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Abstract. Lattice rules are among the best methods to estimate integrals in a large number of
dimensions. They are part of the quasi-Monte Carlo set of tools. A theoretical framework for a class
of lattice rules defined in a space of polynomials with coefficients in a finite field is developed in this
paper. A randomized version is studied, implementations and criteria for selecting the parameters are
discussed, and examples of its use as a variance reduction tool in stochastic simulation are provided.
Certain types of digital net constructions, as well as point sets constructed by taking all vectors of
successive output values produced by a Tausworthe random number generator, are special cases of
this method.
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1. Introduction. We are concerned with the problem of estimating µ, the inte-
gral of a function f over the t-dimensional unit hypercube:

µ =
∫

[0,1)t

f(u)du. (1.1)

The aim of most stochastic simulations is to estimate a mathematical expectation
that can be expressed in this form. Indeed, randomness in a Monte Carlo simulation
is imitated on a computer by taking a sequence of independent U(0, 1) (uniforms over
[0, 1)) “random numbers”, which are transformed by some complicated function f to
simulate a random variable whose expectation is to be estimated. If f depends on a
random and unbounded number of uniforms, t can simply be viewed as infinite.

Classical numerical integration methods to approximate µ work fine when t is
small and f is smooth [8], but are impractical if t exceeds 4 or 5. The Monte Carlo
(MC) simulation method estimates µ by the sample average

Qn =
1
n

n−1∑
i=0

f(ui), (1.2)

where u0, . . . ,un−1 are n independent random vectors uniformly distributed over
[0, 1)t. One has E[Qn] = µ. Moreover, if

σ2 =
∫

[0,1)t

f2(u)du− µ2 (1.3)
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is finite then Var[Qn] = σ2/n, Qn obeys the central-limit theorem, and the error
En = Qn − µ converges probabilistically as |En| = Op(σ/

√
n), regardless of t.

The aim of Quasi-Monte Carlo (QMC) methods is to reduce the error by replacing
the random points u0, . . . ,un−1 by a set of points Pn = {u0, . . . ,un−1} that covers the
unit hypercube [0, 1)t more evenly than typical random points. Two important classes
of construction methods are the digital nets and the integration lattices [20, 30, 32, 34].

A lattice rule estimates µ by taking Pn = Lt ∩ [0, 1)t, where Lt is an integration
lattice in Rt, i.e., a discrete subset of Rt closed under addition and subtraction, and
that contains Zt. In this paper, we study a polynomial version of lattice rules which
we call polynomial lattice rules, obtained by replacing R and Z in ordinary lattice
rules by the field L of formal Laurent series over the finite field F2, and the ring F2[z]
of polynomials over F2, respectively. The point set Pn is obtained by defining an
appropriate output mapping that associates to each element in L a number between
0 and 1. These rules turn out to be a special case of digital nets [25].

Our construction generalizes the special kind of digital net introduced by Nieder-
reiter [30, Section 4.4] and Tezuka [38] and studied further in [20, 22, 21], which
corresponds in our setting to a polynomial lattice rule of rank 1. Also, the focus of
our work is different from that of those previous contributions, which consisted in
deriving bounds on the rectangular star discrepancy of the point sets Pn, and con-
vergence rates for these bounds when n → ∞ for fixed t. These discrepancy bounds
can in turn be used, via the Koksma-Hlawka inequality, to obtain worst-case bounds
on |En| that converge as O(n−1(lnn)t). See, e.g., [30] for the details. For fixed t,
this gives a better convergence rate than MC, but the improvement turns out to be
practically meaningful only for small t, and other justifications are needed to explain
why QMC methods work for real-life applications.

In this paper, we analyze the quality of general polynomial lattice rules by con-
sidering instead a randomization of the point set Pn that preserves its uniformity in a
certain sense, and we measure the quality of the resulting (unbiased) estimator by its
variance. We also use a functional ANOVA decomposition of f , together with some
heuristics, to argue that for large t, the quality of Pn should be measured by looking
at a selected set of its projections over lower-dimensional subspaces, namely those
whose corresponding terms in the ANOVA decomposition capture a large fraction of
the variance σ2. One way of measuring the uniformity of these projections is via the
same equidistribution criteria that are used to assess the quality of random number
generators based on linear recurrences modulo 2 [23, 39]. Ideally, this selected set of
projections should depend on f , but typically f is very complicated and designing Pn

specifically for it is not practical.
The paper is organized as follows. In Section 2 we recall some facts about ordinary

lattice rules. Polynomial lattice rules and their basic properties are discussed in
Section 3. In Section 4 we explain how we use the notion of equidistribution to measure
the quality of polynomial lattice rules and we make some connections with the so-
called (t,m, s)-nets. A randomization for polynomial lattice rules and the variance of
the corresponding randomized estimator are studied in Section 5. Specific selection
criteria are defined and compared in Section 6. A compromise must be made between
choosing an easy-to-compute criterion and one that tests the uniformity from more
viewpoints (e.g., by examining a larger number of projections). In Section 7, we
discuss implementation issues and give examples of specific parameter choices that
are optimal with respect to one of the criteria introduced in Section 6. Section 8
presents simulation examples where the polynomial lattice rules given in the previous
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section provide estimators with a smaller empirical variance than those coming from
the MC method. Some technical proofs are relegated to the appendix. A more detailed
version of these proofs can be found in [27].

Our development is based on arithmetic in F2, but it can be generalized easily to
Fb for an arbitrary prime b.

