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Abstract

We study the computational power of machines that specify their own acceptance
types, and show that they accept exactly the languages that ≤#P

m
-reduce to NP sets.

A natural variant accepts exactly the languages that ≤#P
m

-reduce to P sets. We show
that these two classes coincide if and only if P#P[1] = P#P[1]:NP[O(1)], where the latter
class denotes the sets acceptable via at most one question to #P followed by at most a
constant number of questions to NP.

1 Introduction

This paper studies the power of self-specifying acceptance types. As is standard, by accep-
tance type we mean the set of numbers of accepting paths that cause a machine to accept.
Many complexity classes have a fixed acceptance type. For example, a set is in NP if and
only if for some nondeterministic polynomial-time Turing machine (NPTM) M it holds that
for each x, x ∈ L if and only if #accM (x) ∈ {1, 2, 3, · · ·}, where #accM (x) represents the
number of accepting paths of machine M on input x. Replacing {1, 2, 3, · · ·} with the set
{1, 3, 5, · · ·} yields a perfectly acceptable definition of the complexity class ⊕P [38, 12],
and so on for many standard classes, such as coNP, US [4], etc. In fact, quite surprisingly,
it turns out that there is a single polynomial-time computable set, MiddleBit = {i | the
⌊(log2 i)/2⌋th bit of i is a one}, that is universal for PPPH in the sense that this one set
serves simultaneously as the fixed accepting type of all sets in PPPH. This follows imme-
diately from the fact that PPPH ⊆ MP (Green et al. [14], who also define the “middle
bit” class MP). Thus, in standard notation (a full definition is included later), the fixed set
MiddleBit has the property that PPPH ⊆ R#P

m ({MiddleBit}).
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In contrast, some classes have been defined via an external function or set specifying their
acceptance type. For example, the complexity class C=P [40, 47] can be defined as the class
of languages L such that for some NPTM M and some FP function g, for all x, x ∈ L if and
only if #accM (x) = g(x). In the even more abstract setting of so-called leaf languages ([8,
44], see also [26, 28]), separate predicates specify which numbers of accepting paths of
a machine specify acceptance and which specify rejection. Such notions are sufficiently
flexible to describe a broad range of classes, including even “promise” counting classes such
as SPP [36, 11], etc.

In this paper, we introduce and study self-specifying acceptance types. A language is
in SelfOutput if for some NPTM M and every input x, x ∈ L if and only if #accM (x)
is the output of some accepting path of M(x). Similarly, a language is in SelfPath if for
some NPTM M whose computation tree is always a complete tree (of polynomial depth
specified by the input’s length) and every input x, x ∈ L if and only if the lexicographically
(#accM (x))th path of M(x) is an accepting path. Note that self-specification allows the
machine to dynamically set its own acceptance type, but restricts the machine by requiring
that the machine’s paths not only specify its acceptance type but also execute it (in the
sense that they themselves form the #accM set—i.e., the #P function in the sense defined
below—being analyzed by the acceptance type).

Valiant [42, 43] introduced the class #P, which is the class of functions f such that for
some NPTMM and every x, f(x) = #accM (x). We prove that SelfOutput = R#P

m (NP) and
that SelfPath = R#P

m (P). That is, SelfOutput and SelfPath consist of the sets that ≤#P
m -

reduce to NP and P sets, respectively. Put another way, SelfOutput and SelfPath capture
the power of counting with respect to NP-computable and P-computable acceptance sets.
Essentially equivalently, we establish that SelfOutput = NP//#P and SelfPath = P//#P,
where the // is a certain recently introduced advice notation. For a definition of // see
Section 2. Also equivalently, we note that SelfOutput = P#P[1]:NP[1]+ , the class of languages
accepted by P machines given at most one call to a #P oracle followed by at most one
positive [33, 39] query to an NP oracle.

