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A GENETIC SEARCH FOR OPTIMAL MULTIGRID COMPONENTS
WITHIN A FOURIER ANALYSIS SETTING*
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Abstract. In this paper, Fourier analysis is used for finding efficient multigrid components.
The individual multigrid components for several discrete partial differential operators are chosen
automatically by a genetic optimization method. From a set of multigrid components, such as dif-
ferent smoothers, coarse grid correction components, cycle types, number of smoothing iterations,
and relaxation parameters, an optimal three-grid Fourier convergence factor corrected for computa-
tional complexity is obtained by the genetic search. The resulting methods can be tuned for optimal
efficiency or toward robustness. The analysis results are verified by numerical experiments.
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1. Introduction. An important analysis tool for multigrid methods is Fourier
analysis. Since the early days of multigrid, Fourier smoothing and two-grid analysis
have been used for quantitative estimates of the smoothing properties of basic iterative
methods and for quantitative evaluation of the other multigrid components in a two-
grid method; see, for example [2, 16, 20]. The two-grid analysis is the basis for the
classical asymptotic multigrid convergence estimates. Furthermore, the local Fourier
analysis (also called the local mode analysis [2]) is, in fact, the main multigrid analysis
tool for nonsymmetric problems. An overview of the analysis is presented in [17].
Recently, we generalized the classical analysis in two ways. First, in [21] we provided
a Fourier analysis framework for analyzing the use of multigrid as a preconditioner for
restarted GMRES [14]. Second, we proposed the so-called three-grid Fourier analysis
in [22]. Compared to the usual two-grid analysis, the three-grid analysis can yield
additional insight, especially for singularly perturbed and nonelliptic equations. An
issue that can be analyzed in more detail with a third grid is the coarse grid correction.
If a large difference in convergence factors occurs between the two-grid and the three-
grid convergence factors from Fourier analysis, this indicates a problematic coarse
grid correction.

Although Fourier analysis tools can give good insight into multigrid convergence,
it is not easy in the case of convergence problems to extract from the analysis improved
or even optimal multigrid components for a PDE under consideration. This is even
more true if the Galerkin coarse grid operators are employed, since it is difficult to
foresee their effect for various PDEs. Tuning of multigrid parameters is, however,
often necessary for fast convergence (see, for example, [17, 20]). Optimizing even just
a few parameters can be a painstaking procedure that can only be done analytically
for a very small set of PDE problems; see [20, 23].
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Our main idea is to employ an optimization technique to help us search for optimal
multigrid components. We use a genetic algorithm (GA) in a three-grid analysis set-
ting to find improved combinations of smoothers, coarse grid correction components,
and relaxation parameters for several PDE operators. We choose genetic optimization
because the objective function, i.e., finding the best three-grid convergence factors, is
not at all a smooth function in the “parameters” of the optimization, such as differ-
ent smoothers, transfer operators, and coarse grid discretization. Conventional local
optimization methods cannot be used for this purpose. On the other hand, it is also
not possible to simply apply an optimization by enumeration of all possibilities, as we
can have a search space of, for example, 10'? possibilities with about 10 varying pa-
rameters. Thus, the GA [9, 8, 12] is the method of choice here: the objective function
is well defined and can be evaluated in a relatively cheap way.

This paper is organized as follows. In section 2, we start with a detailed discussion
of multigrid for nonelliptic problems to further motivate the work. In section 3 the
details of the GA are listed. The three-grid analysis objective function is explained
in section 3.1, and the multigrid components that are part of the search space are
discussed in section 3.2. Section 4 presents the corresponding experiments and results.

Our research is oriented toward sets of satisfactory components, say, those that
guarantee a three-grid convergence factor of less than a certain value, instead of
toward simply searching for the best components. By this it becomes possible to
observe trends within the different parameters. It is, of course, also possible to fix
certain multigrid components, like the transfer operators, and search for the optimal
remaining components under these “constraints.”

Finally, one can also optimize the case where multigrid is used as a preconditioner
since the Fourier analysis has also been generalized to this situation.

2. Discussion of multigrid for PDEs. Traditional understanding of multi-
grid often comes with the knowledge that a pointwise smoothing method reduces
high frequency components of an error between numerical approximation and the
exact numerical solution, whereas the coarse grid correction based on standard grid
coarsening handles the low frequency error components. Whereas this view is per-
fectly valid for nicely elliptic equations like the Poisson equation, it generally does not
hold for singularly perturbed and nonelliptic PDEs. Contrary to uniformly elliptic
equations, these equations are governed by strong couplings that need to be taken
into account by a smoother and/or by a coarse grid correction in efficient multilevel
solution methods. In principle, three different strategies exist to overcome possible
multigrid convergence degradation.

An efficient solution is to change the coarsening strategy to a problem-dependent
coarsening while retaining a point smoother. The convergence can also be improved
by more robust smoothing methods that also take care of problematic low frequencies.
In this situation, the standard grid coarsening is typically applied, which may restrict
the applicability of this approach, to some extent, to structured grid applications.

A third possible solution is found in the use of multigrid as a preconditioner for a
Krylov subspace acceleration method like GMRES [14]. This possibility is often the
easiest one, as the multigrid components, including the coarsening strategy, need not
be changed. The resulting algorithm is, however, not always as efficient as the ones
resulting from the two other strategies. Combining the third strategy with the first
or the second leads to very efficient methods.

The second strategy is the basis for our multigrid methods. For most equations
considered here, the efficient multigrid methods are based on smoothers that also take
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care of certain low frequency components. In this work these smoothers are obtained
“automatically” by an optimization method. As we will see in section 4.1, even for
the Poisson equation, where a pointwise relaxation method is sufficient to guarantee
excellent multigrid convergence, an overrelaxation parameter in a red-black Gauss—
Seidel smoother leads to the most efficient solver (as in [23]). Similar to the classi-
cal SOR situation, this smoother then also reduces low frequency error components
more efficiently. (The effect of smoothers on low frequency error components is not
completely covered by classical theoretical methods analyzing multigrid convergence.
These methods typically split a multigrid operator into two parts and analyze the
smoothing and approximation properties of an operator separately. They therefore
do not take into account the effect of fine grid relaxation methods on low frequency
error components. )

3. The GA. GAs [9, 8] are algorithms for searching through parameter spaces
and for optimizing a given function. When the objective function is not smooth,
traditional search techniques like gradient methods tend to stay in one of the local
minima, which is not necessarily close to the global minimum, if the function has mul-
tiple local minima. A GA can, in principle, deal with the above-mentioned problem
effectively. It is based on the survival-of-the-fittest principle. An initial population
of N possible solutions is created from a random selection. The strength of each
of the population’s individuals is evaluated by a fitness function, i.e., the objective
function to be optimized. After this, a new generation of individuals is set up. This
is done, with the help of genetics, by coding the parameters in binary strings and by
combining them with the other binary strings to create better approximations toward
the optimal solution. Each bit of the binary string is called a chromosome.