2. Lattice Rules. We now briefly recall some facts about ordinary lattice rules
(more can be found in [24, 34]). Analogous results will be developed later for their
polynomial version. As mentioned in the introduction, a lattice rule estimates µ
by taking Pn = Lt ∩ [0, 1)t, where the integration lattice Lt is obtained as Lt ={
v =

∑t
j=1 zjvj such that each zj ∈ Z

}
, where v1, . . . ,vt are linearly independent

vectors in Rt, and Zt ⊆ Lt. The latter condition is what makes Lt an integration
lattice. If Pn has n points, then each coordinate of each vector of Lt is a multiple
of 1/n. A simple and convenient way to construct Pn is to take the set of all t-
dimensional vectors of successive output values from a linear congruential generator
(LCG) [10, 18, 24]; that is, take Pn as the set of all vectors (u0, . . . , ut−1) where
x0 ∈ Zn = {0, . . . , n− 1} and the ui obey the recurrence

xi = (axi−1) mod n, ui = xi/n,

for some positive integer a in Zn. The corresponding integration rule Qn given by
(1.2) was proposed by Korobov [19] and is called a Korobov lattice rule.

The dual of an integration lattice Lt is defined by L∗t = {h ∈ Rt such that v ·h ∈
Z for all v ∈ Lt} and is a subset of Zt. If we write the Fourier expansion of f as

f(u) =
∑
h∈Zt

f̂(h) exp(2π
√
−1h · u), (2.1)

with Fourier coefficients f̂(h) =
∫
[0,1)t f(u) exp(−2π

√
−1h · u)du, the integration

error with the lattice rule is given explicitly by

En =
∑

0 6=h∈L∗
t

f̂(h) (2.2)

if f has an absolutely convergent Fourier expansion (2.1) [34]. Unfortunately, esti-
mating the error via (2.2) is impractical because the absolute convergence rarely holds
and this expression would be too hard to compute anyway.

An alternative is to randomize the point set Pn so that the integration error can
be estimated statistically. One way of doing this is the Cranley-Patterson rotation
[7]: Generate one point U uniformly over [0, 1)t and replace each ui in Pn by ũi =
(ui + U) mod 1 where the reduction modulo 1 is coordinate-wise. The set Pn is thus
replaced by P̃n = {ũ0, . . . , ũn−1}, and Qn and En are replaced by the corresponding
Q̃n and Ẽn. One can show that E[Ẽn] = 0 and

Var[Ẽn] =
∑

0 6=h∈L∗
t

|f̂(h)|2, (2.3)

as long as f is square-integrable [26]. To estimate the error, compute m i.i.d. copies
of Q̃n with the same Pn, using m independent uniform shifts U, and compute their
sample variance, which is an unbiased estimator of Var[Q̃n] = E[Ẽ2

n].
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The variance expression (2.3) suggests discrepancy measures of the form

D(Pn) =
∑

0 6=h∈L∗
t

w(h) or D(Pn) = sup
0 6=h∈L∗

t

w(h), (2.4)

with weights w(h) that decrease with ‖h‖ in a way that corresponds to how we
think the squared Fourier coefficients |f̂(h)|2 decrease with ‖h‖, and where ‖ · ‖ is an
arbitrary norm (see, e.g., [10, 14, 16, 26]). For a given choice of weights w(h), either
definition of D(Pn) in (2.4) can be used as a selection criterion (to be minimized) over
a given set of n-point lattice rules. Most selection criteria in the literature are of the
form (2.4). Examples are Pα and the Babenko-Zaremba index ρ (see, e.g., [10, 34]),
as well as the P̃α defined in [16] and the criterion Mt1,...,td

proposed in [24].

3. Polynomial Lattice Rules. In this section, we define and study polynomial
lattice rules, and give examples for which an easy implementation is available. We
also discuss the functional ANOVA decomposition and the Walsh series expansion,
which turns out to be the counterpart of the Fourier series expansion for polynomial
lattice rules. We conclude by studying the projections of polynomial lattice rules in
light of these functional decompositions.

3.1. Definition and basic properties. Definition 3.1. A polynomial lattice
rule estimates µ by taking a polynomial lattice point set Pn = ϕ(Lt) ∩ [0, 1)t, where
Lt is a polynomial integration lattice, i.e., a set of the form

Lt =

v(z) =
t∑

j=1

qj(z)vj(z) such that qj(z) ∈ F2[z] for each j

 ,

where v1(z), . . . ,vt(z) are arbitrary vectors in Lt, independent over L, and such that
the set (F2[z])t of all t-dimensional vectors of polynomials is contained in Lt. The
map ϕ : L → R is defined by

ϕ

( ∞∑
l=ω

dlz
−l

)
=

∞∑
l=ω

dl2−l.

For a vector v(z) = (v1(z), . . . , vt(z)), we define ϕ(v(z)) = (ϕ(v1(z)), . . . , ϕ(vt(z))).
Definition 3.2. The dual lattice of Lt is defined as

L∗t = {h(z) ∈ Lt such that h(z) · v(z) ∈ F2[z] for each v(z) ∈ Lt},

where h(z) · v(z) =
∑t

j=1 hj(z)vj(z). It is a subset of (F2[z])t.
This dual lattice plays a role in providing error and variance expressions, as we

explain in Subsection 3.2 and in Section 5. The dual of the basis {v1(z), . . . ,vt(z)}
is the set of vectors {h1(z), . . . ,ht(z)} in (F2[z])t such that hi(z) · vj(z) = 1 if i = j
and 0 otherwise. It forms a basis of the dual lattice. If V is the matrix with rows
v1(z), . . . ,vt(z), then h1(z), . . . ,ht(z) are the columns of V−1, the inverse of V.

Definition 3.3. The determinant of Lt is det(Lt) = det(V). Likewise, det(L∗t )
= det(V−1) = 1/det(Lt).

Lemmas A.1 and A.3 (in the appendix) state that these determinants do not
depend on the choice of basis and that det(L∗t ) is a polynomial, which we denote by
P (z). Also, Lemma A.5 implies that if P (z) has degree k, then Pn has exactly n = 2k

distinct elements. We call this number n the density of Lt. This is analogous to the
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case of ordinary lattice rules, where Pn = Lt ∩ [0, 1)t has cardinality 1/|det(V)| for
any matrix V whose rows form a basis of Lt.