Note that it is not at all clear whether SelfPath equals SelfOutput (equivalently, in light
of the characterizations of this paper, whether P#P[1] = P#P[1]:NP[1]+). However, we show
that these two classes are equal if and only if P#P[1] = P#P[1]:NP[O(1)]. This is a so-called
“downward separation” result (see, e.g., [21], for some background), and indeed what our
proof actually establishes is that the following three conditions are equivalent:

1. P#P[1] = P#P[1]:NP[1]+ ,

2. P#P[1] = P#P[1]:NP[1], and

3. P#P[1] = P#P[1]:NP[O(1)].

Since, in contrast with the just-mentioned open issue of whether P#P[1] = P#P[1]:NP[1]+ ,
it is easy to see via standard techniques [10, 38] that P#P[1] does equal PNP[1]:#P[1] (indeed,
even P#P[1] = PNP[O(logn)]:#P[1]), the comments of the previous paragraph give some weak
evidence that order of access may be important in determining computational power, a
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theme that has been raised and studied in other settings (see the survey [17]). Unfortunately,
in the present setting, giving firm evidence for this seems hard. In fact, there is no known
oracle separation of P#P[1] from PSPACE (much less of P#P[1] from P#P[1]:NP[1]+), though
much effort has been made in that direction.

2 Preliminaries

For standard notations and definitions that are not included here, we refer the reader to
any complexity textbook, e.g., [7, 2, 37]. N = {0, 1, 2, · · ·}. For any n ∈ N, define string(n)
to be n written in binary with no leading zeros. For any string x ∈ Σ∗, let string(x) = x.
For any x ∈ Σ∗ − ǫ, define int(x) to be x interpreted as the binary representation of a
natural number. By convention, let int(ǫ) = 0. (The function int(·) is not a one-to-one
function, e.g., int(0011) = int(11) = 3. It merely is the natural direct reading of strings
as representations of natural numbers.) For each NPTM M , for each x ∈ Σ∗, and for
each accepting path y of M(x), let pathoutM (x, y) be the integer output on path y, which
by definition we take to be int(w), where w is the bits of the work tape between the left
endmarker and the first tape cell that holds neither a 0 nor a 1, i.e., that is some other
symbol or a blank (see [6, 5]). Define accM (x) = {y ∈ Σ∗ | y is an accepting path of
M(x)}, iaccM (x) = {int(z) | z ∈ accM (x)}, ioutM (x) = {n ∈ N | (∃y)[y ∈ accM (x) and
n = pathoutM (x, y)]}, #accM (x) = ||accM (x)||, and spanM(x) = ||ioutM (x)||. Recall that
#P = {f : Σ∗ → N | (∃ NPTM M)(∀x)[f(x) = #accM (x)]} [42, 43]. #SAT is the function
such that #SAT(f) is the number of satisfying assignments of f if f is a satisfiable boolean
formula, and #SAT(f) is 0 otherwise. #SAT is known to be #P-complete (see [42, 43, 50]).

A set A is many-one reducible to B via a #P function, A ≤#P
m B, if and only if there

exists a function f ∈ #P such that, for all x, x ∈ A ⇐⇒ string(f(x)) ∈ B. For any a and
b for which ≤b

a is defined and any class C, let Rb
a(C) = {L | (∃C ∈ C)[L ≤b

a C]}.
Hemaspaandra, Hempel, and Wechsung [20] introduced the study of the power of ordered

query access (other papers on or related to query order include [18, 1, 25, 3, 48, 34, 19] and
the survey [17]). We adopt this notion, and extend it to the function class case and to
the positive query case. For any function or language classes C1 and C2, define PC1[1]:C2[1]

to be the class of languages accepted by polynomial-time machines making at most one
query to a C1 oracle followed by at most one query to a C2 oracle. If C2 is a language class,
then PC1[1]:C2[1]+ is the class of all sets in PC1[1]:C2[1] witnessed by a polynomial-time oracle
machine that accepts if and only if the C2 set is queried and the answer to that query is
“yes.”1

1We mention that this requires that the querying machine is such that if (in light of of the C1 query’s
actual answer if any—note that we do not require that a query to either C1 or C2 necessarily be made) there
is a C2 query then the truth-table the querying machine has with respect to the answer from the C2 query,
given the true answer to the C1 query if there is any such query , is that the machine will accept if and only
if the answer is “yes.” However, for most natural classes, in particular C2 = NP, without loss of generality
we can assume that the querying machine always makes exactly two queries and that its truth table with
respect to the two answers (even given a “lying” answer to the first query) is: accept if and only if the second
answer is “yes.”
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Two other formalisms can represent similar notions. Let 〈·, ·〉 be a pairing function
from Σ∗ × Σ∗ to Σ∗ having the standard properties (easily computable, easily invertible,
etc.). Recall that, as noted above for the case F = #P, for any class of functions F
and any sets A and B: A ≤F

