An active-set based recursive approach for solving convex isotonic regression with generalized order restrictions

Xuyu Chen[∗] , Xudong Li† , Yangfeng Su‡

April 4, 2023

Abstract

This paper studies the convex isotonic regression with generalized order restrictions induced by a directed tree. The proposed model covers various intriguing optimization problems with shape or order restrictions, including the generalized nearly isotonic optimization and the total variation on a tree. Inspired by the success of the pool-adjacent-violator algorithm and its activeset interpretation, we propose an active-set based recursive approach for solving the underlying model. Unlike the brute-force approach that traverses an exponential number of possible activeset combinations, our algorithm has a polynomial time computational complexity under mild assumptions.

Keywords: Active set methods; convex isotonic regression; generalized order restrictions AMS subject classifications: 90C25, 90C30

1 Introduction

Given a directed tree $G = (V, E)$, we consider the following convex isotonic regression problem with generalized order restrictions:

$$
\min_{x \in \mathbb{R}^{|V|}} \sum_{i \in V} f_i(x_i) + \sum_{(i,j) \in E} \lambda_{i,j} (x_i - x_j)_+ + \sum_{(i,j) \in E} \mu_{i,j} (x_j - x_i)_+, \tag{1}
$$

where for each $i \in V$, $f_i : \Re \to \Re$ is a convex loss function, $\lambda_{i,j}$ and $\mu_{i,j}$ for $(i,j) \in E$, are possibly infinite nonnegative scalars, i.e., $0 \leq \lambda_{i,j}, \mu_{i,j} \leq +\infty$, and $(x)_+ = \max(0, x)$ is the nonnegative part of x for any $x \in \Re$. In [\(1\)](#page-0-0), when $\lambda_{i,j} = +\infty$ (respectively, $\mu_{i,j} = +\infty$), the corresponding term $\lambda_{i,j}(x_i - x_j)$ (respectively, $\mu_{i,j}(x_j - x_i)$) should be understood as the indicator function $\delta(x_i, x_j \mid x_i - x_j \leq 0)$ (respectively, $\delta(x_i, x_j \mid x_i - x_j \geq 0)$), or equivalently the constraint $x_i - x_j \leq 0$ (respectively, $x_i - x_j \geq 0$). See Figure [1](#page-1-0) for some simple examples of directed trees.

As one can observe, the involvement of the directed tree G makes problem [\(1\)](#page-0-0) a rather general model containing many interesting variants as special cases. Here, for simplicity, we only mention

[∗] School of Mathematical Sciences, Fudan University, Shanghai, 200433, China, chenxy18@fudan.edu.cn

[†]School of Data Science, Fudan University, Shanghai, 200433, China, lixudong@fudan.edu.cn

[‡] School of Mathematical Sciences, Fudan University, Shanghai, 200433, China, yfsu@fudan.edu.cn

Figure 1: Examples of directed trees. A directed tree is a directed graph whose underlying graph is a tree, and the directed trees are also referred to as directed acyclic graphs.

two of them. The first one is the *generalized nearly isotonic optimization* (GNIO) problem proposed in [\[26\]](#page-22-0):

$$
\min_{x \in \Re^n} \sum_{i=1}^n f_i(x_i) + \sum_{i=1}^{n-1} \lambda_i (x_i - x_{i+1})_+ + \sum_{i=1}^{n-1} \mu_i (x_{i+1} - x_i)_+, \tag{2}
$$

which is clearly a special case of (1) with G chosen as a chain, as illustrated in Figure [1a.](#page-1-0) As is mentioned in [\[26\]](#page-22-0), model [\(2\)](#page-1-1) recovers, as special cases, many classic problems in shape restricted statistical regression, including isotonic regression [\[6,](#page-21-0) [7\]](#page-21-1), unimodal regression [\[12,](#page-21-2) [21\]](#page-22-1), and nearly isotonic regression [\[22\]](#page-22-2). The second one is the *total variation on a tree* considered in [\[15\]](#page-21-3):

$$
\min_{x \in \mathbb{R}^{|V|}} \sum_{i \in V} f_i(x_i) + \sum_{(i,j) \in E} w_{i,j} |x_i - x_j|,\tag{3}
$$

where $G = (V, E)$ is a directed tree and each f_i is assumed to be piecewise linear or piecewise quadratic. Other special cases of model [\(1\)](#page-0-0) have also been examined in the literature, for example, [\[8,](#page-21-4) [25\]](#page-22-3) studied the isotonic regression problems with partial order restrictions induced by an arborescence. These special cases, as well as their applications in statistic inference [\[20\]](#page-22-4), operations research [\[1\]](#page-21-5), signal processing [\[17,](#page-22-5) [9\]](#page-21-6), medical prognosis [\[19\]](#page-22-6), and traffic and climate data analysis [\[16,](#page-21-7) [24\]](#page-22-7), reveal the importance and necessity of studying model [\(1\)](#page-0-0).

To the best of our knowledge, there is currently no efficient algorithm available for directly solving the general model [\(1\)](#page-0-0). However, certain special cases of the model can be solved by existing algorithms. For example, the GNIO problem [\(2\)](#page-1-1) can be efficiently solved by employing a dynamic programming approach designed in [\[26\]](#page-22-0). Moreover, assuming boundedness of the decision variables, the KKT based fast algorithm proposed in [\[13\]](#page-21-8) can also solve the GNIO problem. However, both algorithms rely heavily on the underlying chain structure, and therefore cannot be applied to solve the general model [\(1\)](#page-0-0) that involves a directed tree. If G is a chain and each f_i is quadratic, the total variation problem [\(3\)](#page-1-2) reduces to the well-known ℓ_2 total variation denoising problem, which has been extensively studied in signal processing [\[10,](#page-21-9) [14\]](#page-21-10). The direct algorithm [\[10\]](#page-21-9) and the taut-string algorithms [\[2\]](#page-21-11) are considered to be the state-of-the-art for solving the ℓ_2 total variation denoising problem. Meanwhile, if G is assumed to be a directed tree and each f_i is assumed to be continuous piecewise linear or piecewise quadratic with a finite number of breakpoints in [\(3\)](#page-1-2), the message passing algorithm studied in [\[15\]](#page-21-3) can be applied. However, these algorithms can not handle problem (1) with general convex loss functions f_i involved.

There is also another line of work dedicated to solving special cases of problem [\(1\)](#page-0-0). In the 1950s, Ayer in [\[1\]](#page-21-5) proposed the famous Pool-Adjacent-Violator algorithm (PAVA) for solving the following isotonic regression problem:

$$
\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} \sum_{i=1}^n (x_i - y_i)^2, \n\text{s.t.} \quad x_1 \le x_2 \le \dots \le x_n,
$$
\n(4)

which is clearly a special case of problem (1) . The PAVA has been widely regarded as the state-ofthe-art technique for solving the isotonic regression problem since its inception. Later in [\[4\]](#page-21-12), Best and Chakravarti discovered that the PAVA is, in fact, a dual feasible active set method for solving [\(4\)](#page-2-0). In [\[5\]](#page-21-13), the PAVA was generalized to handle [\(4\)](#page-2-0) but with the least squares objectives replaced by general separable convex loss functions. In [\[25\]](#page-22-3), Yu and Xing further generalized the PAVA to solve convex separable minimization with order constraints induced by an arborescence. However, the generalized regularizers present in the objective of model [\(1\)](#page-0-0) were not studied in [\[25\]](#page-22-3). As far as we know, it remains unclear whether the ideas behind the PAVA can be adopted to solve the more general model [\(1\)](#page-0-0).

Encouraged by the successes of the PAVA and its variants in solving special cases of the generalized convex isotonic regression problem [\(1\)](#page-0-0), we propose a novel active-set based algorithm in this paper. Our approach differs from the brute-force method that explores a potentially exponential number of different active sets. Instead, a recursive approach is proposed to accelerate the search for the desired active sets. We show that problem [\(1\)](#page-0-0) can be tackled via recursively solving a sequence of smaller subproblems. For these subproblems, special recursive structures of the corresponding Karush-Kuhn-Tucker (KKT) conditions are carefully examined, which further allows us to design a novel active-set based recursive approach (ASRA). In particular, this approach enables us to derive semi-closed formulas of the optimal solutions to the aforementioned recursive subproblems. Under mild assumptions, we further show that the ASRA enjoys a polynomial time computational complexity for solving problem [\(1\)](#page-0-0).

The subsequent sections of this paper are organized as follows. Section [2](#page-2-1) covers the necessary preliminaries associated with problem [\(1\)](#page-0-0), including fundamental concepts in graph theory and the corresponding KKT conditions. In addition, we describe a naive active-set method to solve [\(1\)](#page-0-0). Our recursive approach, the ASRA, is described in detail in Section [3.](#page-5-0) Finally, we conclude the paper in Section [4.](#page-17-0) The Appendix includes an example of how to apply the ASRA to solve a simple instance of [\(1\)](#page-0-0).

2 Preliminaries

We start with some relevant preliminaries in graph theory. A directed tree $G = (V, E)$ is a directed graph whose underlying graph is a tree, and an arborescence (also known as rooted directed tree) [\[11,](#page-21-14) [23\]](#page-22-8) is a directed tree with exactly one node of zero in-degree. The node is also referred to as the root of the arborescence. Let $G = (V, E)$ and $B = (V_B, E_B)$ be two directed trees. If $V_B \subseteq V$ and $E_B \subseteq E$, then we say that B is a *subtree* of G, denoted by $B \subset G$. Two subtrees are *disjoint* if their node sets are disjoint. Given $P = \{B_k\}_{k=1}^K$ as a collection of disjoint subtrees of a certain directed tree $G = (V, E)$, if $V = \bigcup_{k=1}^{K} V_{B_k}$, then P is said to be a partition of G.

For a given directed tree $G = (V, E)$, we can choose any node $l \in V$ as the *ancestor* of G. Then, for any $i, j \in V$, we say that j is a child of i, denoted by $j \triangleleft i$, if the undirected path connecting l and i is strictly contained in the one connecting l and j. For example, if we pick the node 2 as the ancestor in the directed tree presented in Figure [1c,](#page-1-0) then we have $3 \triangleleft 1 \triangleleft 2$. Now, let $D \in \Re^{|V| \times |E|}$ be the node-arc incidence matrix associated with G. We know from [\[3\]](#page-21-15) that rank $(D) = |E|$ and the matrix $\tilde{D}_l \in \Re^{|E| \times |E|}$ obtained by deleting the *l*-th row from *D* is invertible. Given a vector $b \in \Re^{|E|}$, we obtain in the following lemma a closed-form formula for the solution to the linear system $\tilde{D}_l z = b$.

Lemma 1. For any given $b \in \Re^{|E|}$, the unique solution $z^* = (z_{i,j})_{(i,j) \in E} \in \Re^{|E|}$ to the linear system $\tilde{D}_l z = b$ takes the following form:

$$
z_{i,j}^* = \begin{cases} \displaystyle\sum_{k \in C_i} b_k, \textit{ if } i \triangleleft j, \\[1ex] - \displaystyle\sum_{k \in C_j} b_k, \textit{ if } j \triangleleft i, \end{cases} \forall (i,j) \in E,
$$

where for any node i, C_i consists of i and all its children, i.e., $C_i := \{j \in V \mid j \prec i\} \cup \{i\}.$

Proof. This result is a simple consequence of the special structure of the node-arc incidence matrix and can be verified directly. \Box

Next, we state the blanket assumption on the loss functions f_i , $i \in V$, and derive the KKT conditions associated with problem [\(1\)](#page-0-0). To express our main ideas clearly, we put strong assumptions on f_i , such as strong convexity and differentiability. However, as can be observed, these strong assumptions could be removed if more subtle analysis is employed.

Assumption 1. Each $f_i : \Re \to \Re, i \in V$ in [\(1\)](#page-0-0) is differentiable and strongly convex.

