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Abstract. Higher order panel methods are used to solve the Laplace equation in the presence of
complex geometries. These methods are useful when globally accurate velocity or potential fields are
desired as in the case of vortex based fluid flow solvers. This paper develops a fast multipole algorithm
to compute velocity fields due to higher order, two-dimensional vortex panels. The technique is
applied to panels having a cubic geometry and a linear distribution of vorticity. The results of the
present method are compared with other available techniques.
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1. Introduction. Panel methods provide a means to solve incompressible and
inviscid fluid flows in two and three dimensions. These methods reduce the dimen-
sionality of the problem by one and hence in two dimensions require a one dimensional
“grid” on the boundary. The flow of an inviscid and incompressible fluid in the pres-
ence of a solid body can be simulated by discretizing the body into elements called
panels, distributing some singularity having an unknown strength on them and solv-
ing for the unknowns based on the boundary condition. In two dimensions the panel
elements can be linear, parabolic or higher order. The singularity distributed can
be a source, doublet or vorticity distribution. It can be lumped at a point or dis-
tributed as a constant, linear or higher order function. Katz and Plotkin [5] provide
comprehensive details on panel methods in general. Hess and Smith [4] laid the foun-
dation for the source panel method. The idea of the vortex panel method is due to
Martensen [8] and is extended by Lewis [6]. Vortex panels unlike source panels can
be used to simulate a lifting body. It is also well known that a polynomial distribu-
tion of doublets of order q can be replaced by a vorticity distribution of order q − 1.
Therefore, the present work uses a vorticity distribution on the surface of the panels.
Only two-dimensional flows are considered. It is to be noted that the ideas developed
in this work can also be used for source and doublet distributions.

In panel methods, the boundary conditions can be represented in terms of the ve-
locity resulting in the Neumann condition, or in terms of the potential or stream func-
tion on the boundary, called the Dirichlet condition. If N panels with one unknown
strength per panel are used to discretize the boundary, a system of N linear equations
is obtained based on the chosen boundary condition. The system of equations can
be written as Ax = b, where x represents the vector of N unknown strengths. The
boundary value problem is solved when x is obtained from these system of equations.
In panel methods, A is usually dense. There are a variety of standard methods for the
solution of dense matrices. These algorithms are usually computationally inefficient.
For example, an LU decomposition requires O(N3) work. Rokhlin [12] uses a Gener-
alized Conjugate Residual Algorithm (GCRA), ordinarily requiring O(N2) work, to
solve the equations iteratively. In this algorithm one computes increasingly accurate
approximations to x, x̃, by computing the matrix product Ax̃. For well conditioned
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matrices this sequence of approximations converges rapidly to x. Normally, the matrix
product Ax̃ involves O(N2) work. Rokhlin reduces this to an O(N) computation by
developing a fast multipole algorithm. This considerably speeds up the solution of the
boundary value problem. Rokhlin developed the method for point sources/vortices
(single layer potential) and doublets (double layer potential). These correspond to
lumping the singularity distribution of the panel at a point. The resulting panels
generate a singular velocity/potential field in the vicinity of these lumped points.

To eliminate the singular velocity or potential field, higher order distributions
of singularity can be used. When linear panel elements are used with a vorticity
distribution of any polynomial order q ≥ 1, it can be seen [10, 11] that there is a
logarithmic singularity at the edges of the panels. This is called the “edge effect”. This
edge effect can be eliminated by using a higher order panel method where the geometry
of the panel is such that there is no discontinuity in the slope between two adjacent
panels. For example, this is possible with cubic panels. The authors [10] developed
a method that eliminates the edge effect by using cubic panel elements with a linear
distribution of vorticity. This method was found to be about four times slower than the
linear panel method when evaluating velocities or potentials for a given distribution
of singularity. In [11] the authors use a fast multipole technique[3, 2] to accelerate
the computation to acceptable speeds. The method uses a linear representation of
panels for the far field fast multipole computations and uses the cubic method for the
direct computations. While this hybrid approach eliminates the edge effect, it is not
as accurate as the cubic panel method.

The present work details a procedure to perform a fast multipole summation
using panels of any order and thus provides an accurate and fast technique for two-
dimensional panel methods. The method allows one to compute the matrix product
Ax̃ in O(N) time as done by Rokhlin [12] and thereby allows one to solve the boundary
value problem efficiently. The technique is also of use when the velocity or potential
field due to the panels having a known distribution of singularity is required at a very
large number of points. Such a requirement arises in the context of vortex methods
where the velocity field due to a collection of panels on a large number of vortex
blobs is to be computed. The number of vortex blobs usually exceeds the number
of panels by two orders of magnitude or more. In these cases it is possible to solve
the boundary value problem using an LU decomposition since the number of panels
involved is small. However, as mentioned in [11, p. 6], the computation of the velocity
field due to the panels on the particles needs to be performed efficiently since the
particle-particle interaction is computed using an O(N) fast multipole method. The
developed algorithm makes this possible.

The fast multipole method for higher order vortex panels developed in this work is
demonstrated using cubic panels. It is compared with the hybrid algorithm described
in [11] and also compared with Anderson’s technique [1] extended to the current
problem.

2. Mathematical details. For clarity, the velocity field due to a cubic panel
element is first derived. Subsequently, the details of the fast multipole method are
elaborated.

2.1. Cubic panels. Consider an arbitrarily oriented cubic panel as shown in
figure 2.1. The start and end points of the panel are denoted as z1 and z2 respectively.
The panel can be translated and rotated such that the start point is at the origin and
the chord is along the x-axis in the z′ plane. If the complex velocity due to the panel
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Fig. 2.1. Sketch of a single cubic panel having a chord length λ in the z plane.
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Fig. 2.2. Sketch of a single cubic panel having a chord length λ in the z′ plane.

in the z′ plane is V (z′), then it is easy to see that the velocity, V (z), in the z plane
can be obtained as, V (z) = V (z′)e−iθ and that z = z1 + z′eiθ.