Definition 3.4. The rank r of a polynomial lattice rule based on the lattice Lt,
denoted rank(Lt), is the minimal value r in {1, . . . , t} such that a basis v1(z), . . . ,vt(z)
for Lt can be chosen with vj(z) = ej for j > r, where ej is the jth unit vector in t
dimensions (a vector with a 1 in position j and zeros elsewhere). A basis is in minimal
form if vj(z) = ej for j > rank(Lt).

With a slight abuse of notation, we denote the commutative ring of polynomials of
degree less than k with coefficients in F2 by F2[z]/(P ), where the two basic operations
are the addition and multiplication of polynomials modulo P (z). For ordinary lattice
rules, one can always find a basis whose vectors have coordinates of the form a/n, for
some positive integer n and with a ∈ Zn or a = n. The following proposition states
an analogous result for polynomial integration lattices. Its proof is in the appendix.

Proposition 3.5. Any polynomial integration lattice Lt admits a basis v1(z), . . . ,
vt(z) whose vectors have coordinates of the form p(z)/P (z), where p(z) ∈ F2[z]/(P )
or p(z) = P (z).

If we let Ξt = Lt ∩ Lt
0, where L0 = {s(z) ∈ L : s(z) =

∑∞
l=1 dlz

−l}, then this
result implies that the coordinates of each point of Ξt are of the form p(z)/P (z) where
p(z) ∈ F2[z]/(P ), so that P (z)Ξt ⊆ (F2[z])t. From the next proposition, this implies
in turn that the coefficients of these coordinates follow a linear recurrence in F2 with
characteristic polynomial P (z). Obviously, the successive bits of each coordinate of
any point in Pn = ϕ(Ξt) then follow the same recurrence. Note that P (z) is not
necessarily the minimal polynomial of this linear recurrence, so it is possible that the
successive bits also follow a linear recurrence of order strictly less than k. Example 3.7
will illustrate such a case.

Proposition 3.6. If v(z) = p(z)/P (z) =
∑∞

j=1 xjz
−j where P (z) =

∑k
l=0 alz

k−l

and p(z) ∈ F2[z]/(P ), then the sequence {xj , j ≥ 1} follows the linear recurrence

xj = a1xj−1 + · · ·+ akxj−k (3.1)

in F2, for which P (z) is a characteristic polynomial. Moreover, assuming that p(z) =∑k
j=1 cjz

k−j, we have the one-to-one correspondence
c1
c2
...
ck

 =


1 0 . . . 0
a1 1 . . . 0
...

. . . . . .
...

ak−1 . . . a1 1



x1

x2
...
xk

 . (3.2)

Proof. We have

p(z) = P (z)v(z) =

(
k∑

`=0

a`z
k−`

) ∞∑
j=1

xjz
−j

 .

If we multiply the latter two sums, regroup the terms, and equal the coefficient of
each power of z with the corresponding coefficient in p(z), we obtain that for j > k,
a0xj +a1xj−1+· · ·+akxj−k = 0, whereas for 1 ≤ j ≤ k, a0xj +a1xj−1+· · ·+aj−1x1 =
cj , where a0 = 1. This gives (3.1) and (3.2), respectively. The correspondence (3.2)
is clearly one-to-one.

Example 3.7. (Rectangular rule) Consider the lattice generated by the basis
vectors vj(z) = ej/Q(z), 1 ≤ j ≤ t, for some polynomial Q(z) of degree q. The
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corresponding lattice rule has rank t, P (z) = det(L∗t ) = 1/det(V) = (Q(z))t, and
order n = 2k = 2qt. For example, if Q(z) = z, then k = t, P (z) = zk and, if t > 1,
all the coefficients a1, . . . , ak in the recurrence (3.1) are 0, in accordance with the fact
that p(z)/P (z) has no term z−j with j > k in this case. If Q(z) = z2 + z and t > 1,
then k = 2t and P (z) has a coefficient ak equal to 0, which means that the minimal
polynomial of the recurrence (3.1) has a degree smaller than k.

Example 3.8. (Rank-1 polynomial lattice rule) Let P (z) be in F2[z] and g(z)
in (F2[z]/(P ))t with no zero component. Let Lt = {q(z)g(z)/P (z), q(z) ∈ F2[z]}, and
Pn = ϕ(Lt)∩[0, 1)t. This defines a polynomial lattice rule of rank 1. This construction
was introduced in [38] and [30, Section 4.4], where it is presented as a special case of
digital net.

Example 3.9. (Polynomial LCG [37, 39, 40]) Consider the linear recurrence

pi(z) = a(z)pi−1(z) mod P (z), (3.3)

where P (z) is an arbitrary polynomial of degree k over F2, and a(z) 6= 0 in F2[z]/(P ).
Dividing (3.3) by P (z) yields

si(z) = a(z)si−1(z) mod F2[z], (3.4)

where

si(z) = pi(z)/P (z) =
∞∑

j=1

di,jz
−j (3.5)

is in L0 and the operator “mod F2[z]” discards the non-negative powers of z. In
analogy with an ordinary LCG, (3.3)–(3.5) define a polynomial LCG, whose output
at step i is the quotient of the state pi(z) by the modulus P (z). Let

Ξt = {(s0(z), s1(z), . . . , st−1(z)), such that p0(z) ∈ F2[z]/(P )}, (3.6)

the set of all vectors of t successive (formal series) outputs of the polynomial LCG,
from all initial states p0(z). Define the point set Pn = ϕ(Ξt). Analogously to the LCG
situation [18], we have the following proposition, stated without proof in [38], and
which means that the corresponding rule can be interpreted as a Korobov polynomial
lattice rule.

Proposition 3.10. The set Ξt defined in (3.6) satisfies Ξt = Lt ∩ Lt
0, where

Lt is the t-dimensional polynomial integration lattice with basis v1(z) = (1, a(z),
a2(z) mod P (z), . . . , a(t−1)(z) mod P (z))/P (z), v2(z) = e2, . . . , vt(z) = et.

