefully examined, which further allows us to design
a novel active-set based recursive approach (ASRA). In particular, this approach enables us to
derive semi-closed formulas of the optimal solutions to the aforementioned recursive subproblems.
Under mild assumptions, we further show that the ASRA enjoys a polynomial time computational
complexity for solving problem (1).

The subsequent sections of this paper are organized as follows. Section 2 covers the necessary
preliminaries associated with problem (1), including fundamental concepts in graph theory and the
corresponding KKT conditions. In addition, we describe a naive active-set method to solve (1).
Our recursive approach, the ASRA, is described in detail in Section 3. Finally, we conclude the
paper in Section 4. The Appendix includes an example of how to apply the ASRA to solve a simple
instance of (1).

2 Preliminaries

We start with some relevant preliminaries in graph theory. A directed tree G = (V,E) is a directed
graph whose underlying graph is a tree, and an arborescence (also known as rooted directed tree)
[11, 23] is a directed tree with exactly one node of zero in-degree. The node is also referred to as
the root of the arborescence. Let G = (V,E) and B = (VB , EB) be two directed trees. If VB ⊆ V
and EB ⊆ E, then we say that B is a subtree of G, denoted by B ⊂ G. Two subtrees are disjoint
if their node sets are disjoint. Given P = {Bk}

K
k=1 as a collection of disjoint subtrees of a certain

directed tree G = (V,E), if V = ∪K
k=1VBk

, then P is said to be a partition of G.
For a given directed tree G = (V,E), we can choose any node l ∈ V as the ancestor of G. Then,

for any i, j ∈ V , we say that j is a child of i, denoted by j ⊳ i, if the undirected path connecting l
and i is strictly contained in the one connecting l and j. For example, if we pick the node 2 as the
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ancestor in the directed tree presented in Figure 1c, then we have 3 ⊳ 1 ⊳ 2. Now, let D ∈ ℜ|V |×|E|

be the node-arc incidence matrix associated with G. We know from [3] that rank(D) = |E| and
the matrix D̃l ∈ ℜ|E|×|E| obtained by deleting the l-th row from D is invertible. Given a vector
b ∈ ℜ|E|, we obtain in the following lemma a closed-form formula for the solution to the linear
system D̃lz = b.

Lemma 1. For any given b ∈ ℜ|E|, the unique solution z∗ = (zi,j)(i,j)∈E ∈ ℜ|E| to the linear system

D̃lz = b takes the following form:

z∗i,j =





∑

k∈Ci

bk, if i ⊳ j,

−
∑

k∈Cj

bk, if j ⊳ i,
∀ (i, j) ∈ E,

where for any node i, Ci consists of i and all its children, i.e., Ci := {j ∈ V | j ⊳ i} ∪ {i}.

Proof. This result is a simple consequence of the special structure of the node-arc incidence matrix
and can be verified directly.

Next, we state the blanket assumption on the loss functions fi, i ∈ V , and derive the KKT con-
ditions associated with problem (1). To express our main ideas clearly, we put strong assumptions
on fi, such as strong convexity and differentiability. However, as can be observed, these strong
assumptions could be removed if more subtle analysis is employed.

Assumption 1. Each fi : ℜ → ℜ, i ∈ V in (1) is differentiable and strongly convex.

From the strong convexity of each fi, we know that the objective function in problem (1) is also
strongly convex and therefore level-set bounded. Moreover, by [18, Theorems 27.1 and 27.2],
problem (1) has a unique solution. We also note that Assumption 1 holds in some statistical and
machine learning problems [4, 10, 22]. Under Assumption 1, we know from [18] that each f∗

i is also
a strongly convex differentiable function. Moreover, both f ′

i and (f∗
i )

′ are strictly increasing on ℜ,
and for any given x, y ∈ ℜ, y = f ′

i(x) if and only if x = (f∗
i )

′(y).
Now, we are ready to write down the KKT conditions associated with problem (1). For

0 ≤ λ, µ ≤ +∞, let





h−λ (x) := δ(x | x ≥ 0), if λ = +∞,

h−λ (x) :=

{
−λx, x < 0,

0, x ≥ 0,
if 0 ≤ λ < +∞,

and





h+µ (x) := δ(x | x ≤ 0), if µ = +∞,

h+µ (x) :=

{
0, x ≤ 0,

µx, x > 0,
if 0 ≤ µ < +∞.

For (i, j) ∈ E, we define hi,j : ℜ → [0,+∞] by

hi,j(x) := h−λi,j
(x) + h+µi,j

(x), ∀ x ∈ ℜ.

Clearly, for each (i, j) ∈ E, hi,j is convex and its subdifferential at x ∈ ℜ takes the following form:

∂hi,j(x) =





{−λi,j}, if x < 0,

[−λi,j, µi,j], if x = 0,

{µi,j}, if x > 0.

(5)
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Here, ∂hi,j(x) = {+∞} or ∂hi,j(x) = {−∞} should be understood as ∂hi,j(x) = ∅. We also adopt
the conventions in (5) that [−∞,+∞] = (−∞,+∞), [−∞, α] = (−∞, α], and [α,+∞] = [α,+∞)
for some α ∈ ℜ.

Define H(z) :=
∑

(i,j)∈E hi,j(zi,j) for z ∈ ℜ|E|, and F (x) :=
∑

i∈V fi(xi) for x ∈ ℜ|V |. Let

M = −DT ∈ ℜ|E|×|V |, where D is the node-arc incidence matrix associated with G. That is,
for e = (i, j) ∈ E, M(e, i) = −1 and M(e, j) = 1 and all other entries of M are zero. Let
HM (x) := H(Mx) for x ∈ ℜ|V |. Then, it can be easily verified that problem (1) can be equivalently
rewritten as

min
x∈ℜ|V |

F (x) +HM (x).

Then, we have the following lemma on the KKT conditions associated with problem (1).

Lemma 2. Problem (1) has a unique minimizer x∗ ∈ ℜ|V |. Moreover, x∗ solves problem (1) if
and only if there exists a unique multiplier z∗ ∈ ℜ|E|, such that (x∗, z∗) satisfies the following KKT
system: ∑

k:(i,k)∈E

z∗i,k −
∑

k:(k,i)∈E

z∗k,i = f ′
i(x

∗
i ), ∀ i ∈ V,

z∗i,j ∈





{−λi,j}, if x∗i > x∗j ,

[−λi,j, µi,j], if x∗i = x∗j ,

{µi,j}, if x∗i < x∗j ,

∀ (i, j) ∈ E.

(6)

Proof. The existence and the uniqueness of the optimal solution to problem (1) follows from the
the strong convexity of F . Since F is differentiable, we know from [18, Theorem 23.8] that

0 ∈ F ′(x∗) + ∂HM (x∗).

From [18, Theorem 23.9], it can be seen that ∂HM (x∗) = MT∂H(Mx∗). Thus, there exists
z∗ ∈ ∂H(Mx∗), such that

F ′(x∗) +MT z∗ = F ′(x∗)−Dz∗ = 0. (7)

Since the e-th entry of Mx∗ is given by x∗j − x∗i , we have from (5) that

z∗i,j ∈





{−λi,j}, if x∗j − x∗i < 0,

[−λi,j, µi,j ], if x∗j − x∗i = 0,

{µi,j}, if x∗j − x∗i > 0,

∀ (i, j) ∈ E.