The equation of a cubic panel starting at the origin, with chord oriented along
the x-axis is given by η = a1ζ + a2ζ

2 + a3ζ
3, where ζ and η respectively are the x

and y coordinates of the panel surface, as shown in figure 2.2. Note that 0 ≤ ζ ≤ λ,
where λ is the chord length of the panel. The vorticity is distributed on the surface
of the panel and is linear with respect to ζ. The equation for the velocity at a point
z′ due to such a panel is given as

V (z′) =
k

2πa3

∫ λ

0

(ζ + γ1/k)(
ζ3 + a2

a3
ζ2 + (a1−i)

a3
ζ + iz′

a3

)dζ,(2.1)

where k = (γ2 − γ1)/λ. As done in [11], the cubic in the denominator is factored as
follows

ζ3 +
a2

a3
ζ2 +

(a1 − i)
a3

ζ +
iz′

a3
= (ζ − a)(ζ − b)(ζ − c),(2.2)
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where a, b and c are the complex cube roots of the cubic [9]. Given the roots, closed
form integrals are obtained for the panel velocity and potential. After integration and
simplification the velocity due to the cubic panel in the z plane is,

V (z) =
−γ2

2πa3λ

[
a log

(
a−λ

a

)

(a− c)(a− b)
+

b log
(

b−λ
b

)

(b− c)(b− a)
+

c log
(

c−λ
c

)

(c− a)(c− b)

]
e−iθ

(2.3)

− γ1

2πa3λ

[
(λ− a) log

(
a−λ

a

)

(a− c)(a− b)
+

(λ− b) log
(

b−λ
b

)

(b− c)(b− a)
+

(λ− c) log
(

c−λ
c

)

(c− a)(c− b)

]
e−iθ,

where θ is the angle between the chord of the cubic panel and the x-axis. Similarly,
the complex potential due to the panel can be obtained. The expressions for these are
not reproduced here. Using these derived expressions one can compute the velocity or
potential due to a cubic panel with a linear vorticity distribution. It it to be noted that
if the panel geometry is almost parabolic (a3 → 0) or linear (a3, a2 → 0), the above
expression for the velocity field would be inaccurate. In such cases, the panels should
be represented as parabolic or linear elements and the velocity integral specialized
appropriately. These are straightforward to derive. The specialization does not affect
the developed method in any way.

2.2. FMM for higher order panels. Consider a higher order panel with its
chord oriented along the x-axis as illustrated in figure 2.2. Given a vorticity distri-
bution γ(ζ) it can be easily seen that the complex velocity at a point z′ due to the
panel is given as,

V (z′) = u′ − iv′ =
−i

2π

∫ λ

0

γ(ζ)
z′ − (ζ + iη)

dζ.(2.4)

Substituting ξ = ζ + iη, and performing a binomial expansion results in,

u′ − iv′ =
−i

2π

∫ λ

0

γ(ζ)
z′ − ξ

dζ

=
−i

2π

∞∑

j=1

∫ λ

0

γ(ζ)ξj−1

z′j
dζ(2.5)

Without loss of generality, if z1 of the panel is assumed to be at the origin, then
z′ = ze−iθ and u− iv = e−iθ(u′ − iv′), and the above equation reduces to,

u− iv =
−i

2π

∞∑

j=1

ei(j−1)θ

zj

∫ λ

0

γ(ζ)ξ(ζ)j−1dζ.(2.6)

This can be written as,

u− iv =
−i

2π

∞∑

j=1

Aj

zj
,(2.7)

where,

Aj = ei(j−1)θ

∫ λ

0

γ(ζ)ξ(ζ)j−1dζ.(2.8)
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The complex potential of the higher order panel can also be obtained as follows,

Φ = φ + iψ =
−i

2π

∫ λ

0

γ ln(z′ − ξ)dζ

=
−i

2π

(
ln(z′)

∫ λ

0

γdζ −
∞∑

k=1

1
z′k

∫ λ

0

ξk

k
dζ

)

=
−i

2π

[
P0 ln(z′)−

∞∑

k=1

Pk

z′k

]
(2.9)

where,

P0 =
∫ λ

0

γdζ ; Pk =
1
k

∫ λ

0

ξk γ dζ.(2.10)

In the present work we are interested in evaluating the velocity fields. Hence, the
multipole method is developed with that in mind. The analysis of the truncation
errors is performed only for the velocity field. The truncation error for the complex
potential can also be easily computed in a similar fashion as done for the velocity
field.

Given ξ(ζ), γ(ζ) and θ, Aj can be readily computed. The series (2.7) converges
if |ξ| < |z|. It is reasonable to assume that the panel is completely contained inside
a circle centered at the origin having radius λ, i.e. |ξ(ζ)| < λ. Given this, it is easy
to see from (2.8) that the error involved in truncating the series to a finite number of
terms p is,

∣∣∣∣∣∣
V (z) +

i

2π

p∑

j=1

Aj

zj

∣∣∣∣∣∣
≤ Γ

2πλ(%− 1)

(
1
%

)p

(2.11)

where,

Γ =
∫ λ

0

|γ(ζ)|dζ

and % = |z|/λ.
Hence, equations (2.7) and (2.8) can be used to obtain a fast multipole expansion

for higher order panels. The coefficients Aj are to be computed by numerical integra-
tion. It is to be noted that equation (2.7) is a multipole expansion about the point z1

(the first point) of the panel as shown in figure 2.1. For a cubic panel as used in the
earlier work[11] we have, ξ = ζ + i(a1ζ + a2ζ

2 + a3ζ
3). It is also to be noted that if

the panels do not deform or change orientation, the coefficients, Aj , are constant and
need be computed only once. If the panels only rotate, the entire integral need not be
evaluated and the coefficients need to be multiplied by a different value of ei(j−1)θ. If
the panels deform, the coefficients must be recomputed. Given equations (2.7) and
(2.8), the various expressions for the fast multipole method can be derived as follows.