Proof. If v(z) ∈ Ξt, one can write v(z) =
∑t

j=1 qj(z)vj(z) where q1(z) = p0(z)
and for j > 1, qj(z) is the polynomial part of p0(z)(a(j−1)(z) mod P (z))/P (z), i.e.,
the polynomial such that subtracting qj(z)vj(z) from p0(z)v1(z)/P (z) reduces the
jth coordinate of this vector modulo F2[z]. Conversely, any linear combination of
v1(z), . . . ,vt(z) over F2[z], whose coordinates are reduced modulo F2[z], clearly be-
longs to Ξt. To see that we have an integration lattice, just note that every vector
v(z) = (v1(z), . . . , vt(z)) ∈ (F2[z])t can be written as v1(z)P (z)v1(z) + (v2(z) −
v1(z)a(z) mod P (z))v2(z) + · · ·+ (vt(z)− v1(z)a(t−1)(z) mod P (z))vt(z).

Thus, a lattice rule based on a polynomial LCG has rank(Lt) = 1, det(L∗t ) = P (z),
and n = 2k points.

Example 3.11. (LFSR generator) As a special case of the polynomial LCG,
suppose that the multiplier a(z) can be written as zν mod P (z) for some positive
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integer ν, which we call the step size. When P (z) is a primitive polynomial over F2,
every polynomial nonzero a(z) in F2[z]/(P ) can be written in this way. In this case,
from (3.4), one has di,j = di−1,j+ν in (3.5), i.e., computing the right-hand side of
(3.4) amounts to shifting the coefficients of si−1(z) by ν positions and dropping the
non-negative powers of z. If we define xj = d0,j , then di,j = xiν+j for all i, and
therefore ui =

∑∞
j=1 xiν+j2−j is the output at step i, where the xj ’s obey (3.1). This

defines a Tausworthe-type LFSR random number generator [23, 39]. In practice, the
output ui is truncated to its first w bits, for some positive integer w. In this case,
Pn is the set of all vectors of t successive output values produced by the Tausworthe
generator, over all of its cycles (including the trivial cycle that contains only 0).

Example 3.12. Combined Tausworthe generators can be defined as follows [23,
39, 40]. Take m Tausworthe generators, the lth one based on a linear recurrence
with characteristic polynomial Pl(z) of degree kl, step size νl, and output sequence
ul,0, ul,1, ul,2, · · ·. Each of these generators can be viewed as a polynomial LCG and
defines a polynomial integration lattice Ll

t, as explained in Example 3.9. Define
ui = u1,i ⊕ · · · ⊕ um,i, for i ≥ 0, where u ⊕ v performs a bitwise exclusive-or on the
binary expansions of u and v. If the Pl(z)’s are pairwise relatively prime, the sequence
{ui, i ≥ 0} produced by the combined generator turns out to be the output sequence
of a Tausworthe generator with characteristic polynomial P (z) = P1(z) · · ·Pm(z) [40].
Hence its lattice structure can be analyzed as in Example 3.9. An alternative and
more general approach to study point sets Pn obtained this way is to consider sums
of polynomial lattice rules [27].

Remark 3.13. (Linear output transformations) The output mapping ϕ from
L to R can be replaced by a more general linear transformation as follows: for
v(z) =

∑∞
j=1 xjz

−j in L0, replace ui = ϕ(v(z)) by ui =
∑∞

j=1 yi,j2−j , where yi,j =∑k
`=1 b`,jx`, and where the b`,j ’s are constants in F2. This additional linear transfor-

mation can be applied to improve the uniformity of the point set Pn, especially when
important restrictions are imposed on the parameters to make the implementation
more efficient [33]. Although the corresponding point set Pn is still a digital net, it
does not generally yield a polynomial lattice rule [27, Section 8].

3.2. Walsh expansion and error expression. For any multivariate polyno-
mial h ≡ h(z) = (h1, . . . , ht) ∈ (F2[z])t where hs ≡ hs(z) =

∑`s−1
j=0 hs,jz

j for some `s,
and for u = (u1, . . . , ut) where us =

∑
j≥1 us,j2−j ∈ [0, 1) and us,j 6= 1 for infinitely

many j, define

〈h,u〉 =
t∑

s=1

`s∑
j=1

hs,j−1us,j mod 2.

The Walsh expansion in base 2 of a function f : [0, 1)t → R is defined as (e.g., [2]):

f(u) =
∑

h∈(F2[z])t

f̃(h)(−1)〈h,u〉, (3.7)

with Walsh coefficients

f̃(h) =
∫

[0,1)t

f(u)(−1)〈h,u〉du. (3.8)

Each term in (3.7) represents a piecewise-constant periodic function of u with ampli-
tude f̃(h). Each vector h is a bit selector. It picks a finite number of bits from the
binary expansion of (u1, . . . , ut): The jth bit of us is selected if and only if hs,j−1 = 1.
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Definition 3.14. (see e.g., [6]) We define the norm ‖h‖∞ = max1≤s≤t |hs|p,
where |hs|p = 2m if hs(z) has degree m ≥ 0, and |hs|p = 0 if hs = 0.

Intuitively, the h’s whose sup norm ‖h‖∞ is small are more important because
they test only the most significant bits of u.

The next lemma gives a property of the Walsh coefficients of the functions fI

obtained from the ANOVA decomposition of f . See [9, 32] for details about that
decomposition, which writes a square-integrable function f as a sum of orthogonal
functions, f(u) =

∑
I⊆{1,...,t} fI(u), where fI(u) = fI(u1, . . . , ut) depends only on

{ui, i ∈ I}, fφ(u) ≡ µ for the empty set φ,
∫
[0,1)t fI(u)du = 0 for I 6= φ, and∫

[0,1)t fI(u)fJ(u)du = 0 for I 6= J . The variance σ2 decomposes as

σ2 =
∑

I⊆{1,...,t}

σ2
I =

∑
φ6=I⊆{1,...,t}

∫
[0,1)t

f2
I (u)du.

