
ar
X

iv
:1

10
6.

59
08

v1
 [

cs
.D

C
]

 2
9

Ju
n

20
11

Hybrid-parallel sparse matrix-vector

multiplication with explicit communication

overlap on current multicore-based systems

Gerald Schubert, Holger Fehske

Institute of Physics, University of Greifswald

Felix-Hausdorff-Str. 6, 17487 Greifswald, Germany

Georg Hager, Gerhard Wellein

Erlangen Regional Computing Center, University of Erlangen-Nuremberg

Martensstr. 1, 91058 Erlangen, Germany

June 14, 2011

Abstract

We evaluate optimized parallel sparse matrix-vector operations for several repre-
sentative application areas on widespread multicore-based cluster configurations. First
the single-socket baseline performance is analyzed and modeled with respect to ba-
sic architectural properties of standard multicore chips. Beyond the single node, the
performance of parallel sparse matrix-vector operations is often limited by communi-
cation overhead. Starting from the observation that nonblocking MPI is not able to
hide communication cost using standard MPI implementations, we demonstrate that
explicit overlap of communication and computation can be achieved by using a dedi-
cated communication thread, which may run on a virtual core. Moreover we identify
performance benefits of hybrid MPI/OpenMP programming due to improved load bal-
ancing even without explicit communication overlap. We compare performance results
for pure MPI, the widely used “vector-like” hybrid programming strategies, and explicit
overlap on a modern multicore-based cluster and a Cray XE6 system.

1 Introduction

Many problems in science and engineering involve the solution of large eigenvalue problems
or extremely sparse systems of linear equations arising from, e.g., the discretization of par-
tial differential equations. Sparse matrix-vector multiplication (spMVM) is the dominant
operation in many of those solvers and may easily consume most of the total run time.
A highly efficient scalable spMVM implementation is thus fundamental, and complements
advancements and new development in the high-level algorithms.

For more than a decade there has been an intense debate about whether the hierarchical
structure of current HPC systems needs to be considered in parallel programming, or if pure
MPI is sufficient. Hybrid approaches based on MPI+OpenMP have been implemented in
codes and kernels for various applications areas and compared with traditional MPI imple-
mentations. Most results are hardware-specific, and sometimes contradictory. In this paper
we analyze hybrid MPI+OpenMP variants of a general parallel spMVM operation. Beyond
the naive approach of using OpenMP for parallelization of kernel loops (“vector mode”) we
also employ a hybrid “task mode” to overcome or mitigate a weakness of standard MPI
implementations: the lack of truly asynchronous communication in nonblocking MPI calls.
We test our implementation against pure MPI approaches for two application scenarios on
an InfiniBand cluster as well as a Cray XE6 system.

1

http://arxiv.org/abs/1106.5908v1

Listing 1: CRS sparse matrix-vector multiplication kernel

1 do i = 1,Nr

2 do j = row_ptr (i), row_ptr (i+1) - 1

3 C(i) = C(i) + val(j) * B(col_idx(j))

4 enddo

5 enddo

1.1 Related work

In recent years the performance of various spMVM algorithms has been evaluated by several
groups [1, 2, 3]. Covering different matrix storage formats and implementations on various
types of hardware, they have reviewed a more or less large number of publicly available
matrices and reported on the obtained performance. Scalable parallel spMVM implementa-
tions have also been proposed [4, 5], mostly based on an MPI-only strategy. Hybrid parallel
spMVM approaches have already been devised before the emergence of multicore proces-
sors [6, 7]. Recently a “vector mode” approach could not compete with a scalable MPI
implementation for a specific problem on a Cray system [4]. There is no up-to-date literature
that systematically investigates novel features like multicore, ccNUMA node structure, and
simultaneous multithreading (SMT) for hybrid parallel spMVM.

1.2 Sparse matrix-vector multiplication and node-level performance

model

A possible definition of a “sparse” matrix is that the number of its nonzero entries grows
only linearly with the matrix dimension; however, not all problems are easily scaled, so in
general a sparse matrix may be defined to contain “mainly” zero entries. Since keeping
such a matrix in computer memory with all zeros included is usually out of the question,
an efficient format to store the nonzeros only is required. The most widely used variant is
“Compressed Row Storage” (CRS) [8]. It does not exploit specific features that may emerge
from the underlying physical problem like, e.g., block structures, symmetries, etc., but is
broadly recognized as the most efficient format for general sparse matrices on cache-based
microprocessors. All nonzeros are stored in one contiguous array val(:), row by row, and the
starting offsets of all rows are contained in a separate array row_ptr(:). Array col_idx(:)

contains the original column index of each matrix entry. A matrix-vector multiplication with
a right-hand-side (RHS) vector B(:) and a result vector C(:) can then be written as shown
in Listing 1. Here Nr is the number of matrix rows. While arrays C(:) and val(:) are
traversed contiguously, access to B(:) is indexed and may potentially cause very low spatial
and temporal locality in this data stream.