2.3. Multipole expansion for a collection of panels. Given n panels placed
at points zk inside a circle of radius R, the multipole expansion for the velocity field
of the panels is,

V (z) = u− iv =
−i

2π

n∑

k=1

∞∑

j=1

Akj

(z − zk)j
(2.12)
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where Akj are the coefficients as given in equation (2.8) for the panel starting at zk.
The above can be expressed as a multipole expansion about a circle centered at z0 as
follows,

V (z) =
−i

2π

n∑

k=1

∞∑

j=1

Akj

(z − z0)j
[1− (zk − z0)/(z − z0)]

−j
.

By grouping powers of (z − z0) it can be seen that,

V (z) =
−i

2π

∞∑

j=1

aj

(z − z0)j
(2.13)

where,

aj =
n∑

k=1

j∑
m=1

Akm

(
j − 1
m− 1

)
(zk − z0)j−m(2.14)

Equations (2.13) and (2.14) are equivalents to those of Lemma 2.1 in Carrier
et al. [2]. This expression is nothing but the sum of the transfers of the multipole
expansions of the n panels, each starting at zk, to a circle of radius R centered at z0.
Thus, when this expression is truncated to p terms, the error in the velocity is,

∣∣∣∣∣∣
V (z) +

i

2π

p∑

j=1

aj

(z − z0)j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
i

2π

∞∑

j=p+1

aj

(z − z0)j

∣∣∣∣∣∣
,

where aj is given in equation (2.14). From equation (2.8) it can be seen that,

|Akm| ≤ Γkλm−1
k , Γk =

∫ λk

0

|γk(ζ)|dζ,

where λk is the chord length of the k’th panel. Given this and the fact that all the
zk’s lie inside a circle of radius R, aj can be clearly bounded as,

|aj | ≤
n∑

k=1

j∑
m=1

Γkλm−1
k

(
j − 1
m− 1

)
Rj−m

≤ ∆
j∑

m=1

λm−1

(
j − 1
m− 1

)
Rj−m

where ∆ =
∑n

k=1 Γk and λ = max(λk). Hence,

|aj | ≤ ∆(R + λ)j−1(2.15)

Therefore,
∣∣∣∣∣∣
V (z) +

i

2π

p∑

j=1

aj

(z − z0)j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
i∆
2π

∞∑

j=p+1

(R + λ)j−1

(z − z0)j

∣∣∣∣∣∣

=
∆

2π(R + λ)(c− 1)

(
1
c

)p

(2.16)
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Fig. 2.3. Illustration of radius of convergence for panels.

where c = |z − z0|/(R + λ). It is to be noted that in this case, any panel having a
starting point zk, lying inside the circle D, centered at z0 with radius R, is considered
for the multipole expansion. Clearly, the circle of radius R+λ will completely contain
all the panels that have a starting point inside D. Let the radius of a multipole cell
containing panels be Rcell. If the panel mid-chord position is used as the determining
criterion for a panel to be part of a cell, then clearly the radius of the circle that
completely contains all the panels in that cell is Rcell +λ/2. This is because only half
a panel length will be partly outside the cell. From this it is easy to see that

R + λ ≤ Rcell + λ/2.(2.17)

While the result in equation (2.16) has the same form (O(c−p)) for the error term
as in the fast multipole method of [3, 2], the value of c is different. The reason for
the difference can be explained as follows. Consider the cell C centered at z0, shown
in figure 2.3. The cell contains a panel of length λ, with its mid point at the corner
of the cell and at an angle 45◦ to the horizontal. The size of the cell is h. The radius
of the cell Rcell = h

√
2/2. From equation (2.11) it is clear that the panel’s multipole

expansion about its start point converges only outside a circle of radius λ centered
about its starting point. Thus, it is easy to see that the multipole expansion for the
cell about its center converges outside a circle of radius Rcell + λ/2. This is the same
result as shown in equation (2.17).

When implementing the adaptive fast multipole algorithm, the multipole expan-
sion of the cell C can be evaluated on cells that are well separated from it. The cell
E contains zq, the closest point to z0. The error in the multipole expansion at this
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point is governed by,

c =
∣∣∣∣
zq − z0

R + λ

∣∣∣∣ =
3h

h
√

2 + λ

If h = βλ, then,

c =
3β

β
√

2 + 1
(2.18)

c is not always greater than 2 as in the case of the original fast multipole method
where c = 3/

√
2. Given a value of c and a desired precision, ε, the number of terms in

the series necessary, p, can be determined from equation (2.16). In order to employ
a smaller number of terms p, β needs to be chosen carefully. It is important to note
that the size of the cells used in the multipole method should be limited by βλ. This
result also applies to the fast multipole method of [11].