The fI ’s are defined recursively in an explicit way described in [32]. This decompo-
sition is used in Section 6 to define selection criteria for polynomial lattice rules.

Lemma 3.15. Let f : [0, 1)t → R be a square-integrable function, and for h ∈
(F2[z])t, let Ih denote the set of indices j such that hj 6= 0. Then, for each non-empty
subset I of {1, . . . , t}, the Walsh coefficients of fI are given by f̃I(h) = f̃(h) if I = Ih,
f̃I(h) = 0 otherwise.

Proof. Denote by Ic the complement of I in {1, . . . , t}. We have that

f̃I(h) =
∫

[0,1)t

fI(u)(−1)〈h,u〉du =
∫

[0,1)|I|
fI(uI)(−1)〈hI ,uI〉duI

∫
[0,1)|Ic|

(−1)〈hIc ,uIc 〉duIc

=
{

0 if hj 6= 0 for at least one j ∈ Ic,∫
[0,1)|I|

fI(uI)(−1)〈hI ,uI〉duI otherwise,

since
∫
[0,1)|Ic|(−1)〈hIc ,uIc 〉duIc equals 0 if hIc 6= 0 and 1 otherwise. So assume that

hj = 0 for each j ∈ Ic and that hj = 0 for at least one j ∈ I. Let I0 = {j ∈ I : hj = 0}
and Ic

0 = I \I0. Then I0 6= φ and
∫
[0,1)|I0|

fI(uI)duI0 = 0 by definition, so

f̃I(h) =
∫

[0,1)|I
c
0 |

(−1)〈hIc
0
,uIc

0
〉
∫

[0,1)|I0|
fI(uI)duI0duIc

0
= 0.

The last thing we need to show is that if I = Ih, then f̃I(h) = f̃(h). This follows
since f̃(h) =

∫
[0,1)t

∑
J fJ(x)(−1)〈h,u〉du =

∑
J f̃J(h) = f̃Ih(h), the third equality

coming from the fact that for all J 6= Ih, we proved that f̃J(h) = 0.
This lemma implies that we can write the Walsh expansion of fI as

fI(u) =
∑

h∈F2[z]I

f̃(h)(−1)〈h,u〉, (3.9)

where F2[z]I = {h ∈ (F2[z])t : hj 6= 0 if and only if j ∈ I}. Using (3.9), we can also
rewrite the variance of fI as

σ2
I =

∑
h∈F2[z]I

|f̃(h)|2 =
∑

h∈(F2[z])t

|f̃I(h)|2. (3.10)

This decomposes the variance of f as

σ2 =
∑

φ6=I⊆{1,...,t}

∑
h∈F2[z]I

|f̃(h)|2. (3.11)
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The first equality in (3.10) provides an expression for σ2
I that does not require

explicit knowledge of the ANOVA component fI . Also, the expression (3.11) deter-
mines a partition of the coefficients |f̃(h)|2 that will be useful in Section 6 to define
selection criteria that rely both on the ANOVA and Walsh decompositions of f .

We now examine the interplay between Walsh expansions and polynomial lattice
rules. The following lemma, proved in a more general setting in [25], is the analogue
of the result given in [34, Lemma 2.7 ] for ordinary lattice rules. It is used to prove
Propositions 3.17 and 5.1.

Lemma 3.16. If Pn is a polynomial lattice point set, then∑
u∈Pn

(−1)〈h,u〉 =
{
n if h ∈ L∗t ,
0 otherwise.

Using this lemma, an expression similar to (2.2) for the integration error asso-
ciated with a polynomial lattice rule is easily obtained for functions that have an
absolutely convergent Walsh series. Note that the latter is a very strong assumption.
In [22, Lemma 1], an expression is given for the error in terms of the Walsh coefficients
f̃(h) for a general point set Pn (not necessarily a lattice). It is shown there that

En =
1
n

∑
u∈Pn

f(u)− µ =
1
n

∑
0 6=h∈(F2[z])t

f̃(h)
∑
u∈Pn

(−1)〈h,u〉. (3.12)

By combining this result with Lemma 3.16, we obtain the next proposition.
Proposition 3.17. If f is such that

∑
h∈(F2[z])t |f̃(h)| < ∞ and Pn is a

polynomial lattice point set, then

En = Qn − µ =
∑

0 6=h∈L∗t

f̃(h).

Error bounds for functions having sufficiently fast decaying Walsh coefficients are
given in [21, 22] for different types of digital nets. This is in analogy with existing
results for ordinary lattice rules that can be found in [34], for example. We do not
explore this topic here, as we are rather interested in studying randomizations of Pn

and their corresponding variance expressions. This is the subject of Section 5.

3.3. Projections of Pn over subsets of coordinates. The functional ANOVA
decomposition described previously is very useful to understand what are the impor-
tant features of a function, and in turn, this helps determining what properties of Pn

should be considered more carefully. In particular, this decomposition can be used
to define the effective dimension of a function [3, 32]. For instance, a function f is
said to have an effective dimension of d in proportion ρ in the superposition sense if∑

I:|I|≤d σ
2
I ≥ ρσ2. When ρ is close to 1, this means that f is well approximated by

a sum of d-dimensional (or less) functions. For example, linear, quadratic, and cubic
t-dimensional functions have effective dimensions 1, 2, and 3 in proportion 1 in the
superposition sense, respectively.

Real-life simulations often involve high-dimensional functions with low effective
dimension, in some sense, in proportion ρ close to 1. Smoothing techniques can also
be used to change f in order to reduce the effective dimension, without changing µ
[11, 28, 32, 36]. Often,

∑
I∈I σ

2
I is large if I contains all the sets I formed either by

successive indices or by a small number of indices that are not too far apart. What
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counts then is that for each of these important sets I, the projection Pn(I) of the
point set Pn over the subspace determined by I be well distributed. When |I| is
small, it becomes possible to cover the |I|-dimensional subspace quite well with the
points of Pn(I). For the sets I for which σ2

I/σ
2 is very small, there is no need to care

much about the quality of Pn(I). Hence we need appropriate tools to analyze these
projections and measure their quality in the case of polynomial lattice rules.