From the strong convexity of each f_i , we know that the objective function in problem [\(1\)](#page-0-0) is also strongly convex and therefore level-set bounded. Moreover, by [\[18,](#page-22-9) Theorems 27.1 and 27.2], problem [\(1\)](#page-0-0) has a unique solution. We also note that Assumption [1](#page-3-0) holds in some statistical and machine learning problems [\[4,](#page-21-12) [10,](#page-21-9) [22\]](#page-22-2). Under Assumption [1,](#page-3-0) we know from [\[18\]](#page-22-9) that each f_i^* is also a strongly convex differentiable function. Moreover, both f_i' and $(f_i^*)'$ are strictly increasing on \Re , and for any given $x, y \in \mathbb{R}$, $y = f'_i(x)$ if and only if $x = (f_i^*)'(y)$.

Now, we are ready to write down the KKT conditions associated with problem [\(1\)](#page-0-0). For $0 \leq \lambda, \mu \leq +\infty$, let

$$
\begin{cases} h_{\lambda}^-(x) := \delta(x \mid x \ge 0), & \text{if } \lambda = +\infty, \\ h_{\lambda}^-(x) := \begin{cases} -\lambda x, & x < 0, \\ 0, & x \ge 0, \end{cases} & \text{if } 0 \le \lambda < +\infty, \end{cases} \text{ and } \begin{cases} h_{\mu}^+(x) := \delta(x \mid x \le 0), & \text{if } \mu = +\infty, \\ h_{\mu}^+(x) := \begin{cases} 0, & x \le 0, \\ \mu x, & x > 0, \end{cases} & \text{if } 0 \le \mu < +\infty. \end{cases}
$$

For $(i, j) \in E$, we define $h_{i,j} : \Re \to [0, +\infty]$ by

$$
h_{i,j}(x) := h_{\lambda_{i,j}}^-(x) + h_{\mu_{i,j}}^+(x), \quad \forall \ x \in \Re.
$$

Clearly, for each $(i, j) \in E$, $h_{i,j}$ is convex and its subdifferential at $x \in \Re$ takes the following form:

$$
\partial h_{i,j}(x) = \begin{cases} \{-\lambda_{i,j}\}, & \text{if } x < 0, \\ [-\lambda_{i,j}, \mu_{i,j}], & \text{if } x = 0, \\ \{\mu_{i,j}\}, & \text{if } x > 0. \end{cases}
$$
 (5)

Here, $\partial h_{i,j}(x) = \{+\infty\}$ or $\partial h_{i,j}(x) = \{-\infty\}$ should be understood as $\partial h_{i,j}(x) = \emptyset$. We also adopt the conventions in [\(5\)](#page-3-1) that $[-\infty, +\infty] = (-\infty, +\infty)$, $[-\infty, \alpha] = (-\infty, \alpha]$, and $[\alpha, +\infty] = [\alpha, +\infty)$ for some $\alpha \in \Re$.

Define $H(z) := \sum_{(i,j)\in E} h_{i,j}(z_{i,j})$ for $z \in \Re^{|E|}$, and $F(x) := \sum_{i\in V} f_i(x_i)$ for $x \in \Re^{|V|}$. Let $M = -D^T \in \Re^{|E| \times |V|}$, where D is the node-arc incidence matrix associated with G. That is, for $e = (i, j) \in E$, $M(e, i) = -1$ and $M(e, j) = 1$ and all other entries of M are zero. Let $H_M(x) := H(Mx)$ for $x \in \mathbb{R}^{|V|}$. Then, it can be easily verified that problem [\(1\)](#page-0-0) can be equivalently rewritten as

$$
\min_{x \in \Re^{|V|}} F(x) + H_M(x).
$$

Then, we have the following lemma on the KKT conditions associated with problem [\(1\)](#page-0-0).

Lemma 2. Problem [\(1\)](#page-0-0) has a unique minimizer $x^* \in \Re^{|V|}$. Moreover, x^* solves problem (1) if and only if there exists a unique multiplier $z^* \in \Re^{|E|}$, such that (x^*, z^*) satisfies the following KKT system:

$$
\sum_{k:(i,k)\in E} z_{i,k}^* - \sum_{k:(k,i)\in E} z_{k,i}^* = f_i'(x_i^*), \quad \forall \ i \in V,
$$
\n
$$
z_{i,j}^* \in \begin{cases} \{-\lambda_{i,j}\}, & \text{if } x_i^* > x_j^*, \\ [-\lambda_{i,j}, \mu_{i,j}], & \text{if } x_i^* = x_j^*, \quad \forall \ (i,j) \in E. \\ \{\mu_{i,j}\}, & \text{if } x_i^* < x_j^*, \end{cases} \tag{6}
$$

Proof. The existence and the uniqueness of the optimal solution to problem [\(1\)](#page-0-0) follows from the the strong convexity of F. Since F is differentiable, we know from [\[18,](#page-22-9) Theorem 23.8] that

$$
0 \in F'(x^*) + \partial H_M(x^*).
$$

From [\[18,](#page-22-9) Theorem 23.9], it can be seen that $\partial H_M(x^*) = M^T \partial H(Mx^*)$. Thus, there exists $z^* \in \partial H(Mx^*)$, such that

$$
F'(x^*) + M^T z^* = F'(x^*) - Dz^* = 0.
$$
\n(7)

Since the e-th entry of Mx^* is given by $x_j^* - x_i^*$, we have from [\(5\)](#page-3-1) that

$$
z_{i,j}^* \in \begin{cases} \{-\lambda_{i,j}\}, & \text{if } x_j^* - x_i^* < 0, \\ [-\lambda_{i,j}, \mu_{i,j}], & \text{if } x_j^* - x_i^* = 0, \quad \forall (i,j) \in E. \\ \{\mu_{i,j}\}, & \text{if } x_j^* - x_i^* > 0, \end{cases}
$$

Thus, we obtain the KKT conditions (6) . The uniqueness of z^* follows from (7) and the fact that rank $(D) = |E|$. We thus complete the proof. □

Next, we investigate a naive active set method for solving problem [\(1\)](#page-0-0). For each edge $(i, j) \in E$, we can associate it with a sign $\# \in \{<, =, >\}$ to obtain a triple $(i, j, \#)$ representing the relation $x_i \# x_j$. For the consistency, when dealing with edges (i, j) with $\lambda_{i,j} = +\infty$ (or $\mu_{i,j} = +\infty$), the corresponding sign $\#$ can only be chosen from $\{<,=\}$ (or $\{>,=\}$). We denote by A the collection of all these triples and term it as an *active set* associated with problem (1) . Then, the active set A induces the following A -reduced problem from (1) :

$$
\min_{x \in \mathbb{R}^{|V|}} \sum_{i \in V} f_i(x_i) + \sum_{(i,j) \in \mathcal{A}_>} \lambda_{i,j}(x_i - x_j) + \sum_{(i,j) \in \mathcal{A}_<} \mu_{i,j}(x_j - x_i),
$$
\n
$$
\text{s.t.} \quad x_i = x_j, \quad \forall (i,j) \in \mathcal{A}_=,\tag{8}
$$

where $\mathcal{A}_{\#} := \{(i, j) \mid (i, j, \#) \in \mathcal{A}\}\.$ If $\mathcal{A}_{=} = \emptyset$, then [\(8\)](#page-4-2) reduces to an unconstrained optimization problem, which can be efficiently solved since its objective function is separable, smooth and strongly convex. For $i, j \in V$, we say they are A-connected if and only if there exists an undirected path in $\mathcal{A}_{=}$, which is obtained by treating all edges in $\mathcal{A}_{=}$ as undirected edges, that connects i and j. Let P_A be the collection of all A-connected components of G. Then, it is not difficult to observe that P_A is naturally a partition of G. We thus term P_A as the partition induced by A. Without loss of generality, assume $P_{\mathcal{A}} = \{B_k\}_{k=1}^K$ with each B_k being a subtree of G, we see that the A-reduced problem (8) can be decoupled into K independent subproblems as follows:

$$
\min_{x \in \mathfrak{R}^{|V_{B_k}|}} \left\{ \sum_{i \in V_{B_k}} \hat{f}_i(x_i) \mid x_i = x_j, \forall (i, j) \in E_{B_k} \right\}, \quad 1 \le k \le K,
$$
\n(9)

where for each $i \in V_{B_k}$,

$$
\hat{f}_i(x_i) := f_i(x_i) + (\sum_{j:(i,j)\in\mathcal{A}_{\geq}} \lambda_{i,j} - \sum_{j:(i,j)\in\mathcal{A}_{\leq}} \mu_{i,j})x_i + (\sum_{l:(l,i)\in\mathcal{A}_{\leq}} \mu_{l,i} - \sum_{l:(l,i)\in\mathcal{A}_{\geq}} \lambda_{l,i})x_i.
$$

Clearly, the simple constraints in problem [\(9\)](#page-5-1) can be eliminated. The resulting unconstrained optimization problem has a univariate smooth and strongly convex objective function and thus can be efficiently solved. In this way, we obtain the optimal solution to the $\mathcal{A}\text{-reduced problem (8)}.$ $\mathcal{A}\text{-reduced problem (8)}.$ $\mathcal{A}\text{-reduced problem (8)}.$

Unfortunately, there can be up to $3^{|E|}$ different choices for the active set A. Thus, the naive method of exploring all the possible choices of different active sets needs to solve exponential number of A-reduced problems. In order to reduce this prohibitive computational costs, we introduce a novel active-set based recursive algorithm in the next section.

3 An recursive algorithm for solving problem [\(1\)](#page-0-0)

In this section, we present our recursive algorithm for solving problem [\(1\)](#page-0-0). We first claim that, without loss of generality, the directed tree G in [\(1\)](#page-0-0) can be assumed to be an arborescence with the node 1 to be its root. Moreover, we can decompose G into a sequence of subtrees ${G_m}$ = $(V_m, E_m)\}_{m=1}^n$, where $G_1 \subset G_2 \subset \cdots \subset G_n = G$ and $V_m = \{1, 2, \ldots, m\}$ for $1 \leq m \leq n$, and the set of edges $E_{m+1} \setminus E_m$ contains exactly one edge $(i_m, m+1)$, where $i_m \in V_m$. Further details are deferred to the Appendix.

For each $1 \leq m \leq n$, problem [\(1\)](#page-0-0), when restricted to the the subtree G_m , takes the following form:

$$
\min_{x \in \Re^{|V_m|}} \sum_{i \in V_m} f_i(x_i) + \sum_{(i,j) \in E_m} \lambda_{i,j}(x_i - x_j) + \sum_{(i,j) \in E_m} \mu_{i,j}(x_j - x_i) + \dots \tag{10}
$$

From Lemma [2,](#page-4-3) it is not difficult to see that the unique primal-dual optimal pair to problem [\(10\)](#page-5-2), denote by $(x^{(m)}, z^{(m)}) \in \Re^{|V_m|} \times \Re^{|E_m|}$, satisfies the following KKT system:

$$
\sum_{k:(i,k)\in E_m} z_{i,k} - \sum_{k:(k,i)\in E_m} z_{k,i} = f'_i(x_i), \quad \forall \ i \in V_m,
$$

$$
z_{i,j} \in \begin{cases} \{-\lambda_{i,j}\}, & \text{if } x_i > x_j, \\ [-\lambda_{i,j}, \mu_{i,j}], & \text{if } x_i = x_j, \quad \forall \ (i,j) \in E_m. \\ \{\mu_{i,j}\}, & \text{if } x_i < x_j, \end{cases}
$$
 (11)

The unique optimal pair $(x^{(m)}, z^{(m)})$ is also referred to as the G_m -optimal pair for convenience. By carefully exploiting the special structures in the KKT conditions [\(11\)](#page-5-3), we propose to solve problem [\(1\)](#page-0-0) in a recursive fashion. Specifically, we will recursively generate the G_{m+1} -optimal pair $(x^{m+1}, z^{(m+1)})$ from the G_m -optimal pair $(x^{(m)}, z^{(m)})$ for $m = 1, ..., n - 1$.

We summarize the detailed steps of the above recursive approach in Algorithm [1.](#page-6-0) In the algorithm, the *generate* subroutine is designed to generate the G_{m+1} -optimal pair from the G_m optimal pair. In the next subsection, we will show that this procedure is accomplished via a novel active-set searching scheme. Hence, it is natural for us to call Algorithm [1](#page-6-0) an active-set based recursive approach (ASRA).