The performance of spMVM operations on a single compute node is often limited by main
memory bandwidth. Code balance [9] is thus a good metric to establish a simple performance
model. We assume the average length of the inner (j) loop to be Nnzr = Nnz/Nr, where Nnz

is the total number of nonzero matrix entries. Then the contiguous data accesses in the CRS
code generate (8 + 4 + 16/Nnzr) bytes of memory traffic for a single inner loop iteration,
where the first two contributions come from the matrix val(:) (8 bytes) and the index
array col_idx(:) (4 bytes), while the last term reflects the update of C(i) (write allocate
+ evict). The indirect access pattern to B(:) is determined by the sparsity structure of the
matrix and can not be modeled in general. However, B(:) needs to be loaded at least once
from main memory, which adds another 8/Nnzr bytes per inner iteration. Limited cache size
and nondiagonal access typically require loading at least parts of B(:) multiple times in a
single MVM. This is quantified by a machine- and problem-specific parameter κ: For each
additional time that B(:) is loaded from main memory, κ increases by 8/Nnzr. Together with
the computational intensity of 2 flops per j iteration the code balance is

BCRS =

(

12 + 24/Nnzr + κ

2

)

bytes

flop
=

(

6 +
12

Nnzr

+
κ

2

)

bytes

flop
. (1)

2

(b)(a) (c)

occupancy
subblock

10 −1

10 −2

10 −3

10 −4

10 −5

10 −6

0.5
N =160 222 796

N= 22 786 800
nz

sAMG

N= 6 201 600

N =92 527 872nz

HMEp
N =92 527 872

N= 6 201 600
nz

HMeP
N =92 527 872

N= 6 201 600
nz

HMrcm

N= 4 497 520

N = 552 324 672nz

UHBR

(d) (e)

Figure 1: Sparsity patterns of the matrices described in Sect. 1.3.1. (a)–(c) describe the same
physical system, but use a different numbering of the basis elements. See text for details.
Square subblocks have been aggregated and color-coded according to occupancy to improve
visibility.

On the node level BCRS can be used to determine an upper performance limit by measuring
the node memory bandwidth (e.g., using the STREAM benchmark) and assuming κ = 0.
Moreover, κ can be determined experimentally from the spMVM floating point performance
and the memory bandwidth drawn by the CRS code (see Sect. 2). Since the “slimmest”
matrices used here have Nnzr ≈ 7 . . . 15, each additional access to B(:) incurs a nonnegligible
contribution to the data transfer in those cases.

Note that this simple model neglects performance-limiting aspects beyond bandwidth
bottlenecks like in-cache transfer time, load imbalance, communication and/or synchroniza-
tion overhead, and the adverse effects of nonlocal memory access across ccNUMA locality
domains (LDs).

1.3 Experimental setting

1.3.1 Test matrices

Since the sparsity pattern may have substantial impact on the single node performance and
parallel scalability, we have chosen three application areas known to generate extremely
sparse matrices.

As a first test case we use a matrix from exact diagonalization of strongly correlated
electron-phonon systems in solid state physics. Here generic microscopic models are used to
treat both charge (electrons) and lattice (phonons) degrees of freedom in second quantiza-
tion. Choosing a finite-dimensional basis set, which is the direct product of basis sets for
both subsystems (electrons ⊗ phonons), the generic model can be represented by a sparse
Hamiltonian matrix. Iterative algorithms such as Lanczos or Jacobi-Davidson are used to
compute low-lying eigenstates of the Hamilton matrices, and more recent methods based on
polynomial expansion allow for computation of spectral properties [10] or time evolution of
quantum states [11]. In all those algorithms, spMVM is the most time-consuming step.

3

Q
P

I

P

L1D

L2

P

L1D

L2

P

L1D

L2

P

L1D

L2

P

L1D

L2

P

L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

L3

Memory Interface

Memory

L3

Memory Interface

Memory

(a) Intel dual Westmere node
with two NUMA locality do-
mains

cHT 16x

cHT 8x

C
o

h
er

en
t

H
yp

er
T

ra
n

sp
o

rt
 (

16
x+

8x
) C

o
h

eren
t H

yp
erT

ran
sp

o
rt (16x+8x)

P

L1D

L2

P

L1D

L2

P

L1D

L2

P

L1D

L2

P

L1D

L2

P

L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

P

L1D

L2

P

L1D

L2

P

L1D

L2

P

L1D

L2

P

L1D

L2

P

L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

P
L1D

L2

L3

Memory Interface

L3

Memory Interface

Memory

Memory

L3

Memory Interface

L3

Memory Interface

Memory

Memory

(b) Cray XE6/AMD dual Magny Cours node with four NUMA locality
domains

Figure 2: Node topology of the benchmark systems. Dashed boxes indicate sockets.

In this paper we consider the Holstein-Hubbard model (cf. [12] and references therein)
and choose six electrons (subspace dimension 400) on a six-site lattice coupled to 15 phonons
(subspace dimension 1.55× 104). The resulting matrix of dimension 6.2× 106 is very sparse
(Nnzr ≈ 15) and can have two different sparsity patterns, depending on whether the phononic
or the electronic basis elements are numbered contiguously (see Figs. 1 (a) and (b), respec-
tively). We also applied the well-known “Reverse Cuthill-McKee (RCM)” algorithm [13] to
the Hamilton matrix in order to improve spatial locality in the access to the right hand
side vector, and to optimize interprocess communication patterns towards near-neighbor ex-
change. Since the RCM-optimized structure (Fig. 1 (c)) showed no performance advantage
over the HMeP variant (Fig. 1 (b)) neither on the node nor on the highly parallel level, we
will not consider RCM any further in the following.

The second matrix was generated by the adaptive multigrid code sAMG (see [14, 15], and
references therein) for the irregular discretization of a Poisson problem on a car geometry.
Its matrix dimension is 2.2× 107 with an average of Nnzr ≈ 7 entries per row (see Fig. 1 (d)).

The UHBR matrix (see Fig. 1 (e)) originates from aeroelastic stability investigations of
an ultra-high bypass ratio (UHBR) turbine fan of the German Aerospace Center (DLR) with
a linearized Navier-Stokes solver [16]. This solver is part of the parallel simulation system
TRACE (Turbo-machinery Research Aerodynamic Computational Environment) which was
developed by DLR’s Institute for Propulsion Technology. Its matrix dimension is 4.5 × 106

with an average of Nnzr ≈ 123 entries per row, making it a rather ‘densely populated’ sparse
matrix in comparison to the other test cases.