Thus, we obtain the KKT conditions (6). The uniqueness of z∗ follows from (7) and the fact that
rank(D) = |E|. We thus complete the proof.

Next, we investigate a naive active set method for solving problem (1). For each edge (i, j) ∈ E,
we can associate it with a sign # ∈ {<,=, >} to obtain a triple (i, j,#) representing the relation
xi#xj. For the consistency, when dealing with edges (i, j) with λi,j = +∞ (or µi,j = +∞), the
corresponding sign # can only be chosen from {<,=} (or {>,=}). We denote by A the collection
of all these triples and term it as an active set associated with problem (1). Then, the active set A
induces the following A-reduced problem from (1):

min
x∈ℜ|V |

∑
i∈V

fi(xi) +
∑

(i,j)∈A>

λi,j(xi − xj) +
∑

(i,j)∈A<

µi,j(xj − xi),

s.t. xi = xj, ∀ (i, j) ∈ A=,

(8)
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where A# := {(i, j) | (i, j,#) ∈ A}. If A= = ∅, then (8) reduces to an unconstrained optimiza-
tion problem, which can be efficiently solved since its objective function is separable, smooth and
strongly convex. For i, j ∈ V , we say they are A-connected if and only if there exists an undirected
path in A=, which is obtained by treating all edges in A= as undirected edges, that connects i and
j. Let PA be the collection of all A-connected components of G. Then, it is not difficult to observe
that PA is naturally a partition of G. We thus term PA as the partition induced by A. Without loss
of generality, assume PA = {Bk}

K
k=1 with each Bk being a subtree of G, we see that the A-reduced

problem (8) can be decoupled into K independent subproblems as follows:

min
x∈ℜ

|VBk
|





∑

i∈VBk

f̂i(xi) | xi = xj , ∀ (i, j) ∈ EBk



 , 1 ≤ k ≤ K, (9)

where for each i ∈ VBk
,

f̂i(xi) := fi(xi) + (
∑

j:(i,j)∈A>

λi,j −
∑

j:(i,j)∈A<

µi,j)xi + (
∑

l:(l,i)∈A<

µl,i −
∑

l:(l,i)∈A>

λl,i)xi.

Clearly, the simple constraints in problem (9) can be eliminated. The resulting unconstrained
optimization problem has a univariate smooth and strongly convex objective function and thus can
be efficiently solved. In this way, we obtain the optimal solution to the A-reduced problem (8).

Unfortunately, there can be up to 3|E| different choices for the active set A. Thus, the naive
method of exploring all the possible choices of different active sets needs to solve exponential number
of A-reduced problems. In order to reduce this prohibitive computational costs, we introduce a
novel active-set based recursive algorithm in the next section.

3 An recursive algorithm for solving problem (1)

In this section, we present our recursive algorithm for solving problem (1). We first claim that,
without loss of generality, the directed tree G in (1) can be assumed to be an arborescence with
the node 1 to be its root. Moreover, we can decompose G into a sequence of subtrees {Gm =
(Vm, Em)}nm=1, where G1 ⊂ G2 ⊂ · · · ⊂ Gn = G and Vm = {1, 2, . . . ,m} for 1 ≤ m ≤ n, and the
set of edges Em+1 \Em contains exactly one edge (im,m+ 1), where im ∈ Vm. Further details are
deferred to the Appendix.

For each 1 ≤ m ≤ n, problem (1), when restricted to the the subtree Gm, takes the following
form:

min
x∈ℜ|Vm|

∑

i∈Vm

fi(xi) +
∑

(i,j)∈Em

λi,j(xi − xj)+ +
∑

(i,j)∈Em

µi,j(xj − xi)+. (10)

From Lemma 2, it is not difficult to see that the unique primal-dual optimal pair to problem (10),
denote by (x(m), z(m)) ∈ ℜ|Vm| ×ℜ|Em|, satisfies the following KKT system:

∑

k:(i,k)∈Em

zi,k −
∑

k:(k,i)∈Em

zk,i = f ′
i(xi), ∀ i ∈ Vm,

zi,j ∈





{−λi,j}, if xi > xj,

[−λi,j, µi,j], if xi = xj,

{µi,j}, if xi < xj,

∀ (i, j) ∈ Em.

(11)
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The unique optimal pair (x(m), z(m)) is also referred to as the Gm-optimal pair for convenience.
By carefully exploiting the special structures in the KKT conditions (11), we propose to solve
problem (1) in a recursive fashion. Specifically, we will recursively generate the Gm+1-optimal pair
(xm+1, z(m+1)) from the Gm-optimal pair (x(m), z(m)) for m = 1, . . . , n− 1.

We summarize the detailed steps of the above recursive approach in Algorithm 1. In the
algorithm, the generate subroutine is designed to generate the Gm+1-optimal pair from the Gm-
optimal pair. In the next subsection, we will show that this procedure is accomplished via a novel
active-set searching scheme. Hence, it is natural for us to call Algorithm 1 an active-set based
recursive approach (ASRA).

Algorithm 1 ASRA: An active-set based recursive approach for solving problem (1)

1: Initialize: x
(1)
1 = (f∗

1 )
′(0) ∈ ℜ, and z(1) = ∅

2: for m = 1, . . . , n− 1 do

3: (x(m+1), z(m+1)) = generate(x(m), z(m), Gm+1)
4: end for

5: Return: (x(n), z(n)) ∈ ℜn ×ℜn−1

3.1 The generate subroutine

To efficiently obtain the Gm+1-optimal pair from the given Gm-optimal pair, we shall investigated
the KKT conditions associated with the subproblem induced by the subtree Gm+1. Specially, it
takes the following form:

∑

k:(i,k)∈Em

zi,k −
∑

k:(k,i)∈Em

zk,i = f ′
i(xi), ∀ i ∈ Vm\{im}, (12)

zi,j ∈





{−λi,j}, if xi > xj ,

[−λi,j , µi,j], if xi = xj ,

{µi,j}, if xi < xj ,

∀ (i, j) ∈ Em, (13)

∑

k:(im,k)∈Em

zim,k −
∑

k:(k,im)∈Em

zk,im + zim,m+1 = f ′
im(xim), (14)

− zim,m+1 = f ′
m+1(xm+1), (15)

zim,m+1 ∈





{−λim,m+1}, if xim > xm+1,

[−λim,m+1, µi,j ], if xim = xm+1,

{µim,m+1}, if xim < xm+1.

(16)

As one can observe, instead of writing the KKT conditions as a whole set of equations, we have
singled out those, namely (14), (15) and (16), associated with the dual variable zim,m+1, which
corresponds to the newly added edge {(im,m + 1)} = Em+1 \ Em. Based on the above KKT
conditions, we have the following proposition regarding the sign of zim,m+1.

Proposition 1. It holds that z
(m+1)
im,m+1f

′
m+1(x

(m)
im

) ≤ 0, where (x(m), z(m)) and (x(m+1), z(m+1)) are
the Gm-optimal pair and the Gm+1-optimal pair, respectively.
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Proof. Note that when f ′
m+1(x

(m)
im

) = 0, the desired result naturally holds. For the remaining parts,

we only prove the case where f ′
m+1(x

(m)
im

) > 0, since the proof for the case with f ′
m+1(x

(m)
im

) < 0 can
be easily modified from the arguments here.