There are basically three operators that occur in GAs to define the next genera-
tion: selection, crossover, and mutation [8]. Within the GA context, several advanced
operators can be chosen, for example, advanced selection and crossover operators.
To make the GA more robust, operators such as tournament selection and uniform
crossover have been proposed [8, 12, 5]. Tournament selection means that two indi-
viduals of the population are chosen at random, and the one with better fitness will
be one of the parents. Two parents create one new individual. The crossover operator
used is uniform crossover: the new individual’s chromosomes are set equal to those of
one of the parents. Then, for each bit of the newly created solution, the bit from the
other parent is taken if a randomly selected number between 0 and 1 is less than the
crossover probability p.. p. is set to 0.5 here. Furthermore, an elitist strategy copies
the best binary string in the current population to the next generation.

We use a variant of the GA, called the microgenetic algorithm (micro-GA), as it
is proposed in [11] and successfully evaluated, for example, in [5]. This GA is based on
a relatively small population and avoids premature convergence to suboptimal states.
If less than 5% of the total number of bits in a population is different from the best
individual, then the population is restarted with randomly chosen new individuals,
keeping, however, the best individual. This is an easy option for evaluating new search
directions and avoiding stagnation of the convergence in a local optimum. Mutation
is not applied. Most conventional GA applications operate with 50 to 200 individuals
in each population; the micro-GA has N = 5 individuals in [11] and [5]. We will use
population sizes of 10 and 15. Krishnakumar [11] compared his micro-GA against a
simple GA, with a population size of 50, p, = 0.6, and a mutation rate of 0.001, and
reported faster and better results with his micro-GA. Similar observations are found
in [5]. Furthermore, the related GA software is freely available for download from
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http://cuaerospace.com/carroll/ga.html.

Here are the detailed steps of the micro-GA used.

1. Choose randomly a pre- and postsmoother, relaxation parameters, number of
smoothing steps, cycle type, coarse grid discretization (in the case of Galerkin,
choose restriction, prolongation, and a scaling parameter), and transfer op-
erators. Compute the quality of the parameter set by evaluating it by the
fitness function, i.e., the worst spectral radius of the block matrices appearing
in the three-grid Fourier analysis; see section 3.1.

2. Code the parameter set into a binary string.

Repeat steps 1 and 2 to set up the initial population of size .

4. Select from the population two members. This is done using the tournament
selection process. These two will act as the parents.

5. Combine the binary strings of the two parents from step 4 to create a new
string. This is done by the uniform crossover operator.

Decode the binary string and evaluate its fitness with the help of three-
grid Fourier analysis.

6. Repeat steps 4 and 5 until there are as many new individuals as in the initial
population.

7. Apply the elitism operator: remove one of the individuals at random and
replace him with the individual having the best fitness from the previous
generation in case the current maximum fitness is not larger than the previous
maximum.

8. Avoid stagnation: if less than 5% of all bits in the strings in a population
differ from the string of the best individual, then restart the population with
the best and N — 1 randomly chosen new individuals.

9. Repeat steps 4-8 until the fitness function after several restarts no longer
changes.

©w

For clarity and as a simple example, the GA convergence of finding the maximum of
a given function is presented in the appendix.

3.1. The fitness function, three-grid Fourier analysis. The fitness func-
tion is based on the three-grid Fourier analysis—a straightforward generalization
of the well-known two-grid Fourier analysis [2]—which is briefly outlined here for
2D problems and standard coarsening. We consider a discrete problem, Lpu; =
fn, where u;, represents the exact discrete solution. The main idea in the Fourier
analysis is to formally extend all occurring multigrid components to an infinite grid
Gh, = {x = (kyh,kyh) : ky,k, € Z} and to restrict the considerations to discrete
linear operators with constant coefficients. On G}, we have a unitary basis of grid
functions called the Fourier components,

(1) (ph(07x) — eiem/h — 6ik9 — 6i(kw0$+ky9y)’

with @ € Gy, k = (ky, ky), and Fourier frequencies 6 = (6,,6,) € R?. These compo-
nents are eigenfunctions of any discrete operator L, with constant coefficients.

Whereas the error v;* = u}* — uy, is transformed by a two-grid cycle as

ot = MMt with

(2)
MM =S KPSyt and K =1y, — P (Lay) 'R Ly,
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the error transformation by a three-grid cycle is given by
ot = Mt ot with
My =8P K"y and K" = I — Py, (Ta, — (Mgy)")(Lan) 'Ry L.

Here, Méﬁ defined by (2) reads Mé;} = S57 (Ian — Pf}i‘(Lzlh)’lRiZ) ot Ln, Lap, and
L4y, correspond to discretizations on the h-, 2h-, and 4h-grids of the PDE under
consideration. S and Ss, are the smoothing operators on the fine grid and the first
coarse grid, and v; (i = 1,2) represents the number of pre- and postsmoothing steps.
Rih, R%Z and chh, Pf,? denote restriction and prolongation operators, respectively,
between the different grids. I and Iy, are the identity operators w.r.t. the h-grid
and the 2h-grid.

Instead of inverting Loy, as is done in (2), the 2h-equation is solved approximately
in a three-grid cycle (3) by performing ~ two-grid iterations Myl with zero initial
approximation.

In the two-grid analysis, one assumes an exact solve of the coarse grid problem on
the first coarser grid level. This simplifying assumption, however, cannot resolve the
actual multigrid behavior for several multigrid components and cycle variants. For
example, if one uses different discretizations on different grids, it may occur that an
operator on the coarse grids is not favorable for the smoothing method applied. An
important example for such a coarse grid discretization is the Galerkin discretization.
Its entries are not known in advance and depend on the fine grid discretization and
the transfer operators in use. This cannot be taken into account by a two-grid Fourier
analysis but can be by a three-grid analysis.

The basic idea in the three-grid analysis is a recursive application of the two-
grid analysis. Similarly as in the two-grid case, we distinguish between low and high
frequencies, but now w.r.t. three grids Gy, Gap, and Gy4,. Then, it is appropriate
to divide the Fourier space F into a direct sum of 16D subspaces, the so-called 4h-
harmonics .7-';’ 9 122]. As a consequence, M} is unitarily equivalent to a block diagonal
matrix with 16 x 16 blocks:

M gss & M?9(8,h) € CO<1°.

