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An interesting problem is under what circumstances will a collection of 
interacting agents realize efficient collective actions. This question will 
depend crucially on how self-interested agents interact and how they 
learn from each other. We model strategic interactions as dilemma 
games, coordination games or hawk-dove games. It is well known that 
the replicator dynamics based on natural selection converge to an 
inefficient equilibrium. In this paper, we focus on the effect of co-
evolutionary learning. Each agent is modeled to learn interaction rules 
defined as the function of own strategy and the strategy of the neighbor. 
We show that a collection of interacting agents converges into 
equilibrium in which the conditions of efficiency and equity are 
satisfied. We investigate interaction rules acquired by all agents and 
show that they share several rules with the common features to sustain 
equitable social efficiency. This paper also presents a comparative 
study of two evolving populations, one in a spatial environment, and 
the other in a small-world environment. The effect of the environment 
on the emergence of social efficiency is studied. The small-world 
environment is shown to encourage the emergence of social efficiency 
further than the spatial structure. 
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1. Introduction 

In many applications it is of interest to know which strategies can survive 
in the long run. While the concept and techniques of game theory have 
been used extensively in many diverse contexts, they have been 
unsuccessful in explaining how agents realize if a game has many 
equilibria8. Introspective or educative theories that attempt to explain 
equilibrium selection problem directly at the individual decision-making 
level impose very strong informational assumptions. The game theory is 
also not able to address issues on how agents know which equilibrium 
should be realized when games have multiple equally plausible 
equilibria3. The game theory is also not able to provide answer in 
explaining how agents should behave in order to overcome an inefficient 
equilibrium situation7. 

One of the variations involves the finitely iterated games. The standard 
interpretation of game theory is that the game is played exactly once 
between fully rational individuals who know all details of the game, 
including each other's preferences over outcomes. Evolutionary game 
theory, instead, assumes that the game is repeated many times by 
individuals who are randomly drawn from large populations15,18. An 
evolutionary selection process operates over time on the population 
distribution of behaviors. It is also of interest to know which strategies 
can survive in the long run. According to the fundamental theorem 
principle of natural selection, more fitter behavior is selected. 

The evolutionary dynamic model with the assumption of uniform 
matching can be analyzed using replicator dynamics4. The criterion of 
evolutionary equilibrium highlights the role of mutations. The replicator 
dynamics, highlight the role of selection. Evolutionary game theory 
assumes that the game is repeated by individuals who are randomly 
drawn from large populations6. However, the growing literatures on 
evolutionary models have not considered learning at individual levels9. 
They treat agents as automata, merely responding to changing 
environments without deliberating about individuals’ decisions. Within 
the scope of our model, we treat models in which agents make deliberate 
decisions by applying rational reasoning about what to do and also how 
to decide13,14. Two features of this approach distinguish it from the 
introspective approach. First, agents are not assumed to be so rational or 
knowledgeable as to correctly guess or anticipate the other agent's 
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strategies. Second, an explicit dynamic process is specified describing 
how agents adapt their strategies as they repeat the games. 

An interesting problem is under what circumstances agents with 
individual learning may converge to some particular equilibrium1,2. We            
endow our agents with some simple way of learning and describe the 
evolutionary dynamics that magnifies tendencies toward better situation. 
By incorporating a consideration of how agents interact into models we 
not only make them more realistic but we also enrich the types of 
aggregate behavior that can emerge10,11,12. It is an important question to 
answer the following question: how the society groups its way towards 
an efficient equilibrium in an imperfect world when self-interested agents 
learn from each other. 

The term evolutionary dynamics often refers to systems that exhibit a 
time evolution in which the character of the dynamics may change due to 
internal mechanisms. In this paper, we focus on evolutionary dynamics 
that may change in time according to certain local rules. Evolutionary 
models can be characterized both by the level at which the mechanisms 
are working and the dimensionality of the system. We use the 
evolutionary models based on microscopic individuals who interact 
locally16. The search for evolutionary foundations of game-theoretic 
solution concepts leads from the notion of an evolutionarily stable 
strategy to alternative notions of evolutionary stability to dynamic 
models of evolutionary processes. The commonly used technique of 
modeling the evolutionary process as a system of a deterministic 
difference or differential equations may tell us little about equilibrium 
concepts other than that strict Nash equilibrium are good. We can attempt 
to probe deeper into these issues by modeling the choices made by agents 
with their learning models. 