Suppose that f ′
m+1(x

(m)
im

) > 0, then we shall prove that z
(m+1)
im,m+1 ≤ 0. Assume on the contrary

that z
(m+1)
im,m+1 > 0. Then, from (15), we have x

(m+1)
m+1 = (f∗

m+1)
′(−z

(m+1)
im,m+1) < (f∗

m+1)
′(0). Moreover,

(16) implies that x
(m+1)
m+1 ≥ x

(m+1)
im

. Thus, we have from the strict monotonicity of (f∗
m+1)

′ the
following inequality:

x
(m)
im

> (f∗
m+1)

′(0) > x
(m+1)
m+1 ≥ x

(m+1)
im

. (17)

Now, from (12), (13), and (14), we see that x̃ ∈ ℜ|Vm| with x̃i = x
(m+1)
i for i ∈ Vm is the

optimal solution to the following optimization problem:

min
x∈ℜ|Vm|

F1(x) :=
∑

i∈Vm

fi(xi) +
∑

(i,j)∈Em

{λi,j(xi − xj)+ + µi,j(xj − xi)+} − z
(m+1)
im,m+1xim .

Meanwhile, since (x(m), z(m)) is the Gm-optimal pair, x(m) is the optimal solution to the following
optimization problem:

min
x∈ℜ|Vm|

F0(x) :=
∑

i∈Vm

fi(xi) +
∑

(i,j)∈Em

{λi,j(xi − xj)+ + µi,j(xj − xi)+} .

Then, it holds that

0 ≥ F1(x̃)− F1(x
(m)) = F0(x̃)− F0(x

(m)) + z
(m+1)
im,m+1(x

(m)
im

− x̃im).

Since F0(x̃) − F0(x
(m)) ≥ 0, z

(m+1)
im,m+1 > 0, and x̃im = x

(m+1)
im

, we have x
(m)
im

− x
(m+1)
im

≤ 0, which

contradicts to (17). Thus, we have z
(m+1)
im,m+1 ≤ 0 and z

(m+1)
im,m+1f

′
m+1(x

(m)
im

) ≤ 0, and complete the
proof.

From Proposition 1, we can determine the sign of z
(m+1)
im,m+1 by the value of f ′

m+1(x
(m)
im

). Moreover,

if f ′
m+1(x

(m)
im

) = 0, we can easily construct the Gm+1-optimal pair as follows:

x
(m+1)
i =

{
x
(m)
i , ∀ i ∈ Vm,

x
(m)
im

, i = m+ 1,
and z

(m+1)
i,j =

{
z
(m)
i,j , ∀ (i, j) ∈ Em,

0, (i, j) = (im,m+ 1).

Hence, we focus on the case with f ′
m+1(x

(m)
im

) 6= 0 in the subsequent discussions. For this purpose,
we consider the following parametric optimization problem with the parameter t ∈ ℜ:

min
x∈ℜ|Vm+1|

∑

i∈Vm+1

fi(xi) +
∑

(i,j)∈Em

{λi,j(xi − xj)+ + µi,j(xj − xi)+} − t(xim − xm+1), (18)
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whose KKT conditions are presented below:

∑

k:(i,k)∈Em

zi,k −
∑

k:(k,i)∈Em

zk,i + 1{i=im}t = f ′
i(xi), ∀ i ∈ Vm,

zi,j ∈





{−λi,j}, if xi > xj,

[−λi,j, µi,j ], if xi = xj,

{µi,j}, if xi < xj,

∀ (i, j) ∈ Em,

− t = f ′
m+1(xm+1).

(19)

Since each fi is strongly convex, problem (18) has a unique optimal solution, denoted by x∗(t), for
each t ∈ ℜ. Moreover, using the Fenchel-Rockafellar duality theorem [18] and the differentiability
of each fi, we know that there exists a unique dual optimal solution to problem (18), denoted by
z∗(t), which together with x∗(t) satisfies the KKT conditions (19). If for certain t∗ ∈ ℜ, it holds
that

t∗ ∈





{−λim,m+1}, if x∗im(t
∗) > x∗m+1(t

∗),

[−λim,m+1, µim,m+1], if x∗im(t
∗) = x∗m+1(t

∗),

{µim,m+1}, if x∗im(t
∗) < x∗m+1(t

∗).

(20)

Then, by comparing the equations (19) and (20) and the KKT conditions in equations (12) to (16),
we can obtain the Gm+1-optimal pair based on (x∗(t∗), z∗(t∗)). Indeed, the Gm+1-optimal pair
(x(m+1), z(m+1)) can be constructed via

x(m+1) = x∗(t∗), and z
(m+1)
i,j = z∗i,j(t

∗) for (i, j) ∈ Em, and z
(m+1)
im,m+1 = t∗.

This observation also indicates that one can determine the sign of t∗ using Proposition 1.
To find the desired t∗, we start from the initial guess t0 = 0. We note that when t0 = 0,

the corresponding primal-dual optimal pair (x∗(t0), z
∗(t0)) is readily known with x∗i (t0) = x

(m)
i for

i ∈ Vm and x∗m+1(t0) = (f∗
m+1)

′(−t0), and z∗(t0) = z(m). Then, we can easily check if t0 = 0
satisfies (20) by comparing x∗m+1(t0) and x∗im(t0). If x∗m+1(t0) 6= x∗im(t0), we can use Proposition
1 to determine if t should be decreased or increased. Assume without loss of the generality that

f ′
m+1(x

∗
im
(t0)) = f ′

m+1(x
(m)
im

) > 0. From the above discussions and Proposition 1, we see that t∗ < 0.
Then, we rely on an active-set strategy to iteratively update our guess of t∗.

Starting from the initial guess t0 = 0, we denote the active set corresponding to Em in (18) by

A0 = {(i, j,#) | (i, j) ∈ Em, x∗i (t0)#x∗j(t0)}, where # ∈ {<,=, >}. (21)

Then, we add the equality constraints induced by edges in A0
= to problem (18) and obtain the

A0-reduced problem of problem (18). The key observation is that the primal-dual optimal solution
pair to the A0-reduced problem can be written in a semi-closed form as functions of the parameter
t, denoted by (x0(t), z0(t)). Then, we construct a dual candidate z̃0(t) to problem (18) as follows:

z̃0i,j(t) =

{
z0i,j(t), if (i, j) ∈ A0

=,

z∗i,j(t0), otherwise,
∀ (i, j) ∈ Em.
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We will show that if (x0(t), z̃0(t)) satisfies the complementarity conditions in (19), i.e.,

z̃0i,j(t) ∈





{−λi,j}, if x0i (t) > x0j (t),

[−λi,j, µi,j], if x0i (t) = x0j (t),

{µi,j}, if x0i (t) < x0j (t),

∀ (i, j) ∈ Em,

then (x0(t), z̃0(t)) is the primal-dual optimal solution pair to problem (18).
Based on this observation, a new guess of t∗ is constructed by searching for the smallest

possible t1 such that −λim,m+1 ≤ t∗ ≤ t1 ≤ t0 = 0 and (x0(t1), z̃
0(t1)) still satisfies the above

complementarity conditions. Then, we have (x∗(t1), z
∗(t1)) = (x0(t1), z̃

0(t1)) and we can check if
t1 satisfies the system (20). If not, then a new active set A1 is constructed and the above process
continues until t∗ is found. In a nutshell, our approach is summarized in the following flowchart:

(t0, x
∗(t0), z

∗(t0),A
0) ⇒ · · · ⇒ (tq, x

∗(tq), z
∗(tq),A

q) ⇒ · · · ⇒ (t∗, x∗(t∗), z∗(t∗),A∗).