For symmetric matrices as considered here it would be sufficient to store the upper tri-
angular matrix elements and perform, e.g., a parallel symmetric CRS spMVM [4]. The data
transfer volume is then reduced by almost a factor of two, allowing for a corresponding per-
formance improvement. We do not use this optimization here for two major reasons. First,
the discussion of the hybrid parallel vs. MPI-only implementation should not be restricted
to the special case of explicitly symmetric matrices. Second, an efficient shared-memory
implementation of a symmetric CRS spMVM base routine has been presented only very
recently [17].

1.3.2 Test machines

Intel Nehalem EP / Westmere EP The two Intel platforms represent a “tick” step
within Intel’s “tick-tock” product strategy. Both processors only differ in a few microarchi-
tectural details; the most important difference is that Westmere, due to the 32 nm production
process, accommodates six cores per socket instead of four while keeping the same L3 cache
size per core (2MB) as Nehalem. The processor chips (Xeon X5550 and X5650) used for the
benchmarks run at 2.66GHz base frequency with “Turbo Mode” and Simultaneous Multi-

4

0.91
1.50

1.95 2.25

4.29

1 2 3 4 1 node
0

1

2

3

4

5

6

pe
rf

or
m

an
ce

 [G
F

lo
p/

s]

performance spMVM (HMeP)

0

10

20

30

40

ba
nd

w
id

th
 [G

B
/s

]

bandwidth STREAM:Triad
bandwidth spMVM (HMeP)

cores

(a) Intel Nehalem EP

1 2 3 4 5 6 1 AMD
socket

1 node
0

1

2

3

4

5

6

7

8

9

pe
rf

or
m

an
ce

 [G
F

lo
p/

s]

performance spMVM (HMeP -- Westmere)
performance spMVM (HMeP -- MagnyCours)

0

10

20

30

40

50

ba
nd

w
id

th
 [G

B
/s

]

bandwidth STREAM:Triad (Westmere)
bandwidth STREAM:Triad (MagnyCours)

cores

(b) Intel Westmere EP and AMD Magny Cours

Figure 3: Node-level performance for the test systems. Effective STREAM triads
bandwidtha, and performance for spMVM using the HMeP matrix (bars) is shown. In (a)
we also report the measured memory bandwidth for the spMVM operation.

threading (SMT) enabled. A single socket forms its own ccNUMA LD via three DDR3-1333
memory channels (see Fig. 2 (a)), allowing for a peak bandwidth of 32GB/s. We use standard
dual-socket nodes that are connected via fully nonblocking QDR InfiniBand (IB) networks.
The Intel compiler in version 11.1 and the Intel MPI library in version 4.0.1 were used
throughout. Thread-core affinity was controlled with the LIKWID [18] toolkit.

Cray XE6 / AMD Magny Cours The Cray XE6 system is based on dual-socket nodes
with AMD Magny Cours 12-core processors (2.1GHz Opteron 6172) and the latest Cray
“Gemini” interconnect. The internode bandwidth of the 2D torus network is beyond the
capability of QDR InfiniBand. The single node architecture depicted in Fig. 2(b) reveals
a unique feature of the AMD Magny Cours chip series: The 12-core package comprises
two 6-core chips with separate L3 caches and memory controllers, tightly bound by “1.5”
HyperTransport (HT) 16x links. Each 6-core unit forms its own NUMA LD via two DDR3-
1333 channels, i.e., a two-socket node comprises four NUMA locality domains. In total the
AMD design uses eight memory channels, allowing for a theoretical main memory bandwidth
advantage of 8/6 over a Westmere node. The Cray compiler in version 7.2.8 was used for the
Cray/AMD measurements.

In Sect. 3.1 we also show MPI performance results for an older Cray XT4 system based
on AMD Opteron “Barcelona” processors.

2 Node-level performance analysis

The basis for each parallel program must be an efficient single core/node implementation.
Assuming general sparse matrix structures, the CRS format presented above is very suitable
for modern cache-based multicore processors [19]. Even advanced machine-specific optimiza-
tions such as nontemporal prefetch instructions for Opteron processors provide only minor
benefits [4] and are thus not considered here. A simple OpenMP parallelization of the outer-
most loop, together with an appropriate NUMA-aware data placement strategy has proven
to provide best node-level performance. We choose the HMeP, HMEp, and UHBR matrices
as reference cases for our performance model.

Intrasocket and intranode spMVM scalability should always be discussed together with ef-
fective STREAM triad numbers, which form a practical upper bandwidth limit.1 Figure 3 (a)
shows the memory bandwidth on the Nehalem EP platform drawn by the STREAM triad

1Nontemporal stores have been suppressed in the STREAM measurements and the bandwidth numbers
reported have been scaled appropriately (×4/3) to account for the write-allocate transfer.

5

and the spMVM as measured with LIKWID [18]. While the STREAM bandwidth soon sat-
urates within a socket, the spMVM bandwidth and the corresponding GFlop/s numbers still
benefit from the use of all cores. This is a typical behavior for codes with (partially) irregular
data access patterns. However, the fact that more than 85% of the STREAM bandwidth
can be reached with spMVM indicates that our CRS implementation makes good use of the
resources. The maximum spMVM performance can be estimated by dividing the memory
bandwidth by the code balance (1), using Nnzr = 15 and κ = 0. For a single socket the sp-
MVM draws 18.1GB/s (STREAM triads: 21.2GB/s), allowing for a maximum performance
of 2.66GFlop/s (3.12GFlop/s). Combining the measured performance (2.25GFlop/s) and
bandwidth of the spMVM operation with BCRS(κ) we find κ = 2.5, i.e., 2.5 additional bytes
of memory traffic on B(:) per inner loop iteration (37.3 bytes per row) are required due to
limited cache capacity. Thus the complete vector B(:) is loaded six times from main memory
to cache, but each element is used Nnzr = 15 times on average. This ratio gets worse if the
matrix bandwidth increases. For the HMEp matrix we found κ = 3.79, which translates
to a 50% increase in the additional data transfers for B(:). The code balance implies a
performance drop of about 10%, which is consistent with our measurements.