2.4. Shifting the center of a multipole expansion. Equation (2.13) is the
multipole expansion for a collection of panels in a circle of radius R centered at z0.
This expansion, when translated to the origin, produces a multipole expansion that
converges outside a circle centered at the origin with radius R+λ+ |z0|. The resulting
multipole expansion is given by

V (z) =
−i

2π

∞∑

j=1

bj

zj
(2.19)

where,

bj =
j∑

k=1

ak

(
j − 1
k − 1

)
zj−k
0(2.20)

and ak is as given in equation (2.14). This expression is the equivalent of Lemma 2.2
in [2]. From equation (2.15) a bound for bj can be obtained as,

|bj | ≤ ∆
j∑

k=1

(R + λ)k−1

(
j − 1
k − 1

)
|z0|j−k

= ∆(R + λ + |z0|)j−1(2.21)

From the above, the error in truncating equation (2.19) to p terms is,
∣∣∣∣∣∣
V (z) +

i

2π

p∑

j=1

bj

zj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
i

2π

∞∑

j=p+1

bj

zj

∣∣∣∣∣∣

≤ ∆
2π(|z| − (R + λ + |z0|))

(
R + λ + |z0|

|z|
)p

(2.22)

2.5. Conversion of multipole expansion to a local expansion. Given a
multipole expansion (2.13) about a circle D0 of radius R and centered at z0 such that
|z0| > (c+1)R with c > 1, the multipole expansion can be described by a power series
in z that converges inside a circle, D2, centered at the origin having radius R,

V (z) =
∞∑

j=0

cjz
j(2.23)
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where,

cj =
−i

2πzj
0

∞∑

k=1

(−1)k ak

zk
0

(
j + k − 1

k − 1

)
.(2.24)

This is the equivalent of Lemma 2.3 in [2]. The derivation for the error term is similar
to that derived in [3] for the local expansions. However, the extent of the panels
modifies the results slightly. In the following, the error introduced when the series in
equation (2.23) is truncated to p terms is derived. The derivation is very similar to
that in [3].

Consider figure 2.4. The multipole expansion about the center of the circle D0 is
transferred to the center of circle D2 as a local expansion about the origin. Although
the circle D0 is of radius R, we consider a circle D1 of radius R + λ because the
multipole expansion for the panels will converge for a point outside the larger circle.
The circle C has radius s. From Taylor’s theorem it is known that,

|cj | ≤ M

sj

where M = max(|V (z)|) on the circle C. s is defined as per Greengard and Rokhlin’s
paper [3] as s = cR((p− 1)/p). When p ≥ 2c/(c− 1)

R < c(R + 1)/2 < s < cR.

If t is a co-ordinate along the circumference of C it is easy to see that |t − z0| ≥
R(C + 1) + λ − s. Hence, from equations (2.13), (2.15) and the definition for s, we
have that,

M = max(|V (t)|) ≤ 1
2π

∞∑

j=1

|aj |
|t− z0|j ≤

∆(p(R + λ) + cR)
2π(R + λ)cR
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Hence, the truncation error is given by,
∣∣∣∣∣∣
V (z)−

p∑

j=1

cjz
j

∣∣∣∣∣∣
≤

∞∑

j=p+1

|cj ||z|j

≤ ∆(p(R + λ) + cR)
2π(R + λ)cR

∣∣∣z
s

∣∣∣
p+1 1

1− |z|
s

If p ≥ 2c/(c− 1) then it can be shown that,

1− |z|
s
≥ c− 1

c + 1

From the definition of s it can be seen that,

∣∣∣z
s

∣∣∣
p+1

≤
(

1
c

)p+1 (
1 +

1
p− 1

)p−1 (
1 +

1
p− 1

)2

Clearly, when p ≥ 2 this reduces to

∣∣∣z
s

∣∣∣
p+1

≤ 4e

(
1
c

)p+1

where e is the base of the natural logarithm. Hence, for any p ≥ max(2, 2c/(c− 1)) it
is easy to see that,

∣∣∣∣∣∣
V (z)−

p∑

j=1

cjz
j

∣∣∣∣∣∣
≤ 2∆e(p(R + λ) + cR)(c + 1)

πcR(c− 1)(R + λ)

(
1
c

)p+1

(2.25)

This expression is very similar to that in [3]. Also note that c is as defined in [3] and
is not a function of λ.

2.6. Shifting the center of a local expansion. Given any local expansion
centered about z0 and the coefficients ak the center of the local expansion can be
shifted to the origin using,

n∑

i=0

ai(z − z0)i =
n∑

j=0

zj
n∑

k=j

ak

(
k
j

)
(−z0)k−j .(2.26)

This expression is exact and is the same as that of Lemma 2.4 from [2].
Using equations (2.13), (2.19), (2.23) and (2.26) the fast multipole algorithm can

be applied to higher order panels. As detailed in section 2.3, it is to be noted that the
size of the cell is limited by the length of the panels and the parameter c in equation
(2.16) is modified as in equation (2.18). The direct computation of the velocity is
dependent on the actual higher order panel chosen. In the present work a cubic panel
geometry with a linear distribution of vorticity is used. The direct computation of
the velocity field due to this type of panel is performed using equation (2.3).

3. Anderson’s FMM without multipoles. The results of the present method
are compared with those obtained using Anderson’s[1] technique applied to the cu-
bic panels. This technique is called “FMM without multipoles”. This method uses
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Poisson’s integral formula in order to obtain equivalents for the multipole expansion.
Given a collection of point charges or vortices the method uses inner and outer ring
approximations of the potential, that are computed using Poisson’s integral formula,
to represent the cluster of particles as a single computational entity and accelerate
the computations. The advantage of this approach is that there is no need to obtain
expressions for the multipole expansions as done normally with the FMM. Anderson
describes the algorithm and its implementation from a multigrid perspective. The
present work translates the algorithm from the multigrid implementation to that of
an adaptive fast multipole algorithm. The various lists (Ub, Vb, Wb, Xb and Yb) and
other symbols used in the discussion are the same as those described and used in [2].
The translation is simple and is performed as follows.

• The multipole expansions for the childless cells are computed using outer ring
approximations of the potential.