We focus on collaborative learning in strategic environments, Non-
cooperative games are classified into dilemma games coordination games, 
and hawk-dove games. It is well known that natural selection does leads 
to inefficient equilibria in these games. In this paper each agent learns 
interaction rules by repeating games. We provide a general class of 
adaptation models and relate their asymptotic behavior to equilibrium 
concepts. We assume agents behave myopically, and they evolve their 
interaction rule over generation. They learn from the most successful 
strategy of their neighbor. Hence their success depends in large part on 
how well they do in their interactions with their neighbors. If the 
neighbor is doing well, the rule of the neighbor can be imitated, and in 
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this way successful rule can spread throughout a population, from 
neighbor to neighbor. 

We consider two fundamental models of interaction, local interaction 
with the lattice model and small-world model17. We show that all agents 
mutually learn acquire the common-rule, which lead to social efficiency. 
We also investigate acquisition by rules, and show that those rules of 
agents are categorized into a few rules with some commonality. 

2. Interaction with Lattice Model and Small-World Networks 

It is important to consider with whom an agent interacts and how each 
agent decides his action depending on others’ actions. In order to 
describe the interactions among agents, we may have two fundamental 
models, random matching and local matching9. The approach of random 
(or uniform) matching is modeled as follows: In each time period, every 
agent is assumed to match (interact) with one agent drawn at random 
from a population. 

An important assumption of the random matching is that they receive 
knowledge of the current strategy distribution. Each agent makes his 
rational decision strategy based on a sample of information about what 
other agents have done in the previous time period. Agents are able to 
calculate best replies and learn the strategy distribution of play in society. 
Agents may adapt based on the aggregate information representing the 
current status of the whole system (global adaptation). In this case, each 
agent chooses an optimal decision based on aggregate information about 
how all other agents behaved in the past. An agent calculates her reward 
and plays her best response strategy. An important assumption of global 
adaptation is that they receive knowledge of the aggregate. 

In many situations, however, agents are not knowledgeable so as to 
correctly guess or anticipate other agents’ actions, or they are less 
sophisticated and that they do not know how to calculate best replies8. 
We assume that a spatial environment is a more realistic 
representation since interactions in real life rarely happen on such a 
macro scale; Spatial interaction is generally achieved through the 
use of a 2D grid as shown in Figure 1(a), with each agent inhabiting 
a cell on the grid. Interaction between agents is restricted to 
neighboring cells. This may allow for individuals, which may have 
been eliminated if assessed against all players, to survive in a niche. 
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The recognition of the importance of spatial interactions has led to 
many exploring and extending aspects of it. Nowak and May focused 
upon evolutionary niching and the pattern of emergence of cooperation 
in the spatial environment13. With local adaptation each agent is modeled 
to adapt to his neighbors. The hypothesis of local adaptation also reflects 
limited ability of agents’ parts to receive, decide, and act based upon 
information they receive in the course of interaction. Agents observe the 
current performance of their neighbors, and learn from the most 
successful agent. Agents are less sophisticated in that they do not know 
how to calculate best replies and are using other agent's successful 
strategies as guides for their own choices. Each agent interacts with the 
agents on all eight adjacent squares and imitates the strategy of any better 
performing one. In each generation, each agent attains a success score 
measured by its average performance with its eight neighbors. Then if an 
agent has one or more neighbors who are more successful, the agent 
converts to the rule of the most successful neighbor.  