For an integration lattice Lt, we denote by Lt(I) the projection of Lt over the
subspace determined by I. The dual lattice to Lt(I) is defined as L∗t (I) = {h(z) ∈
L|I| : h(z) · v(z) ∈ F2[z] for each v(z) ∈ Lt(I)}, which is a subset of (F2[z])|I|.

The two definitions that follow are taken from [24] and [26], respectively. They
are given for general point sets Pn. We will construct polynomial lattice rules whose
projected point sets have those nice properties.

Definition 3.18. A point set Pn in [0, 1)t is fully projection-regular if for each
non-empty subset I of {1, . . . , t}, the projection Pn(I) has n distinct points.

It is certainly sensible to ask for the point sets Pn to be fully projection-regular
if we are interested in highly uniform projections. Point sets defined by rectangular
grids in t ≥ 2 dimensions, for example, are not fully projection-regular, because for
every projection, several points are superposed on each other.

Definition 3.19. A point set Pn in [0, 1)t is dimension-stationary if whenever
1 ≤ i1 < . . . < is < t and 1 ≤ j ≤ t− is, Pn({i1, . . . , is}) = Pn({i1 + j, . . . , is + j}).

For a dimension-stationary point set, the projections Pn(I) depend only on the
spacings between the indices in I. In particular, the quality of Pn({i1, . . . , is}) does
not deteriorate as i1 increases, assuming that the spacings ij − ij−1 remain the same,
for j = 2, . . . , s. This property does not hold for typical low-discrepancy point sets
proposed in the literature.

The next proposition implies that every polynomial lattice rule defined via a
polynomial LCG – i.e., every Korobov polynomial lattice rule – has the two enjoyable
properties that we just defined, as long as gcd(a(z), P (z)) = 1.

Proposition 3.20. Let Lt be a polynomial lattice rule of rank 1 which admits
a basis of minimal form such that v1(z) = (1, v2(z), . . . , vt(z))/P (z), where P (z) is
a polynomial of degree k. Then, the corresponding point set Pn is fully projection-
regular if and only if gcd(vj(z), P (z)) = 1 for j = 2, . . . , t. If one can write vj(z) =
a(j−1)(z) mod P (z) for some polynomial a(z) such that gcd(a(z), P (z)) = 1, then Pn

is dimension-stationary.
Proof. Assume gcd(vj(z), P (z)) = 1 for j = 2, . . . , t. To verify that Pn is fully

projection-regular, it suffices to check that Pn({j}) has n distinct points for each
j = 1, . . . , t. Now, Pn({1}) = ϕ({q(z)/P (z), q(z) ∈ F2[z]/(P )}) obviously has n = 2k

distinct points, because there are exactly n polynomials in F2[z]/(P ). For j = 2, . . . , t,
we have that Pn({j}) = ϕ({q(z)vj(z)/P (z) mod F2[z], q(z) ∈ F2[z]/(P )}) = Pn({1})
if gcd(vj(z), P (z)) = 1. On the other hand, if gcd(vj(z), P (z)) 6= 1 for some j =
2, . . . , t, then q(z)vj(z) = 1 (mod P (z)) has no solution q(z) and therefore Pn({j})
contains less than n points.

If the basis has the specified form, with vj(z) = a(j−1)(z) mod P (z), then Pn =
{(g(p0(z)), g(p1(z)), . . . , g(pt−1(z))), p0(z) ∈ F2[z]/(P )}, where pj(z) = a(z)pj−1(z)
mod P (z) and g(p(z)) = ϕ(p(z)/P (z)). By [26, Proposition 2], Pn is dimension-
stationary if the recurrence pj(z) = a(z)pj−1(z) mod P (z) is invertible, and a suffi-
cient condition for this is to have gcd(a(z), P (z)) = 1.

4. Equidistribution and Nets. To measure the quality of a polynomial lattice
rule, we use a methodology generalizing one that is often used for testing the theo-
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retical properties of LFSR generators [6, 12, 39, 41], based on the notion of equidis-
tribution of the point set Pn. We first explain this notion and then briefly discuss its
relationship with the concept of net. These ideas are used to define selection criteria
for polynomial lattice rules in Section 6.

Definition 4.1. Let n = 2k. For a vector of non-negative integers q1, . . . , qt,
partition the interval [0, 1) along the jth axis into 2qj equal subintervals. This par-
titions [0, 1)t into 2q rectangular boxes, where q = q1 + · · · + qt. A point set Pn is
(q1, . . . , qt)-equidistributed if it has exactly 2k−q points in each of these boxes.

Let H(q1, . . . , qt) denote the set of vectors h = (h1, . . . , ht) ∈ (F2[z])t such that
hj(z) has degree less than qj (or hj(z) = 0) for each j.

Proposition 4.2. (Generalization of results in [5, 6]) A point set Pn based on
a polynomial integration lattice Lt is (q1, . . . , qt)-equidistributed if and only if L∗t ∩
H(q1, . . . , qt) = {0}.