Algorithm 1 ASRA: An active-set based recursive approach for solving problem [\(1\)](#page-0-0)

1: **Initialize:** $x_1^{(1)} = (f_1^*)'(0) \in \Re$, and $z^{(1)} = \emptyset$ 2: for $m = 1, ..., n - 1$ do 3: $(x^{(m+1)}, z^{(m+1)}) = generate(x^{(m)}, z^{(m)}, G_{m+1})$ 4: end for 5: Return: $(x^{(n)}, z^{(n)}) \in \Re^n \times \Re^{n-1}$

3.1 The generate subroutine

To efficiently obtain the G_{m+1} -optimal pair from the given G_m -optimal pair, we shall investigated the KKT conditions associated with the subproblem induced by the subtree G_{m+1} . Specially, it takes the following form:

$$
\sum_{k:(i,k)\in E_m} z_{i,k} - \sum_{k:(k,i)\in E_m} z_{k,i} = f'_i(x_i), \quad \forall \ i \in V_m \setminus \{i_m\},\tag{12}
$$

$$
z_{i,j} \in \begin{cases} \{-\lambda_{i,j}\}, & \text{if } x_i > x_j, \\ [-\lambda_{i,j}, \mu_{i,j}], & \text{if } x_i = x_j, \quad \forall \ (i,j) \in E_m, \\ \{\mu_{i,j}\}, & \text{if } x_i < x_j, \end{cases} \tag{13}
$$

$$
\sum_{k:(i_m,k)\in E_m} z_{i_m,k} - \sum_{k:(k,i_m)\in E_m} z_{k,i_m} + z_{i_m,m+1} = f'_{i_m}(x_{i_m}),\tag{14}
$$

$$
-z_{i_m,m+1} = f'_{m+1}(x_{m+1}),
$$
\n(15)

$$
z_{i_m, m+1} \in \begin{cases} \{-\lambda_{i_m, m+1}\}, & \text{if } x_{i_m} > x_{m+1}, \\ [-\lambda_{i_m, m+1}, \mu_{i,j}], & \text{if } x_{i_m} = x_{m+1}, \\ \{\mu_{i_m, m+1}\}, & \text{if } x_{i_m} < x_{m+1}. \end{cases}
$$
(16)

As one can observe, instead of writing the KKT conditions as a whole set of equations, we have singled out those, namely [\(14\)](#page-6-1), [\(15\)](#page-6-2) and [\(16\)](#page-6-3), associated with the dual variable $z_{i_m,m+1}$, which corresponds to the newly added edge $\{(i_m, m + 1)\} = E_{m+1} \setminus E_m$. Based on the above KKT conditions, we have the following proposition regarding the sign of $z_{i_m,m+1}$.

Proposition 1. It holds that $z_{i_m,m+1}^{(m+1)}f_{m+1}'(x_{i_m}^{(m)})$ $\binom{m}{i_m} \leq 0$, where $(x^{(m)}, z^{(m)})$ and $(x^{(m+1)}, z^{(m+1)})$ are the G_m -optimal pair and the G_{m+1} -optimal pair, respectively.

Proof. Note that when $f'_{m+1}(x_{i_m}^{(m)})$ $\binom{m}{i_m}$ = 0, the desired result naturally holds. For the remaining parts, we only prove the case where $f'_{m+1}(x_{i_m}^{(m)})$ $\binom{m}{i_m} > 0$, since the proof for the case with $f'_{m+1}(x_{i_m}^{(m)})$ $\binom{m}{i_m}$ > < 0 can be easily modified from the arguments here.

Suppose that $f'_{m+1}(x_{i_m}^{(m)})$ $\binom{m}{i_m} > 0$, then we shall prove that $z_{i_m, m+1}^{(m+1)} \leq 0$. Assume on the contrary that $z_{i_m,m+1}^{(m+1)} > 0$. Then, from [\(15\)](#page-6-2), we have $x_{m+1}^{(m+1)} = (f_{m+1}^*)'(-z_{i_m,m+1}^{(m+1)}) < (f_{m+1}^*)'(0)$. Moreover, [\(16\)](#page-6-3) implies that $x_{m+1}^{(m+1)} \ge x_{i_m}^{(m+1)}$ $\binom{(m+1)}{i_m}$. Thus, we have from the strict monotonicity of $(f_{m+1}^*)'$ the following inequality:

$$
x_{i_m}^{(m)} > (f_{m+1}^*)'(0) > x_{m+1}^{(m+1)} \ge x_{i_m}^{(m+1)}.
$$
\n(17)

Now, from [\(12\)](#page-6-4), [\(13\)](#page-6-5), and [\(14\)](#page-6-1), we see that $\tilde{x} \in \Re^{|V_m|}$ with $\tilde{x}_i = x_i^{(m+1)}$ $i^{(m+1)}$ for $i \in V_m$ is the optimal solution to the following optimization problem:

$$
\min_{x \in \Re^{|V_m|}} F_1(x) := \sum_{i \in V_m} f_i(x_i) + \sum_{(i,j) \in E_m} \{ \lambda_{i,j} (x_i - x_j)_+ + \mu_{i,j} (x_j - x_i)_+ \} - z_{i_m, m+1}^{(m+1)} x_{i_m}.
$$

Meanwhile, since $(x^{(m)}, z^{(m)})$ is the G_m -optimal pair, $x^{(m)}$ is the optimal solution to the following optimization problem:

$$
\min_{x \in \mathbb{R}^{|V_m|}} F_0(x) := \sum_{i \in V_m} f_i(x_i) + \sum_{(i,j) \in E_m} \left\{ \lambda_{i,j} (x_i - x_j)_+ + \mu_{i,j} (x_j - x_i)_+ \right\}.
$$

Then, it holds that

$$
0 \ge F_1(\widetilde{x}) - F_1(x^{(m)}) = F_0(\widetilde{x}) - F_0(x^{(m)}) + z^{(m+1)}_{i_m, m+1}(x^{(m)}_{i_m} - \widetilde{x}_{i_m}).
$$

Since $F_0(\tilde{x}) - F_0(x^{(m)}) \ge 0$, $z_{i_m, m+1}^{(m+1)} > 0$, and $\tilde{x}_{i_m} = x_{i_m}^{(m+1)}$ $\binom{(m+1)}{i_m}$, we have $x_{i_m}^{(m)} - x_{i_m}^{(m+1)} \leq 0$, which contradicts to [\(17\)](#page-7-0). Thus, we have $z_{i_m,m+1}^{(m+1)} \leq 0$ and $z_{i_m,m+1}^{(m+1)} f'_{m+1}(x_{i_m}^{(m)})$ $\binom{m}{i_m} \leq 0$, and complete the proof. 口

From Proposition [1,](#page-6-6) we can determine the sign of $z_{i_m,m+1}^{(m+1)}$ by the value of $f'_{m+1}(x_{i_m}^{(m)})$ $\binom{m}{i_m}$. Moreover, if $f'_{m+1}(x_{i_m}^{(m)})$ $\binom{m}{i_m} = 0$, we can easily construct the G_{m+1} -optimal pair as follows:

$$
x_i^{(m+1)} = \begin{cases} x_i^{(m)}, \forall i \in V_m, \\ x_{i_m}^{(m)}, i = m+1, \end{cases} \text{ and } z_{i,j}^{(m+1)} = \begin{cases} z_{i,j}^{(m)}, \forall (i,j) \in E_m, \\ 0, (i,j) = (i_m, m+1). \end{cases}
$$

Hence, we focus on the case with $f'_{m+1}(x_{i_m}^{(m)})$ $\binom{m}{i_m} \neq 0$ in the subsequent discussions. For this purpose, we consider the following parametric optimization problem with the parameter $t \in \Re$:

$$
\min_{x \in \mathbb{R}^{|V_{m+1}|}} \sum_{i \in V_{m+1}} f_i(x_i) + \sum_{(i,j) \in E_m} \{ \lambda_{i,j} (x_i - x_j)_+ + \mu_{i,j} (x_j - x_i)_+ \} - t(x_{i_m} - x_{m+1}),
$$
(18)

whose KKT conditions are presented below:

$$
\sum_{k:(i,k)\in E_m} z_{i,k} - \sum_{k:(k,i)\in E_m} z_{k,i} + 1_{\{i=i_m\}} t = f'_i(x_i), \quad \forall \ i \in V_m,
$$

$$
z_{i,j} \in \begin{cases} \{-\lambda_{i,j}\}, & \text{if } x_i > x_j, \\ [-\lambda_{i,j}, \mu_{i,j}], & \text{if } x_i = x_j, \quad \forall \ (i,j) \in E_m, \\ \{\mu_{i,j}\}, & \text{if } x_i < x_j, \\ -t = f'_{m+1}(x_{m+1}). \end{cases}
$$
(19)

Since each f_i is strongly convex, problem [\(18\)](#page-7-1) has a unique optimal solution, denoted by $x^*(t)$, for each $t \in \mathcal{R}$. Moreover, using the Fenchel-Rockafellar duality theorem [\[18\]](#page-22-9) and the differentiability of each f_i , we know that there exists a unique dual optimal solution to problem (18) , denoted by $z^*(t)$, which together with $x^*(t)$ satisfies the KKT conditions [\(19\)](#page-8-0). If for certain $t^* \in \Re$, it holds that

$$
t^* \in \begin{cases} \{-\lambda_{i_m, m+1}\}, & \text{if } x_{i_m}^*(t^*) > x_{m+1}^*(t^*),\\ [-\lambda_{i_m, m+1}, \mu_{i_m, m+1}], & \text{if } x_{i_m}^*(t^*) = x_{m+1}^*(t^*),\\ \{\mu_{i_m, m+1}\}, & \text{if } x_{i_m}^*(t^*) < x_{m+1}^*(t^*). \end{cases} \tag{20}
$$

Then, by comparing the equations [\(19\)](#page-8-0) and [\(20\)](#page-8-1) and the KKT conditions in equations [\(12\)](#page-6-4) to [\(16\)](#page-6-3), we can obtain the G_{m+1} -optimal pair based on $(x^*(t^*), z^*(t^*))$. Indeed, the G_{m+1} -optimal pair $(x^{(m+1)}, z^{(m+1)})$ can be constructed via

$$
x^{(m+1)} = x^*(t^*),
$$
 and $z_{i,j}^{(m+1)} = z_{i,j}^*(t^*)$ for $(i, j) \in E_m$, and $z_{i_m, m+1}^{(m+1)} = t^*$.

This observation also indicates that one can determine the sign of t^* using Proposition [1.](#page-6-6)

To find the desired t^* , we start from the initial guess $t_0 = 0$. We note that when $t_0 = 0$, the corresponding primal-dual optimal pair $(x^*(t_0), z^*(t_0))$ is readily known with $x_i^*(t_0) = x_i^{(m)}$ $i^{(m)}$ for $i \in V_m$ and $x_{m+1}^*(t_0) = (f_{m+1}^*)'(-t_0)$, and $z^*(t_0) = z^{(m)}$. Then, we can easily check if $t_0 = 0$ satisfies [\(20\)](#page-8-1) by comparing $x_{m+1}^*(t_0)$ and $x_{i_m}^*(t_0)$. If $x_{m+1}^*(t_0) \neq x_{i_m}^*(t_0)$, we can use Proposition [1](#page-6-6) to determine if t should be decreased or increased. Assume without loss of the generality that $f'_{m+1}(x_{i_m}^*(t_0)) = f'_{m+1}(x_{i_m}^{(m)})$ $\binom{m}{i_m} > 0$. From the above discussions and Proposition [1,](#page-6-6) we see that $t^* < 0$. Then, we rely on an active-set strategy to iteratively update our guess of t^* .