Complex networks describe a wide range of systems in nature and 
technology. They can be modeled as a network of nodes where the 
interactions between nodes are represented as edges. Recent advances in 
understanding these networks revealed that many of the systems show a 
small-world structure. Watts and Storogatz introduced a small-world 
network which transforms from a nearest neighbor coupled system to a 
random coupled network by rewiring the links between the nodes17. Two 
parameters are used to describe the transition. The mean path length L, 
which specifies the global property of the network, is given as the mean 
of the shortest path between all pairs of vertices. In contrast, the 
clustering coefficient C characterizes the local property of the system and 
can be calculated as the fraction of the connections between the 
neighbors of a node divided by the number of edges of a globally 
coupled neighborhood, averaged over all vertices. 

Consider one lattice model in which each node is coupled with its 
nearest neighbors as shown in Figure 1(b). It has a large mean path 
length and a high clustering coefficient. If one rewires the links between 
the node with a small probability the local structure of the network 
remains almost conserved keeping the clustering coefficient contrast. In 
contrast, due to the introduction of short cuts by the rewiring procedure 
the mean path length becomes strongly reduced. Networks with these 
properties are small-world networks. Further increase of the rewiring 
probability results in a random coupled network with a short mean path 



A. Namatame, N. Sato, Y. Murakami 
 
6

length and a low clustering coefficient. 
 

Figure 1.  The topology of interaction 
(a) Local interaction with a lattice model       (b) Interaction with a small-world network 

 

 

(Illustration of one-lattice model)

3. Learning Models 

Game theory is typically based upon the assumption of a rational choice8. 
In our view, the reason for the dominance of the rational-choice approach 
is not that scholars think it to be realistic. Nor is game theory used solely 
because it offers good advice to a decision maker, because its unrealistic 
assumptions undermine much of its value as a basis for advice. The real 
advantage of the rational-choice assumption is that it often allows 
deduction. 

The main alternative to the assumption of rational choice is some form 
of adaptive behavior. The adaptation may be at the individual level 
through learning, or it may be at the population level through differential 
survival and reproduction of the more successful individuals. Either way, 
the consequences of adaptive processes are often very hard to deduce 
when there are many interacting agents following rules that have 
nonlinear effects. Among many adaptive mechanisms that have been 
discussed in the literature on learning are classified as follows: 

 
(1) Best response learning 

In most game theoretic models, agents have perfect knowledge of the 
consequences of their decision. An important assumption of best-
response learning is that they receive knowledge of the current strategy 
distribution. Agents can calculate their best strategy based on 
information about what other agents have done in the past. Then agents 
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gradually learn the strategy distribution in the society. Agents adopt 
actions that optimize their expected payoff given what they expect 
others to do. In this learning model, agents choose the best replies to the 
empirical frequencies distribution of the previous actions of the others. 
 

 (2) Reinforcement learning 
Agents tend to adopt actions that yielded a higher payoff in the past, 
and to avoid actions that yielded a low payoff. Payoff describes choice 
behavior, but it is one's own past payoffs that matter, not the payoffs 
of the others. The basic premise is that the probability of taking an 
action in the present increases with the payoff that resulted from 
taking that action in the past. 
 

(3) Evolutionary learning 
Agents with higher payoff are at a productive advantage compared to 
agents who use low-payoff strategies, hence the latter decrease in 
frequency in the population over time (natural selection). In the 
standard model of this situation agents are viewed as being genetically 
coded with a strategy and selection pressure favors agents that are 
fitter, i.e., whose strategy yields a higher payoff against the 
population. The idea of using a genetic algorithm (GA) to create 
strategies has been developed further by Lindgren9. He showed 
that strategies could be made more robust by seeding the initial 
population with expert, hand-coded strategies. 
  

(4) Social learning 
Agents learn from each other with social learning. For instance, agents 
may copy the behavior of others, especially behavior that is popular to 
yield high payoffs (imitation). In contrast to natural selection, the 
payoffs describe how agents make choices, and agents' payoff must be 
observable by others for the model to make sense. The crossover is a 
kind of social learning. 