Then, we obtain the three-grid convergence factor ps4(h) as the supremum of the spec-
tral radii from the block matrices. For the explicit representation of the block matrices
M?39(6, h), and more details about the three-grid analysis, we refer to [22]. The three-
grid Fourier analysis software is freely available for download from http://www.mgnet.
org/mgnet-codes-wienands.html. It is also available from http://www.gmd.de/SCAI/
people/wienands.html.

In the GA optimization we use a three-grid convergence factor that is corrected for
computational complexity costs, as in [2, 18]. Point smoothing for a stencil consisting
of nelm elements costs nelm multiplications and nelm — 1 additions, i.e., 2nelm —
1 operations per unknown (9 operations for a 5-point stencil). Multiplication and
addition are assumed equally expensive. The reference work unit is the cost of a
point smoother without relaxation parameter for the PDE stencil on the finest grid.
Contrary to [2], we do not take special situations into account, such as the case
a;; = 1 where one can save one multiplication, etc., in the operation count. The
scaled three-grid convergence factor is defined as

(4) o = (pag(h))"/""
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with wu the number of work units relative to one fine grid pointwise relaxation per
unknown. The work unit cost increases with the number of relaxations v and vs.

The work for a V-cycle is a factor 1/3 higher because coarse grid points also are
processed; for a W-cycle an additional factor of 1 is used, which is the additional total
number of points processed by this cycle [17].

With an under/over relaxation parameter, 3 extra operations are counted per
smoothing iteration. The cost of the LU factorization and the backward substitution
for a linewise relaxation depends on the number of diagonals ndiag involved. Tridi-
agonal solves cost 8 operations (see, for example, [10, 17]); for solves with 4 diagonals
we count 17 operations, and for pentadiagonal matrices we count 19 operations. Fur-
thermore, the set-up of the right-hand side costs 2(nelm — ndiag) operations per grid
point. The cost for alternating line relaxation is twice as much as that for simple
linewise relaxation, etc. The cost of transfer operators is not taken into account.

We give two calculation examples. In the case of a 9-point Galerkin coarse grid dis-
cretization and a 5-point fine grid discretization, pointwise smoothing without under-
relaxation and a V(1,0)-cycle, we obtain the work unit count wu = 1%x1+1/3%17/9 =
44/27, whereas in the case of linewise smoothing with relaxation parameter and a
W(1,0)-cycle, we obtain wu = 1% 15/9 + 1 % 23/9 = 38/9.

3.2. The search parameters: The multigrid components. In this section,
we detail the multigrid components that can be specified in the local Fourier analysis
setting. They represent the search space parameters in the GA.

We choose for standard coarsening, i.e., doubling the mesh size h in every direc-
tion. For the coarse grid operators Loy, Laj, a first choice is to use the direct analogue
of the PDE discretization Ly on the coarse grids. The Galerkin coarse grid operator,
however, has become standard in the context of problems with discontinuous coefhi-
cients, but also in the context of algebraic multigrid (AMG), where algebraic systems
of equations without a grid-oriented background are being solved. These operators
are defined by

(5) Lon :=nR" Ly Pl Lup = nRY Loy P2

7 is a parameter that offers a rescaling possibility of the Galerkin operator. For certain
choices of R, Ry and Py, P and Ly, n is necessary for fast convergence; see, for
example, [1]. The transfer operators and n become parameters in a GA’s search space.

The choices for the restriction and prolongation operators R2" and Pl , for the
intergrid transfer of grid functions and as part of the Galerkin coarse grid operator,
can be determined differently. They are described below. As restriction operators, we
can choose from among the simple injection operator, the frequently used full weight-
ing (FW) operator, the half-weighting (HW) operator, and the 7-point restriction
operator [17]. Other possibilities include the operator-dependent restriction belong-
ing to the so-called nonsymmetric blackbox multigrid method of Dendy [6] and, more
generally, the transpose, (P2 )T, of a chosen prolongation operator. The operator-
dependent restriction from [6] is based on the transpose of operator Ly,.

Well-known prolongation operators are bilinear interpolation, constant (upwind)
interpolation, and 7-point prolongation. Other possibilities include the prolongation
operator of de Zeeuw [24] and the prolongation belonging to nonsymmetric blackbox
multigrid [6]. For symmetric problems, the latter two prolongation operators coincide.
We do not allow the bicubic interpolation operator or a high order restriction here,
since it might be difficult to implement these in general multigrid codes.
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Several smoothers can be chosen in the optimization process. We adopt the
general stencil notation as in [18]. Thus, a grid point, instead of a matrix description,
is used. The damped pointwise Jacobi smoother w-JAC then reads

[ ]
* _ m L.
b ui,j - hd ° ui,j + fu],
[ ]
(6) u = wul 4 (1 - w)ul i,j=1,n
i T Wl g )=

The e represents the operator element in a 9-point stencil. w (representing w; or
wo for pre- or postsmoothing) is the relaxation parameter. The four-color relaxation
reads as follows:

For grid points with ¢ odd, 5 odd:

[ ] [ ]

* m .

b ui,j_ - b b ui,j + fl,_]a
[ ) [ ]

m—+1 __ * o m
um = wup (1 — w)ugy.

For grid points with ¢ even, j even:

* m+41 m ..
o | U= up; e o | uij+ fig

m—+1 _ * m
uln = wui7j+(1 — w)ui)j.

For grid points with ¢ even, j odd:

[ ] [ ] [ )
* m+1 m L
° Ui 5= hd i Uy j Uz 5 + fz,477
[ ] [ ] [ )
m—+1 __ * _ m
upm = wuy i +(1 = w)u’y.

For grid points with ¢ odd, j even:

e o o
* m—+1
° uj ;= — ° ° uij' + fi,j;
o o

uzlj‘”'l = wuy ;+(1 — w)u’

(7)

The four-color relaxation is identical to the red-black Gauss—Seidel smoother for 5-
point stencils. For larger stencils, it is more appropriate to call these smoothers four-
color and red-black Jacobi smoothers, respectively. We will use these names here. A
red-black Jacobi smoother uses for arbitrary stencils in the first partial (the “red”)
step the old values from all neighboring unknowns, whereas a Gauss—Seidel relaxation
should use, on previously computed grid points that are addressed, the most recent
unknown values. The same is true for the second partial step.

As an example for a linewise smoothing method, in the following we describe
the z-line zebra Jacobi smoother (commonly known as z-zebra line Gauss—Seidel for
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9-point stencils) with relaxation parameter:

For grid lines with j odd:

[ ] [ ] [ ]
* _ m L.
e o o |y = ui; + fij
[ ] [} [}
m—+1 __ * m .
u T = wug i+ (1 - w)uy, i=1,n.