In what follows, we shall discuss the detailed steps of our procedure and we will prove that the
search process of t∗ terminates in at most 2m− 1 steps.

At tq with t∗ < tq ≤ t0, we assume that (x∗(tq), z
∗(tq)), and the corresponding active set Aq

are available. Then, we construct the following Aq-reduced parametric optimization problem with
parameter t ∈ ℜ:

min
x∈ℜ|Vm+1|

∑

i∈Vm+1

fi(xi) +
∑

(i,j)∈Aq
>

λi,j(xi − xj) +
∑

(i,j)∈Aq
<

µi,j(xj − xi)− t(xim − xm+1),

s.t. xi = xj, ∀ (i, j) ∈ Aq
=,

(22)

whose unique primal-dual optimal pair is denoted by (xq(t), zq(t)). If Aq
= = ∅, then we set zq(t) = ∅.

Here, we require the following compatibility conditions between Aq and (x∗(tq), z
∗(tq)), which also

servers as an induction hypothesis.

Assumption 2. The active set Aq and the primal-dual pair (x∗(tq), z
∗(tq)) are compatible. That

is, x∗(tq) is the optimal solution to the problem (22) at t = tq, i.e., xq(tq) = x∗(tq) and the
corresponding dual optimal solution zq(tq) can be constructed via zqi,j(tq) = z∗i,j(tq) for (i, j) ∈ Aq

=.
Moreover, it holds that x∗im(tq)− x∗m+1(tq) > 0.

We shall emphasize that according to the construction of A0, it is not difficult to observe that the
active set A0 and the primal-dual pair (x∗(t0), z

∗(t0)) are compatible, and x∗im(t0)− x∗m+1(t0) > 0.
Next, we focus on obtaining (tq+1, x

∗(tq+1), z
∗(tq+1),A

q+1) from (tq, x
∗(tq), z

∗(tq),A
q).

We start by investigating the optimal primal-dual solution pair corresponding to problem (22).
Particularly, instead of solving problem (22) for each t 6= tq, we derive in the following proposition
the semi-closed formulas for (xq(t), zq(t)) under Assumption 2. We also show that the optimal
primal-dual solution pair of problem (18) can be obtained from (xq(t), zq(t)) provided that some
complementarity conditions hold.

Proposition 2. Let PAq be the partition of Gm induced by Aq and Bq ∈ PAq be the subtree such
that im ∈ Bq. Then, under Assumption 2, for any t ∈ ℜ, the primal optimal solution xq(t) takes
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the following form: 



xqi (t) = x∗i (tq), ∀ i ∈ Vm\VBq ,

xqi (t) =
(
(
∑

i∈VBq

fi)
∗
)′
(
t+ βq

)
, ∀ i ∈ VBq ,

xqm+1(t) = (f∗
m+1)

′(−t),

(23)

where
βq =

∑

(i,k)∈Em
i∈VBq ,k/∈VBq

z∗i,k(tq)−
∑

(k,i)∈Em
k/∈VBq ,i∈VBq

z∗k,i(tq).

Pick im as the ancestor of Bq. Then, for any t ∈ ℜ, zq(t) is given by





zqi,j(t) = z∗i,j(tq), ∀(i, j) ∈ Aq
=\EBq ,

zqi,j(t) =





∑

l∈Ci

f ′
l (x

q
l (t))− αq

i,j, if i ⊳ j,

∑

l∈Cj

−f ′
l (x

q
l (t)) + αq

i,j , if i ⊳ j,
∀(i, j) ∈ EBq ,

(24)

where Ci := {j ∈ VBq | j ⊳ i} ∪ {i} for any i ∈ VBq , and

αq
i,j =





∑

(l,k)∈Em
l∈Ci,k/∈VBq

z∗l,k(tq)−
∑

(k,l)∈Em
l∈Ci,k/∈VBq

z∗k,l(tq), if i ⊳ j,

∑

(l,k)∈Em
l∈Cj,k/∈VBq

z∗l,k(tq)−
∑

(k,l)∈Em
l∈Cj,k/∈VBq

z∗k,l(tq), if j ⊳ i,
∀(i, j) ∈ EBq .

Let Ωq = {(i, j) ∈ Em\EBq | exactly one of i and j is in VBq}. If

zqi,j(t) ∈ [−λi,j , µi,j], ∀ (i, j) ∈ EBq , (25)

z∗i,j(tq) ∈





{−λi,j}, if xqi (t) > xqj(t),

[−λi,j, µi,j], if xqi (t) = xqj(t),

{µi,j}, if xqi (t) < xqj(t),

∀ (i, j) ∈ Ωq, (26)

then (xq(t), z̃q(t)) solves the KKT system (19), where

z̃qi,j(t) =

{
zqi,j(t), if (i, j) ∈ Aq

=,

z∗i,j(tq), otherwise,
∀ (i, j) ∈ Em. (27)

Proof. Without loss of generality, we can assume that PAq = {Bk}
K
k=1 ∪Bq where Bk, 1 ≤ k ≤ K,

and Bq are subtrees of Gm. Then, problem (22) can be decomposed into K + 2 independent
subproblems on each subtree Bk and Bq and the singleton {m+1}. Note that the parameter t only
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appears in the subproblems corresponding to the subtree Bq and the singleton {m + 1}. Hence,
from Assumption 2, it is not difficult to deduce that for any t ∈ ℜ,

xqi (t) = x∗i (tq), i ∈ Vm\VBq , and zqi,j(t) = z∗i,j(tq), (i, j) ∈ Aq
= \ EBq .

The subproblem associated with {m+1} is easily solved via xqm+1(t) = (f∗
m+1)

′(−t). Therefore, we
only need to focus on the subproblem associated with the subtree Bq:

min
x∈ℜ|VBq |





∑

i∈VBq

f̂i(xi)− txim | xi = xj , ∀ (i, j) ∈ EBq



 , (28)

where
f̂i(xi) := fi(xi) +

∑

k 6∈VBq
(k,i)∈Em

z∗k,i(tq)xi −
∑

k 6∈VBq
(i,k)∈Em

z∗i,k(tq)xi, ∀ i ∈ VBq .

Let L be the Lagrangian function associated with problem (28)

L(x; z) =
∑

i∈VBq

f̂i(xi)− txim −
∑

(i,j)∈EBq

zi,j(xi − xj), ∀ (x, z) ∈ ℜ|VBq | ×ℜ|EBq |.

Then, the optimal primal-dual solution pair to problem (28) satisfies the following KKT system:





xi = xj , ∀ (i, j) ∈ EBq ,

f ′
i(xi) +

∑

k 6∈VBq
(k,i)∈Em

z∗k,i(tq) +
∑

k∈VBq
(k,i)∈EBq

zk,i −
∑

k 6∈VBq
(i,k)∈Em

z∗i,k(tq)−
∑

k∈VBq
(i,k)∈EBq

zi,k − 1{i=im}t = 0, ∀ i ∈ VBq .