Proof. Consider the class F of all real-valued functions that are constant on each
of the 2q rectangular boxes in Definition 4.1. Clearly, Pn is (q1, . . . , qt)-equidistributed
if and only if the corresponding lattice rule integrates every function f ∈ F with zero
error. But the Walsh expansion of f ∈ F is

f(u) =
∑

h∈H(q1,...,qt)

f̃(h)(−1)〈h,u〉. (4.1)

To see this, note that any f ∈ F can be written as

f(u) =
2q1−1∑
v1=0

. . .
2qt−1∑
vt=0

cv1,...,vt

t∏
j=1

1vj2
−qj≤uj<(vj+1)2−qj , (4.2)

where the cv1,...,vt are real numbers. If h /∈ H(q1, . . . , qt), hj(z) has degree wj ≥ qj for
some j. Let d = wj−qj+1. When l goes from 0 to 2d−1, 〈hj , vj2−qj +l2−wj−1〉 is equal
to each of 0 and 1 exactly 2d−1 times. Hence, if we first integrate f(u) with respect
to uj when computing f̃(h) via (3.8), in which f(u) has been replaced by (4.2), any
term of the sum will be 0 because

∫ 1

0
cv1,...,vt1vj2

−qj≤uj<(vj+1)2−qj (−1)〈hj ,uj〉duj =

cv1,...,vt

∑2d−1
l=0 (−1)〈hj ,vj2

−qj +l2−wj−1〉 = 0. Thus f̃(h) = 0 if h /∈ H(q1, . . . , qt), and
(4.1) follows. If H(q1, . . . , qt)∩L∗t = {0}, then

∑
0 6=h∈L∗t

f̃(h) = 0 for all f ∈ F , so Pn

is (q1, . . . , qt)-equidistributed. To prove the other direction, note that for any nonzero
h̄ ∈ H(q1, . . . , qt), g(u) = (−1)〈h̄,u〉 is in F and g̃(h) = 1 if h = h̄, and 0 otherwise.
Hence if Pn is (q1, . . . , qt)-equidistributed, then

∑
0 6=h∈L∗t

g̃(h) = 0 and h̄ 6∈ L∗t .
By taking qj = ` for each j, we recover the result of [6]: Pn is t-distributed to `

bits of accuracy if and only if L∗t ∩H(`, . . . , `) = {0}, i.e., if and only if the shortest
nonzero vector h in L∗t has length ‖h‖∞ ≥ 2`. The largest value of ` for which
Pn is t-distributed to ` bits of accuracy is called the t-dimensional resolution of Pn

[12, 6, 23].
Definition 4.1 can be adapted to projections as follows.
Definition 4.3. Let n = 2k. For a subset I = {i1, . . . , is} of {1, . . . , t}, the

projection Pn(I) is (qi1 , . . . , qis)-equidistributed if each of the 2q(I) rectangular boxes,
where q(I) = qi1 + . . .+ qis

, obtained by partitioning the interval [0, 1) along the ijth
axis into 2qij equal subintervals for j = 1, . . . , s, contains 2k−q(I) points from Pn(I).

The previous definitions do not assume that the points in Pn or Pn(I) are all
distinct. When a point appears more than once in the set, it is counted as many
times as it appears. In other words, Pn and Pn(I) should be interpreted as multisets.
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The definition of (q1, . . . , qt)-equidistribution allows us to recover the definition of
(q, k, t)-net introduced in [35] for base 2 and in [29] for general bases: a point set Pn

in [0, 1)t with n = 2k points is a (q, k, t)-net in base 2 – usually called a (t,m, s)-net,
using a different notation – if it is (q1, . . . , qt)-equidistributed for every non-negative
integer vector (q1, . . . , qt) such that q1 + . . .+ qt = k − q. We refer the reader to [25,
Section 4] for more connections between this concept and the resolution.

5. Randomization and Variance Expression. The counterpart of the Cran-
ley-Patterson rotation for polynomial lattice rules over F2 is to generate a single
t-dimensional vector of formal series S(z) = (S1(z), . . . , St(z)) uniformly over Lt

0, and
add it to each vector v(z) ∈ Lt∩Lt

0 before applying ϕ in the definition of a polynomial
lattice point set. In other words, Pn is replaced by

P̃n = {u = ϕ(v(z) + S(z)) such that v(z) ∈ Lt ∩ Lt
0.}

This is equivalent to generating a random variable U uniformly over [0, 1)t and re-
placing Pn by P̃n = {ũ0, . . . , ũn−1}, where ũi = ui ⊕ U, the bitwise exclusive-or of
the binary expansions of the coordinates of ui and U.

We define the random variables Q̃n and Ẽn as in Section 2, but with this new P̃n.
To estimate the error, we can make m independent shifts and compute a confidence
interval for µ from the m i.i.d. copies of Q̃n.

Proposition 5.1. One has E[Ẽn] = 0 and, if f is square-integrable,

Var[Ẽn] =
∑

0 6=h∈L∗t

|f̃(h)|2. (5.1)

Proof. Denote by ui,j,k the coefficient of 2−k in the binary expansion of ui,j , the
jth coordinate of ui. Since U has the uniform distribution over [0, 1)t, its bits Uj,k,
for j = 1, . . . , t and k ≥ 1, are i.i.d. Bernoulli with parameter p = 1/2. Then the
bits (ui,j,k + Uj,k) mod 2 are also i.i.d. Bernoulli and each ui ⊕ U has the uniform
distribution over [0, 1)t. This implies that E(f(ui⊕U)) = µ for each i, so E[Ẽn] = 0.

To show (5.1), we proceed as in the proof of [24, Proposition 4] for ordinary
lattices. We define g : [0, 1)t → R by g(U) =

∑n−1
i=0 f(ui ⊕U)/n. Thus, Var(g(U)) =

Var(Ẽn). Parseval’s equality holds for the Walsh series expansion [13], so

Var(g(U)) =
∑

0 6=h∈(F2[z])t

|g̃(h)|2, (5.2)

and the coefficients g̃(h) are given by:

g̃(h) =
∫

[0,1)t

g(u)(−1)〈h,u〉du =
∫

[0,1)t

(
1
n

n−1∑
i=0

f(ui ⊕ u)

)
(−1)〈h,u〉du

=
1
n

n−1∑
i=0

∫
[0,1)t

f(ui ⊕ u)(−1)〈h,u〉du

=
1
n

n−1∑
i=0

∫
[0,1)t

f(vi)(−1)〈h,ui⊕vi〉dvi

=
1
n

n−1∑
i=0

(−1)〈h,ui〉
∫

[0,1)t

f(vi)(−1)〈h,vi〉dvi
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=
1
n

n−1∑
i=0

(−1)〈h,ui〉f̃(h) =
{
f̃(h) if h ∈ L∗t ,
0 otherwise.