For grid lines with j even:

[ ] [ ] [}
* m—+1
R I F R wiy i
[ ] [ ] [ ]
(8) ™ = wud (1 — w)ul i=1,n
0. i, 0,57 ) 1

All other linewise smoothers considered, of Jacobi, lexicographic Gauss—Seidel, or
alternating direction type, can be described similarly. Furthermore, we have included
Kaczmarz [6] variants of the smoothers presented above.

Summarizing, we consider 5 prolongation, 6 restriction, and 15 smoothing
operators. We use the following abbreviations for the restriction and prolongation
operators:

bl : bilinear interpolation fw : full weighting

cu : constant (upwind) interpolation hw : half-weighting

ze : de Zeeuw’s interpolation [24] in : injection

di : Dendy’s interpolation [6] dr : operator-dependent restriction [6]
7p : 7-point interpolation Tr : 7-point restriction

adj : adjoint of interpolation

The direct coarse grid discretization is denoted by dir; the Galerkin coarse grid dis-
cretization by gal. In the latter case, the scaling factor n also is given.
We use the following notation for the smoothing operators:

pjac : pointwise Jacobi xljac : z-line Jacobi

pgs : pointwise lexicographic (lex.) Gauss—Seidel xlgs : z-line lex. Gauss—Seidel
rbj : red-black Jacobi xzj : x-zebra line Jacobi

4cj : four-color Jacobi alj : alt. line Jacobi

kpjac : Kaczmarz point Jacobi algs : alt. line lex. Gauss—Seidel
kpgs : Kaczmarz point lex. Gauss—Seidel azj : alt. zebra line Jacobi

krbj : Kaczmarz red-black Jacobi kalj : Kaczmarz alt. line Jacobi

kalgs : Kaczmarz alternating (alt.) line Gauss—Seidel

y-line smoothers are not included here; for the test problems below (except for
linear elasticity) we will not place the anisotropy in the y-direction. The pre- and
postsmoothing operators are allowed to differ. The relaxation parameters are denoted
by w; and ws, respectively, and can be different for pre- and postsmoothing. The
relaxation parameters and scaling 7 vary between 0.5 and 2.05 in steps of 0.05; for
each of these parameters the GA has 2° possibilities.

4. Applications. To demonstrate the potential use of a GA in the three-grid
analysis setting, we consider several equations and discretizations. The applications
range from nicely elliptic to singular perturbation problems.
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The first test problem, the Laplace operator, serves to present reference values
and algorithms and to give insight into GA optimization. The other problems then
show the potential of the method.

We use a 322 grid for the genetic optimization and a Fourier spectrum divided into
322 modes. The best algorithms on this relatively coarse grid are, in a postprocessing
step, evaluated on a 2562 grid with 2562 modes. The 2562 results are presented in
the tables below (unless mentioned otherwise).

For all the methods, we repeated the three-grid analysis also on the coarse grid
discretization to be sure that coarser discretizations also have favorable smoothing
and coarse grid correction properties. Especially for singular perturbation problems,
the repeated analysis gives valuable insight into whether or not a three-grid factor can
be maintained. We will denote the three-grid factor on grid nr. 3 (grid nr. 1 being
the finest grid) by ps,. The tilde indicates that it is not a real five-grid analysis. That
would be too expensive as the size of the block matrices grows.

In addition, numerical multigrid experiments were performed on a 2562 grid with
7 grid levels for all variants. The corresponding average reduction factors are indicated
by r7, in the tables.

Different runs with varying initial random number seeds were performed. The
GA typically runs with a population size of N = 10 or N = 15. These population
sizes appear to be a good compromise with respect to robustness and efficiency in the
interplay between the restart and the other GA components. Instead of advocating a
certain multigrid variant here, we prefer to show various “exotic” variants, as outcome
of the Fourier analysis, with excellent convergence factors.

4.1. O(h?) Laplace discretization. The first example deals with the well-
known 5-point discretization of the Laplace operator,

-1
(9) —Ahu:— —1 4 -1 WU, j-
-1

This problem serves as a reference for seeing which o (4) can be achieved, since
multigrid methods are known to achieve excellent convergence in only a very small
number of operations for (9). We expect a o-landscape with many local optima,
for each smoother at least one exists, and a general overall good fitness for many
parameter sets. Furthermore, there are many identical local optima, since for (9)
several interpolation operators are identical. For example, bilinear interpolation bl is
identical to the operator-dependent prolongation operators di and ze.

A well-known classical multigrid method [16] for this problem consists of the
direct 2h-, 4h-, etc., coarse grid discretizations, bilinear interpolation of corrections,
FW of residuals, and red-black Jacobi relaxation. The three-grid convergence factor
for the W(1,1)-cycle is 0.074, as presented in Table 1. The computed scaled factor,
however, is relatively large at 0 = 0.52; for the F-cycle it is 0.48. The results for the
V(1,1)-cycle are also presented in Table 1. Actually, the smallest scaled convergence
factor o was obtained by the genetic optimization for the same method, with one of
the smoothing steps containing an overrelaxation parameter of wy = 1.25, ws = 1.0;
see Table 1.

The best three-grid convergence factor, pz, = 0.033 with a pointwise smoother,
was found for a somewhat exotic variant. It is in the 4th row of Table 1. We call
this variant exotic because of the scaling factor n # 1 in the Galerkin operator (5).
The four-color relaxation is useful here, as we deal with 9-point coarse grid operators.
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TABLE 1
Different multigrid components with convergence factors for the 5-point Poisson stencil, h =
1/256.

Cycle Smoother Coarse grid discr. | Transfer op. | p3g4 o
(v1,v2) | pre-, post-, wi, wa | Gal. transf., n prol., restr.

W(I,1) | tbj, tbj, 1.0, 1.0 | dir bl, fw 0.074 | 0.52
V(1,1) | tbj, 1bj, 1.0, 1.0 | dir bl, fw 0.106 | 0.43
V(1,1) | rbj, rbj, 1.25, 1.0 | dir bl, fw 0.051 | 0.38
V(1,1) | 4cj, 4cj, 1.0, 115 | gal, bl, hw, 0.67 | bl, fw 0.033 | 0.40
V(1,1) | 4cj, 4cj, 1.15, 1.0 | gal, bl, fw, 1.0 bl, fw 0.037 | 0.41

TABLE 2

Multigrid components and convergence for the 5-point Poisson stencil with prolongation and
restriction prescribed, h = 1/256.