(29)
Summing over all i ∈ VBq , we deduce from the above system that

∑

i∈VBq

f ′
i(x

q
i (t)) = −

∑

(k,i)∈Em
k 6∈VBq ,i∈VBq

z∗k,i(tq) +
∑

(i,k)∈Em
i∈VBq ,k 6∈VBq

z∗i,k(tq) + t,

i.e.,

xqi (t) = ((
∑

i∈VBq

fi)
∗)′(t+

∑

(i,k)∈Em
i∈VBq ,k/∈VBq

z∗i,k(tq)−
∑

(k,i)∈Em
k/∈VBq ,i∈VBq

z∗k,i(tq)), ∀ i ∈ VBq .

Next, we obtain from the above KKT system (29) the following linear system corresponding
to zi,j for (i, j) ∈ EBq :

∑

k:(i,k)∈EBq

zi,k −
∑

k:(k,i)∈EBq

zk,i = f ′
i(x

q
i (t)) +

∑

k/∈VBq
(k,i)∈Em

z∗k,i(tq)−
∑

k/∈VBq
(i,k)∈Em

z∗i,k(tq), ∀ i ∈ Vm \ {im}.

Since im is the ancestor of the subtree B, we obtain from Lemma 1 the updated formula for zqi,j(t),
(i, j) ∈ EBq . Thus, we proved (24).

Finally, it is not difficult to see that if the assumed conditions (25) and (26) are satisfied, then
xq(t) and z̃q(t) satisfy the complementarity conditions in the KKT system (19). The rest equations
in (19) hold automatically by noting (27) and the KKT system (29).
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Using the semi-closed formulas in Proposition 2, we compute the following lower bound ∆tq ≤ 0:

∆tq := min {∆t | (25) and (26) hold for all t ∈ [tq +∆t, tq]} .

The computations are divided into two parts. Firstly, we focus on the value of zqi,j(t) for (i, j) ∈ EBq .
For any (i, j) ∈ EBq , we note that zqi,j(tq) ∈ [−λi,j, µi,j] and zqi,j(t) is increasing if i ⊳ j and is
decreasing if j ⊳ i with respect to t from (24). We define the threshold ∆(EBq ) as follows:

∆(EBq ) :=





max
(i,j)∈EBq

∆ti,j, if EBq 6= ∅,

−∞, otherwise.
(30)

Here, each ∆ti,j ≤ 0 solves

zqi,j(tq +∆ti,j) = −λi,j, if i ⊳ j, and zqi,j(tq +∆ti,j) = µi,j, if j ⊳ i. (31)

Next, the relations in (26) corresponding to the edges in Ωq are examined. For this purpose, we
divide Ωq into two parts, namely,

Ωq
+ = {(i, j) ∈ Ωq | i ∈ VBq , j ∈ Vm\VBq} and Ωq

− = {(i, j) ∈ Ωq | i ∈ Vm\VBq , j ∈ VBq} , (32)

and handle them separately. From (23), we know that xqi (t) takes the same value for all i ∈ VBq

and is increasing with respect to t. Hence, we can simply denote xBq (t) = xqi (t) for any i ∈ VBq .
Then, we compute the threshold ∆(Ωq) := max{∆(Ωq

+),∆(Ωq
−)}, where

∆(Ωq
+) :=





∆t satisfying xBq (tq +∆t) = max
(i,j)∈Ωq

+∩Aq
>

x∗j(tq), if Ωq
+ ∩ Aq

> 6= ∅,

−∞, otherwise,

(33)

and

∆(Ωq
−) :=





∆t satisfying xBq (tq +∆t) = max
(i,j)∈Ωq

−∩Aq
<

x∗i (tq), if Ωq
− ∩ Aq

< 6= ∅,

−∞, otherwise.

(34)

It can be easily verified that
∆tq = max{∆(EBq ),∆(Ωq)}. (35)

Thus, using Proposition 2, we can obtain the semi-closed form for the optimal solution x∗(t), as
well as its corresponding dual optimal solution z∗(t), to problem (18) for any t ∈ [tq +∆tq, tq].

Now, we are ready to discuss the search of tq+1. Note that according to Assumption 2, we have

xqim(tq)− xqm+1(tq) = x∗im(tq)− x∗m+1(tq) > 0.

Using the closed-form formulas in Proposition 2, we know that xqim(t)−xqm+1(t) is strictly increasing

with respect to t, and we can obtain a unique ∆t̃q < 0 via solving the following univariate nonlinear
equation:

xqim(tq +∆t̃q)− xqm+1(tq +∆t̃q) = 0,
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which is nothing but the optimality condition associated with the following univariate strongly
convex optimization problem:

tq +∆t̃q = argmin
t



(

∑

i∈VBq

fi)
∗(t+ βq) + (f∗

m+1)(−t)



 .

The existence of ∆t̃q is thus guaranteed. Then, we set

tq+1 = max{tq +∆tq, tq +∆t̃q,−λim,m+1}. (36)

As one can observe, it always holds that tq+1 ∈ [tq +∆tq, tq] and

x∗im(tq+1)− x∗m+1(tq+1) = xqim(tq+1)− xqm+1(tq+1)

≥ xqim(tq +∆t̃q)− xqm+1(tq +∆t̃q) = 0.
(37)

Then, we reveal the relation between tq+1 and t∗ in the following lemma.

Lemma 3. It holds that −λim,m+1 ≤ t∗ ≤ tq+1 ≤ tq ≤ 0. Moreover, tq+1 = t∗ if and only if
x∗im(tq+1)− x∗m+1(tq+1) = 0 or tq+1 = −λim,m+1.

Proof. If t∗ > tq+1, we have from (36) that t∗ > tq+1 ≥ −λim,m+1. It then follows from (20) that

xqim(t
∗)− xqm+1(t

∗) = x∗im(t
∗)− x∗m+1(t

∗) = 0.

However, we know from (37) and the strict monotonicity of xqim(t)− xqm+1(t) that

xqim(t
∗)− xqm+1(t

∗) > xqim(tq+1)− xqm+1(tq+1) ≥ 0.

We arrive at a contradiction. Thus, t∗ ≤ tq+1.
Next, if x∗im(tq+1) − x∗m+1(tq+1) = 0 or tq+1 = −λim,m+1, one can easily verify that tq+1,

x∗im(tq+1) and x∗m+1(tq+1) satisfy (20), i.e., t∗ = tq+1. Conversely, if t∗ = tq+1, we have tq+1 ≥
−λim,m+1. If tq+1 > −λim,m+1, it follows directly from (20) that x∗im(t

∗)− x∗m+1(t
∗) = 0. We thus

complete the proof of the lemma.

Remark 1. It is only necessary to compute ∆t̃q at most once during the entire search process for
t∗. Indeed, let

∆∗ :=

{
xqim(tq +∆tq)− xqm+1(tq +∆tq), if ∆tq > −∞,

−∞, otherwise.

If ∆∗ ≥ 0, then by the strict monotonicity of xqim(t) − xqm+1(t), we must have ∆t̃q ≤ ∆tq. In this
case, we can directly set

tq+1 = max{tq +∆tq,−λim,m+1},

without computing ∆t̃q. Only when ∆∗ < 0, we shall compute ∆t̃q and set

tq+1 = max{tq +∆t̃q,−λim,m+1}.