m B ⇐⇒ (∃f ∈ F)(∀x)[x ∈ A ⇐⇒ string(f(x)) ∈
B]. Generalizing the seminal “advice classes” notion of Karp and Lipton [29], Köbler and
Thierauf [31] have studied an interesting notion, which previously appeared in less general
form in work of Krentel and others. Köbler and Thierauf note that the notion is related
to many-one reductions via functions. The notion is as follows: For any function class
F and any complexity class C define: C//F = {L | (∃f ∈ F)(∃C ∈ C)(∀x)[x ∈ L ⇐⇒
〈x, string(f(x))〉 ∈ C]} [31].

We note that it will not always be the case that PF [1]:C[1]+ = C//F = RF
m(C). The

reason why this may not always hold is that it is possible that C lacks the power to decode
pairing functions or to form from a function value the appropriate C query, or that (in terms
of proving C//F ⊆ RF

m(C)) F lacks the power to code the input into its output in a way
that C can decode. However, for flexible language classes such as P, NP, etc., and flexible
function classes such as #P, OptP [32], etc., this equality will hold, as has been noted by
Hemaspaandra and Hoene [16] for the particular case of ROptP

m (⊕P). In particular, in terms
of relations of interest in the current paper, note that we clearly can claim

P#P[1]:NP[1]+ = NP//#P = R#P
m (NP), and

P#P[1] = P//#P = R#P
m (P).

Note that expressions of this form are perhaps more natural than one might first guess. They
capture the power of a class whose computation is aided by some advice provided by some
complexity-bounded function class. Indeed, ROptP

m (P) turns out, as Krentel established [32],
to be exactly PNP. ROptP

m (⊕P) turns out to be exactly the sets that ≤p
m-reduce to languages

having easy “implicit membership tests” [16], and also is exactly the class of languages
accepted at the second level of Cai and Furst’s [9] safe storage hierarchy ([35], see also the
discussion in [22]).

Generalizing the earlier definition to the case of more queries, for any function or lan-
guage classes C1 and C2 and for any k, let PC1[1]:C2[k] denote the class of languages accepted
by polynomial-time machines making at most one query to a C1 oracle followed by at most
k queries to a C2 oracle. PC1[1]:C2[O(1)] will denote

⋃
k>0 P

C1[1]:C2[k].
We say that an NPTM is normalized if, for some polynomial p and for every input

x, every computation path on input x has exactly p(|x|) nondeterministic choices. (Note
that it is not the case that every computation step must make a nondeterministic choice.
However, under our definition, on each input x every possible binary string of exactly p(|x|)
bits corresponds uniquely to a computation path.) Though normalization is known not to be
important in defining NP languages or even—as shown by Simon [40]—PP languages, there
is evidence that the type of normalization one uses is critical in defining BPP languages [15].
Here, it will be important in our definition of SelfPath. However, we note that in our
definition of SelfOutput, even if a normalization requirement were added the class defined
would remain the same.
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We now introduce the classes SelfOutput and SelfPath, which model self-specifying
acceptance. A language L is in SelfOutput if for some NPTM M and all x, x ∈ L if and
only if #accM (x) ∈ ioutM (x). A language L is in SelfPath if for some normalized NPTM M
and every x, x ∈ L if and only if (a) #accM (x) > 0 and (b) #accM (x)− 1 ∈ iaccM (x), that
is, the lexicographically (#accM (x))th path of M(x) is an accepting path. In the definition
of SelfPath, we view the leftmost path (i.e., the path on which all nondeterministic guesses
are 0) of the machine as the lexicographically first path, and so on.2

3 Self-Specifying Acceptance Types

We characterize SelfPath and SelfOutput as the sets that ≤#P
m -reduce to P and NP sets,

respectively.

Theorem 3.1

1. SelfPath = R#P
m (P).

2. SelfOutput = R#P
m (NP).

Proof (1) Recall from Section 2 that R#P
m (P) = P#P[1]. Suppose A ∈ SelfPath, then

by definition there is an NPTM M such that
x ∈ A ⇐⇒ the lexicographically (#accM (x))th path of M(x) is an accepting path.
So with one call to a #P oracle we can compute the value of #accM (x) and check

whether the (#accM (x))th path of M(x) is an accepting path. Since M(x) is a complete
tree, we can do this latter check in deterministic polynomial time.