4. Evolutionary Dynamics with Individual Learning 

We make a distinction between evolutionary systems and adaptive 
systems. The equations of motion in an evolutionary system reflect the 
basic mechanisms of biological evolution, i.e., inheritance, mutation, and 
selection. In an adaptive system, other mechanisms are allowed as well, 
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e.g., modifications of strategies based on individual forecasts on the 
future state of the system. But, increasing the possibilities for 
individualistic rational behavior does not necessarily improve the 
outcome for the species to which the individual belongs in the long run. 

The introduction of spatial dimensions, so that individuals only 
interact with those in their neighborhood, may affect the dynamics of the 
system in various ways. The possibility of space-temporal structures may 
allow for global stability where the mean-field model (random matching) 
would be unstable. The presence of these various forms of space-
temporal phenomena may, therefore, also alter the evolutionary path 
compared with the mean-field model and we may see other strategies 
evolve. 

Different aspects of the evolutionary behavior have been investigated 
by many researchers: (i) by varying the payoff matrix of the game, (ii) by 
introducing spatial dimensions, and (iii) by introducing co-evolution. An 
important aspect of evolution is the learning strategy adapted by 
individuals3. Evolution in the hawk-dove game, for instance, drives the 
population to an equilibrium polymorphism state. But this symmetrical 
mixed equilibrium of hawk-dove is so inefficient that it is far from 
optimal. 

The term evolutionary dynamics often refers to systems that exhibit a 
time evolution in which the character of the dynamics may change due to 
internal mechanisms. In this paper, we focus on evolutionary dynamics 
that may change in time according to certain local rules of individuals. 
Evolutionary models can be characterized both by the level at which the 
mechanisms are working and the dimensionality of the system. Therefore 
we describe the evolutionary dynamics specifying microscopic behavior 
with individuals learning. 

The search for evolutionary foundations of game-theoretic solution 
concepts leads from the notion of an evolutionarily stable strategy to 
alternative notions of evolutionary stability to dynamic models of 
evolutionary processes. The commonly used technique of modeling the 
evolutionary process as a system of a deterministic difference or 
differential equations may tell us little about equilibrium concepts other 
than that strict Nash equilibrium is good. We can attempt to probe deeper 
into these issues by modeling the choices made by the agents with their 
own internal models. We also focus on dynamical systems described by 
equations of motion that may change in time according to certain rules, 
which can be interpreted as crossover operations. Each agent learns to 
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acquire the rule of interaction in the long-run. Non-cooperation games 
can be categorized into, dilemma games coordination games, Hawk-
Dove games and minority games. It is known that natural selection does 
not lead to social efficiency in these games. We show that all agents 
mutually learn to cooperate which result in social efficiency. 

5. Learning Coupling Rules 

In most game theoretic models, agents calculate their best strategy based 
on information about what other agents have done in the past. Then 
agents may gradually learn the equilibrium strategy. A number of 
evolutionary models based on the iterated general non-cooperation 
games have been proposed. Many dynamical systems and evolutionary 
models have been constructed with the PD1. Yao applied a genetic 
algorithm (GA) to the iterated Prisoner's Dilemma and used a bit-string 
representation of finite memory strategies21.  

We use the different approach. In the models that we discuss here, 
the equations of motion for the different individuals are usually coupled, 
which means that we have co-evolutionary systems. The success or 
failure for a certain type of individual depends on which other 
individuals are present. In this case, there is not a fixed fitness landscape 
in which the co-evolutionary dynamics climbs toward increasing to 
fitness. This ever-changing character of the world determining the 
evolutionary path allows for evolutionary phenomena.  

Co-evolutionary dynamics differ, in this sense, from the common use 
of the genetic algorithm, in which a fixed goal is used in the fitness 
function and where there is no coupling between individuals. In the 
genetic algorithm, the focus is on the final result what is the best or a 
good solution. In models of co-evolutionary systems, one is usually 
interested in the transient phenomenon of evolution. 