Then, from Lemma 3, it holds that tq+1 = t∗. Therefore, ∆t̃q only needs to be computed at most
once.
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If tq+1 6= t∗, we know from (36), (37), and Lemma 3 that t∗ < tq+1 and

tq+1 = tq +∆tq, and x∗im(tq+1)− x∗m+1(tq+1) > 0. (38)

Then, we give the details of the construction of Aq+1. Let M(EBq ) = M(E+
Bq ) ∪M(E−

Bq ) with

{
M(E+

Bq ) = {(i, j) ∈ EBq | ∆ti,j = ∆tq, and i ⊳ j},

M(E−
Bq ) = {(i, j) ∈ EBq | ∆ti,j = ∆tq, and j ⊳ i},

(39)

and M(Ωq) = M(Ωq
+) ∪M(Ωq

−) with

{
M(Ωq

+) = {(i, j) ∈ Ωq
+ ∩ A(tq)> | xqi (tq +∆tq) = x∗j(tq)},

M(Ωq
−) = {(i, j) ∈ Ωq

− ∩ A(tq)< | xqj(tq +∆tq) = x∗i (tq)}.
(40)

The active set Aq+1 is constructed via




Aq+1
= =

(
Aq

= ∪M(Ωq)
)
\M(EBq ),

Aq+1
> =

(
Aq

> ∪M(E+
Bq )

)
\M(Ωq

+),

Aq+1
< =

(
Aq

< ∪M(E−
Bq )

)
\M(Ωq

−).

(41)

Similar to (27), we can construct z̃q(tq+1) from zq(tq+1) as follows:

z̃qi,j(tq+1) =

{
zqi,j(tq+1), if (i, j) ∈ Aq

=,

z∗i,j(tq), otherwise,
∀ (i, j) ∈ Em.

Then, we obtain the optimal primal-dual solution pair (x∗(tq+1), z
∗(tq+1)) = (xq(tq+1), z̃

q(tq+1)) to
problem (18) with t = tq+1.

Next, it can be easily verified from the construction of Aq+1 in (41), and the computation
steps of tq+1 in (36) that the new active set Aq+1 and the primal-dual pair (x∗(tq+1), z

∗(tq+1)) are
compatible. This, together with (38), allows us to perform induction on q ∈ N and obtain that for
all q ∈ N, as long as tq 6= t∗, it always holds that Aq and (x∗(tq), z

∗(tq)) are compatible and

x∗im(tq)− x∗m+1(tq) > 0.

Therefore, we can iteratively repeat the above searching process, i.e., from (tq, x
∗(tq), z

∗(tq),A
q) to

(tq+1, x
∗(tq+1), z

∗(tq+1),A
q+1), until t∗ is obtained. The details of the search process are summa-

rized in Algorithm 2. We name it the update− subroutine, since in this case t∗ < 0. The procedure
corresponding to the case with t∗ > 0, which we termed as the update+ subroutine, can be eas-
ily adapted from the update− subroutine. Details of the update+ subroutine can be found in the
Appendix.

Before presenting the details of the generate subroutine, we make some key observations about
the active set Aq+1 in the following lemma.

Lemma 4. For any given q ∈ N, the following propositions hold:

(a) If tq+1 6= t∗, then Aq+1
= 6= Aq

=;
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Algorithm 2 (tq+1, x
∗(tq+1), z

∗(tq+1),A
q+1, t∗) = update−(tq, x

∗(tq), z
∗(tq),A

q, λ)

1: Input: (tq, x
∗(tq), z

∗(tq),A
q), λ ≥ 0;

2: Compute ∆(EBq ),∆(Ωq
+),∆(Ωq

−) via definitions (30), (33) and (34)
3: ∆(Ωq) = max{∆(Ωq

−),∆(Ωq
+)}

4: ∆tq = max{∆(EBq ),∆(Ωq)}
5: ∆∗ = xqim(tq +∆tq)− xqm+1(tq +∆tq)
6: if ∆∗ ≥ 0 then

7: tq+1 = max{tq +∆tq,−λ}
8: else

9: ∆t̃q = −tq + argmin
t

{
(
∑

i∈VBq
fi)

∗(t+ βq) + (f∗
m+1)(−t)

}

10: tq+1 = max{tq +∆t̃q,−λ}
11: end if

12: (x∗(tq+1), z
∗(tq+1)) = (xq(tq+1), z̃

q(tq+1))
13: if tq+1 = −λ or x∗im(tq+1) = x∗m+1(tq+1) then

14: t∗ = tq+1

15: Let Aq+1 = {(i, j,#) | (i, j) ∈ Em, x∗i (tq+1)#x∗j (tq+1)}
16: else

17: t∗ = ∅
18: Update Aq+1 from Aq via (41)
19: end if

20: Output: (tq+1, x
∗(tq+1), z

∗(tq+1),A
q+1, t∗)

(b) If (i, j) ∈ M(EBq ), then for any q̂ ∈ N with q̂ > q and tq̂ 6= t∗, (i, j) /∈ Aq̂
=.

Proof. We prove (a) first. If tq+1 6= t∗, from (38), we have tq+1 = tq + ∆tq > t∗. Hence, at
least one of the two sets, M(EBq ) and M(Ωq), is nonempty. The desired result thus follows since
Aq+1

= =
(
Aq+1 ∪M(Ωq)

)
\M(EBq ) and M(EBq ) ∩M(Ωq) = ∅.

Next, we prove (b). We first consider the case where i ⊳ j. If (i, j) ∈ M(EBq ) and i ⊳ j, we see
from (31), (39) and (41) that

zqi,j(tq +∆tq) = −λi,j, and (i, j) ∈ M(E+
Bq ) ⊆ Aq+1

> .

Since (i, j) ∈ Aq+1
> , then at least one of i and j is not in Bq+1, i.e., (i, j) /∈ EBq+1 . Since i ⊳ j, we

have the following two possible cases:

(i) j ∈ Bq+1, i /∈ Bq+1. In this case we have (i, j) ∈ Ωq+1
− . Since (i, j) ∈ Aq+1

> , it holds from (40)

that (i, j) /∈ M(Ωq+1
+ ). Thus, (41) implies that (i, j) ∈ Aq+2

> .

(ii) j /∈ Bq+1, i /∈ Bq+1. From (32), we know that (i, j) /∈ Ωq+1. Hence, (40) and (41) imply that
(i, j) ∈ Aq+2

> .

Therefore, in both cases, we have (i, j) /∈ Ωq+2
+ and (i, j) ∈ Aq+2

> . By induction, we can prove that

(i, j) /∈ Ωq̂
+ and (i, j) ∈ Aq̂

> for all q̂ > q.

Similarly, for the case with j ⊳ i, we can obtain that (i, j) /∈ Ωq̂
− and (i, j) ∈ Aq̂

< for all q̂ > q.
We thus complete the proof.
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With the two subroutines update− and update+ at hand, we are ready to present the details of
the generate subroutine in Algorithm 3. As one can easily observe, the complexity of the generate
subroutine depends critically on the number of executions of the while-loops (i.e., lines 9-12 and
lines 15-18 in Algorithm 3).