The UHBR matrix represents an interesting case, since the average number of nonzeros
per row is Nnzr ≈ 123. At a measured spMVM bandwidth of 18.9GB/s and a performance
of 2.99GFlop/s per socket we arrive at κ = 0.43, which means that each element of the
RHS is loaded 8 times; however, it is used 123 times, which leads to the conclusion that the
contribution of the RHS to the memory traffic is minor. We have included this example here
because it shows that the data transfer for the RHS may be negligible even if it is loaded
many times —Nnzr plays a decisive role. Nevertheless, since this matrix shows perfect scaling
in the highly parallel case we will not discuss it any further in this work.

In Fig. 3 (b) we summarize the performance characteristics for Intel Westmere and AMD
Magny Cours, which both comprise six cores per locality domain. While the AMD system
is slower on a single LD, its node-level performance is about 25% higher than on Westmere
due to its four LDs per node. Within the domains spMVM saturates at four cores on both
architectures, leaving ample room to use the remaining cores for other tasks, like communi-
cation (see Sect. 3.5). In the following we will report results for the Westmere and Magny
Cours platforms only.

3 Distributed-memory parallelization

3.1 Nonblocking point-to-point communication in MPI

Strong scaling of MPI-parallel spMVM is inevitably limited by communication overhead.
Hence, it is vital to find ways to hide communication costs as far as possible. A widely used
approach is to employ nonblocking point-to-point MPI calls for overlapping communication
with useful work. However, it has been known for a long time that most MPI implementations
support progress, i.e., actual data transfer, only when MPI library code is executed by the
user process, although the hardware even on standard InfiniBand-based clusters does not
hinder truly asynchronous point-to-point communication.2

Very simple benchmark tests can be used to find out whether the nonblocking point-to-
point communication calls in an MPI library do actually support truly asynchronous transfers.
Listing 2 (adapted from [9]) shows an example where an MPI_Irecv() operation is set off
before a function (do_work()) performs register-only operations for a configurable amount
of time. If the nonblocking message transfer overlaps with computations, the overall runtime
of the code will be constant as long as the time for computation is smaller than the time for
message transfer. We have used a constant large message length of 80MB to get accurate
measurements. Note that the results of such tests may depend crucially on tunable parame-
ters like, e.g., the message size for the cross-over from an “eager” to a “rendezvous” protocol,
especially for small messages. For the application scenarios described later, most messages

2In fact, dedicated “offload” communication hardware was not unusual in historic supercomputer archi-
tectures, the Intel Paragon of the early 1990s being a typical example.

6

Listing 2: A simple benchmark to determine the capability of the MPI library to perform
asynchronous nonblocking point-to-point communication for large messages (receive variant).

1 if(rank ==0) {

2 stime = MPI_Wtime ();

3 MPI_Irecv(rbuf,mcount,MPI_DOUBLE,1,0,MPI_COMM_WORLD,&req);

4 do_work(calctime);

5 MPI_Wait(req, &status);

6 etime = MPI_Wtime ();

7 cout << calctime << " " << etime -stime << endl;

8 } else MPI_Send(sbuf,mcount,MPI_DOUBLE,0,0,MPI_COMM_WORLD);

are still beyond such limits. Figure 4 shows overall runtime versus time for computation on
the Intel Westmere cluster and the Cray XT4/XE6 systems, respectively. We only report in-
ternode results, since no current MPI implementation on any system supports asynchronous
nonblocking intranode communication.

On the Intel cluster we compared three different MPI implementations: Intel MPI, Open-
MPI, and MVAPICH2. The latter was compiled with the --enable-async-progress flag.
OpenMPI 1.5 supports a similar setting, but it is documented to be still under development
in the current version (1.5.3), and we were not able to produce a stable configuration with
progress threads activated. The results show that only OpenMPI (even without progress
threads explicitly enabled) was capable of asynchronous nonblocking communication, albeit
only when sending data via a nonblocking send. The nonblocking receive is not asynchronous,
however.

Comparing the Cray XT4 and XE6 systems, it is striking that only the older XT4 has an
MPI implementation that supports asynchronous nonblocking transfers for large messages.

In summary, one must conclude that the naive assumption that “nonblocking” and “asyn-
chronous” are the same thing cannot be upheld for most current MPI implementations; as
a consequence, overlapping computation with communication is often a matter of explicit
programming.

3.2 MPI-parallel sparse MVM

In the following sections we will contrast the “naive” overlap via nonblocking MPI with an
approach that uses a dedicated OpenMP thread for explicitly asynchronous transfers. We
adopt the nomenclature from [6] and [9] and distinguish between “vector mode” and “task
mode.”

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
calc time [s]

0

0.02

0.04

0.06

0.08

0.1

0.12

ov
er

al
l t

im
e

[s
]

OpenMPI 1.5 ISend
OpenMPI 1.5 IRecv
Intel MPI 4.0.1
mvapich 2.1.6
Cray XT4
Cray XE6

Figure 4: Internode re-
sults for the nonblock-
ing MPI benchmark on
the Westmere-based test
cluster and on Cray XT4
and XE6 systems. Un-
less indicated otherwise,
results for nonblocking
send and receive are al-
most identical.