Smoother | Coarse grid discr. | Transfer op. W(1,0) F(1,0)
pre-, wi, Gal. transf., n prol., restr. o P3g 79
rbj, 1.0 gal, cu, adj, 1.35 cu, in 0.68 | 0.47 | 0.43

Finally, we present a more well-known variant based on gal, bl, fw, and n = 1 in
the 5th row of Table 1. A general tendency for the very small three-grid convergence
factors ps, appears to be the four-color relaxation with an overrelaxation parameter.

All analysis results in Table 1 were confirmed by numerical multigrid computa-
tions on a 2562 grid.

We continue with an optimization under constraints. As the prolongation op-
erator, we allow only cu; as the restriction operators, we allow in and adj. These
choices are also fixed in the definition of the Galerkin operator. A reason for this
choice could be the need to design a solution method that also solves the Poisson
equation efficiently on an unstructured grid. In this setting, the GA should find the
optimal remaining multigrid components. Table 2 presents the resulting algorithm
with corresponding factors. The multigrid F(1,0)-convergence is very similar to the
three-grid factor.

4.2. O(h*) Laplace discretization. The next discrete operator discussed is
the fourth order “long stencil” discretization of the Laplace operator,

1
~16
. 1
(10) At —— |1 =16 60 —16 1 | uj;.
12h 16
1

For this type of long stencil with positive and negative entries, it is already difficult to
foresee the effect of certain transfer operators on a Galerkin coarse grid discretization.
Here, the matrix-dependent interpolation and restriction variants ze, di, and dr are
not allowed in the optimization because they have only been defined for compact
9-point stencils. Figure 1 presents the convergence of the GA for the discrete 322
operator with two different populations N = 10 and N = 15. For both populations,
two convergence curves are shown from two different initial random number seeds.
Fast multigrid methods are obtained after about 70 GA iterations. Note that 1 GA
iteration in the case of N = 10 represents 10 evaluations of the fitness function and
15 for N = 15. In the final convergence stage of the GA in Figure 1, where the
fitness function is less than about 0.55, only local changes in the algorithm are made
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F1G. 1. GA convergence of the fitness function with two random number seeds on a 322 grid.
(a) run 1, N =10; (b) run 2, N =10; (c) run 1, N =15; (d) run 2, N = 15.

TABLE 3
Different multigrid components with convergence factors for the O(h*) Poisson discretization,
h = 1/256.

Smoother Coarse discr. Prol./ V(1,0) F(1,0)
pre-, wi Gal. transf., n | rest. o P3g | T7g o r7g
rbj, 1.15 dir bl, fw | 0.41 | 0.25 | 0.35 | 0.52 | 0.24

4cj, 1.05 gal, 7p,fw,1.05 | bl, fw | 0.44 | 0.21 | 0.30 | 0.58 | 0.19
4cj, 1.15 | gal, bl, inj, 0.5 | bL, fw | 0.40 | 0.28 | 0.35 | 0.48 | 0.22

such as in the value of a relaxation parameter. Figure 1 shows that the GA with
such a large parameter space does not converge toward the same optimal method in
different runs. This may seem somewhat surprising at first. All the resulting methods
obtained by the GA are, however, very similar with respect to efficiency. This is in
accordance with the statement that the GA will converge toward or very close to the
optimum in such large parameter spaces within a reasonable number of iterations. In
an extremely large number of GA iterations, it is expected that the global optimum
is found independent of the type of run. For our purpose, however, it is particularly
interesting to find different algorithms with similar efficiency.

Table 3 presents the three corresponding multigrid algorithms and the fitness
characteristics on a 2562 grid. The algorithm in the last row of the table contains
only 5-point coarse grid discretizations. One observes, however, in the V(1,0)-cycle
results of Table 3, that the V-cycle convergence for the algorithms obtained cannot be
maintained, contrary to the F-cycle convergence. This phenomenon is often observed.
It is in accordance with the well-known fact that one cannot prove a V-cycle conver-
gence from a two- (or three-) grid iteration. (The computation of ¢ for the F-cycle
is based on p3g(h) with v = 2. In a three-grid cycle, the F- and W-cycles coincide.
The work in an F-cycle is 16/9 times the work on the finest grid, which is taken into
account in the computation of o in Tables 3 and 4.)

Based on this experience, we perform a W-cycle optimization with N = 15 in the
following. An interesting variant that also leads to 5-point coarse grid discretizations
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TABLE 4
Different multigrid components with 5-point coarse grid discretization for the O(h4)-
discretization, h = 1/256.

Smoother Coarse discr. Transf. F(1,0) W(1,0)
pre-, wi Gal. transf., n o P3g | T7g o 79
tbj, 1.15 | gal, cu, adj, 0.5 | bl, fw | 0.52 | 0.23 | 0.22 | 0.57 | 0.22

is obtained and is presented in Table 4. It is thus necessary to consider V-cycle
convergence factors from the three-grid analysis with some care, compared to F- or
W-cycle convergence. With these algorithms, the O(h*) Laplace discretization can be
solved almost as efficiently as the 5-point Laplacian.

4.3. Biharmonic operator. In this subsection, we consider the discrete bihar-
monic operator,

1
2 -8 2
(11) BN T T ST P
h 7h4 1,7
2 -8 2
1

A common multigrid treatment is to rewrite the operator as a system of two Poisson
equations to obtain better smoothing properties and smaller stencils. Here, however,
we will not do this but rather will search for optimal convergence factors directly
for (11). For this equation, the GA optimization with several populations and ran-
dom number seeds always detects the same basic multigrid components. They are dir,
bl, fw, rbj, i.e., the direct coarse grid discretization, FW and bilinear interpolation
as the transfer operators, and red-black Jacobi as both the pre- and postsmooth-
ing operators. Furthermore, the V(3,1)-cycle shows the smallest o-values. Table 5
presents two typical algorithms with relaxation parameters w; and ws and the con-
vergence characteristics on a 2562 grid. The results in the third row of Table 5 with
parameters w; = wo = 1 are included only for comparison.

TABLE 5
Two relazation parameters and convergence factors for the biharmonic operator, h = 1/256.

Smoother V(3,1)
w1 wa o p3g r7g
rbj 1.25 0.55 | 0.68 | 0.096 | 0.075
rbj 1.25 0.7 0.66 | 0.085 | 0.080

[rbj 10 1.0 [0.78 ]0.27 [0.32 ]

The r74 factors in Table 5 show that the V-cycle convergence is confirmed by the
numerical experiments on 7 grid levels. The relaxation parameters give an impressive
convergence improvement compared to the standard case without parameters. (A
similar statement w.r.t. damped Jacobi has already been given in [2].) Figure 2
presents ps, as a function of the two w-parameters. In this figure it can be seen that
the three-grid factor is not very sensitive with respect to ws.