Now let A ∈ P#P[1] via a deterministic oracle machine M and, without loss of generality,
let the #P oracle be #SAT. Without loss of generality we may assume that on each input x
it holds that M asks exactly one question to #SAT, getting the answer f(x). Furthermore,
let M ′ be an NPTM witnessing f ∈ #P. Let M ′ be normalized, i.e., for some polynomial
p, M ′(x) makes exactly p(|x|) nondeterministic moves.

We will define an NPTM N , which will witness the fact that A ∈ SelfPath. N(x) will be
normalized to make exactly p(|x|) + 3 nondeterministic moves. The computation of N(x)
along path y, where y ∈ Σp(|x|)+3, goes as follows (see Figure 1). (Here we take strings y to
represent a computation path, where y is simply the sequence of nondeterministic choices
along the path.) Recall that 0 ≤ f(x) ≤ 2p(|x|), so f(x) can take on 2p(|x|) + 1 possible
values. The cases will reflect this (see the conditions defining Cases 1.1 and 2.1, which lets
int(y′) sweep through exactly those values).

Case 1 y = 00y′.

2It is not hard to see that one forms the same class of languages with the following alternate definition,
which in some sense starts the path counting at 0: A language L is in SelfPath if for some normalized
NPTM M and every x, (a) M(x) has at least one rejecting path, and (b) x ∈ L ⇐⇒ the lexicographically
(1 + #accM (x))th path of M(x) is an accepting path.
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Figure 1: Computation tree of N(x).

Case 1.1 int(y′) ≤ 2p(|x|).
Simulate M(x), assuming the answer to the #SAT query is int(y′) and reject if
and only if M(x) accepts.

Case 1.2 int(y′) > 2p(|x|).
Reject.

Case 2 y = 01y′.

Case 2.1 int(y′) ≤ 2p(|x|).
Simulate M(x), assuming the answer to the #SAT query is int(y′) and accept if
and only if M(x) accepts.

Case 2.2 int(y′) > 2p(|x|).
Accept.

Case 3 y = 10y′.

Case 3.1 y′ = 0z, where z ∈ Σp(|x|).
Simulate M ′(x) on path z, i.e., accept if and only if path z on M ′(x) accepts.

Case 3.2 y′ = 1z, where z ∈ Σp(|x|).
Reject.

Case 4 y = 11y′.
Reject.

6



Note that ||{0y′ | y′ ∈ Σp(|x|)+2 and N(x) accepts along 0y′}|| = 2p(|x|)+1

and ||{1y′ | y′ ∈ Σp(|x|)+2 and N(x) accepts along 1y′}|| = f(x).

HenceN(x) has exactly 2p(|x|)+1 + f(x) accepting paths. However, note that the (2p(|x|)+1 + f(x))th path

of N(x) is a path of the form of Case 2.1 and by construction it accepts if and only if M(x),
given the answer f(x), accepts. So A ∈ SelfPath.

(2) Recall from Section 2 that R#P
m (NP) = P#P[1]:NP[1]+ . Suppose A ∈ SelfOutput

then by definition there is an NPTM M such that
x ∈ A ⇐⇒ #accM (x) is the integer reading of the output of some accepting path of

M(x).
So with one call to #SAT we can compute the value of #accM (x) and by querying

“〈x, string(#accM (x))〉 ∈ B?”, where B =def {〈x, string(m)〉 | m ∈ ioutM (x)}, we can
decide whether x ∈ A. Note that B ∈ NP and that the second query is a positive one.

Now let A ∈ P#P[1]:NP[1]+ and thus A ∈ P#SAT[1]:SAT[1]+ . Furthermore we may, without
loss of generality (see Footnote 1), assume that some deterministic machine, M , that wit-
nesses A ∈ P#SAT[1]:SAT[1]+ has the property that on every input it asks exactly one query to
each oracle and the query to SAT is strictly positive in the sense that the machine accepts
if and only if the query is answered “yes.” This strict positivity property is important to
keep in mind throughout the proof.

Since #P is closed under polynomial-time input transformation let f(x) be the answer
to the query that M(x) makes to #SAT, and denote the question to SAT by z(x, f(x)).
Note that, as SAT is a cylinder, we may without loss of generality assume that z is such
that there exists a polynomial q for which (∀x ∈ Σ∗)(∀n : 0 ≤ n ≤ 2p|x|))[|z(x, n)| = q(|x|)].