7

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

irir

th
re

ad
s

N−1

0

b) vector mode with naive overlap

th
re

ad
s

0

N−1

time

th
re

ad
s

0

N−1

time

c) task mode with explicit overlap

a) vector mode without overlap

time

S
pM

V
M

 o
f l

oc
al

 e
le

m
en

ts

S
pM

V
M

: n
on

lo
ca

l e
le

m
en

ts

el
em

en
ts

 to
 b

e
tr

an
sf

er
re

d

lo
ca

l g
at

he
r

(c
op

y)
 o

f

S
pM

V
M

: l
oc

al
 e

l.

lo
ca

l g
at

he
r

(c
op

y)
 o

f

el
em

en
ts

 to
 b

e
tr

an
sf

.

omp_barrieromp_barrier

S
pM

V
M

: n
on

lo
ca

l e
l.

Isend
MPI_

Waitall
MPI_

Irecv
MPI_

Waitall
MPI_ S

pM
V

M
 o

f a
ll

el
em

en
ts

el
em

en
ts

 to
 b

e
tr

an
sf

er
re

d

lo
ca

l g
at

he
r

(c
op

y)
 o

f
MPI_
Irecv Isend

MPI_

MPI_
Irecv

MPI_
Isend

MPI_
Waitall

nlwalccs

post of MPI_IRecvir

local gather (copy) & sendcs

ca calculation: all elements

lc calculation: local elements

cp pure copy

pr parallel region

cs wa ca

cp nlpr

MPI_Waitallwa

nl calculation: nonlocal el.

Figure 5: Schematic timeline view of the implemented hybrid kernel versions: (a) no com-
munication/calculation overlap, (b) naive overlap using nonblocking MPI, and (c) explicit
overlap by a dedicated communication thread. The abbreviations in the top bars indicate
the individual contributions that will be discussed in the following sections.

MPI parallelization of spMVM is generally done by distributing the nonzeros (or, alter-
natively, the matrix rows), the right hand side vector B(:), and the result vector C(:) evenly
across MPI processes. Due to off-diagonal nonzeros, every process requires some parts of
the RHS vector from other processes to complete its own chunk of the result, and must send
parts of its own RHS chunk to others. Note that it is generally difficult to establish good load
balancing for computation and communication at the same time. Unless indicated otherwise
we use a balanced distribution of nonzeros across the MPI processes here. At a given number
of processes, the resulting communication pattern depends only on the sparsity structure, so
the necessary bookkeeping needs to be done only once. The actual spMVM computations
can be performed either by a single thread or, if threading is available, by multiple threads
inside the MPI process.

3.3 Vector-like parallelization: Vector mode without overlap

Gathering the data to be sent by a process into a contiguous send buffer may be done after the
receive has been initiated, potentially hiding the cost of copying (see Fig. 5 (a)). We call this
naive approach “hybrid vector mode,” since it strongly resembles the programming model for
vector-parallel computers [6]: The time-consuming (although probably parallel) computation
step does not overlap with communication overhead. This is actually how “MPI+OpenMP
hybrid programming” is still defined in most publications. The question whether and why
using multiple threads per MPI process may improve performance compared to a pure MPI

8

version on the same hardware is not easy to answer. Depending on the problem, different
aspects come into play, and there is no general rule [20].

3.4 Vector-like parallelization: Vector mode with naive overlap

As an alternative one may consider hybrid vector mode with nonblocking MPI (see Fig. 5 (b))
to potentially overlap communication with the part of spMVM that can be completed using
local RHS elements only. After the nonlocal elements have been received, the remaining
spMVM operations can be performed. A disadvantage of splitting the spMVM in two parts
is that the local result vector must be written twice, incurring additional memory traffic.
The performance model (1) can be modified to account for an additional data transfer of
16/Nnzr bytes per inner loop iteration, leading to a modified code balance of

Bsplit
CRS =

(

6 +
20

Nnzr

+
κ

2

)

bytes

flop
. (2)

For Nnzr ≈ 7 . . . 15 and assuming κ = 0, one may expect a node-level performance penalty
between 15% and 8%, and even less if κ > 0.

For simplicity we will also use the term “vector mode” for pure MPI versions with single-
threaded computation.

3.5 Task mode with explicit overlap

A safe way to ensure overlap of communication with computation is to use a separate com-
munication thread and leave the computational loops to the remaining threads. We call this
“hybrid task mode,” because it establishes a functional decomposition of tasks (communica-
tion vs. computation) across the resources (see Fig. 5 (c)): One thread executes MPI calls
only, while all others are used to copy data into send buffers, perform the spMVM with
the local RHS elements, and finally (after all communication has finished) do the remaining
spMVM parts. Since spMVM saturates at about 3–5 threads per locality domain (as shown
in Fig. 3 (b)), at least one core per LD is available for communication without adversely
affecting node-level performance. On architectures with SMT, like the Intel Westmere, there
is also the option of using one compute thread per physical core and bind the communication
thread to a logical core. Note that, even with perfect overlap, one may expect the speedup
compared to any vector mode to be always less than a factor of two.

Apart from the additional memory traffic due to writing the result vector twice (see
Sect. 3.4), another drawback of hybrid task mode is that the standard OpenMP loop work-
sharing directive cannot be used, since there is no concept of “subteams” in the current
OpenMP standard. Work distribution is thus implemented explicitly, using one contiguous
chunk of nonzeros per compute thread.

4 Internode performance results and discussion

In this section we present strong scaling results for the Holstein-Hubbard (both basis num-
berings) and sAMG matrices. Besides a discussion of the benefits of hybrid task mode we also
provide evidence that hybrid vector mode, even without overlap, may improve performance
due to better load balancing.