• The multipole expansions from daughter cells, D, are are shifted to their
parents, P , by evaluating the outer ring approximation of D on P ’s outer
integration points and accumulating the outer ring coefficients of P .

• Given a multipole expansion (or an outer ring approximation) of a cell C, a
local expansion (inner ring approximation) at a well separated cell S, can be
obtained by computing the outer ring approximation of the velocity/potential
due to C on S’s inner ring integration points and adding them to the inner
ring coefficients of S. This corresponds to obtaining the interactions due to
cells in the Vb list as described in [2].

• A local expansion is translated from a cell P , to a child cell C, by evaluating
the inner ring approximation of P at the inner integration points of C and
adding the result to the inner ring approximation coefficients of C.

• The interactions due to a cell W , in the Wb list of a cell B are computed
by evaluating the velocity/potential due to the outer ring of W on particles
inside B.

• The ∆b interactions on cell B due to a cell X belonging to the Xb list is
found by evaluating the potential due to each panel in X on the inner ring
integration points of B.

The algorithm does not require the use of explicit expressions for the multipole expan-
sions and the local expansions. This makes the method easy to extend to situations
where expressions for the multipole expansion are not easy to derive.

Since the focus of this work is to compute the velocity field of panels, the expres-
sions for the potential in Anderson’s work[1] are differentiated to obtain the velocity
directly rather than by numerical differentiation. It is to be noted that in the case
of vortex blobs or vortex panels, it is the stream function and not the potential that
behaves like log(r). Thus, the stream function of the panels must be used in the
present computations.

There are a few important issues to keep in mind when using Anderson’s scheme.
The outer ring approximation for the stream function due to a collection of panels
inside a cell is given as,

(3.1)

ψ(r, θ) ≈ κ log(r) +
1
2π

K∑

i=1

f(si)Fih
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Fi =
1− (

a
r

)2 − 2
(

a
r

)M+1 cos((M + 1)(θ − si)) + 2
(

a
r

)M+2 cos(M(θ − si))

1− 2
(

a
r

)
cos(θ − si) +

(
a
r

)2

where, r, θ are the co-ordinates of a point where the stream function is approximated.
K = 2M+1, si is the angle of the integration point on the ring of radius a, h = 2πa/K,
κ =

∑N
i=1(κi/2π), f(si) = Ψ(a, si)−κ log(a) and Ψ is the stream function induced by

N vortex panels of strengths κi. The inner ring approximation is similar and given
as,

(3.2)

ψ(r, θ) ≈ 1
2π

K∑

i=1

f(si)Gih

Gi =
1− (

r
a

)2 − 2
(

r
a

)M+1 cos((M + 1)(θ − si)) + 2
(

r
a

)M+2 cos(M(θ − si))

1− 2
(

r
a

)
cos(θ − si) +

(
r
a

)2

where, f(si) is the stream function induced by particles outside the inner ring on
the inner ring. For a ball of radius R, containing a collection of particles (or panels)
Anderson suggests using a value of a = 2R for the outer ring approximation. For an
inner ring approximation the value of a = R/2 can be chosen.

The expression for Fi and Gi in equations (3.1) and (3.2) are indeterminate when
the evaluation point is at any of the integration points, i.e. when r = a and θ = si.
However, the functions are very well behaved and it can be shown that

lim
r→a; θ→si

Fi = lim
r→a; θ→si

Gi = 2M + 1.(3.3)

It is to be noted that the limiting value is the same independent of the order in which
the limits are taken.

In the present case we are interested in the evaluation of the velocity field and
not the stream function. In order to obtain the velocity field one can differentiate
equations (3.1) and (3.2). From the expressions for Gi, Fi and the equation (3.3) it
can be shown that the derivatives of Fi and Gi will be singular at the integration
points. If the inner ring lies inside a cell, the points at which the velocities are
evaluated are likely to be near the integration points (i.e. r → a and θ → si). Hence,
inaccurate results will be obtained for such points. Figure 3.1 plots the absolute error
when a single panel in a cell of radius R is considered. The outer ring approximation
with a = 2R is considered and the velocity is evaluated at 2000 points on the ring.
Similarly, a well separated cell S, is considered and the outer ring approximation
transferred to the inner ring of S and the derivative of the inner ring approximation
on S is evaluated with a = R/2 on 2000 points on the inner ring of S. As can be
seen, when the angle θ is zero there is a very large error. This is because exactly
at this point there is an integration point (si = 0). Similarly, very large errors are
seen near the other evaluation points indicating that the derivatives of Fi and Gi

diverge at the evaluation points. In order to avoid such problems, the ring radii
must be chosen carefully. This must be done without loss of accuracy. The inner
ring radius must be chosen such that it is outside the cell where the velocity is to
be evaluated. The outer ring radius must be chosen such that it does not intersect
any well separated cell. It is easy to see that the inner ring radius should be such
that a > R and for the outer ring it must be such that a < 3R. Anderson’s choice
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Fig. 3.1. Absolute error in the evaluation of velocity for points on the inner and outer rings.
The velocity is obtained by differentiating the inner and outer ring approximations. a = R/2 for the
inner ring approximation and a = 2R for the outer ring approximation. R is the radius of the cell
considered.

of the outer ring radius satisfies the present criterion. In the present case, given a
cell of length h and radius R = h