Algorithm 3 The generate subroutine: (x(m+1), z(m+1)) = generate(x(m), z(m), Gm+1)

1: Input: x(m) ∈ ℜm, z(m) ∈ ℜm−1, Gm+1 = (Vm+1, Em+1)

2: Let x∗i (0) = x
(m)
i for i ∈ Vm and x∗m+1(0) = (f∗

m+1)
′(0)

3: Let z∗i,j(0) = z
(m)
i,j for (i, j) ∈ Em and t∗ = ∅

4:

5: if f ′
m+1(x

∗
im
(0)) = 0 then

6: t∗ = 0
7: else if f ′

m+1(x
∗
im
(0)) > 0 then

8: Let t0 = 0, q = 0 and A0 be the active set constructed from x∗(0) as in (21)
9: while t∗ = ∅ do

10: (tq+1, x
∗(tq+1), z

∗(tq+1),A
q+1, t∗)=update−(tq, x

∗(tq), z
∗(tq),A

q, λim,m+1)
11: q = q + 1
12: end while

13: else

14: Let t0 = 0, q = 0 and A0 be the active set constructed from x∗(0) as in (21)
15: while t∗ = ∅ do

16: (tq+1, x
∗(tq+1), z

∗(tq+1),A
q+1, t∗)=update+(tq, x

∗(tq), z
∗(tq),A

q, µim,m+1)
17: q = q + 1
18: end while

19: end if

20: Let x(m+1) = x∗(t∗), z
(m+1)
i,j = z∗i,j(t

∗) for (i, j) ∈ Em, and z
(m+1)
im,m+1 = t∗

21: Return: (x(m+1), z(m+1)) ∈ ℜm+1 ×ℜm

Lemma 5. The while-loops executed in the generate subroutine will find t∗ in at most 2m − 1
iterations.

Proof. Without loss of generality, we only consider the case f ′
m+1(x

∗
im
(0)) > 0, i.e., t∗ < 0. Assume

that after 2m−2 times executions of the while-loops, t∗ has not been found. That is, the algorithm
generates {(ti, x

∗(ti), z
∗(ti),A

i)}2m−2
i=1 and ti > t∗ for all i = 0, . . . , 2m − 2. From Lemma 4(a), we

know that
Aq

= 6= Aq+1
= , ∀ q = 0, . . . , 2m− 3. (42)

Next, we note from Lemma 4(b) that if some edge (i, j) ∈ Em is removed from Aq
= for some q,

then (i, j) 6∈ Aq̂
= for all 2m−2 ≥ q̂ ≥ q ≥ 0. Therefore, for each edge (i, j) ∈ Em, it can be added to

and removed from Aq
= for at most once. This, together with (42) and the fact that |Em| = m− 1,

implies that at t2m−2, every edge in Em has been added to and removed from some Aq
=. Thus,

A2m−2
= = ∅, and the sets A2m−2

> and A2m−2
< remain unchanged in the next iterations, i.e., EBq = ∅,

Ω2m−2
+ ∩A2m−2

> = ∅ and Ω2m−2
− ∩A2m−2

< = ∅. Therefore, we have ∆t2m−2 = −∞ from its definition
in (35). By (36) and Lemma 3, we have t2m−1 = t∗ and complete the proof.

17



Lemma 5 guarantees that t∗ can be found by the generate subroutine efficiently. Along with t∗,
the Gm+1-optimal pair (x(m+1), z(m+1)), i.e., the output of the generate subroutine, is also obtained.
We thus naturally obtain the correctness of our Algorithm 1.

Theorem 1. The output x(n) of Algorithm 1 is the optimal solution to problem (1).

At the end of this section, we provide a brief analysis of the worst-case complexity of our Algo-
rithm 1. Here, we assume that for a given strongly convex differentiable function f and x ∈ ℜ, the
computational complexity of finding t such that f ′(t) = x is O(1). Then, the computational com-
plexity of update− (and update+) is O(m). By Lemma 5, we see that the computational complexity
of the generate subroutine is O(m2). Therefore, the computational complexity of Algorithm 1 is
O(n3).

4 Conclusion

In this paper, we focus on the convex isotonic regression problem (1) with tree-induced generalized
order restrictions. Inspired by the successes of the PAVA, an efficient active-set based recursive
approach, ASRA, is carefully designed to solve (1). Under mild assumptions, we show that ASRA
has a polynomial time computational complexity.

5 Appendix

5.1 The arborescence assumption on G

For the given G = (V,E) in the formulation of problem (1), let Ĝ = (V, Ê) be an arborescence that
shares the same underlying graph with G. Therefore, for any (i, j) ∈ Ê, we have either (i, j) ∈ E
or (j, i) ∈ E. Then, for any (i, j) ∈ Ê, let

λ̂i,j =

{
λi,j, if (i, j) ∈ E,

µj,i, if (j, i) ∈ E,
and µ̂i,j =

{
µi,j, if (i, j) ∈ E,

λj,i, if (j, i) ∈ E.

It can be easily verified that problem (1) is equivalent to the following optimization problem:

min
x∈ℜV

∑

i∈V

fi(xi) +
∑

(i,j)∈Ê

λ̂i,j(xi − xj)+ +
∑

(i,j)∈Ê

µ̂i,j(xj − xi)+.

Hence, we can assume that the directed tree G in (1) is an arborescence.

1

2 3

4 5

(a) a directed tree G

⇒

1

2 3

4 5

(b) underlying graph of G and Ĝ

⇐

1

2 3

4 5

(c) an arborescence Ĝ

Figure 2: A directed tree G and an arborescence Ĝ that share the same underlying graph.
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Next, we discuss the decomposition of G. For an arborescence G = (V,E), let n = |V |.
Without loss of generality, we assume that the node 1 is the root of G, and the nodes in G are
arranged such that for any edge (i, j) ∈ E, i < j always holds. Then, we define Gn = G, and let
Gm−1 = (Vm−1, Em−1) be the subgraph of Gm = (Vm, Em) obtained by deleting the node m and
the related edges from Gm, where n ≥ m ≥ 2. Since for any (i, j) ∈ E, it holds that i < j, we know
that the node m must be a leaf node of Gm, hence, according to [23], Gm−1 is still a directed tree
and Gm−1 ⊂ Gm for m = 2, ..., n. It’s easy to verify that Vm = {1, 2, ...,m} for 1 ≤ m ≤ n, and
{(im,m+ 1)} = Em+1\Em with im ∈ Vm for 1 ≤ m ≤ n− 1.

5.2 The update+ subroutine

We briefly describe the update+ subroutine here, which corresponds to the case with t∗ > 0. Assume
that we have obtained a guess tq of t∗ satisfying 0 = t0 ≤ tq < t∗ ≤ µim,m+1, Meanwhile, the
corresponding primal-dual optimal solution pair (x∗(tq), z

∗(tq)) and the active set Aq are available,
such that Aq and (x∗(tq), z

∗(tq)) are compatible and x∗im(tq)−x∗m+1(tq) < 0. Then, the semi-closed
formulas (23) and (24) for the Aq-reduced problem in Proposition 2 still hold.

Here, we need to search

∆tq := max{∆t | (25) and (26) hold for all t ∈ [tq, tq +∆t]}.

First, let

∆(EBq ) =





min
(i,j)∈EBq

∆ti,j, if EBq 6= ∅,

+∞, otherwise,
(43)

where each ∆ti,j ≥ 0 solves:

zqi,j(tq +∆ti,j) = µi,j, if i ⊳ j, and zqi,j(tq +∆ti,j) = −λi,j, if j ⊳ i.