Let M ′ be an NPTM witnessing f ∈ #P. Let M ′ be normalized to have branching
depth exactly given by the polynomial p. Suppose MSAT witnesses SAT ∈ NP and MSAT is
normalized to have branching depth exactly given by the polynomial q′, soMSAT(z(x, f(x)))
has exactly 2q

′(q(|x|)) paths. Without loss of generality, let q and q′ be such that
(∀n)[q(n) ≥ 1 and q′(n) ≥ 1].

We construct the NPTM T witnessing A ∈ SelfOutput. On input x, T (x) does the
following (see Figure 2):

• T (x) guesses i ∈ {0, 1}.

– If i = 0 was guessed, T (x) runs M ′(x), but outputs the integer 0 on all accepting
paths of M ′(x).

– If i = 1 was guessed, T (x) guesses an n , 0 ≤ n ≤ 2p(|x|), and simulates whatM(x)
would do were n the answer to the #SAT query. M(x) under this assumption
queries “z(x, n) ∈ SAT?” so T (x) guesses a path y of MSAT(z(x, n)). Recall that
M ’s behavior is such that it accepts if and only if the answer to its second query
is “yes.” If MSAT(z(x, n)) accepts on path y, then T (x) also accepts on path
y and outputs the integer (2p(|x|) + 1)2q

′(q(|x|)) + n. Otherwise T (x) accepts on
the present path and outputs the integer 0.
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By construction T (x) has exactly (2p(|x|)+1)2q
′(q(|x|))+ f(x) accepting paths. This value is

an output of some accepting path, if and only if x ∈ A. So A ∈ SelfOutput.
Note that the proof technique in fact can be applied to characterize via self-specifying

acceptance other classes, such as R#P
m (UP), R#P

m (⊕P), R#P
m (C=P), and R#P

m (PP). For ex-
ample, if we change the definition of SelfOutput to add a requirement that no two accepting
paths output the same value, this “unambiguous SelfOutput” class equals R#P

m (UP). Simi-
larly, if we change the definition of SelfOutput to accept exactly when the number of paths
itself is the output on an odd number of paths, we obtain R#P

m (⊕P). Similar claims hold
for R#P

m (C=P) and (with a bit of care) for R#P
m (PP).

Let us adopt Valiant’s [42] standard definition of #NP (informally, #NP = (#P)NP),
and the analogous definition of #PH (informally, #PH = (#P)PH) [49].3 In this paper,
we have discussed the sets ≤#P

m -reducible to certain classes. One might naturally won-
der whether ≤#NP

m -reductions to the same classes yield even greater computational power.
However, note that from Toda and Watanabe’s [49] result #PH ⊆ FP#P[1] we can easily
prove the following proposition, which says that for most natural classes ≤#NP

m -reductions
to the class (or even ≤#PH

m -reductions to the class) yield no greater computational power
than ≤#P

m -reductions to the class. (We say C is closed downwards under ≤p
m reductions if

Rp
m(C) ⊆ C.)

Proposition 1 For any complexity class C closed downwards under ≤p
m reductions, it holds

that R#P
m (C) = R#PH

m (C).

Proof: The inclusion R#P
m (C) ⊆ R#PH

m (C) is immediate. For the “⊇” inclusion, let
A ∈ R#PH

m (C) via f ∈ #PH and C ∈ C. Thus, x ∈ A ⇐⇒ string(f(x)) ∈ C. Note that
due to the inclusion #PH ⊆ FP#P[1] [49], we also have string(f(·)) ∈ FP#P[1]. Hence there
exist a DPTM M and a function g ∈ #P such that, for each x ∈ Σ∗, Mg[1](x) computes
string(f(x)). Without loss of generality we assume that M(x) always asks exactly one
question to its oracle.