√
2/2, it was found that choosing the a = 0.75h

for the inner ring radius works well without any significant loss of accuracy. In order
to demonstrate this, a radial line starting from the center of the cell and extending
out to 1.5R is considered and the absolute error in the inner ring approximation of
the velocity is plotted versus distance from the center. Figure 3.2 plots the absolute
error versus relative distance from the center of the cell. As can be seen, there is very
little loss of accuracy when the inner ring is moved outside the cell. A few bumps
are seen in the plot for the a = R/2 case when the relative distance is near 0.5.
This is because the evaluation points on the line pass very close to an integration
point. Hence, by moving the inner ring outside the cell the possibility for error in
evaluating the velocity due to the inner ring approximation near the integration points
is eliminated. For the outer ring radius a value of a = 1.4h is chosen. This ensures
that the outer ring does not lie inside any well separated cells. In this manner it is
possible to obtain accurate velocity fields using Anderson’s technique. It is to be noted
that the above inner ring radius should be used even if the pseudo-particle multipole
method of Makino [7] is used. This is because the pseudo-particle multipole method
uses Anderson’s expressions for the local expansions. The work of Vosbeek et al. [13]
eliminates the need for this change in the inner ring radius. Instead of dealing with
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Fig. 3.2. Absolute error in the velocity evaluation due to an inner ring approximation for points
along a radial line. The plots for a = R/2 and a = 0.75h are shown.

the potential/stream function and differentiating it analytically or numerically they
re-derive the expressions for the components of the velocity field (ur and uθ) in terms
of Poisson’s integral and thus eliminate the problems in the vicinity of the evaluation
points. At the evaluation points the expressions for the velocity are indeterminate.
However, the functions are well behaved in the neighborhood of these points and
one can use the limiting value of the function. Hence, their technique could also be
used to compute the velocity. Anderson’s scheme requires only the potential/stream
function to be computed whereas their scheme requires handling both components of
the velocity. In the present work we have chosen to use Anderson’s scheme for its
simplicity.

4. Implementation details. The expressions derived in section 2 can be easily
incorporated in an existing fast multipole algorithm implementation. The implemen-
tation of the fast multipole algorithm itself is standard and described in Carrier et
al. [2]. Other issues specific to the present implementation are detailed in this section.

In subsequent discussions it is to be noted that a “cell” refers to a box of the
adaptive mesh. The cell containing all particles and panels is at level 0. Cells at level
l + 1 are obtained by splitting a cell at level l into four daughter cells. A parent cell
is one that has children and a childless cell is a cell that is not a parent. A colleague
of a cell c is defined as a cell at the same level as that of c and having a shared side
or corner with it.
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In the present work the domain decomposition for both the new method and
Anderson’s scheme are performed as described in Ramachandran et al. [11]. This
scheme handles tracer particles efficiently in the context of the FMM. The basic idea
being that the particles are classified into “causes” and “effects”. The causes influence
the effects. The cell splitting is controlled depending on the number of causes and
effects in a cell and in its colleagues. Numerical experiments are performed in order
to compute the maximum number of cause and effect particles per cell.

The expression for the multipole coefficients for a panel in equation (2.8) seems
to indicate that the multipole coefficients need re-computation when the value of γ(ζ)
changes. For a linear distribution of vorticity the expression for Aj is given below,

Aj = ei(j−1)θ

(
γ1

∫ λ

0

ξ(ζ)j−1dζ +
γ2 − γ1

λ

∫ λ

0

ζ ξ(ζ)j−1dζ

)
,(4.1)

where γ1 and γ2 are the values of the vorticity at the ends of the panel. Clearly
the integrals are independent of γ1 and γ2 and need not be re-computed unless the
geometry of the panel or its orientation change. In the present work the integrals in
the equation are evaluated using Simpson’s rule.

At the end of section 2.3 it was mentioned that in order to obtain accurate results
the cell size needs to be limited based on the panel size. This can be done efficiently
in the following manner. The maximum and minimum panel lengths (λmax, λmin)
are computed when assigning the panels to the cell at level 0. If there is a significant
length variation in the panels, then the λmax at higher levels must be recomputed. If
not, the same value of λmax can be used at all levels. In the present implementation,
it is assumed that if λmax/λmin > 1.5 then there is reasonable variation in the panel
lengths. When splitting a cell C, into four daughter cells, the λmax of cell C is set
as the λmax of the panels in the children. When splitting the newly created daughter
cells, if the cell size h is such that h < 2βλmax, then λmax is recomputed for the cell.
After re-computation of λmax, if h > 2βλmax then the cell can be split. If not the
split cell will be smaller than the required length and is not split. The factor 2 arises
because the split cell’s length will be h/2. Using such a scheme, the need to compute
the maximum panel length at each level is eliminated and is computed only when
necessary.

5. Results and discussion.

5.1. Influence of cell size on accuracy. Consider a panel placed at the edge
of a cell as shown in figure 5.1. The cell C contains a single panel at one corner such
that the mid-chord of the panel is just inside it. The cells, L1, L2 and L3 are well
separated from C. The multipole expansion due to C is evaluated on these cells. The
multipole expansion of C is also transferred to these cells as a local expansion and
this local expansion is evaluated inside these cells. The contours of the relative error
in the velocity due to the panel in these cells is plotted for the presently developed
method, Anderson’s scheme[1] and the scheme of Ramachandran et al. [11]. As would
be expected, it is seen that the point zm as shown in the figure has the maximum
error. The cells X1 and X2 are cells which are in the Wb list of C. Hence, C is in the
Xb list of X1 and X2. The ∆b interactions on these two are evaluated from cell C.
In this case the maximum error occurs at the point shown as zx in figure 5.1. Again
this is to be expected because this point is closest to the circle centered at C and
containing the panel completely.
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Fig. 5.1. Illustration of a panel in a cell and the location of maximum error. The cell C
contains a panel at the corner. The cells X1 and X2 are cells where the ∆b evaluation is performed,
L1, L2, L3 are cells where local expansions and multipole expansions due to C are computed.