4.1 Basis ordering for the Holstein-Hubbard matrix

Despite the different sparsity patterns of HMeP and HMEp their node-level performance
differs only by roughly 10% (HMEp: 3.89GFlop/s, HMeP: 4.34GFlop/s on a Westmere EP
node). The question arises whether it is possible to choose an appropriate partitioning of
the matrix (or, equivalently, a certain number of processes) so that communication overhead
is greatly reduced, and whether the basis ordering plays a relevant role. An analysis of the

9

0 10 20 30
#nodes

0

20

40

60

80

100

120

co
st

 (
=

 #
no

de
s

×
tim

e)
 [m

s] cs
wa
ca

0 10 20 30
#nodes

lc
nl

0 10 20 30
#nodes

cp
pr

vector mode
without
overlap

vector mode
with naive
overlap

task mode

HMeP

0 10 20 30
#nodes

0

50

100

150

200

co
st

 (
=

 #
no

de
s

×
tim

e)
 [m

s] cs
wa
ca

0 10 20 30
#nodes

lc
nl

0 10 20 30
#nodes

cp
pr

vector mode
without
overlap

vector mode
with naive
overlap

task mode

HMEp

Figure 6: Cost of the contributions to parallel spMVM vs. number of nodes for HMeP (top
row, constant number of nonzeros per process) and HMEp (bottom row, constant number
of rows per process) on the Westmere cluster. All physical cores of a node were used, either
by MPI processes (vector modes) or additional OpenMP threads (task mode). Results are
given in terms of a ’cost’ function, which is the product of time required and the number of
nodes. See Fig. 5 for a description of the abbreviations. Costs for posting the MPI IRecv are
marginal on this scale.

individual contributions of the parallel spMVM shows the paramount role assumed by the
sparsity pattern as soon as communication becomes an issue. In Fig. 6 we show for each
number of nodes and one MPI process per core (vector modes) or one MPI process per node
(task mode) the cost for computing and communicating (time × number of nodes); each
box with whiskers denotes the variation across all processes in the parallel run (10th/90th
and 25th/75th percentiles). The broadening of the boxes and whiskers with increasing node
count is a consequence of load imbalance; see Sect. 4.2.1 for details about this issue.

4.1.1 Vector modes

The purely computational cost (ca, lc, nl) is roughly on par in both matrices, and scales
almost linearly with the number of nodes (approximately horizontal trend for the slowest
processes in the cost plot), no matter which variant of vector mode is chosen. In contrast, the
cost for communication spent in MPI Waitall grows with the number of processors, which is
to be expected since the local matrix blocks become smaller. Furthermore, the inhomogeneous
matrix structures result in increasing variations of the transferred data volume (and thus
communication time). While both matrices show this trend, there are particular node counts
for which the communication pattern of HMEp is obviously more favorable (10, 15, 20). At

10

0 96 192 288
PE rank

0

2

4

tim
e

[m
s]

0 96 192 288
PE rank

0 24 48 72
0

4

8

12

16
tim

e
[m

s]

0 24 48 72

0 2 4 6 8 10
0

20

40

60

tim
e

[m
s]

ca
wa
cs

0 2 4 6 8 10

nl
lc

Figure 7: Contributions to the runtime of one spMVM (HMeP) for each MPI process at
different numbers of processes (12, 96, and 384 from top to bottom; strong scaling) on
the Westmere cluster. The first column corresponds to vector mode without overlap (see
Fig. 5 (a)) whereas the second column presents the runtimes for vector mode with naive
overlap (see Fig. 5 (b)). One core per process was used throughout. Abbreviations as in
Fig. 5.

these points the number of cores is commensurable with the diagonal block structure of the
matrix, the majority of the communication happens inside the nodes, and only few large
messages are passed between nodes. But even then the communication cost for HMEp is still
larger than for HMeP.

4.1.2 Task mode

In task mode, which was used here with one MPI process per node, the overall cost is
dominated by the parallel region (pr). The reduced number of communicating MPI processes
alleviates the load balancing problem in the communication scheme, which will be discussed in
the following section. More importantly, up to around 15 nodes the cost for the parallel region
is roughly constant in the HMeP case, implying that communication is hidden completely
behind computation as discussed in Sect. 3.5. Beyond this point, communication time starts
to become dominant at least for some processes, as indicated by the slow rise of the top
whisker (90th percentile) for the parallel region. However, we still expect decent performance
scaling for this setup. The HMEp matrix, due to its unfavorable communication pattern,
does not allow for sufficient overlap.

4.2 Testcase HMeP

4.2.1 Analysis of runtime contributions in the MPI-parallel case

In order to pinpoint the relevant performance-limiting aspects in the MPI-parallel case we
show in Fig. 7 the different contributions to the runtime of a single spMVM for each MPI
process when using one of the two vector mode variants, with one process per core and at 12,
96, and 384 processes, respectively. In these graphs the overall runtime is always given by
the highest bar; variations in runtime across processes are a sign of load imbalance. Owing

11

0 8 16 24 32
#nodes

0

10

20

30

40

50

60

pe
rf

or
m

an
ce

 [G
F

lo
p/

s]

0 8 16 24 32
#nodes

(a) vector mode
without overlap

(b) vector mode with
naive overlap

(c) task mode

best Cray
!

0 8 16 24 32
#nodes

one MPI process
per physical core

one MPIprocess
per NUMA LD

one MPI process
per node

Figure 8: Strong scaling performance data for spMVM with the HMeP matrix (constant
number of nonzeros per process) on the Intel Westmere cluster for different pure MPI and
hybrid variants (kernel version (a) – (c)) as in Fig. 5). Symbols on each data set indicate the
50% parallel efficiency point with respect to the best single-node version. The best variant
on the Cray XE6 system is shown for reference (see text for details).

to the separation of local from nonlocal spMVM parts, vector mode with naive overlap (right
column) is always slower than vector mode without overlap (left column).