Each strategy in the repeated game is represented as a binary 
string so that the genetic operators can be applied. In order to 
accomplish this we treat each strategy as deterministic bit strings. 
We use a memory of one or two, which means that the outcomes of 
the previous one or two moves are used to make the current choice. 
We assume that 0 = S1 and 1 = S2 then as Figure 2(a) shows, there 
are four possible outcomes between two agents for each move 
S1S1(0,0), S1S2(0,1), S2S1(1,0), S2S2(1,1). We can fully describe a 
deterministic strategy by recording what the strategy will do in each 
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of the 4 different situations that can arise in the iterated game. Since 
no memory exists at the start, an extra 2 for 4 bits are needed to 
specify a hypothetical history. Each rule can be defined by a 6 bit 
string as shown in Figure 2(b).  

At each generation, agents repeatedly play the game for T  iterations. 
Agent i, i  [1…N] uses a binary string i to choose his strategy at 
iteration t ,t∈.[1…T]. Each position of a binary string in Figure 2(b) as 
follows: The first position, p

∈

1 encodes the action that agent takes at 
iteration t = 1. A position pj ,j∈[2,3] encodes the memories that agent i  
takes at iteration t - 1 and his opponent. A position pj, j∈[4…7] , encodes 
the action that agent i  takes at iteration t > 1, corresponding to the 
position pj, j [2,3]. An agent i  compares the position p∈ j, j ∈ [2,3], 
decides the next action.  

 
Figure 2. An interaction rule of memory one 

(a) Coupling Rule                             (b) Rule Representation 

 
 

Each agent mimics the rule of the most successful neighbor. We 
arrange agents for an area of 20 20× (N = 400 agents) with the lattice 
model as shown in Figure 1(a) with no gap, and four corners and end of 
an area connect it with an opposite side. At each time period t, each agent 
plays with his 8 neighbors. At the next time period, each agent mimic the 
interaction rule of the most successful neighbor who obtain the highest 
payoff. 

6. Simulation Results 

Non-cooperation games can be categorized into dilemma games 
coordination games, hawk-dove games. It is known that equilibrium 
situations led by natural selection is far from social efficiency. A genetic 
algorithm is used to evolve strategies. A generation involves each player 
playing with 8 neighbors with the spatial model or some proportion of 
partners to interact are chosen from all other members in the population 
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with the model of small-world networks. The iterated game is played 
fifty times between each agent. The fitness of an agent is the average 
payoff it achieved over repeating games. Mutation of random alleles may 
occur with a probability of 0.01 for all cases.  
 
 (1) Dilemma Game 
Many works on evolution of cooperation have been focused on dilemma 
games, which is formulated as follows: Each agent faces the problem of 
selecting one of two decisions, cooperate (S1) or defect (S2). The payoff 
for each decision depends on the decisions of the other agent. Table 1 
shows the payoffs for all the possible combinations of decisions. The 
most startling effect of the iterated Prisoner’s Dilemma simulation, 
as observed by Axelrod1, is the fact that a group of purely egotistical 
individuals, working towards nothing but improving themselves can 
lead to a population which is actually highly cooperative.  

Each pair of agents interacts 50 times at one generation. Figure 3(a) 
shows the ratio of agents who chose the cooperative strategy S1 with 
the lattice model. After few generations the ratio of the cooperative 
becomes to be 0.85. Initially the ratio of defective strategy increases, 
however, it is quickly wiped out and more cooperative opponents obtain 
higher payoffs, and the population exhibits reciprocal cooperation. 
Figure 3(b) shows the same experiment in a small-world network 
model. There are a couple of important differences in this graph and 
the graph obtained using the spatial environment (Figure 3(a)). 
Figure 3(b) shows that it is actually easier for cooperation to evolve 
in a small-world network environment. As a result the cooperative 
strategy could be realized with the dilemma game after a few generation. 
The cooperation is clearly more stable in the small-network environment. 

At beginning, each agent has a different interaction rule specified by 
the 4 bits information. All rules learnt by 400 agents, which were 
aggregated into only one type as shown in Table 3. 