Starting from the initial guess $t_0 = 0$, we denote the active set corresponding to E_m in [\(18\)](#page-7-1) by

$$
\mathcal{A}^0 = \{ (i, j, \#) \mid (i, j) \in E_m, \ x_i^*(t_0) \# \ x_j^*(t_0) \}, \ \text{where } \# \in \{ \lt, =, > \}. \tag{21}
$$

Then, we add the equality constraints induced by edges in $\mathcal{A}^0_$ to problem [\(18\)](#page-7-1) and obtain the \mathcal{A}^0 -reduced problem of problem [\(18\)](#page-7-1). The key observation is that the primal-dual optimal solution pair to the \mathcal{A}^0 -reduced problem can be written in a semi-closed form as functions of the parameter t, denoted by $(x^0(t), z^0(t))$. Then, we construct a dual candidate $\tilde{z}^0(t)$ to problem [\(18\)](#page-7-1) as follows:

$$
\tilde{z}_{i,j}^0(t) = \begin{cases} z_{i,j}^0(t), & \text{if } (i,j) \in \mathcal{A}^0_-, \\ z_{i,j}^*(t_0), & \text{otherwise,} \end{cases} \forall (i,j) \in E_m.
$$

We will show that if $(x^0(t), \tilde{z}^0(t))$ satisfies the complementarity conditions in [\(19\)](#page-8-0), i.e.,

$$
\tilde{z}_{i,j}^0(t) \in \begin{cases} \{-\lambda_{i,j}\}, & \text{if } x_i^0(t) > x_j^0(t), \\ [-\lambda_{i,j}, \mu_{i,j}], & \text{if } x_i^0(t) = x_j^0(t), \quad \forall (i,j) \in E_m, \\ \{\mu_{i,j}\}, & \text{if } x_i^0(t) < x_j^0(t), \end{cases}
$$

then $(x^{0}(t), \tilde{z}^{0}(t))$ is the primal-dual optimal solution pair to problem [\(18\)](#page-7-1).

Based on this observation, a new guess of t^* is constructed by searching for the smallest possible t_1 such that $-\lambda_{i_m,m+1} \leq t^* \leq t_1 \leq t_0 = 0$ and $(x^0(t_1), \tilde{z}^0(t_1))$ still satisfies the above complementarity conditions. Then, we have $(x^*(t_1), z^*(t_1)) = (x^0(t_1), \tilde{z}^0(t_1))$ and we can check if t_1 satisfies the system [\(20\)](#page-8-1). If not, then a new active set \mathcal{A}^1 is constructed and the above process continues until t^* is found. In a nutshell, our approach is summarized in the following flowchart:

$$
(t_0, x^*(t_0), z^*(t_0), \mathcal{A}^0) \Rightarrow \dots \Rightarrow (t_q, x^*(t_q), z^*(t_q), \mathcal{A}^q) \Rightarrow \dots \Rightarrow (t^*, x^*(t^*), z^*(t^*), \mathcal{A}^*).
$$

In what follows, we shall discuss the detailed steps of our procedure and we will prove that the search process of t^* terminates in at most $2m - 1$ steps.

At t_q with $t^* < t_q \leq t_0$, we assume that $(x^*(t_q), z^*(t_q))$, and the corresponding active set \mathcal{A}^q are available. Then, we construct the following A^q -reduced parametric optimization problem with parameter $t \in \Re$:

$$
\min_{x \in \mathbb{R}^{|V_{m+1}|}} \sum_{i \in V_{m+1}} f_i(x_i) + \sum_{(i,j) \in \mathcal{A}_{\geq}^q} \lambda_{i,j}(x_i - x_j) + \sum_{(i,j) \in \mathcal{A}_{\leq}^q} \mu_{i,j}(x_j - x_i) - t(x_{i_m} - x_{m+1}),
$$
\n
$$
\text{s.t.} \quad x_i = x_j, \quad \forall (i,j) \in \mathcal{A}_{\leq}^q,
$$
\n
$$
(22)
$$

whose unique primal-dual optimal pair is denoted by $(x^q(t), z^q(t))$. If $\mathcal{A}_{\equiv}^q = \emptyset$, then we set $z^q(t) = \emptyset$. Here, we require the following compatibility conditions between \mathcal{A}^q and $(x^*(t_q), z^*(t_q))$, which also servers as an induction hypothesis.

Assumption 2. The active set \mathcal{A}^q and the primal-dual pair $(x^*(t_q), z^*(t_q))$ are compatible. That is, $x^*(t_q)$ is the optimal solution to the problem [\(22\)](#page-9-0) at $t = t_q$, i.e., $x^q(t_q) = x^*(t_q)$ and the corresponding dual optimal solution $z^q(t_q)$ can be constructed via $z^q_{i,j}(t_q) = z^*_{i,j}(t_q)$ for $(i, j) \in \mathcal{A}_{\pm}^q$. Moreover, it holds that $x_{i_m}^*(t_q) - x_{m+1}^*(t_q) > 0$.

We shall emphasize that according to the construction of \mathcal{A}^0 , it is not difficult to observe that the active set \mathcal{A}^0 and the primal-dual pair $(x^*(t_0), z^*(t_0))$ are compatible, and $x^*_{i_m}(t_0) - x^*_{m+1}(t_0) > 0$. Next, we focus on obtaining $(t_{q+1}, x^*(t_{q+1}), z^*(t_{q+1}), \mathcal{A}^{q+1})$ from $(t_q, x^*(t_q), z^*(t_q), \mathcal{A}^q)$.

We start by investigating the optimal primal-dual solution pair corresponding to problem [\(22\)](#page-9-0). Particularly, instead of solving problem [\(22\)](#page-9-0) for each $t \neq t_q$, we derive in the following proposition the semi-closed formulas for $(x^q(t), z^q(t))$ under Assumption [2.](#page-9-1) We also show that the optimal primal-dual solution pair of problem [\(18\)](#page-7-1) can be obtained from $(x^q(t), z^q(t))$ provided that some complementarity conditions hold.

Proposition 2. Let $P_{\mathcal{A}^q}$ be the partition of G_m induced by \mathcal{A}^q and $B^q \in P_{\mathcal{A}^q}$ be the subtree such that $i_m \in B^q$. Then, under Assumption [2,](#page-9-1) for any $t \in \mathbb{R}$, the primal optimal solution $x^q(t)$ takes the following form:

$$
\begin{cases}\nx_i^q(t) = x_i^*(t_q), & \forall i \in V_m \backslash V_{B^q}, \\
x_i^q(t) = \left((\sum_{i \in V_{B^q}} f_i)^* \right)' \left(t + \beta^q \right), & \forall i \in V_{B^q}, \\
x_{m+1}^q(t) = (f_{m+1}^*)'(-t),\n\end{cases} \tag{23}
$$

where

$$
\beta^q = \sum_{\substack{(i,k)\in E_m\\i\in V_{B^q}, k\notin V_{B^q}}} z_{i,k}^*(t_q) - \sum_{\substack{(k,i)\in E_m\\k\notin V_{B^q}, i\in V_{B^q}}} z_{k,i}^*(t_q).
$$

Pick i_m as the ancestor of B^q . Then, for any $t \in \mathbb{R}$, $z^q(t)$ is given by

$$
\begin{cases}\nz_{i,j}^q(t) = z_{i,j}^*(t_q), & \forall (i,j) \in \mathcal{A}_{\pm}^q \backslash E_{B^q}, \\
z_{i,j}^q(t) = \begin{cases}\n\sum_{l \in C_i} f'_l(x_l^q(t)) - \alpha_{i,j}^q, & \text{if } i \leq j, \\
\sum_{l \in C_j} -f'_l(x_l^q(t)) + \alpha_{i,j}^q, & \text{if } i \leq j,\n\end{cases} & \forall (i,j) \in E_{B^q},\n\end{cases}
$$
\n(24)

where $C_i := \{ j \in V_{B^q} \mid j \triangleleft i \} \cup \{ i \}$ for any $i \in V_{B^q}$, and

$$
\alpha_{i,j}^q = \begin{cases} \sum_{\substack{(l,k) \in E_m \\ l \in C_i, k \notin V_{B^q}}} z_{l,k}^*(t_q) - \sum_{\substack{(k,l) \in E_m \\ l \in C_i, k \notin V_{B^q}}} z_{k,l}^*(t_q), & \text{if } i \triangleleft j, \\ \sum_{\substack{(l,k) \in E_m \\ l \in C_j, k \notin V_{B^q}}} z_{l,k}^*(t_q) - \sum_{\substack{(k,l) \in E_m \\ l \in C_j, k \notin V_{B^q}}} z_{k,l}^*(t_q), & \text{if } j \triangleleft i, \end{cases} \forall (i,j) \in E_{B^q}.
$$

Let $\Omega^q = \{(i, j) \in E_m \backslash E_{B^q} \mid exactly \ one \ of \ i \ and \ j \ is \ in \ V_{B^q}\}.$ If

$$
z_{i,j}^q(t) \in [-\lambda_{i,j}, \mu_{i,j}], \quad \forall (i,j) \in E_{B^q},
$$

\n
$$
z_{i,j}^*(t_q) \in \begin{cases} \{-\lambda_{i,j}\}, & \text{if } x_i^q(t) > x_j^q(t), \\ [-\lambda_{i,j}, \mu_{i,j}], & \text{if } x_i^q(t) = x_j^q(t), \quad \forall (i,j) \in \Omega^q, \\ \{\mu_{i,j}\}, & \text{if } x_i^q(t) < x_j^q(t), \end{cases}
$$
\n(26)

then $(x^q(t), \tilde{z}^q(t))$ solves the KKT system [\(19\)](#page-8-0), where

$$
\tilde{z}_{i,j}^q(t) = \begin{cases} z_{i,j}^q(t), & \text{if } (i,j) \in \mathcal{A}_{=}^q, \\ z_{i,j}^*(t_q), & \text{otherwise,} \end{cases} \forall (i,j) \in E_m.
$$
\n
$$
(27)
$$

Proof. Without loss of generality, we can assume that $P_{A^q} = \{B_k\}_{k=1}^K \cup B^q$ where B_k , $1 \leq k \leq K$, and B^q are subtrees of G_m . Then, problem [\(22\)](#page-9-0) can be decomposed into $K + 2$ independent subproblems on each subtree B_k and B^q and the singleton $\{m+1\}$. Note that the parameter t only appears in the subproblems corresponding to the subtree B^q and the singleton $\{m + 1\}$. Hence, from Assumption [2,](#page-9-1) it is not difficult to deduce that for any $t \in \Re$,

$$
x_i^q(t) = x_i^*(t_q), i \in V_m \backslash V_{B^q}
$$
, and $z_{i,j}^q(t) = z_{i,j}^*(t_q), (i,j) \in \mathcal{A}_{\equiv}^q \backslash E_{B^q}$.