Next, let ∆(Ωq) = min{∆(Ωq
+),∆(Ωq

−)}, where

∆(Ωq
+) :=





∆t satisfying xBq (tq +∆t) = min
(i,j)∈Ωq

+∩Aq
<

x∗j(tq), if Ωq
+ ∩ Aq

< 6= ∅,

+∞, otherwise,

(44)

and

∆(Ωq
−) :=





∆t satisfying xBq (tq +∆t) = min
(i,j)∈Ωq

−∩Aq
>

x∗i (tq), if Ωq
− ∩ Aq

> 6= ∅,

+∞, otherwise.

(45)

Then, ∆tq = min{∆(EBq ),∆(Ωq)}. Compute ∆t̃q ≥ 0 via solving xqim(tq+∆t̃q)−xqm+1(tq+∆t̃q) =
0, and set

tq+1 = min{tq +∆tq, tq +∆t̃q, µim,m+1}.

If tq+1 < t∗, we will update the active set Aq+1 in the following fashion. Let M(EBq ) =
M(E+

Bq ) ∪M(E−
Bq ) with

{
M(E+

Bq ) = {(i, j) ∈ EBq | ∆ti,j = ∆tq, and i ⊳ j},

M(E−
Bq ) = {(i, j) ∈ EBq | ∆ti,j = ∆tq, and j ⊳ i},
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and M(Ωq) = M(Ωq
+) ∪M(Ωq

−) with
{
M(Ωq

+) = {(i, j) ∈ Ωq
+ ∩ A(tq)< | xqi (tq +∆tq) = x∗j (tq)},

M(Ωq
−) = {(i, j) ∈ Ωq

− ∩ A(tq)> | xqj(tq +∆tq) = x∗i (tq)}.

Then, Aq+1 is obtained via




Aq+1
= =

(
Aq

= ∪M(Ωq)
)
\M(EBq ),

Aq+1
> =

(
Aq

> ∪M(E−
Bq )

)
\M(Ωq

−),

Aq+1
< =

(
Aq

< ∪M(E+
Bq )

)
\M(Ωq

+).

(46)

We summarize the update+ subroutine in Algorithm 4.

Algorithm 4 (tq+1, x
∗(tq+1), z

∗(tq+1),A
q+1, t∗) = update+(tq, x

∗(tq), z
∗(tq),A

q, µ)

1: Input: (tq, x
∗(tq), z

∗(tq),A
q), µ ≥ 0;

2: Compute ∆(EBq ),∆(Ωq
+),∆(Ωq

−) via definitions (43), (44) and (45)
3: ∆(Ωq) = min{∆(Ωq

−),∆(Ωq
+)}

4: ∆tq = min{∆(EBq ),∆(Ωq)}
5: ∆∗ = xqim(tq +∆tq)− xqm+1(tq +∆tq)
6: if ∆∗ ≤ 0 then

7: tq+1 = min{tq +∆tq, µ}
8: else

9: ∆t̃q = −tq + argmin
t

{
(
∑

i∈VBq
fi)

∗(t+ βq) + (f∗
m+1)(−t)

}

10: tq+1 = min{tq +∆t̃q, µ}
11: end if

12: (x∗(tq+1), z
∗(tq+1)) = (xq(tq+1), z̃

q(tq+1))
13: if tq+1 = µ or x∗im(tq+1) = x∗m+1(tq+1) then

14: t∗ = tq+1

15: Let Aq+1 = {(i, j,#) | (i, j) ∈ Em, x∗i (tq+1)#x∗j (tq+1)}
16: else

17: t∗ = ∅
18: Update Aq+1 from Aq via (46)
19: end if

20: Output:(tq+1, x
∗(tq+1), z

∗(tq+1),A
q+1, t∗)

5.3 An illustration of the ASRA

We provide an example of applying the ASRA for solving problem (1). Let G = (V,E) be the
directed tree shown in Figure 3a, where V = {1, 2, 3, 4, 5} and E = {(1, 2), (1, 3), (3, 4), (3, 5)}. Let

fi(xi) =
1

2
(xi − yi)

2 for i = 1, ..., 4, where y = (4, 2, 2, 8) ∈ ℜ4, and f5(x5) = x25 +
1

4
x45,

and we set the regularization parameters as follows:

(λ1,2, µ1,2) = (+∞, 0), (λ1,3, µ1,3) = (0,+∞), (λ3,4, µ3,4) = (0, 4), and (λ3,5, µ3,5) = (3, 3).
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1

2 3

4 5

(a) directed tree G = (V,E)

4

(b) G1-optimal pair

3

3

−1

(c) G2-optimal pair

3

3 2

−1 0

(d) G3-optimal pair

4

4 4

4

−2 2

4

(e) G4-optimal pair

3

3 3

4 1

−1 0

4 −3

(f) G5-optimal pair

Figure 3: An example of applying the ASRA for solving problem (1) with given G = (V,E). The
first subfigure represents the directed tree G = (V,E), and the remaining five subfigures are the
illustrations of the Gm-optimal pairs for m = 1, 2, 3, 4, 5, where the values of xi for i ∈ V are
presented within the circles while the values of zi,j for (i, j) ∈ E are presented above the edges.

The detailed steps of the ASRA are given below:

(i) First, we initialize with x
(1)
1 = 4.

(ii) Since (f∗
2 )

′(x
(1)
1 ) > 0, it holds that t∗ ≤ 0. We start from t0 = 0 and terminate at t∗ = t1 = −1.

Then, the G2-optimal pair (x(2), z(2)) is x(2) = (3, 3) and z
(2)
1,2 = −1.

(iii) Since (f∗
3 )

′(x
(2)
1 ) > 0, we have t∗ ≤ 0. Here, we have t∗ = t0 = −λ1,3 = 0. The corresponding

G3-optimal pair (x(3), z(3)) is x(3) = (3, 3, 2), and z
(3)
1,2 = −1, z

(3)
1,3 = 0.

(iv) Since (f∗
4 )

′(x
(3)
3 ) < 0, it holds that t∗ ≥ 0. Starting at t0 = 0, we first arrive at t1 = 1, and

modify the corresponding active set, i.e., replace (2, 3, >) with (2, 3,=), then continue the
searching of t∗. We terminate at t∗ = t2 = 4. Therefore, the G4-optimal pair (x(4), z(4)) is

x(4) = (4, 4, 4, 4), and z
(4)
1,2 = −2, z

(4)
1,3 = 2, z

(4)
3,4 = 4.

(v) Since (f∗
5 )

′(x
(4)
3 ) > 0, we have t∗ ≤ 0. Starting from t0 = 0, we first arrive t1 = 0 and replace

(3, 4,=) with (3, 4, <) in the corresponding active set. Then, we terminate the searching at

t∗ = t2 = −3, and the G5-optimal pair (x(5), z(5)) is x(5) = (3, 3, 3, 4, 1), and z
(5)
1,2 = −1, z

(5)
1,3 =

0, z
(5)
3,4 = 4, z

(5)
3,5 = −3.

Thus, the optimal solution to problem (1) is x∗ = (3, 3, 3, 4, 1). An illustration of the above
procedure is presented in Figure 3.
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