 
Table 1. The payoff matrix of a dilemma game 
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Figure 3. The ratio of cooperation in iterated dilemma games 
(a) Local interaction with a lattice model  (b) Interaction with a small-world network 

 
S1(Cooperate) 1.0  

 
 
 
 
 
 
 
 
 
 

S1(Cooperate) 
0.85 

Table 2. Learnt Rules by 400 agents in small-world environment 
 
 
 
 
 

4 5 6 7
0 0 1 1 1 400

Initial
strategy

Number of
Agents

Array Location

Table 3. Learnt Interaction rule 
 

 
 

Figure 4. The state transitions specified by the rule in Table 3. 

 
 

The acquired rule specified as “0111” in Table 3 can be interpreted as 
follows: If agents behave as “cooperate”, then both agents behave 
“cooperate”, however one of them “defect”, then both agents behave 
“defect”. The state transition of this learnt rule is illustrated in Figure 4 
as the state transition diagram. There are two absorption points "00" and 
"11". Since each agent also acquires the rule to behave “cooperate” at the 
first play of each generation as shown in Table 2, they remain at the 
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absorption points "00". 
 
(2) Coordination Games 
The coordination game with the payoff matrix in Table 4 has two 
equilibria with the pairs of the pure strategies ( , ), ( , ), and 
one equilibrium of the mixed strategy. The most preferable equilibrium, 
Pareto-dominance is ( , ), which dominates the other equilibrium. 
There is another equilibrium concept, the risk-dominance, and ( , ) 
risk-dominates ( , ). How do agents choose their strategy when the 
equilibria of Pareto-dominance and the risk-dominance are different? 
With such indigenous selection of strategy, the question is whether the 
society of agents may select the socially efficient Pareto-optimal strategy.  

S1 S1 S2 S2

S1 S1

S2 S2

S1 S1

Figure 5(a) shows the ratio of agents to choose the Pareto-optimal 
strategy S1 with the lattice model. After few generations the ratio of 
the Pareto-optimal strategy becomes to be 0.85. Figure 5(b) shows 
the same experiment using a small-world network framework. There 
are a couple of important differences in this graph and the graph 
obtained using the spatial environment (Figure 5(a)). Figure 5(b) 
shows that it is easier for the Pareto-optimal strategy to evolve in a 
small-world network environment. As a result Pareto optimal strategy 
could be spread out after a few generation.  

At beginning, each agent has a different interaction rule specified by 
the 4 bits information. In Table 5, we show the rules learnt by 400 agents, 
which are aggregated into only one type. After 10 generations, all rules 
of agents were converged into one rule as shown in Table 5. The acquired 
rule specified as “0111” in Table 5 can be interpreted as follows: If both 
agents choose the Pareto-optimal strategy, then they choose the same one, 
however if one of them chooses the risk-dominant strategy, then both 
agents choose the risk-dominant strategy. The state transition of the 
learnt  rule is illustrated in Figure 6 as the state transition diagram. There 
are two absorption points "00" and "11". Since each agent also acquires 
the rule to choose “Pareto-optimal strategy” at the first play of each 
generation as shown in Figure 6, they remain at the absorption points 
"00". 
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Table 4. Payoff matrix of a coordination game 
 

 
 

Figure 5. The ratio of Pareto-optimal strategy (S1) in iterated coordination games 
(a) Local interaction with a lattice model  (b) Interaction with a small-world network 

  

 

S1(Pareto-optimal strategy) 
1.0 

S1(Pareto-optimal strategy)

0.85 

 
Table 5. Learnt Rules by 400 agents in Interaction with a small-world network 

 
 
 
 
 

4 5 6 7
0 0 1 1 1 400

Number of
Agents

Initial
strategy

Array Location

Table 6. Interaction rule 

 
 

Figure 6. The state transitions specified by rules in Table 6. 