The subproblem associated with $\{m+1\}$ is easily solved via $x_{m+1}^q(t) = (f_{m+1}^*)'(-t)$. Therefore, we only need to focus on the subproblem associated with the subtree B^q :

$$
\min_{x \in \mathfrak{R}^{|V_{Bq}|}} \left\{ \sum_{i \in V_{Bq}} \hat{f}_i(x_i) - tx_{i_m} \mid x_i = x_j, \forall (i, j) \in E_{Bq} \right\},\tag{28}
$$

where

$$
\hat{f}_i(x_i) := f_i(x_i) + \sum_{\substack{k \notin V_{B^q} \\ (k,i) \in E_m}} z_{k,i}^*(t_q) x_i - \sum_{\substack{k \notin V_{B^q} \\ (i,k) \in E_m}} z_{i,k}^*(t_q) x_i, \quad \forall \, i \in V_{B^q}.
$$

Let $\mathcal L$ be the Lagrangian function associated with problem [\(28\)](#page-11-0)

$$
\mathcal{L}(x;z) = \sum_{i \in V_{B^q}} \hat{f}_i(x_i) - tx_{i_m} - \sum_{(i,j) \in E_{B^q}} z_{i,j}(x_i - x_j), \quad \forall (x,z) \in \Re^{|V_{B^q}|} \times \Re^{|E_{B^q}|}.
$$

Then, the optimal primal-dual solution pair to problem [\(28\)](#page-11-0) satisfies the following KKT system:

$$
\begin{cases}\n x_i = x_j, & \forall (i, j) \in E_{B^q}, \\
 f'_i(x_i) + \sum_{\substack{k \in V_{B^q} \\
 (k, i) \in E_m}} z_{k, i}^*(t_q) + \sum_{\substack{k \in V_{B^q} \\
 (k, i) \in E_{B^q}}} z_{k, i} - \sum_{\substack{k \notin V_{B^q} \\
 (i, k) \in E_m}} z_{k, i}^*(t_q) - \sum_{\substack{k \in V_{B^q} \\
 (i, k) \in E_{B^q}}} z_{i, k} - 1_{\{i = i_m\}} t = 0, \quad \forall i \in V_{B^q}.\n\end{cases}
$$
\n
$$
(29)
$$

Summing over all $i \in V_{B^q}$, we deduce from the above system that

$$
\sum_{i \in V_{Bq}} f'_i(x_i^q(t)) = - \sum_{\substack{(k,i) \in E_m \\ k \notin V_{Bq}, i \in V_{Bq}}} z_{k,i}^*(t_q) + \sum_{\substack{(i,k) \in E_m \\ i \in V_{Bq}, k \notin V_{Bq}}} z_{i,k}^*(t_q) + t,
$$

i.e.,

$$
x_i^q(t) = ((\sum_{i \in V_{B^q}} f_i)^*)'(t + \sum_{\substack{(i,k) \in E_m \\ i \in V_{B^q}, k \notin V_{B^q}}} z_{i,k}^*(t_q) - \sum_{\substack{(k,i) \in E_m \\ k \notin V_{B^q}, i \in V_{B^q}}} z_{k,i}^*(t_q)), \quad \forall \ i \in V_{B^q}.
$$

Next, we obtain from the above KKT system [\(29\)](#page-11-1) the following linear system corresponding to $z_{i,j}$ for $(i,j) \in E_{B^q}$:

$$
\sum_{k:(i,k)\in E_{B^q}} z_{i,k} - \sum_{k:(k,i)\in E_{B^q}} z_{k,i} = f'_i(x_i^q(t)) + \sum_{\substack{k\notin V_{B^q}\\(k,i)\in E_m}} z_{k,i}^*(t_q) - \sum_{\substack{k\notin V_{B^q}\\(i,k)\in E_m}} z_{i,k}^*(t_q), \quad \forall \, i\in V_m\setminus\{i_m\}.
$$

Since i_m is the ancestor of the subtree B, we obtain from Lemma [1](#page-3-2) the updated formula for $z_{i,j}^q(t)$, $(i, j) \in E_{Bq}$. Thus, we proved (24) .

Finally, it is not difficult to see that if the assumed conditions [\(25\)](#page-10-1) and [\(26\)](#page-10-2) are satisfied, then $x^q(t)$ and $\tilde{z}^q(t)$ satisfy the complementarity conditions in the KKT system [\(19\)](#page-8-0). The rest equations in [\(19\)](#page-8-0) hold automatically by noting [\(27\)](#page-10-3) and the KKT system [\(29\)](#page-11-1). \Box Using the semi-closed formulas in Proposition [2,](#page-9-2) we compute the following lower bound $\Delta t_q \leq 0$:

 $\Delta t_q := \min \left\{ \Delta t \mid (25) \text{ and } (26) \text{ hold for all } t \in [t_q + \Delta t, t_q] \right\}.$ $\Delta t_q := \min \left\{ \Delta t \mid (25) \text{ and } (26) \text{ hold for all } t \in [t_q + \Delta t, t_q] \right\}.$ $\Delta t_q := \min \left\{ \Delta t \mid (25) \text{ and } (26) \text{ hold for all } t \in [t_q + \Delta t, t_q] \right\}.$ $\Delta t_q := \min \left\{ \Delta t \mid (25) \text{ and } (26) \text{ hold for all } t \in [t_q + \Delta t, t_q] \right\}.$ $\Delta t_q := \min \left\{ \Delta t \mid (25) \text{ and } (26) \text{ hold for all } t \in [t_q + \Delta t, t_q] \right\}.$

The computations are divided into two parts. Firstly, we focus on the value of $z_{i,j}^q(t)$ for $(i, j) \in E_{B^q}$. For any $(i, j) \in E_{B^q}$, we note that $z_{i,j}^{\overline{q}}(t_q) \in [-\lambda_{i,j}, \mu_{i,j}]$ and $z_{i,j}^{\overline{q}}(t)$ is increasing if $i \leq j$ and is decreasing if $j \triangleleft i$ with respect to t from [\(24\)](#page-10-0). We define the threshold $\Delta(E_{Bq})$ as follows:

$$
\Delta(E_{B^q}) := \begin{cases} \max_{(i,j) \in E_{B^q}} \Delta t_{i,j}, & \text{if } E_{B^q} \neq \emptyset, \\ -\infty, & \text{otherwise.} \end{cases}
$$
 (30)

Here, each $\Delta t_{i,j} \leq 0$ solves

$$
z_{i,j}^q(t_q + \Delta t_{i,j}) = -\lambda_{i,j}, \quad \text{if } i \triangleleft j, \quad \text{and} \quad z_{i,j}^q(t_q + \Delta t_{i,j}) = \mu_{i,j}, \quad \text{if } j \triangleleft i. \tag{31}
$$

Next, the relations in [\(26\)](#page-10-2) corresponding to the edges in Ω^{q} are examined. For this purpose, we divide Ω^q into two parts, namely,

$$
\Omega_+^q = \{(i,j) \in \Omega^q \mid i \in V_{B^q}, j \in V_m \setminus V_{B^q}\} \text{ and } \Omega_-^q = \{(i,j) \in \Omega^q \mid i \in V_m \setminus V_{B^q}, j \in V_{B^q}\},\tag{32}
$$

and handle them separately. From [\(23\)](#page-10-4), we know that x_i^q $i^q(t)$ takes the same value for all $i \in V_{Bq}$ and is increasing with respect to t. Hence, we can simply denote $x_{B^q}(t) = x_i^q$ $i^q(t)$ for any $i \in V_{Bq}$. Then, we compute the threshold $\Delta(\Omega^q) := \max{\{\Delta(\Omega^q_+), \Delta(\Omega^q_-)\}}$, where

$$
\Delta(\Omega_+^q) := \begin{cases} \Delta \overline{t} \text{ satisfying } x_{\mathcal{B}^q}(t_q + \Delta \overline{t}) = \max_{(i,j) \in \Omega_+^q \cap \mathcal{A}_>}^q x_j^*(t_q), & \text{if } \Omega_+^q \cap \mathcal{A}_>}^q \neq \emptyset, \\ -\infty, \text{ otherwise}, \end{cases}
$$
(33)

and

$$
\Delta(\Omega_-^q) := \begin{cases} \Delta \overline{t} \text{ satisfying } x_{\mathcal{B}^q}(t_q + \Delta \overline{t}) = \max_{(i,j) \in \Omega_-^q \cap \mathcal{A}_{<}^q} x_i^*(t_q), & \text{if } \Omega_-^q \cap \mathcal{A}_{<}^q \neq \emptyset, \\ -\infty, \text{ otherwise.} \end{cases} \tag{34}
$$

It can be easily verified that

$$
\Delta t_q = \max\{\Delta(E_{Bq}), \Delta(\Omega^q)\}.
$$
\n(35)

Thus, using Proposition [2,](#page-9-2) we can obtain the semi-closed form for the optimal solution $x^*(t)$, as well as its corresponding dual optimal solution $z^*(t)$, to problem [\(18\)](#page-7-1) for any $t \in [t_q + \Delta t_q, t_q]$.

Now, we are ready to discuss the search of t_{q+1} . Note that according to Assumption [2,](#page-9-1) we have

$$
x_{i_m}^q(t_q)-x_{m+1}^q(t_q)=x_{i_m}^*(t_q)-x_{m+1}^*(t_q)>0.
$$

Using the closed-form formulas in Proposition [2,](#page-9-2) we know that x_i^q $\frac{q}{m}(t) - x_{m+1}^q(t)$ is strictly increasing with respect to t, and we can obtain a unique $\Delta \tilde{t}_q < 0$ via solving the following univariate nonlinear equation:

$$
x_{i_m}^q(t_q + \Delta \tilde{t}_q) - x_{m+1}^q(t_q + \Delta \tilde{t}_q) = 0,
$$

which is nothing but the optimality condition associated with the following univariate strongly convex optimization problem:

$$
t_q + \Delta \widetilde{t}_q = \underset{t}{\text{argmin}} \left\{ \left(\sum_{i \in V_{B^q}} f_i \right)^*(t + \beta^q) + (f_{m+1}^*) (-t) \right\}.
$$

The existence of $\Delta \tilde{t}_q$ is thus guaranteed. Then, we set

$$
t_{q+1} = \max\{t_q + \Delta t_q, t_q + \Delta \tilde{t}_q, -\lambda_{i_m, m+1}\}.
$$
\n(36)

As one can observe, it always holds that $t_{q+1} \in [t_q + \Delta t_q, t_q]$ and

$$
x_{i_m}^*(t_{q+1}) - x_{m+1}^*(t_{q+1}) = x_{i_m}^q(t_{q+1}) - x_{m+1}^q(t_{q+1})
$$

$$
\geq x_{i_m}^q(t_q + \Delta \tilde{t}_q) - x_{m+1}^q(t_q + \Delta \tilde{t}_q) = 0.
$$
 (37)

Then, we reveal the relation between t_{q+1} and t^* in the following lemma.

Lemma 3. It holds that $-\lambda_{i_m,m+1} \leq t^* \leq t_{q+1} \leq t_q \leq 0$. Moreover, $t_{q+1} = t^*$ if and only if $x_{i_m}^*(t_{q+1}) - x_{m+1}^*(t_{q+1}) = 0$ or $t_{q+1} = -\lambda_{i_m, m+1}$.

Proof. If $t^* > t_{q+1}$, we have from [\(36\)](#page-13-0) that $t^* > t_{q+1} \geq -\lambda_{i_m,m+1}$. It then follows from [\(20\)](#page-8-1) that

$$
x_{i_m}^q(t^*) - x_{m+1}^q(t^*) = x_{i_m}^*(t^*) - x_{m+1}^*(t^*) = 0.
$$

However, we know from [\(37\)](#page-13-1) and the strict monotonicity of x_i^q $u_{i_m}^q(t) - x_{m+1}^q(t)$ that

$$
x_{i_m}^q(t^*) - x_{m+1}^q(t^*) > x_{i_m}^q(t_{q+1}) - x_{m+1}^q(t_{q+1}) \ge 0.
$$

We arrive at a contradiction. Thus, $t^* \leq t_{q+1}$.

Next, if $x_{i_m}^*(t_{q+1}) - x_{m+1}^*(t_{q+1}) = 0$ or $t_{q+1} = -\lambda_{i_m, m+1}$, one can easily verify that t_{q+1} , $x_{i_m}^*(t_{q+1})$ and $x_{m+1}^*(t_{q+1})$ satisfy [\(20\)](#page-8-1), i.e., $t^* = t_{q+1}$. Conversely, if $t^* = t_{q+1}$, we have $t_{q+1} \geq$ $-\lambda_{i_m,m+1}$. If $t_{q+1} > -\lambda_{i_m,m+1}$, it follows directly from [\(20\)](#page-8-1) that $x_{i_m}^*(t^*) - x_{m+1}^*(t^*) = 0$. We thus complete the proof of the lemma. \Box

Remark 1. It is only necessary to compute $\Delta \tilde{t}_q$ at most once during the entire search process for t ∗ . Indeed, let

$$
\Delta_* := \begin{cases} x_{i_m}^q(t_q + \Delta t_q) - x_{m+1}^q(t_q + \Delta t_q), & \text{if } \Delta t_q > -\infty, \\ -\infty, & \text{otherwise.} \end{cases}
$$

If $\Delta_* \geq 0$, then by the strict monotonicity of x_i^q $\hat{u}_m^q(t) - x_{m+1}^q(t)$, we must have $\Delta \tilde{t}_q \leq \Delta t_q$. In this case, we can directly set

$$
t_{q+1} = \max\{t_q + \Delta t_q, -\lambda_{i_m, m+1}\},\
$$

without computing $\Delta \tilde{t}_q$. Only when $\Delta_* < 0$, we shall compute $\Delta \tilde{t}_q$ and set

$$
t_{q+1} = \max\{t_q + \Delta \tilde{t}_q, -\lambda_{i_m, m+1}\}.
$$

Then, from Lemma [3,](#page-13-2) it holds that $t_{q+1} = t^*$. Therefore, $\Delta \tilde{t}_q$ only needs to be computed at most once.