Let q(x) denote the query asked by M(x). For any string x ∈ Σ∗, (1x)binary will denote
the integer value of the string formed by prepending a 1 before x and interpreting the
string as a binary integer. Let 〈·, ·〉N be an easily computable pairing function from N×N
to N such that (a) h(x) = 〈(1x)binary, g(q(x))〉N is a #P function, and (b) there exist
polynomial-time functions to extract from 〈·, ·〉N its first and second components. Such
pairing functions are known to exist via standard techniques [38, 10]. For any m ∈ N, let
m̂ denote the constant function that, on any input, returns the value m. Let

D = {string(〈(1x)binary,m〉N) | the value output by M m̂(x) is in C},

3Vollmer [45] and Toda and Watanabe ([49], using the different notation “NUM · C”) have proposed
interesting and different “#”-type classes. Often, though not always, Vollmer’s classes are referred to using
notation such as # ·NP, in order to avoid ambiguity as to whether his classes or Valiant’s classes are being
discussed (see [23]). Here, we uniformly use Valiant’s classes, though we mention in passing that for #PH
the two notions are known to coincide [49, Proposition 3.1].
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Figure 2: Computation tree of T (x).

and note that D ∈ C since C is closed downwards under ≤p
m reductions. We have

x ∈ A ⇐⇒ string(f(x)) ∈ C

⇐⇒ string(h(x)) ∈ D.

This shows A ∈ R#P
m (C).

Proposition 1 implies that if in the definition of SelfOutput we replace “x ∈ L ⇐⇒
#accM (x) is the integer reading of the output of some accepting path” with “x ∈ L ⇐⇒
spanM(x) is the integer reading of the output of some accepting path” (where spanM(x) [30]
as is standard denotes the number of distinct outputs of M(x)), then the class defined
remains unchanged.

From Theorem 3.1 and the discussion of Section 2, it is clear that we have the following.

Corollary 3.2 SelfPath = SelfOutput ⇐⇒ P#P[1] = P#P[1]:NP[1]+.

Are SelfPath and SelfOutput in fact equal? In light of our Corollary 3.2, this is equiva-
lently a question—P#P[1] = P#P[1]:NP[1]+—about somewhat more familiar-looking complex-
ity classes, and in this form it allows us to see more clearly a relationship with an open issue
from the literature. In particular, no oracle separation yet exists for these classes. In fact,
separating even over a vastly larger gap that includes these classes is an open issue. That
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is, PP⊕P ⊆ P#P[1] ⊆ P#P[1]:NP[1]+ ⊆ P#P[2] ⊆ PSPACE (the first containment—which is
nontrivial—is due to Toda [41]), yet no known oracle separates PP⊕P from PSPACE (see
Green [13] for background and for progress on a related line). On the other hand, as even
PNP[O(logn)]:#P[1] easily equals P#P[1] (via the technique of [10, 38]), clearly if query order
can be swapped in the characterization of SelfOutput then SelfPath = SelfOutput.

It would be nice to achieve some structural collapse from the assumption P#P[1] =
P#P[1]:NP[1]+. We in fact can prove such a collapse.

Theorem 3.3 SelfPath = SelfOutput ⇐⇒ P#P[1] = P#P[1]:NP[O(1)].

Theorem 3.3 equivalently says

P#P[1] = P#P[1]:NP[1]+ ⇐⇒ P#P[1] = P#P[1]:NP[O(1)].

Related work shows that the equality of SelfPath and SelfOutput would collapse the boolean
hierarchy over SelfOutput [24].
Proof of Theorem 3.3: We will prove this in two steps. First we will prove that

P#P[1] = P#P[1]:NP[1]+ ⇐⇒ P#P[1] = P#P[1]:NP[1],

and then we will prove that

P#P[1] = P#P[1]:NP[1] ⇐⇒ P#P[1] = P#P[1]:NP[O(1)].

From these two equivalences we are done, in light of Corollary 3.2.
The right to left implication of

P#P[1] = P#P[1]:NP[1]+ ⇐⇒ P#P[1] = P#P[1]:NP[1]

is immediate. Regarding the left to right implication, suppose that B ∈ P#P[1]:NP[1] and
assume that P#P[1] = P#P[1]:NP[1]+ . Note that

P#P[1]:NP[1] ⊆ {L1 ∪ L2 | L1 ∈ P#P[1]:NP[1]+ ∧ L2 ∈ P#P[1]:NP[1]+}.

From this, combined with our P#P[1] = P#P[1]:NP[1]+ assumption and the fact that P#P[1]

is closed under complementation and union, we have B ∈ P#P[1].
That P#P[1] = P#P[1]:NP[1] ⇐⇒ P#P[1] = P#P[1]:NP[O(1)] holds can be seen as follows.