The relative error, Erel, at a point is defined as,

Erel =
∣∣∣∣
vexact − vcomputed

vexact

∣∣∣∣(5.1)

Note that vexact is never zero at the points being considered. For a panel of fixed
chord length, λ, different cells, C, with length given as h = βλ, β > 1 are considered.
For each of these cases the maximum relative error inside the cells X1 and L1, which
are at the points zx and zm respectively, are computed. The number of terms, p,
necessary to obtain an accuracy of around 10−6 are considered for the computation.
At zm both the multipole expansion due to C and the local expansion due to L1
are computed. At zx the ∆b interaction due to C is computed. Figure 5.2 plots
these errors as β is varied. At the chosen scale, the local expansion error curve is
indistinguishable from the multipole expansion error curve. This occurs because the
order of the local expansion error is independent of β as seen in equation (2.25).
Therefore, the local expansion is as inaccurate as the multipole expansion that was
used to compute its coefficients. Figure 5.3 plots the error when Anderson’s scheme
is used. Figure 5.4 plots the error for the linear panel technique of Ramachandran
et al.[11]. In this case a linear (not cubic) panel is used in order to make a fair
comparison. This is because the method was developed for linear panels. Here also
the local expansion error curve is indistinguishable from the multipole expansion error
curve. As is expected, good accuracy is obtained only when β > 5 for all the methods.
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Fig. 5.2. Maximum relative error due to the multipole expansion, local expansion and Xb

interaction versus change in β for the presently developed method. Note that the curves for the
multipole expansion and the local expansion coincide.

This illustrates the importance of limiting cell size based on panel length.

5.2. Comparison of accuracy. In order to demonstrate the accuracy of the
present method, the flow past a circular cylinder is used for comparison. This prob-
lem is chosen because it has an exact solution, the geometry is simple and has bounded
values of vorticity. The flow past a circular cylinder of radius 1 unit with 400 cubic
panels is considered. A circular ring of 10000 particles around the cylinder is con-
sidered at various distances from the surface of the cylinder. The boundary value
problem is solved by using an LU decomposition. Once the singularity distribution
on the panels is known, the velocity due to the panels is computed using the direct
method (for cubic panels), the hybrid cubic/flat fast multipole panel approach devel-
oped in [11], the presently developed scheme and Anderson’s[1] scheme. The relative
error at each evaluation point is computed using equation (5.1). The maximum of
these is plotted as the ring radius is varied in figure 5.5. It is to be noted that when
the exact velocity is very small, the point is not considered for the error computation.
For the scale used in the graph, the results for the direct method, the presently devel-
oped algorithm and Anderson’s scheme all coincide. This indicates that the presently
developed technique produces very accurate results.

5.3. Comparison of computational efficiency. A few general observations
are made first. If the causes and effects in the domain decomposition are well separated
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Fig. 5.3. Maximum relative error due to the multipole expansion, local expansion and Xb

interaction versus change in β for Anderson’s technique.

then the interactions between these causes and effects can be evaluated without direct
computations. It is easy to see that this is the most efficient case. For example,
consider the flow past a circular cylinder. Let the velocity or potential due to this
cylinder be computed at a cluster of particles. If the cluster is at least two diameters
away from the center of the cylinder, then there are no direct computations to perform
between these particles and the panels that represent the cylinder. Clearly such
a computation would be highly efficient. On the other hand if the cluster is such
that there are a large number of particles that are distributed along the surface of the
cylinder, then there are a large number of direct computations to be performed. Given
that the size of a cell is restricted by the length of the panels (section 5.1), it is easy to
imagine situations where a small number of panels are used along with a large number
of particles distributed near them. In such a case, due to the size of the cell there
will be a very large number of effect particles per cell. This will make the multipole
computations inefficient. In order to overcome this one should reduce the size of the
panels such that the ratio of the number of effects divided by the number of causes in
a cell are kept as small as possible. So, on the one hand the number of panels must
increase and on the other hand the main reason why higher order panels are chosen
is to use a small number of panels. By using a small number of panels the matrix
used to solve for the singularity distribution is small and hence easier and faster to
solve. Given such a conflicting requirement it is still possible to use a smaller matrix
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Fig. 5.4. Maximum relative error due to the multipole expansion, local expansion and Xb

interaction versus change in β for the linear fast panel technique of Ramachandran et al. [11]. A
linear panel is used for this computation. Note that the curves for the multipole expansion and the
local expansion coincide.

by using two different representations for the body. One representation with larger
panels could be used to solve for the singularity strengths and another representation
with smaller panels, having interpolated strengths obtained from the larger panels,
used for the FMM. This way it should be possible solve the boundary value problem
for the panel singularities efficiently and also perform the FMM efficiently.

In order to demonstrate the efficiency of the FMM for higher order panels, the
flow past a circular cylinder of radius 1 and centered at the origin is considered. The
cylinder is discretized into 400 cubic panels. A uniform grid of particles in the square
region zmin = −2.0 − 2.0i, zmax = 2.0 + 2.0i is considered. The number of particles
used for the grid is varied. The time taken by the direct method, the hybrid flat/cubic
FMM of Ramachandran et al. [11], the presently developed method and Anderson’s
algorithm are plotted in figure 5.6. The maximum number of cause and effects are
chosen as 13 and 13 respectively for Anderson’s scheme and 7 and 7 for all the others.
β is chosen as 7.0. As can be seen, all the fast multipole methods are significantly
(factor of 50) faster than the direct method. It is also seen that the present scheme
is slightly faster Anderson’s scheme.