The histograms reflect roughly the shape of the sparsity pattern for HMeP as shown in
Fig. 1: As the number of processes is increased, “speeders,” i.e., processes that are faster
than the rest, start to show up mainly at the top and bottom ends of the matrix (low
and high ranks). This imbalance is chiefly caused by a smaller amount of communication
(MPI_Waitall), whereas the contribution of computation to the runtime is much more bal-
anced across all processes. One may thus expect that a lower number of MPI processes on
the same number of cores (i.e., using multiple threads per process) improves performance due
to better load balancing even without explicit overlap. At larger process counts, execution
time starts to be dominated by communication. Hence, even with multiple threads per MPI
process and therefore improved load balancing, explicit overlap of communication with the
local part of the spMVM (labeled “lc” in the right group of diagrams in Fig. 7) is expected
to show significant speedups.

4.2.2 Performance results

At one MPI process per physical core (left panel in Fig. 8), vector mode with naive overlap
is always slower than the variant without overlap because the additional data transfer on the
result vector cannot be compensated by overlapping communication with computation. Task
mode was implemented here with one communication thread per MPI process, running on
the second virtual core. In this case, point-to-point transfers explicitly overlap with the local
spMVM, leading to a noticeable performance boost. One may conclude that MPI libraries
with support for progress threads could follow the same strategy and bind those threads to
unused logical cores, thereby allowing overlap even with single-threaded user code.

With one MPI process per NUMA locality domain (middle panel) the advantage of task
mode is even more pronounced. Also the plain vector mode without overlap shows some
notable speedup compared to the MPI-only version, which was expected from the discussion
of load balancing in the previous section. Since the memory bus of an LD is already saturated
with four threads, it does not make a difference whether six worker threads are used with
one communication thread on a virtual core, or whether a complete physical core is devoted
to communication. The same is true with only one MPI process (12 threads) per node (right
panel).

The symbols in Fig. 8 indicate the 50% parallel efficiency point (with respect to the best
single-node performance as reported in Fig. 3 (b)) on each data set. In practice one would

12

0 96 192 288
PE rank

0

1

2

3

tim
e

[m
s]

0 96 192 288
PE rank

0 24 48 72
0

4

8

12
tim

e
[m

s]

0 24 48 72

0 2 4 6 8 10
0

20

40

60

80

tim
e

[m
s]

ca
wa
cs

0 2 4 6 8 10

nl
lc

Figure 9: Contributions to the runtime of one spMVM (sAMG) for each MPI process.
Parameters and abbreviations as in Fig. 7.

not go beyond this number of nodes because of bad resource utilization. For the matrix
and the system under investigation it is clear that task mode allows strong scaling to much
higher levels of parallelism with acceptable parallel efficiency than any variant of vector mode.
However, even the vector mode variants show a significant performance advantage at multiple
threads per process due to improved load balancing.

Contrary to expectations based on the single-node performance numbers (Fig. 3 (b)), the
Cray XE6 can generally not match the performance of the Westmere cluster at larger node
counts, with the exception of pure MPI where both are roughly on par (left panel, Cray results
for vector mode with naive overlap). When using threaded MPI processes (middle and right
panel), task mode performs best on the Cray system. The advantage over the other kernel
variants is by far not as pronounced as on Westmere, however. We have observed a strong
influence of job topology and machine load on the communication performance over the 2D
torus network. Since spMVM requires significant non-nearest-neighbor communication with
growing process counts, the nonblocking fat tree network on the Westmere cluster seems to
be better suited for this kind of problem. The presented results are best values obtained on
a dedicated XE6 machine.

There is also a universal drop in scalability beyond about six nodes, which is largely
independent of the particular hybrid mode. This can be ascribed to a strong decrease in
overall internode communication volume when the number of nodes is small. The effect is
somewhat less pronounced for pure MPI, since the overhead of intranode message passing
cannot be neglected.

4.3 Testcase sAMG

4.3.1 Analysis of runtime contributions in the MPI-parallel case

As shown in Fig. 9, there is only a slight load imbalance for the sAMG matrix even at 384
processes (lower diagrams). We thus only expect a marginal performance benefit from using
threaded MPI processes. Also the overall fraction of communication overhead is quite small;
task mode with explicit overlap of communication will hence not lead to a significant speedup.

13

0 8 16 24 32
#nodes

0

30

60

90

120

pe
rf

or
m

an
ce

 [G
F

lo
p/

s]

0 8 16 24 32
#nodes

(a) vector mode
without overlap

(b) vector mode with
naive overlap

(c) task mode

best Cray
!

0 8 16 24 32
#nodes

one MPI process
per physical core

one MPI process
per NUMA LD

one MPI process
per node

Figure 10: Strong scaling performance data for spMVMwith the sAMGmatrix (same variants
as in Fig. 8). Parallel efficiency is above 50% for all versions up to 32 nodes. The Cray system
performed best in vector mode without overlap for all cases.

4.3.2 Performance results

As expected from the analysis in the previous section, all variants and hybrid modes (pure
MPI, one process per LD, and one process per node) show similar scaling behavior on the
Westmere cluster, and there is no advantage of task mode over vector mode without overlap
or over pure MPI (see Fig. 10). This observation supports the general rule that it makes no
sense to consider MPI+OpenMP hybrid programming if the pure MPI code already scales
well and behaves in accordance with a single-node performance model.

On the Cray XE6, vector mode without overlap performs best across all hybrid modes,
with a significant advantage when running one MPI process with six threads per LD. This
aspect is still to be investigated.

5 Summary and outlook

We have investigated the performance properties of pure MPI and hybrid MPI+OpenMP
hybrid variants of sparse matrix-vector multiplication on two multicore-based parallel sys-
tems, using matrices with different sparsity patterns. The single-node performance analysis
on Intel Westmere and AMD Magny Cours processors showed that memory-bound sparse
MVM saturates the memory bus of a locality domain already at about four threads, leaving
free cores for explicit computation/communication overlap. As most current MPI libraries
do not support truly asynchronous point-to-point transfers, explicit overlap enabled sub-
stantial performance gains for strong scaling of communication-bound problems. Since the
communication thread can run on a virtual core, MPI implementations could use the same
strategy for internal “progress threads” and so enable asynchronous progress without changes
in MPI-only user code.