If $t_{q+1} \neq t^*$, we know from [\(36\)](#page-13-0), [\(37\)](#page-13-1), and Lemma [3](#page-13-2) that $t^* < t_{q+1}$ and

$$
t_{q+1} = t_q + \Delta t_q
$$
, and $x_{i_m}^*(t_{q+1}) - x_{m+1}^*(t_{q+1}) > 0$. (38)

Then, we give the details of the construction of \mathcal{A}^{q+1} . Let $\mathcal{M}(E_{Bq}) = \mathcal{M}(E_{Bq}^+) \cup \mathcal{M}(E_{Bq}^-)$ with

$$
\begin{cases}\n\mathcal{M}(E_{B^q}^+) = \{(i,j) \in E_{B^q} \mid \Delta t_{i,j} = \Delta t_q, \text{ and } i \triangleleft j\}, \\
\mathcal{M}(E_{B^q}^-) = \{(i,j) \in E_{B^q} \mid \Delta t_{i,j} = \Delta t_q, \text{ and } j \triangleleft i\},\n\end{cases} \tag{39}
$$

and $\mathcal{M}(\Omega^q) = \mathcal{M}(\Omega^q_+) \cup \mathcal{M}(\Omega^q_-)$ with

$$
\begin{cases}\n\mathcal{M}(\Omega_{+}^{q}) = \{(i,j) \in \Omega_{+}^{q} \cap \mathcal{A}(t_{q}) > | x_{i}^{q}(t_{q} + \Delta t_{q}) = x_{j}^{*}(t_{q})\}, \\
\mathcal{M}(\Omega_{-}^{q}) = \{(i,j) \in \Omega_{-}^{q} \cap \mathcal{A}(t_{q}) < | x_{j}^{q}(t_{q} + \Delta t_{q}) = x_{i}^{*}(t_{q})\}.\n\end{cases}
$$
\n(40)

The active set A^{q+1} is constructed via

$$
\begin{cases}\n\mathcal{A}_{\equiv}^{q+1} = \left(\mathcal{A}_{\equiv}^{q} \cup \mathcal{M}(\Omega^{q})\right) \setminus \mathcal{M}(E_{B^{q}}), \\
\mathcal{A}_{>}^{q+1} = \left(\mathcal{A}_{\leq}^{q} \cup \mathcal{M}(E_{B^{q}}^{+})\right) \setminus \mathcal{M}(\Omega_{+}^{q}), \\
\mathcal{A}_{<}^{q+1} = \left(\mathcal{A}_{<}^{q} \cup \mathcal{M}(E_{B^{q}}^{-})\right) \setminus \mathcal{M}(\Omega_{-}^{q}).\n\end{cases}
$$
\n(41)

Similar to [\(27\)](#page-10-3), we can construct $\tilde{z}^q(t_{q+1})$ from $z^q(t_{q+1})$ as follows:

$$
\tilde{z}_{i,j}^q(t_{q+1}) = \begin{cases} z_{i,j}^q(t_{q+1}), & \text{if } (i,j) \in \mathcal{A}_{\equiv}^q, \\ z_{i,j}^*(t_q), & \text{otherwise,} \end{cases} \forall (i,j) \in E_m.
$$

Then, we obtain the optimal primal-dual solution pair $(x^*(t_{q+1}), z^*(t_{q+1})) = (x^q(t_{q+1}), \tilde{z}^q(t_{q+1}))$ to problem [\(18\)](#page-7-1) with $t = t_{q+1}$.

Next, it can be easily verified from the construction of \mathcal{A}^{q+1} in [\(41\)](#page-14-0), and the computation steps of t_{q+1} in [\(36\)](#page-13-0) that the new active set \mathcal{A}^{q+1} and the primal-dual pair $(x^*(t_{q+1}), z^*(t_{q+1}))$ are compatible. This, together with [\(38\)](#page-14-1), allows us to perform induction on $q \in \mathbb{N}$ and obtain that for all $q \in \mathbb{N}$, as long as $t_q \neq t^*$, it always holds that \mathcal{A}^q and $(x^*(t_q), z^*(t_q))$ are compatible and

$$
x_{i_m}^*(t_q) - x_{m+1}^*(t_q) > 0.
$$

Therefore, we can iteratively repeat the above searching process, i.e., from $(t_q, x^*(t_q), z^*(t_q), \mathcal{A}^q)$ to $(t_{q+1}, x^*(t_{q+1}), z^*(t_{q+1}), \mathcal{A}^{q+1})$, until t^* is obtained. The details of the search process are summa-rized in Algorithm [2.](#page-15-0) We name it the $update^-$ subroutine, since in this case $t^* < 0$. The procedure corresponding to the case with $t^* > 0$, which we termed as the *update*⁺ subroutine, can be easily adapted from the update[−] subroutine. Details of the update⁺ subroutine can be found in the Appendix.

Before presenting the details of the generate subroutine, we make some key observations about the active set \mathcal{A}^{q+1} in the following lemma.

Lemma 4. For any given $q \in \mathbb{N}$, the following propositions hold:

(a) If $t_{q+1} \neq t^*$, then $\mathcal{A}^{q+1}_{=} \neq \mathcal{A}^{q}_{=}$;

Algorithm 2 $(t_{q+1}, x^*(t_{q+1}), z^*(t_{q+1}), \mathcal{A}^{q+1}, t^*) = \text{update}^-(t_q, x^*(t_q), z^*(t_q), \mathcal{A}^q, \lambda)$

1: **Input**: $(t_q, x^*(t_q), z^*(t_q), \mathcal{A}^q), \lambda \geq 0;$ 2: Compute $\Delta(E_{Bq}), \Delta(\Omega_+^q), \Delta(\Omega_-^q)$ via definitions [\(30\)](#page-12-0), [\(33\)](#page-12-1) and [\(34\)](#page-12-2) 3: $\Delta(\Omega^q) = \max{\{\Delta(\Omega^q_{-}), \Delta(\Omega^q_{+})\}}$ 4: $\Delta t_q = \max\{\Delta(E_{B^q}), \Delta(\Omega^q)\}\$ 5: $\Delta^* = x_i^q$ $\frac{q}{t_m}(t_q + \Delta t_q) - x_{m+1}^q(t_q + \Delta t_q)$ 6: if $\Delta^* \geq 0$ then 7: $t_{q+1} = \max\{t_q + \Delta t_q, -\lambda\}$ 8: else 9: $\Delta \tilde{t}^q = -t_q + \operatorname*{argmin}_{t}$ $\left\{ (\sum_{i\in V_{B^q}}f_i)^*(t+\beta^q)+(f_{m+1}^*)(-t)\right\}$ 10: $t_{q+1} = \max\{t_q + \Delta \tilde{t}^q, -\lambda\}$ 11: end if 12: $(x^*(t_{q+1}), z^*(t_{q+1})) = (x^q(t_{q+1}), \tilde{z}^q(t_{q+1}))$ 13: if $t_{q+1} = -\lambda$ or $x_{i_m}^*(t_{q+1}) = x_{m+1}^*(t_{q+1})$ then $14:$ $t^* = t_{q+1}$ 15: Let $\mathcal{A}^{q+1} = \{(i, j, \#) \mid (i, j) \in E_m, x_i^*(t_{q+1}) \# x_j^*(t_{q+1})\}$ 16: else $17:$ $t^* = \emptyset$ 18: Update \mathcal{A}^{q+1} from \mathcal{A}^q via [\(41\)](#page-14-0) 19: end if 20: **Output**: $(t_{q+1}, x^*(t_{q+1}), z^*(t_{q+1}), \mathcal{A}^{q+1}, t^*)$

(b) If
$$
(i, j) \in \mathcal{M}(E_{Bq})
$$
, then for any $\hat{q} \in \mathbb{N}$ with $\hat{q} > q$ and $t_{\hat{q}} \neq t^*$, $(i, j) \notin \mathcal{A}_{\equiv}^{\hat{q}}$.

Proof. We prove (a) first. If $t_{q+1} \neq t^*$, from [\(38\)](#page-14-1), we have $t_{q+1} = t_q + \Delta t_q > t^*$. Hence, at least one of the two sets, $\mathcal{M}(E_{Bq})$ and $\mathcal{M}(\Omega^q)$, is nonempty. The desired result thus follows since $\mathcal{A}^{q+1}_{\equiv} = (\mathcal{A}^{q+1} \cup \mathcal{M}(\Omega^q)) \backslash \mathcal{M}(E_{B^q})$ and $\mathcal{M}(E_{B^q}) \cap \mathcal{M}(\Omega^q) = \emptyset$.

Next, we prove (b). We first consider the case where $i \triangleleft j$. If $(i, j) \in \mathcal{M}(E_{Bq})$ and $i \triangleleft j$, we see from [\(31\)](#page-12-3), [\(39\)](#page-14-2) and [\(41\)](#page-14-0) that

$$
z_{i,j}^q(t_q + \Delta t_q) = -\lambda_{i,j}, \text{ and } (i,j) \in \mathcal{M}(E_{B^q}^+) \subseteq \mathcal{A}_{>}^{q+1}.
$$

Since $(i, j) \in \mathcal{A}_{>}^{q+1}$, then at least one of i and j is not in B^{q+1} , i.e., $(i, j) \notin E_{B^{q+1}}$. Since $i \triangleleft j$, we have the following two possible cases:

- (i) $j \in B^{q+1}, i \notin B^{q+1}$. In this case we have $(i, j) \in \Omega^{q+1}_-$. Since $(i, j) \in \mathcal{A}^{q+1}_>$, it holds from [\(40\)](#page-14-3) that $(i, j) \notin \mathcal{M}(\Omega^{q+1}_+)$. Thus, [\(41\)](#page-14-0) implies that $(i, j) \in \mathcal{A}_{>}^{q+2}$.
- (ii) $j \notin B^{q+1}$, $i \notin B^{q+1}$. From [\(32\)](#page-12-4), we know that $(i, j) \notin \Omega^{q+1}$. Hence, [\(40\)](#page-14-3) and [\(41\)](#page-14-0) imply that $(i, j) \in \mathcal{A}_{>}^{q+2}.$

Therefore, in both cases, we have $(i, j) \notin \Omega^{q+2}_+$ and $(i, j) \in \mathcal{A}^{q+2}_>$. By induction, we can prove that $(i, j) \notin \Omega_+^{\widehat{q}}$ and $(i, j) \in \mathcal{A}_>^{\widehat{q}}$ for all $\widehat{q} > q$.

Similarly, for the case with $j \triangleleft i$, we can obtain that $(i, j) \notin \Omega^{\hat{q}}$ and $(i, j) \in \mathcal{A}^{\hat{q}}_{\leq}$ for all $\hat{q} > q$. We thus complete the proof.

With the two subroutines $update^-$ and $update^+$ at hand, we are ready to present the details of the *generate* subroutine in Algorithm [3.](#page-16-0) As one can easily observe, the complexity of the *generate* subroutine depends critically on the number of executions of the while-loops (i.e., lines 9-12 and lines 15-18 in Algorithm [3\)](#page-16-0).