Based on these results, we use the GA to further improve the relaxation parame-
ters. The GA can, of course, be used merely for a parameter optimization. We allow
all four relaxation parameters, w1 1, w12, w13, and wy 1 in the V(3,1)-cycle to be dif-
ferent. Table 6 presents the parameters and the corresponding impressive convergence
factors.
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F1G. 2. Plot of p3g, dependence of w1 and wa.

TABLE 6
Different relazation parameters and convergence factors for the biharmonic operator, h = 1/256.

Smoother V(3,1)
w11 w12 w13 w21 | O P3g T7g
rbj 1.3 1.35 1.25 0.7 0.63 | 0.063 | 0.055
rbj 1.3 1.35 1.35 0.65 | 0.61 | 0.052 | 0.051

Comparing results in Tables 5 and 6, we see that the best variant, ps, = 0.052,
is about 2.5 times faster than the basic variant, with ps; = 0.32. In order to reduce a
residual by 5 orders of magnitude, the best variant needs about 4 iterations, whereas
the basic variant costs 10.

If the biharmonic equation is, however, split into a system of Poisson equations, it
is possible to benefit from the multigrid variants described in subsections 4.1 and 4.2.

4.4. Operator with a mixed derivative. Here we start with an equation with
a coarse grid correction problem in a standard grid coarsening setting, and we aim to
achieve optimal three-grid factors. The operator with a mixed derivative discretized
by a second order 9-point operator reads

7/4 -1 —1/4
-1 4 —1 Uj,j-
—7/4 -1 71/4

(12) (g + Uy + Ttgy )y = %
For |7| — 2, this equation is singularly perturbed. Using standard grid coarsening,
the direct PDE coarse grid discretization and lexicographic Gauss—Seidel smoothing
lead to coarse grid correction difficulties which limit the two-grid convergence to a
factor of 0.75; see, for instance, [21]. A recursive argument yields a lower bound for
the V-cycle convergence on k grids, which is given by pgg(h) > 1 —47%+1 (pog(h) >
0.75, p3g(h) > 0.9375,...).

The fact that we deal with a coarse grid correction difficulty for 7 — 2 is clear
in the algorithmic variants in Table 7 obtained by the GA: in all variants especially
the coarse grid discretization is involved, i.e., a Galerkin discretization with a scaling
parameter 7 # 1. Moreover, the transfer operators are matrix-dependent (ze equals
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TABLE 7
Different multigrid components with convergence factors for the operator with mized derivative,
h =1/256.

Smoother Coarse discr. Prol./ Ww(0,1)

post-, wa Gal. transf., n rest. o P3g ;59 T3g T7g
4cj, 1.1 gal, ze, adj, 0.75 | ze, adj | 0.67 | 0.39 | 0.81 | 0.32 | 0.76
xzj, 1.15 gal, ze, adj, 0.85 | ze, fw 0.66 | 0.34 | 0.81 | 0.29 | 0.79

1.0
0.9}
08

0.7

0.6
0 100 200

Fic. 3. Convergence of the fitness function o by the GA with two different initial random
number seeds on a 322 grid. (a) run 1, N = 15; (b) run 2, N = 15.

di for this problem) and the W-cycle is selected. Furthermore, only one smoothing
iteration appears to be necessary.

Figure 3 shows, for the W-cycle, the o-convergence for N = 15 of the GA with
different initial random number seeds.

The convergence factors from the repeated three-grid analysis ps, on the (coarse)
642 grid in Table 7, however, indicate that the convergence factors will increase if
more than three grids are involved. This indeed is observed in the last column of
Table 7. A simple and cheap cure for the multigrid convergence degradation is to
apply a “recombination of iterants” technique [19] only on the third grid. By this,
we have regained the three-grid convergence factor by a W-cycle multigrid algorithm
with 7 grid levels.

Another possible way to avoid the convergence factors growing with the number
of grids is to exclude these solutions within the optimization. In the following, we
have optimized, instead of objective function (4), another objective function under
the constraints that the difference between pagy and psg, and between psg, and psg,
should not be larger than 0.1:

(13) 0" = (p2g)"" + (p3g) " + (Bog) /™
subject to

|p3g — p2g| < 0.1, |p3g — p5g| < 0.1.

If a possible solution does not satisfy these inequalities in a GA iteration, it is given
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TABLE 8
Different multigrid components with convergence factors for the operator with mixed derivative,
h =1/256.

Smoother Coarse discr. Prol./ W(0,2)
post-, wa Gal. transf., n rest. o P3g r7g
4pj, 1.3 gal, ze, adj, 0.75 | ze, adj | 0.78 | 0.30 | 0.30

a very small fitness function value.

Table 8 presents the multigrid components obtained by a GA with N = 15 and
the convergence factors on a 2562 grid.

The W-cycle convergence of this highly specialized multigrid variant is impres-
sive for this singular perturbation problem. The convergence cannot, however, be
maintained for the F-cycle. We find 774 = 0.6 for the F(0,2)-cycle.

4.5. Helmholtz equation. We consider the Helmholtz equation,
(14) —Au—cu=f (c>0),

on the unit square with Dirichlet boundary conditions. First, we consider the standard
5-point discretization stencil,

. -1
(15) s |~ A-cen? -1
~1

The corresponding eigenvalues,
~ 2
(16) Mol =g —C= E(Q —coskmh —coslrh) —c¢ (k,1=1,2,...,n—1)

are not equal to zero as long as c is not equal to any of the eigenvalues of the cor-
responding discrete Laplace operator A ;. Otherwise, the matrix is singular and its
nullspace is spanned by the corresponding eigenfunctions,

(17) cp’,z’l = sin kwx sin lmy.