The computations have demonstrated that the developed method efficiently com-
putes the velocity due to the panels on the passive particles. The boundary value
problem for the panel method is solved using an LU decomposition. As explained in
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Fig. 5.5. Plot of the maximum relative error due to various methods versus distance from the
surface of the cylinder. 400 panels are used for the cylinder. The curves for the presently developed
method and Anderson’s scheme coincide with the curve for the direct computation.

the introduction, the boundary value problem can be solved by an iterative method
like the GCRA used by Rokhlin [12]. While it is not explicitly demonstrated here, it
is easy to see that the iterative method can be efficiently applied here by using the
present method to evaluate the velocity of the panels.

It is to be noted that the computations for the above results are not entirely
efficient because the number of panels and the grid size is fixed whereas the number
of particles is increasing. This results in a very large number of effects per cell. In
spite of this, the fast multipole schemes are much faster than the direct method.

An estimate for the number of effects per cell can be obtained in the following
manner. Given the radius of the circle r, β, and the number of panels, Npanel, the
length of the smallest cell is clearly limited by h = 2πrβ/Npanel. If a uniform grid of
Np particles enclosed in an area A is used, then the estimated number of particles in
the smallest cell, ne, is

ne =
Np

A
h2 =

4Npπ
2r2β2

AN2
panel

(5.2)

In order to demonstrate how significantly the number of effects per cell affects the
computational time, the time taken for the presently developed algorithm for a fixed
number of particles is computed as ne is changed. For a given Np, β and a given body,
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Fig. 5.6. Time taken versus number of particles on a square region. 400 panels are used
for the cylinder. β = 7.0. Note that the curves for the present method and the hybrid method of
Ramachandran et al. [11] almost coincide.

ne can be varied by changing either A (the area of the uniform grid of particles) or
by changing Npanel.

Figure 5.7 plots the variation of the time taken as the area of the uniform grid
is gradually increased. The number of tracer particles in the grid is 40000. The stair
stepping occurs in the plot because the cell size is limited by βλ and the way in which
the cells are split. If the total length of the side of a cell at level 0 is L, then the
length of the side of the cell at level l is, L/2l. In the range 9 < ne < 11, the length
L of the level 0 cell and the panel length are such that it is possible to refine the grid
to one more level. This is the reason for the stair stepping in the plot. However, the
point being made here is that as the number of effects per smallest cell reduces the
time taken reduces significantly anywhere between a factor of 4 to 8. It is also seen
that for most part, the present scheme is about 1.5 to 2 times faster than Anderson’s
scheme.

Figure 5.8 plots the variation of the time taken as the number of panels is in-
creased. 40000 tracer particles are considered inside the square region (zmin =
−2.0 − 2.0i, zmax = 2.0 + 2.0i) for all the computations. As can be seen from equa-
tion (5.2), ne drops as the number of panels increases. The time taken drops first
and then increases as the number of panels is increased because initially the ratio of
the length of the cell and the panel size is such that the first increase in the number
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Fig. 5.7. Time taken as ne is varied. ne is reduced by increasing A. 400 panels are used for
the cylinder. β = 7.0.

of panels triggers a split in the cell. Subsequently, reducing the panel length does
not trigger a split until a threshold is crossed. During this time the computational
time increases. As can be seen in the figure, even though the number of panels has
increased by a factor of 16 the time taken to perform the computation has reduced by
a factor of 4. This illustrates the importance of choosing the right number of panels.

The time taken to re-compute the multipole coefficients (equation (2.8)) for each
panel is small compared to the other computations. In the figure 5.8 the fraction of
time taken to recompute the multipole is around 8% of the total time when the number
of panels were 1600. With 400 panels the time taken to re-compute the multipoles
is around 1.5% of the total time. This indicates that the present scheme is efficient
even if the panel geometry changes significantly in time.

It is to be noted that Anderson’s scheme has been implemented with some care.
The only difference between the newly developed algorithm and the implementation
of Anderson’s method is in the functions governing the computation of the multipoles
at the finest level, transfer of multipole expansion and evaluation and transfer of the
local expansion. The expressions given in Anderson’s work are used in these functions.
The velocity field is computed by analytically differentiating these expressions. All
quantities that are constant (like log(a), where a is the radius of the ring and the
various sines and cosines) are pre-computed and stored in order to avoid unnecessary
re-computation. It is also to be noted that the evaluation of the stream function
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Fig. 5.8. Time taken as the number of panels is increased. 40000 points in a uniform grid are
considered inside a square region. β = 7.0.

did not amount to more than 5% of the total computational time taken to evaluate
the velocity on a 101x101 grid of points. It is possible that our implementation
of Anderson’s method can be further optimized. However, it must be noted that
the expressions in equations (3.1) and (3.2) require the evaluation of the arctangent
(to compute the angle θ) and the various cosines. By precomputing eiMsi and eisi ,
it is possible to obtain the other cosine terms using arithmetic operations and the
value of eiθ and eiMθ. However, the multipole expansions derived in the present
work require purely arithmetic operations. Therefore, it appears that there is a small
price to pay for the generality that Anderson’s scheme provides and the ease of its
deployment and use in different situations. The gain in using the present algorithm
over Anderson’s scheme depends on the choice of parameters and the problem chosen.
Our implementation suggests that a factor of two improvement is possible.

6. Conclusions. The adaptive fast multipole method [2] has been successfully
applied to higher order vortex panels. This has been demonstrated for panels with
cubic geometry and linear vorticity distribution. Comparisons of accuracy and speed
with the technique developed by Ramachandran et al. [11] and with Anderson’s fast
multipole method without multipoles[1] are very favorable. It is possible to extend
an existing fast multipole code to use the new method. The paper also implements
Anderson’s technique in the framework of an adaptive fast multipole method. It
is seen that although Anderson’s method is much easier to implement it is slightly
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slower than the presently developed technique. The paper also shows that if accuracy
is desired, the length of the smallest cell is to be restricted based on the size of the
panels.
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