The right to left implication is immediate. Regarding the left to right implication we
have, as our assumption, that P#P[1] = P#P[1]:NP[1]. We will prove that, for each k ≥ 1:
P#P[1] = P#P[1]:NP[k] ⇒ P#P[1] = P#P[1]:NP[k+1]. This suffices, via induction.

So let k be some positive integer and assume that P#P[1] = P#P[1]:NP[k]. Let A ∈
P#P[1]:NP[k+1]. Let M be a deterministic polynomial-time machine that accepts A via at
most one query to #P followed by at most k+1 queries to NP. Without loss of generality,
assume that M always asks exactly one query to #SAT followed by exactly k+1 queries to
SAT. Consider the machine Mno that (on each input) exactly simulates M , except rather
than asking the first of M ’s k + 1 queries to SAT it assumes the answer to that query is
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“no.” Consider also the machine Myes that (on each input) exactly simulates M , except
rather than asking the first of M ’s k+1 queries to SAT it assumes the answer to that query
is “yes.” Let

Lno = {x | x ∈ L(M#SAT[1]:SAT[k]
no )}

and
Lyes = {x | x ∈ L(M#SAT[1]:SAT[k]

yes )}.

Note that Lno ∈ P#P[1]:NP[k] and Lyes ∈ P#P[1]:NP[k]. By our assumption, it follows that both

Lno and Lyes are in P#P[1]. Let M̂no (respectively, M̂yes) be a machine that makes one query
to #SAT, and whose language is Lno (respectively, Lyes). We claim that A ∈ P#P[1]:NP[1],
via the following machine Mv. On input x, Mv(x) asks its #P oracle for the answer to
(a) the #SAT query asked by M(x), (b) the #SAT query asked by M̂no(x), and (c) the
#SAT query asked by M̂yes(x). This can all be done via one query to #SAT, as it is well
known that three parallel queries to #SAT can be encoded as one query to #SAT ([38],
see also [10]). Using the answer to item (a), Mv(x) then determines the first query to SAT
that would be made by M(x), namely, the SAT query M(x) makes after M(x) gets the
reply from its #SAT query. Mv(x) asks this question to its own SAT oracle. If the answer
is “no,” then Mv(x) accepts if and only if x ∈ Lno, and we can easily evaluate this with no
additional queries, via simulating M̂no(x) using the #SAT answer obtained in item (b). If
the answer is yes, then Mv(x) accepts if and only if x ∈ Lyes, and we can easily evaluate

this with no additional queries, via simulating M̂yes(x) using the #SAT answer obtained in
item (c). So A ∈ P#P[1]:NP[1], and thus by our assumption we have A ∈ P#P[1].

4 Open Questions

We completely characterized the self-specifying classes SelfOutput and SelfPath as the sets
≤#P

m -reducible to NP and P sets, respectively. Can one prove SelfOutput = SelfPath? That
is, can one prove R#P

m (P) = R#P
m (NP), which would instantly imply by Theorem 3.3 that

P#P[1] = P#P[1]:NP[O(1)] (equivalently, PNP[O(1)]:#P[1] = P#P[1]:NP[O(1)])?
Though Simon proved that the class PP remains the same regardless of whether or

not the underlying machines are normalized,4 a number of recent papers have studied nor-
malization in other contexts and it is now clear that in some contexts—e.g., the class
BPP—classes may be different depending on whether or not there is a normalization re-
quirement [15, 28, 27]. Recall that SelfOutput does remain the same whether defined with
or without the requirement that the underlying machines be normalized. Does SelfPath re-
main the same class if its normalization requirement is removed? Clearly the resulting class

4Note that for probabilistic polynomial-time machines, normalization in terms of number of choices per

path in the model in which not every step is necessarily viewed as a choice node and normalization in terms
of number of choices per path in the model in which every step is necessarily viewed as a choice node are
clearly equivalent. This holds true in the unbounded-error case. It is also true in the bounded-error case (i.e.,
BPP is the same class whether one defines it using the former normalization or the latter normalization). In
particular, for PP it does not matter which normalization model one adopts; for PP, both are equivalent to
the unnormalized model.
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contains SelfPath, i.e., P#P[1], and is contained in P#P (which Vollmer and Wagner [46]
showed equals P“NameofMiddlePath”[1]; thus P“NameofMiddlePath”[1], though it is an upper bound
for the unnormalized version of SelfPath, does not offer a tighter upper bound than P#P).
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