Algorithm 3 The generate subroutine: $(x^{(m+1)}, z^{(m+1)}) =$ **generate** $(x^{(m)}, z^{(m)}, G_{m+1})$ 1: Input: $x^{(m)} \in \mathbb{R}^m, z^{(m)} \in \mathbb{R}^{m-1}, G_{m+1} = (V_{m+1}, E_{m+1})$ 2: Let $x_i^*(0) = x_i^{(m)}$ $\sum_{i=1}^{(m)}$ for $i \in V_m$ and $x_{m+1}^*(0) = (f_{m+1}^*)'(0)$ 3: Let $z_{i,j}^*(0) = z_{i,j}^{(m)}$ for $(i,j) \in E_m$ and $t^* = \emptyset$ 4: 5: if $f'_{m+1}(x_{i_m}^*(0)) = 0$ then $6·$ $t^* = 0$ 7: else if $f'_{m+1}(x_{i_m}^*(0)) > 0$ then 8: Let $t_0 = 0$, $\ddot{q} = 0$ and \mathcal{A}^0 be the active set constructed from $x^*(0)$ as in [\(21\)](#page-8-2) 9: while $t^* = \emptyset$ do 10: $(t_{q+1}, x^*(t_{q+1}), z^*(t_{q+1}), \mathcal{A}^{q+1}, t^*) = update^-(t_q, x^*(t_q), z^*(t_q), \mathcal{A}^q, \lambda_{i_m, m+1})$ 11: $q = q + 1$ 12: end while 13: else 14: Let $t_0 = 0$, $q = 0$ and \mathcal{A}^0 be the active set constructed from $x^*(0)$ as in [\(21\)](#page-8-2) 15: while $t^* = \emptyset$ do 16: $(t_{q+1}, x^*(t_{q+1}), z^*(t_{q+1}), \mathcal{A}^{q+1}, t^*) = update^+(t_q, x^*(t_q), z^*(t_q), \mathcal{A}^q, \mu_{i_m, m+1})$ 17: $q = q + 1$ 18: end while 19: end if 20: Let $x^{(m+1)} = x^*(t^*)$, $z_{i,j}^{(m+1)} = z_{i,j}^*(t^*)$ for $(i, j) \in E_m$, and $z_{i_m, m+1}^{(m+1)} = t^*$ 21: Return: $(x^{(m+1)}, z^{(m+1)}) \in \Re^{m+1} \times \Re^m$

Lemma 5. The while-loops executed in the generate subroutine will find t^* in at most $2m - 1$ iterations.

Proof. Without loss of generality, we only consider the case $f'_{m+1}(x_{i_m}^*(0)) > 0$, i.e., $t^* < 0$. Assume that after $2m-2$ times executions of the while-loops, t^* has not been found. That is, the algorithm generates $\{(t_i, x^*(t_i), z^*(t_i), A^i)\}_{i=1}^{2m-2}$ and $t_i > t^*$ for all $i = 0, ..., 2m-2$. From Lemma [4\(](#page-14-4)a), we know that

$$
\mathcal{A}^q_{\equiv} \neq \mathcal{A}^{q+1}_{\equiv}, \quad \forall q = 0, \dots, 2m-3. \tag{42}
$$

Next, we note from Lemma [4\(](#page-14-4)b) that if some edge $(i, j) \in E_m$ is removed from \mathcal{A}_{\equiv}^q for some q, then $(i, j) \notin \mathcal{A}_{\frac{\widehat{q}}{2}}^{\widehat{q}}$ for all $2m-2 \geq \widehat{q} \geq q \geq 0$. Therefore, for each edge $(i, j) \in E_m$, it can be added to and removed from \mathcal{A}_{\equiv}^q for at most once. This, together with [\(42\)](#page-16-1) and the fact that $|E_m| = m - 1$, implies that at t_{2m-2} , every edge in E_m has been added to and removed from some \mathcal{A}_{\pm}^q . Thus, $\mathcal{A}^{2m-2}_{\equiv} = \emptyset$, and the sets $\mathcal{A}^{2m-2}_{\leq}$ and $\mathcal{A}^{2m-2}_{\leq}$ remain unchanged in the next iterations, i.e., $E_{B^q} = \emptyset$, $\Omega^{2m-2}_+ \cap A^{2m-2}_> = \emptyset$ and $\Omega^{2m-2}_- \cap A^{2m-2}_< = \emptyset$. Therefore, we have $\Delta t_{2m-2} = -\infty$ from its definition in [\(35\)](#page-12-5). By [\(36\)](#page-13-0) and Lemma [3,](#page-13-2) we have $t_{2m-1} = t^*$ and complete the proof. \Box

Lemma [5](#page-16-2) guarantees that t^* can be found by the *generate* subroutine efficiently. Along with t^* , the G_{m+1} -optimal pair $(x^{(m+1)}, z^{(m+1)})$, i.e., the output of the *generate* subroutine, is also obtained. We thus naturally obtain the correctness of our Algorithm [1.](#page-6-0)

Theorem [1](#page-6-0). The output $x^{(n)}$ of Algorithm 1 is the optimal solution to problem [\(1\)](#page-0-0).

At the end of this section, we provide a brief analysis of the worst-case complexity of our Algo-rithm [1.](#page-6-0) Here, we assume that for a given strongly convex differentiable function f and $x \in \mathbb{R}$, the computational complexity of finding t such that $f'(t) = x$ is $\mathcal{O}(1)$. Then, the computational complexity of update⁻ (and update⁺) is $\mathcal{O}(m)$. By Lemma [5,](#page-16-2) we see that the computational complexity of the *generate* subroutine is $\mathcal{O}(m^2)$. Therefore, the computational complexity of Algorithm [1](#page-6-0) is $\mathcal{O}(n^3)$.

4 Conclusion

In this paper, we focus on the convex isotonic regression problem [\(1\)](#page-0-0) with tree-induced generalized order restrictions. Inspired by the successes of the PAVA, an efficient active-set based recursive approach, ASRA, is carefully designed to solve [\(1\)](#page-0-0). Under mild assumptions, we show that ASRA has a polynomial time computational complexity.

5 Appendix

5.1 The arborescence assumption on G

For the given $G = (V, E)$ in the formulation of problem [\(1\)](#page-0-0), let $\hat{G} = (V, \hat{E})$ be an arborescence that shares the same underlying graph with G. Therefore, for any $(i, j) \in \widehat{E}$, we have either $(i, j) \in E$ or $(j, i) \in E$. Then, for any $(i, j) \in \widehat{E}$, let

$$
\widehat{\lambda}_{i,j} = \begin{cases} \lambda_{i,j}, & \text{if } (i,j) \in E, \\ \mu_{j,i}, & \text{if } (j,i) \in E, \end{cases} \quad \text{and} \quad \widehat{\mu}_{i,j} = \begin{cases} \mu_{i,j}, & \text{if } (i,j) \in E, \\ \lambda_{j,i}, & \text{if } (j,i) \in E. \end{cases}
$$

It can be easily verified that problem [\(1\)](#page-0-0) is equivalent to the following optimization problem:

$$
\min_{x \in \Re^V} \quad \sum_{i \in V} f_i(x_i) + \sum_{(i,j) \in \widehat{E}} \widehat{\lambda}_{i,j}(x_i - x_j) + \sum_{(i,j) \in \widehat{E}} \widehat{\mu}_{i,j}(x_j - x_i) + \cdots
$$

Hence, we can assume that the directed tree G in [\(1\)](#page-0-0) is an arborescence.

Figure 2: A directed tree G and an arborescence \widehat{G} that share the same underlying graph.

Next, we discuss the decomposition of G. For an arborescence $G = (V, E)$, let $n = |V|$. Without loss of generality, we assume that the node 1 is the root of G , and the nodes in G are arranged such that for any edge $(i, j) \in E$, $i < j$ always holds. Then, we define $G_n = G$, and let $G_{m-1} = (V_{m-1}, E_{m-1})$ be the subgraph of $G_m = (V_m, E_m)$ obtained by deleting the node m and the related edges from G_m , where $n \geq m \geq 2$. Since for any $(i, j) \in E$, it holds that $i < j$, we know that the node m must be a leaf node of G_m , hence, according to [\[23\]](#page-22-8), G_{m-1} is still a directed tree and $G_{m-1} \subset G_m$ for $m = 2, ..., n$. It's easy to verify that $V_m = \{1, 2, ..., m\}$ for $1 \leq m \leq n$, and $\{(i_m, m+1)\}=E_{m+1}\backslash E_m$ with $i_m\in V_m$ for $1\leq m\leq n-1$.

5.2 The update⁺ subroutine

We briefly describe the *update*⁺ subroutine here, which corresponds to the case with $t^* > 0$. Assume that we have obtained a guess t_q of t^* satisfying $0 = t_0 \leq t_q < t^* \leq \mu_{i_m, m+1}$, Meanwhile, the corresponding primal-dual optimal solution pair $(x^*(t_q), z^*(t_q))$ and the active set \mathcal{A}^q are available, such that \mathcal{A}^q and $(x^*(t_q), z^*(t_q))$ are compatible and $x^*_{i_m}(t_q) - x^*_{m+1}(t_q) < 0$. Then, the semi-closed formulas [\(23\)](#page-10-4) and [\(24\)](#page-10-0) for the \mathcal{A}^q -reduced problem in Proposition [2](#page-9-2) still hold.

Here, we need to search

$$
\Delta t_q := \max\{\Delta t \mid (25) \text{ and } (26) \text{ hold for all } t \in [t_q, t_q + \Delta t]\}.
$$

First, let

$$
\Delta(E_{B^q}) = \begin{cases} \min_{(i,j)\in E_{B^q}} \Delta t_{i,j}, & \text{if } E_{B^q} \neq \emptyset, \\ +\infty, & \text{otherwise,} \end{cases}
$$
(43)

where each $\Delta t_{i,j} \geq 0$ solves:

$$
z_{i,j}^q(t_q + \Delta t_{i,j}) = \mu_{i,j}, \quad \text{if } i \leq j, \quad \text{and} \quad z_{i,j}^q(t_q + \Delta t_{i,j}) = -\lambda_{i,j}, \quad \text{if } j \leq i.
$$

Next, let $\Delta(\Omega^q) = \min{\{\Delta(\Omega^q_+) , \Delta(\Omega^q_-)\}}$, where

$$
\Delta(\Omega_+^q) := \begin{cases} \Delta \overline{t} \text{ satisfying } x_{B^q}(t_q + \Delta \overline{t}) = \min_{(i,j) \in \Omega_+^q \cap \mathcal{A}_<^q} x_j^*(t_q), & \text{if } \Omega_+^q \cap \mathcal{A}_<^q \neq \emptyset, \\ +\infty, \text{ otherwise}, \end{cases}
$$
(44)

and

$$
\Delta(\Omega_-^q) := \begin{cases} \Delta \overline{t} \text{ satisfying } x_{B^q}(t_q + \Delta \overline{t}) = \min_{(i,j) \in \Omega_-^q \cap \mathcal{A}_>^q} x_i^*(t_q), & \text{if } \Omega_-^q \cap \mathcal{A}_>^q \neq \emptyset, \\ +\infty, \text{ otherwise.} \end{cases}
$$
(45)

Then, $\Delta t_q = \min{\{\Delta(E_{Bq}), \Delta(\Omega^q)\}}$. Compute $\Delta \tilde{t}_q \ge 0$ via solving x_i^q . $u_{im}^q(t_q + \Delta \widetilde{t}_q) - x_{m+1}^q(t_q + \Delta \widetilde{t}_q) =$ 0, and set

$$
t_{q+1} = \min\{t_q + \Delta t_q, t_q + \Delta t_q, \mu_{i_m, m+1}\}.
$$

If $t_{q+1} < t^*$, we will update the active set \mathcal{A}^{q+1} in the following fashion. Let $\mathcal{M}(E_{B^q}) =$ $\mathcal{M}(E_{B^q}^+) \cup \mathcal{M}(E_{B^q}^-)$ with

$$
\begin{cases} \mathcal{M}(E_{B^q}^+) = \{ (i,j) \in E_{B^q} \mid \Delta t_{i,j} = \Delta t_q, \text{ and } i \triangleleft j \}, \\ \mathcal{M}(E_{B^q}^-) = \{ (i,j) \in E_{B^q} \mid \Delta t_{i,j} = \Delta t_q, \text{ and } j \triangleleft i \}, \end{cases}
$$

and $\mathcal{M}(\Omega^q) = \mathcal{M}(\Omega^q_+) \cup \mathcal{M}(\Omega^q_-)$ with

$$
\begin{cases}\n\mathcal{M}(\Omega_+^q) = \{ (i,j) \in \Omega_+^q \cap \mathcal{A}(t_q) < | x_i^q(t_q + \Delta t_q) = x_j^*(t_q) \}, \\
\mathcal{M}(\Omega_-^q) = \{ (i,j) \in \Omega_-^q \cap \mathcal{A}(t_q) > | x_j^q(t_q + \Delta t_q) = x_i^*(t_q) \}.\n\end{cases}
$$