The Helmholtz operator leads to smoothing and coarse grid approximation difficulties
for standard multigrid depending on the particular value of c¢. The matrix is positive
definite as long as ¢ < Aq;. However, we have to expect a performance degradation
of multigrid if ¢ approaches this first eigenvalue. For ¢ > Xl,l, the matrix is no longer
positive definite. Gauss—Seidel iteration does not converge, but since its smoothing
properties are satisfactory, the multigrid convergence will deteriorate gradually for ¢
increasing (provided that a direct solver is employed on the coarsest grid). By the
time c approaches the sixth eigenvalue Xk,l (c & 150), standard multigrid (dir, bl, fw,
rbj, w; = 1) diverges. The reason for this degradation is that Gauss—Seidel relaxation
now diverges for smooth eigenfrequencies wi’l with Xk:,l < c. Consequently, multigrid
will still converge as long as the coarsest level used is fine enough to sufficiently
represent these smooth eigenfrequencies. That is, the size of the coarsest level limits
the convergence when c gets larger: the more variables on the coarsest level, the
higher the value of ¢ will be for which standard multigrid converges. If ¢ — oo, then
the smoothing properties of relaxation methods fail and standard multigrid does not
converge.
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The Helmholtz operator belongs, as the Laplace operator, to the class of symmet-
ric or “even” stencils [20]. For these stencils, it is possible to apply Fourier analysis
on the basis of discrete sine-eigenfunctions @Z’l (see (17)) instead of the exponential
functions (1). For problems with even stencils and Dirichlet boundary conditions,
this analysis is rigorous [16, 17, 21] in the sense that it can predict h-dependent con-
vergence factors. From the discussion above, this is particularly important for the
Helmbholtz operator. Therefore, we apply the rigorous analysis in this section. A dis-
advantage is that we can only include operators in the multigrid algorithm which can
be represented by even stencils. Therefore, the use of lexicographic Gauss—Seidel type
smoothers or certain (unsymmetric) transfer operators is not allowed by the analysis.

We look for multigrid convergence for increasing values of ¢ on a relatively coarse
grid with A = 1/32. Tt is more difficult to achieve good three-grid convergence factors
on this grid than on a finer grid for —50 < ¢ < —200. In Table 9, the standard
multigrid components (dir, bl, fw, rbj, w; = 1) are evaluated.

TABLE 9
Standard multigrid Fourier analysis convergence factors for the O(h?) discrete Helmholtz op-
erator (15) and different c-values, h = 1/32.

c=50 c=100 c=150 ¢ =200
Factor || V(1,0) V(1,1) | V(1,0) V(1,1) | V(1,0) V(1,1) | V(1,0) V(1,1)
pP2g 0.35 0.35 0.52 0.52 0.51 0.48 0.61 0.61
p3g 075 075 | 087 087 |DIV DIV |DIV DIV
o 080 090 | 090 095 | — = = =

The benefits of the three-grid analysis are presented here. Whereas the two-grid
convergence factor pa, is satisfactory for all values of ¢ considered, the inclusion of the
third grid leads, on such a coarse grid, to worse convergence or even to divergence.
All three-grid analysis results in Table 9 were confirmed by numerical experiments
on three grids with h = 1/32 as the finest grid. In contrast to the model elliptic
equations, we observe in Table 9 that two smoothing iterations do not improve the
three-grid convergence compared to one smoothing iteration.

For the same c-values, we perform the GA optimization of multigrid components.
The best algorithms obtained are presented in Table 10.

TABLE 10
Optimized multigrid components with three-grid convergence factors for the O(h?) discrete
Helmholtz operator, h =1/32.

c Cycle Smoother Coarse discr. Prol./ | p3g o
pre-, wi Gal. transf., n rest.
50 V(1,0) | rbj, 0.7 dir bl, fw | 0.60 | 0.75
100 | W(1,0) | rbj, 0.7 dir bl, fw | 0.59 | 0.82
W(1,0) | rbj, 1.0 dir bl, hw | 0.59 | 0.82
150 | W(1,0) | 4cj, 0.8 gal, bl, fw, n =1 bl, fw | 0.58 | 0.85
V(1,0) | rbj, 0.8 gal, bl, fw, n=1.1 | bl,fw | 0.72 | 0.86

Except for ¢ = 200, for which convergent multigrid methods were not obtained
by the GA, the o-values in Table 10 show an improved efficiency in the resulting
algorithms. Again, these results were confirmed by numerical experiments.

Another discretization of the Helmholtz operator is the O(h*)-discretization based
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on the Padé approximation, called the HO discretization in [15]:

_1_ éch? ,2,@( ,g) _1_ bch?
6 144 3 12 6 6 144
| B () BoerGed) -0
_1_ éch? 72,@2(17% 1 §ch?
6 144 3 12 6 6 144

Parameter § is set to 0 here (other values did not lead to better convergence).

Similar to the “Mehrstellen” discretization for the Poisson equation [17], the
right-hand side is weighted among neighboring grid nodes for the O(h*)-accuracy.
In Table 11, the two- and three-grid Fourier analysis convergence factors for the stan-
dard multigrid components and (18) are presented.

TABLE 11
Standard multigrid Fourier analysis convergence factors for the O(h*) discrete Helmholtz op-
erator (18) and different c-values, h = 1/32.

c=150 ¢ =100 c=150 ¢ =200
Factor || V(1,0) V(1,1) | V(1,00 V(1,1) | V(1,0) V(1,1) | V(1,0) V(1,1)
P2g 0.53 0.15 0.77 0.23 0.27 0.12 0.94 0.27
P34 0.67 0.17 0.70 0.28 0.31 0.21 0.72 0.57
o 0.74 0.52 077 062 0.42 0.56 0.78 0.81

These factors are much more satisfactory than those for the 5-point discretization.
Two relaxation iterations further improve the multigrid convergence in this case. The
convergence for ¢ = 150 (not “close” to an eigenvalue) is surprisingly good. Table 12
presents improved multigrid algorithms for (18) obtained by the GA optimization.

TABLE 12
Optimized multigrid components with three-grid convergence factors for the O(h*) discrete
Helmholtz operator, h = 1/32.

c Cycle Smoother Coarse discr. | Prol./ | pag o
pre-, post-, w; | Gal. transf., n | rest.

50 | V(L,0) | xzj, 1.1 dir bl, fw | 0.21 | 0.42

100 | V(1,0) | 4cj, 0.9 dir bl, fw | 0.36 | 0.52

150 | V(1,0) | 4cj, 1.0 dir bl, fw | 0.29 | 0.39

200 | V(1,0) | 4cj, 0.9 dir bl, fw 0.49 | 0.64

300 | V(1,0) | 4cj, 1.2 dir bl, fw | 0.75 | 0.83

On the 322 grid, it is possible to obtain a convergent multigrid Helmholtz solver
as far as ¢ = 300. Especially interesting is ¢ = 300, for which the overrelaxation
parameter wi; = 1.2 is obtained. It indicates that the smoother also will reduce low
frequency error components in this case. For discretization (18) all three-grid analysis
results were confirmed by numerical experiments on three grids, with h = 1/32 as the
finest grid. The GA finds converging three-grid methods on a 642 grid for c-values
as far as ¢ = 750 (dir, fw, bl, V(1,0), 4cj, w1 = 1.05, p3g = 0.55,0 = 0.68). These
results are promising for discretization (18). The multigrid components will fail for
c-values very close to eigenvalues. In that case, subspace correction techniques should
be employed [4].