 



Co-Evolutionary Learning in Strategic Environments 15 

 
 

(3) Hawk-Dove Game 
The hawk-dove game is formulated with the payoff matrix in Table 7. In 
this game, we suppose there are two possible behavioral types; one 
escalates the conflict until injury or sticks to display and retreats if the 
opponent escalates. These two types of behavior are described as "hawk" 
and "dove". There is the unique symmetric Nash equilibrium in mixed 
strategies, both agents use the strategy S1 ('hawk') with probability 
p =V/C and the strategy S2 ('dove') with the probability 1-p =1-(V/C) [2]. 
Therefore if the cost of injury C is very large, the hawk frequency (V/C) 
will be small. At equilibrium of the mixed strategy, the expected fitness 
is given at the level of (V/2){1-(V/C)}. If each agent chooses the strategy 
S2 ('dove'), (however, the situation that both behave as doves are not 
equilibrium) he receives V/2. This implies that the mixed-strategy results 
in inefficient equilibrium. And evolutionary game can realize Pareto 
optimal equilibrium but it has the possibility that an inferior equilibrium 
is chosen. 

 Figure 7(a) shows the ratio of agents to choose the strategy of 
Dove (S2) with the lattice model. We set to V=10, C=12 in Table 7. 
After few generations the ratio of the strategy of Dove becomes 0.95. 
Figure 7(b) shows the same experiment, this time using a small-
world network framework.  
In Table 8, we show the rules learnt by 400 agents, which are aggregated 
into only one type. After 10 generation, all rules of agents were 
converged into one rule as shown in Table 8. The acquired rule specified 
as “0001” in Table 8 can be interpreted as follows: If both agents choose 
the Dove strategy, then they choose the same one, however one of them 
chooses the Hawk strategy, then both agents choose the Hawk strategy. 
The state transition of the learnt  rule is illustrated in Figure 8 as the state 
transition diagram. There are two absorption points "00" and "11". Since 
each agent also acquires the rule to choose “ the Dove strategy” at the 
first play of each generation as shown in Table 8, they remain at the 
absorption points "11". 
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Table 7. The payoff matrix of the Hawk-dove game 
 

 
 

Figure 7. The ratio of Dove (S2) in iterated dilemma games 
(a) Local interaction with a lattice model   (b) Interaction with a small-world network 

        

1.0 S2(Dove) S2(Dove) 0.95 

 
Table 8. Learnt Rules by 400 agents with a small-world network 

 

4 5 6 7
1 0 0 0 1 400

Number of
Agents

Initial
strategy

Array Location 
 
 
 

Table 9. Interaction rule 

 
Figure 8. The state transitions specified by rules in Table 8 
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7. Conclusion 

We focused on co-evolutionary dynamical systems described by 
equations of motion that may change in time according to rules. In the 
models that we discuss here, the equations of motion for the different 
individuals are usually coupled, which means that we have co-
evolutionary systems. The success or failure for a certain type of 
individual depends on which other individuals are present. In this case, 
there is not a fixed fitness landscape in which the evolutionary dynamics 
climbs toward increasing elevation, but a position that at one time is a 
peak may turn into a valley. This ever-changing character of the world 
determining the evolutionary path allows for complex dynamic 
phenomena. Co-evolutionary dynamics differ, in this sense, from the 
common use of the genetic algorithm, in which a fixed goal is used in the 
fitness function and where there is no interaction between individuals. In 
the genetic algorithm, the focus is on the final result what is the best or a 
good solution. In models of co-evolutionary systems, we consider the 
case of open-ended evolution. 

We discussed the role of individual learning in realizing social 
efficiency. The hypotheses we employed here reflect the limited ability 
of interaction with the individual learning capability. The learning 
strategy employed here is a kind of meta-learning. One of the variations 
involves the finitely iterated game that has Nash equilibria of inferior 
strategies. It is illustrated that when the interaction architecture of the 
small-world network is added, evolution usually avoids this inferior state. 

Our comparison of individuals playing the social games evolved 
in a spatial and small-world network environment has yielded some 
interesting results. It has been demonstrated in this paper that 
interaction on a small-world network framework encourages and 
promotes efficiency to a greater extent, and in a more stable way, 
than when interaction is performed on a spatial model. This suggests 
that efficiency will be easier to attain when exchanges are restricted 
to those in an open society rather than a closed society. 
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