Then, \mathcal{A}^{q+1} is obtained via

$$
\begin{cases}\n\mathcal{A}_{\equiv}^{q+1} = \left(\mathcal{A}_{\equiv}^{q} \cup \mathcal{M}(\Omega^{q})\right) \setminus \mathcal{M}(E_{B^{q}}), \\
\mathcal{A}_{>}^{q+1} = \left(\mathcal{A}_{\leq}^{q} \cup \mathcal{M}(E_{B^{q}}^{-})\right) \setminus \mathcal{M}(\Omega^{q}_{\perp}), \\
\mathcal{A}_{<}^{q+1} = \left(\mathcal{A}_{<}^{q} \cup \mathcal{M}(E_{B^{q}}^{+})\right) \setminus \mathcal{M}(\Omega^{q}_{+}).\n\end{cases}
$$
\n(46)

We summarize the $update^+$ subroutine in Algorithm [4.](#page-19-0)

Algorithm 4 $(t_{q+1}, x^*(t_{q+1}), z^*(t_{q+1}), \mathcal{A}^{q+1}, t^*) = \text{update}^+(t_q, x^*(t_q), z^*(t_q), \mathcal{A}^q, \mu)$ 1: **Input**: $(t_q, x^*(t_q), z^*(t_q), \mathcal{A}^q), \mu \geq 0;$ 2: Compute $\Delta(E_{Bq}), \Delta(\Omega_+^q), \Delta(\Omega_-^q)$ via definitions [\(43\)](#page-18-0), [\(44\)](#page-18-1) and [\(45\)](#page-18-2) 3: $\Delta(\Omega^q) = \min\{\Delta(\Omega^q_{-}), \Delta(\Omega^q_{+})\}$ 4: $\Delta t_q = \min\{\Delta(E_{B^q}), \Delta(\Omega^q)\}\$ 5: $\Delta^* = x_i^q$ $\hat{u}_m(t_q + \Delta t_q) - x_{m+1}^q(t_q + \Delta t_q)$ 6: if Δ^* ≤ 0 then 7: $t_{q+1} = \min\{t_q + \Delta t_q, \mu\}$ 8: else 9: $\Delta t_q = -t_q + \operatorname*{argmin}_t$ $\left\{ (\sum_{i\in V_{B^q}}f_i)^*(t+\beta^q)+(f_{m+1}^*)(-t)\right\}$ 10: $t_{q+1} = \min\{t_q + \Delta \widetilde{t}_q, \mu\}$ 11: end if 12: $(x^*(t_{q+1}), z^*(t_{q+1})) = (x^q(t_{q+1}), \tilde{z}^q(t_{q+1}))$ 13: if $t_{q+1} = \mu$ or $x_{i_m}^*(t_{q+1}) = x_{m+1}^*(t_{q+1})$ then $14:$ $t^* = t_{q+1}$ 15: Let $\mathcal{A}^{q+1} = \{(i, j, \#) \mid (i, j) \in E_m, x_i^*(t_{q+1}) \# x_j^*(t_{q+1})\}\$ 16: else $17:$ $t^* = \emptyset$ 18: Update \mathcal{A}^{q+1} from \mathcal{A}^q via [\(46\)](#page-19-1) 19: end if 20: **Output:** $(t_{q+1}, x^*(t_{q+1}), z^*(t_{q+1}), \mathcal{A}^{q+1}, t^*)$

5.3 An illustration of the ASRA

We provide an example of applying the ASRA for solving problem [\(1\)](#page-0-0). Let $G = (V, E)$ be the directed tree shown in Figure [3a,](#page-20-0) where $V = \{1, 2, 3, 4, 5\}$ and $E = \{(1, 2), (1, 3), (3, 4), (3, 5)\}$. Let

$$
f_i(x_i) = \frac{1}{2}(x_i - y_i)^2
$$
 for $i = 1, ..., 4$, where $y = (4, 2, 2, 8) \in \mathbb{R}^4$, and $f_5(x_5) = x_5^2 + \frac{1}{4}x_5^4$,

and we set the regularization parameters as follows:

$$
(\lambda_{1,2}, \mu_{1,2}) = (+\infty, 0), (\lambda_{1,3}, \mu_{1,3}) = (0, +\infty), (\lambda_{3,4}, \mu_{3,4}) = (0, 4), \text{ and } (\lambda_{3,5}, \mu_{3,5}) = (3, 3).
$$

Figure 3: An example of applying the ASRA for solving problem [\(1\)](#page-0-0) with given $G = (V, E)$. The first subfigure represents the directed tree $G = (V, E)$, and the remaining five subfigures are the illustrations of the G_m -optimal pairs for $m = 1, 2, 3, 4, 5$, where the values of x_i for $i \in V$ are presented within the circles while the values of $z_{i,j}$ for $(i, j) \in E$ are presented above the edges.

The detailed steps of the ASRA are given below:

- (i) First, we initialize with $x_1^{(1)} = 4$.
- (ii) Since $(f_2^*)'(x_1^{(1)})$ $t_1^{(1)} > 0$, it holds that $t^* \leq 0$. We start from $t_0 = 0$ and terminate at $t^* = t_1 = -1$. Then, the G₂-optimal pair $(x^{(2)}, z^{(2)})$ is $x^{(2)} = (3, 3)$ and $z_{1,2}^{(2)} = -1$.
- (iii) Since $(f_3^*)'(x_1^{(2)})$ $t^{(2)}$ > 0, we have $t^* \leq 0$. Here, we have $t^* = t_0 = -\lambda_{1,3} = 0$. The corresponding G_3 -optimal pair $(x^{(3)}, z^{(3)})$ is $x^{(3)} = (3, 3, 2)$, and $z_{1,2}^{(3)} = -1, z_{1,3}^{(3)} = 0$.
- (iv) Since $(f_4^*)'(x_3^{(3)})$ $\binom{3}{3}$ < 0, it holds that $t^* \geq 0$. Starting at $t_0 = 0$, we first arrive at $t_1 = 1$, and modify the corresponding active set, i.e., replace $(2,3,>)$ with $(2,3,=)$, then continue the searching of t^* . We terminate at $t^* = t_2 = 4$. Therefore, the G_4 -optimal pair $(x^{(4)}, z^{(4)})$ is $x^{(4)} = (4, 4, 4, 4)$, and $z_{1,2}^{(4)} = -2, z_{1,3}^{(4)} = 2, z_{3,4}^{(4)} = 4$.
- (v) Since $(f_5^*)'(x_3^{(4)})$ $\binom{4}{3}$ > 0, we have $t^* \leq 0$. Starting from $t_0 = 0$, we first arrive $t_1 = 0$ and replace $(3, 4, =)$ with $(3, 4, <)$ in the corresponding active set. Then, we terminate the searching at $t^* = t_2 = -3$, and the G_5 -optimal pair $(x^{(5)}, z^{(5)})$ is $x^{(5)} = (3, 3, 3, 4, 1)$, and $z^{(5)}_{1,2} = -1$, $z^{(5)}_{1,3} =$ $0, z_{3,4}^{(5)} = 4, z_{3,5}^{(5)} = -3.$

Thus, the optimal solution to problem [\(1\)](#page-0-0) is $x^* = (3,3,3,4,1)$. An illustration of the above procedure is presented in Figure [3.](#page-20-0)

References

- [1] M. Ayer, H. D. Brunk, G. M. Ewing, W. T. Reid, and E. Silverman, An empirical distribution function for sampling with incomplete information, Annals of Mathematical Statistics, 26 (1955), pp. 641–647.
- [2] A. BARBERO AND S. SRA, Modular proximal optimization for multidimensional totalvariation regularization, Journal of Machine Learning Research 19 (2018), pp. 1–82.
- [3] D. BERTSIMAS AND J. N. TSITSIKLIS, *Introduction to Linear Optimization*, Athena Scientific, MA, 1997.
- [4] M. J. BEST AND N. CHAKRAVARTI, Active set algorithms for isotonic regression: a unifying framework, Mathematical Programming 47 (1990), pp. 425–439.
- [5] M. J. Best, N. Chakravarti, and V. A. Ubhaya, Minimizing separable convex functions subject to simple chain constraints, SIAM Journal on Optimization, 10 (2000), pp. 658–672.
- [6] H. D. Brunk, Maximum likelihood estimates of monotone parameters, Annals of Mathematical Statistics, 26 (1955), pp. 607–616.
- [7] N. Chakravarti, Isotonic median regression: a linear programming approach, Mathematics of Operation Research, 14 (1989), pp. 303–308.
- [8] N. Chakravarti, Isotonic median regression for orders representable by rooted trees, Naval Research Logistics, 39 (1992), pp. 599–611.
- [9] X. CHANG, Y.-L. YU, Y. YANG, AND E. P. XING, Semantic pooling for complex event analysis in untrimmed videos, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (2016), pp. 1617–1732.
- [10] L. CONDAT, A direct algorithm for 1D total variation denoising, IEEE Signal Processing Letters, 20 (2013), pp. 1054–1057.
- [11] N. Deo, Graph theory with applications to engineering and computer science, Prentice Hall, NJ, 1974.
- [12] M. Frisen, Unimodal regression, The Statistician, 35 (1986), pp. 479–485.
- [13] C. Lu AND D. S. HOCHBAUM, A unified approach for a 1D generalized total variation problem, Mathematical Programming, 194 (2022), pp. 415–442.
- [14] H. HOEFLING, A path algorithm for the fused lasso signal approximator, Journal of Computational and Graphical Statistics, 19 (2010), pp. 984–1006.
- [15] V. Kolmogorov, T. Pock, and M. Rolinek, Total varaition on a tree, SIAM Journal of Imaging Sciences, 9 (2016), pp. 605–636.
- [16] I. Matyasovszky, Estimating red noise spectra of climatological time series, Quarterly Journal of the Hungarian Meteorological Service, 117 (2013), pp. 187–200.
- [17] A. Restrepo and A. C. Bovik, Locally monotonic regression, IEEE Transactions on Signal Processing, 41 (1993), pp. 2796–2810.
- [18] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
- [19] Y. U. Ryu, R. Chandrasekaran, and V. Jacob, Prognosis using an isotonic prediction technique, Management Science, 50 (2004), pp. 777–785.
- [20] M. J. Silvapulle and P. K. Sen, Constrained Statistical Inference: Inequality, Order and Shape Restrictions, John Wiley & Sons, 2005.
- [21] Q. F. STOUT, Unimodal regression via prefix isotonic regression, Computational Statistics & Data Analysis, 53 (2008), pp. 289–297.
- [22] R. TIBSHIRANI, H. HÖEFLING, AND R. TIBSHIRANI, Nearly-isotonic regression, Technometrics, 53 (2011), pp. 54–61.
- [23] D. B. West, Intorduction to Graph Theory, 2nd edition, Upper Saddle River: Prentice hall, 2001.
- [24] C. WU, J. THAI, S. YADLOWSKY, A. POZDNOUKHOV, AND A. BAYEN, Cellpath: Fusion of cellular and traffic sensor data for route flow estimation via convex optimization, Transportation Research Part C: Emerging Technologies, 59 (2015), pp. 111–128.
- [25] Y.-L. Yu and E. P. Xing, Exact algorithms for isotonic regression and related, Journal of Physics: Conference Series 699, 2016.
- [26] Z. Yu, X. Chen, and X. D. Li, A dynamic programming approach for generalized nearly isotonic regression , Mathematical Programming Computation, 15 (2023), pp. 195–225.