The c-range for which multigrid converges remains limited, however. A fast so-
lution method for the Helmholtz equation with very large values of ¢ is the wave-ray
multigrid method [3]. Another efficient treatment in which multigrid is combined
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with a Krylov subspace iteration method is proposed in [7]. The improvements in the
method of [7] can be easily combined with discretization (18), leading to an efficient
and accurate Helmholtz solver.

4.6. Linear elasticity. We finish the applications section with the 2D system
of linear elasticity equations, considering the plain strain situation (no strain in the
z-direction),

1—-v
Liuct Liavi= 2y —pgtiae + tyy + 75500 = I
1 1-v
(19) Loau+ Logv = - Uay + Voo + 27 = Vyy = fo,

with 7 denoting the Poisson ratio here, and (u,v) the displacement vector.
A comprehensive form for a discretization in which a finite difference as well as a
finite element discretization with bilinear elements is included is based on

. 1 -6 26 =6
g 2 —— | -1 2 1
Yook = 77705 5 95 s

For 6§ = 0, we find the well-known (h?-scaled) finite differences, whereas for § = 1/4
it is the bilinear finite element discretization. In fact, the linear elasticity equations
also consist of this building block for both types of discretization,

21— -6 26 —6 1 -6 -1 =6
e | 4 O[T % ]
block L 2} is obtained correspondingly, and
1 0 -1
(20) Ligon=1La1n £ ﬁ 0 0
-1 0 1

The equations are anisotropic; there is a significant difference between the coefficients
in the - and y-directions. We merely use this discrete example to find multigrid com-
ponents by the GA optimization for different values of . The operator-dependent
transfer operators di and ze also can be used for systems if they are based on the diag-
onal blocks L; ; p. For linear elasticity, however, they are equal to bl, their transpose
to fw.

We choose decoupled relaxation, i.e., block Ljp is used for relaxing the wu-
variables, with v-iterants from a previous iteration; v is updated afterward in a second
partial step, where block L5 5 is the main operator and the u-unknowns from the
previous partial step are used. The calculation of the number of work units is easy in
this case.

We search for the multigrid components from the GA that are efficient for the
finite element and finite difference discretization (20) for two v-values, 7 = 0.33, 7 =
0.495. An often investigated case is 7 = 1/3, describing steel material. Materials that
are almost incompressible are described by ¥ close to 1/2. The algorithms and the
scaled three-grid factors are presented in Table 13.

As expected, due to the anisotropy in the equations, the best three-grid factors
are obtained with linewise smoothers. The convergence with the decoupled relaxation
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TABLE 13
Optimized multigrid components with three-grid convergence factors for the linear elasticity
system, U = 0.33,0.495, h = 1/256.

Discr. Cycle Smoother Coarse discr. | Prol./ P3g o
pre-, post-, w; | Gal. transf., n | rest.

v=0.33:

FE V(1,0) azj, 1.15 gal, bl, fw, 1.0 | bl, fw 0.062 | 0.37

FD V(1,0) azj, 1.0 gal, bl, fw, 1.0 | bl, fw | 0.081 | 0.43

v =0.495:

FE W(1,0) | azj, 1.4 gal, bl, fw, 0.8 | b, fw | 0.45 | 0.82

FD W(1,0) | azj, 1.2 gal, bl, fw, 0.8 | bl, fw | 0.35 0.80

is very satisfactory. The Galerkin coarse grid discretization is always found to be
the most efficient. Indeed, when compared to the direct discretization and the same
remaining components, the three-grid convergence differs significantly.

5. Conclusions. In this paper, we advocate the use of a genetic algorithm (GA)
for finding efficient multigrid methods. The objective function to be optimized is
the three-grid convergence factor within the Fourier analysis setting. It is corrected
for computational complexity. Three-grid Fourier analysis yields additional insight
compared to the usual two-grid Fourier analysis, w.r.t. the quality of a coarse grid
correction and the effect of a smoother on low frequency error components. By a
GA, the Fourier analysis can be used to actively search for satisfactory multigrid
components. One result from the optimization is that for most of the equations con-
sidered, the optimal components include smoothing methods that also reduce certain
low frequency error components by means of an overrelaxation parameter.

The GA optimization can be directed toward optimal components for individual
equations or toward the robustness of a multigrid solver, i.e., solving several equations
efficiently. One could aim for the following software framework: with the increasing
speed of computers, one could provide optimized analysis software with a (black-
box) multigrid algorithm. The available efficient components are then chosen by the
analysis before (or components are adapted during) the actual numerical solution of
a PDE, at least for structured applications. In this way, it is not necessary to tune
multigrid components anew by hand for each following application, as the components
are chosen automatically by the GA.

Appendix: GA optimization of a simple function. In this appendix, we
give an example for the optimization of a simple function. The reason for this is
because some readers may not be very familiar with GAs. Therefore, we show in some
detail how the micro-GA works. Here, we search for the maximum of the analytic
function,

flz)=—x (i:cg - %1’2 +Tx — 8) .
One parameter, x, is varied from —7 until 8.75 in steps of 0.25. These comprise 64
possibilities. Thus, —7 is coded by 000000, —6.75 by 000001, and 8.75 by 111111, etc.
The maximum is obtained at x = 4, for which f(z) = 5.3333.
The GA from section 3 proceeds as follows. At first, 5 random individuals are
generated. They follow from steps 1, 2, and 3 of the algorithm in section 3:
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nr: bin. code: x-value: f(x):

1 100011 1.75 2.72298177
2 111101 8.25 -258.360352
3 010001 -2.75 -137.761393
4 001000 -5. -662.916667
5 001101 -3.75 -300.922852

Individual 1 is the best so far. After steps 4, 5, and 6, we find the second generation.
This run is as follows:

nr: bin. code: x-value: f(x):

1 101001 3.25 4.26985677
2 100011 1.75 2.72298177
3 000001 -6.75 -1609.53223
4 110111 6.75 -66.3134766
5 111001 7.25 -111.45931

After selection and crossover, new individual 1 is best. This individual remains
strongest for a large number of GA iterations. After iteration 6, we have the fol-
lowing population:

nr: bin. code: x-value: f(x):

1 101001 3.25 4.,26985677
2 100001 1.25 3.0094401
3 101001 3.25 4.26985677
4 101001 3.25 4.26985677
5 101001 3.25 4.26985677

At this stage, step 8 of the algorithm is applied for the first time. A restart takes place;
only the fittest individual so far remains with 4 randomly chosen new individuals. It
takes until iteration 13 in this run, right after a restart, before the global maximum
5.333 is obtained.
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