We have also identified the clear advantage of using threaded MPI processes, even with-
out explicit communication overlap, in cases where computation is well balanced and load
imbalance is caused by the communication pattern.

Acknowledgments

We thank J. Treibig, R. Keller and T. Schönemeyer for valuable discussions, A. Basermann
for providing and supporting the RCM transformation and the UHBR test case as well as
K. Stüben and H. J. Plum for providing and supporting the sAMG test case. We acknowledge
financial support from KONWIHR II (project HQS@HPC II) and thank CSCS Manno for
granting access to their Cray X6E system.

14

References

[1] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, N. Koziris: Performance eval-
uation of the sparse matrix-vector multiplication on modern architectures. J. Supercom-
puting 50(1), 36–77 (2008).

[2] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J. Demmel: Optimization of sparse
matrix-vector multiplications on emerging multicore platforms. Parallel Computing 35,
178 (2009)

[3] N. Bell and M. Garland: Implementing sparse matrix-vector multiplication on throughput-
oriented processors. Proceedings of SC09.

[4] M. Krotkiewski and M. Dabrowski: Parallel symmetric sparse matrix-vector product on
scalar multi-core CPUs. Parallel Computing 36 (4), 181–198 (2010).

[5] R. Geuss and S. Röllin: Towards a fast parallel sparse symmetric matrix-vector multipli-
cation. Parallel Computing 27 (1), 883–896 (2001).

[6] R. Rabenseifner and G. Wellein: Communication and Optimization Aspects of Parallel
Programming Models on Hybrid Architectures. International Journal of High Performance
Computing Applications 17, 49–62 (2003).

[7] G. Wellein, G. Hager, A. Basermann, and H. Fehske: Fast sparse matrix-vector multipli-
cation for TFlop/s computers. In: Proceedings of VECPAR2002, LNCS 2565, Springer
Berlin (2003).

[8] R. Barrett et al.: Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods. SIAM, ISBN 978-0898713282, (1993).

[9] G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists
and Engineers. CRC Press, ISBN 978-1439811924, (2010).

[10] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske: The kernel polynomial method.
Rev. Mod. Phys. 78, 275 (2006).

[11] A. Weiße and H. Fehske: Chebyshev expansion techniques. In: Computational Many
Particle Physics, Lecture Notes in Physics 739, pp. 545–577, Springer Berlin Heidelberg
(2008).

[12] H. Fehske, G. Wellein, G. Hager, A. Weiße, and A. R. Bishop: Quantum lattice dy-
namical effects on the single-particle excitations in 1D Mott and Peierls insulators. Phys.
Rev. B 69, 165115 (2004).

[13] E. Cuthill and J. McKee: Reducing the bandwidth of sparse symmetric matrices. Pro-
ceedings of 24th national conference (ACM ’69), ACM, New York, NY, USA, 157–172.

[14] K. Stüben: An Introduction to Algebraic Multigrid. In: Multigrid: Basics, Parallelism
and Adaptivity, Eds. U. Trottenberg et al., Academic Press (2000).

[15] http://www.scai.fraunhofer.de/en/business-research-areas/numerical-software/products/samg.html

[16] A. Basermann et al.: HICFD - Highly Efficient Implementation of CFD Codes for HPC
Many-Core Architectures. In: Proceedings of CiHPC, Springer 2011 [in print]

[17] A. Buluc, S.W. Williams, L. Oliker, and J. Demmel: Reduced-Bandwidth Multithreaded
Algorithms for Sparse-Matrix Vector Multiplication. Proc. IPDPS 2011 (to appear).
http://gauss.cs.ucsb.edu/~aydin/ipdps2011.pdf

[18] http://code.google.com/p/likwid

15

http://www.scai.fraunhofer.de/en/business-research-areas/numerical-software/products/samg.html
http://gauss.cs.ucsb.edu/~aydin/ipdps2011.pdf
http://code.google.com/p/likwid

[19] G. Schubert, G. Hager, and H. Fehske: Performance limitations for sparse matrix-vector
multiplications on current multicore environments. In: High Performance Computing
in Science and Engineering, Garching/Munich 2009, 13–26, Springer Berlin Heidelberg
(2010).

[20] R. Rabenseifner, G. Hager, and G. Jost: Hybrid MPI/OpenMP Parallel Programming
on Clusters of Multi-Core SMP Nodes. In: Proceedings of PDP 2009.

16

	1 Introduction
	1.1 Related work
	1.2 Sparse matrix-vector multiplication and node-level performance model
	1.3 Experimental setting
	1.3.1 Test matrices
	1.3.2 Test machines

	2 Node-level performance analysis
	3 Distributed-memory parallelization
	3.1 Nonblocking point-to-point communication in MPI
	3.2 MPI-parallel sparse MVM
	3.3 Vector-like parallelization: Vector mode without overlap
	3.4 Vector-like parallelization: Vector mode with naive overlap
	3.5 Task mode with explicit overlap

	4 Internode performance results and discussion
	4.1 Basis ordering for the Holstein-Hubbard matrix
	4.1.1 Vector modes
	4.1.2 Task mode

	4.2 Testcase HMeP
	4.2.1 Analysis of runtime contributions in the MPI-parallel case
	4.2.2 Performance results

	4.3 Testcase sAMG
	4.3.1 Analysis of runtime contributions in the MPI-parallel case
	4.3.2 Performance results

	5 Summary and outlook