In the above display, the third equality is obtained by exchanging the sum and the
integral, which is allowed by Fubini’s theorem because f is integrable; the fourth
equality is obtained by applying the change of variable vi = ui ⊕ u, which also
permits us to rewrite u as ui ⊕ vi; the fifth comes from the fact that (−1)〈h,vi⊕ui〉 =
(−1)〈h,vi〉(−1)〈h,ui〉; and the last equality follows from Lemma 3.16. By replacing
this in (5.2), the result (5.1) immediately follows.

This variance expression suggests discrepancy measures of the form (2.4), with L∗t
replaced by L∗t . The weights w(h) should be chosen in accordance with our knowledge
(or intuition) of how the Walsh coefficients are likely to behave as a function of h.
This is discussed in the next section. Also, it is clear from (5.1) that bounds on the
variance or on its convergence rate as a function of n can be obtained by making
appropriate assumptions on the Walsh coefficients of f and on the dual lattice L∗t .

Other randomization techniques have been proposed for general digital nets. We
refer the reader to [25, Section 6] and the references therein for more on this topic.

6. Selection Criteria. We now examine and discuss specific selection criteria
of the form (2.4) for choosing general-purpose polynomial lattice rules. Ideally, the
weights w(h) in a criterion of the formD(Pn) =

∑
0 6=h∈L∗t

w(h) should be proportional

to the squared Walsh coefficients |f̃(h)|2 that appear in the variance expression (5.1)
for the function f of interest. But in practice, the polynomial lattice rules must be
chosen without knowing these coefficients, and sometimes without any information at
all on f (e.g., when selecting general-purpose lattice rules for numerical software).

This requires heuristic assumptions and arguments. Here, we take the usual
approach of assuming that the large squared Walsh coefficients usually correspond
to polynomial vectors h of small degree, and having a small or moderate number of
nonzero components, with indices that are not too far from each other.

In the remainder of this section, we introduce a criterion based on the equidis-
tribution of a selected set of projections. The specific rules used in Section 8 have
been selected based on this criterion. We then discuss alternative criteria, based on
different norms and/or weights.

6.1. Equidistribution of projections. The following criterion computes the
resolution `I of some specified low-dimensional projections Pn(I), and makes sure
that `I is close to its best possible value for each of those I. The choice of the subsets
I for which `I is computed is arbitrary. Here we consider the same class of subsets as
for the criterion Mt1,...,td

proposed in [24] for ordinary lattice rules. More specifically,
suppose that Pn is fully projection-regular, dimension-stationary, and contains n = 2k

points. We define

∆t1,...,td
= max

1≤s≤d
max

I∈S(ts,s)
[`∗s(n)− `I ] , (6.1)

where `∗s(n) = bk/sc is the maximal resolution for a set of n = 2k points in [0, 1)s,
S(t1, 1) = {{1, . . . , s}, 1 ≤ s ≤ t1}, and S(ts, s) = {{i1, . . . , is}, 1 = i1 < . . . < is ≤
ts} for s ≥ 2. Efficient methods for computing the resolution are given in [5, 12, 23].

The criterion ∆t1,...,td
computes the difference between the maximal resolution

and the actual resolution for all projections over successive indices for up to t1 di-
mensions, then for all two-dimensional projections over pairs of non-successive indices
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(i1, i2) for 1 = i1 < i2 ≤ t2, then for all three-dimensional projections over triples of
non-successive indices (i1, i2, i3) for 1 = i1 < i2 < i3 ≤ t3, and so on, up to the set
of d-dimensional projections over the sets I of non-successive indices that belong to
S(td, d). Then it takes the worst case. We can fix i1 = 1 without loss of generality
because of our assumption that Pn is dimension-stationary, a property enjoyed by all
the point sets proposed in Section 7. This criterion generalizes the property of being
maximally equidistributed (ME) [23, 41]: Pn is ME if and only if ∆k = 0.

There are situations, especially when d and the ts are large, where no rule can be
found for which ∆t1,...,td

= 0 and several rules can be found with the same minimal
value of ∆t1,...,td

(e.g., 1 or 2). One may then use a second-level criterion to select
among these rules. For example, take the one with the minimal value of the sum

Σt1,...,td
=

d∑
s=1

∑
I∈S(ts,s)

(`∗s(n)− `I). (6.2)

The criterion ∆t1,...,td
is obviously not perfect. Just like any other criterion, it

chooses to look more closely at some arbitrarily chosen features of Pn while it neglects
other aspects. It also weights equally all the projections considered. It could be fine-
tuned by introducing weights in the terms of (6.1), i.e., by multiplying these terms
by different constants when defining the criterion.

6.2. From the sup norm to the product norm. Computing `I is equivalent
to finding the length of the shortest nonzero vector in L∗t (I) with respect to the sup
norm ‖ · ‖∞. Now suppose that we replace this norm by the product norm ‖h‖π =∏t

j=1 |hj |l, with |hj |l = |hj |p if hj 6= 0 and |hj |l = 2−1 if hj = 0. If Pn is dimension-
stationary, the corresponding quantity ∆t1,...,td

with d = t and t1 = . . . = td = t is
then equal to the parameter q defining a (q, k, t)-net. Recall that q = 0 cannot be
reached if t > 3 [30, Corollary 4.21]. This may suggest a criterion of the form

q̃ = max
φ6=I⊆{1,...,t}

(qI − q∗|I|),

where qI is the smallest q such that Pn(I) is a (q, k, |I|)-net in base 2, and

q∗|I| =
⌈
|I| − 1

2
− log2

(
|I|+ 2

2

)⌉
= d(|I|+ 1)/2− log2 (|I|+ 2)e

is the smallest possible value of qI that can be attained for a (qI , k, |I|)-net in base 2
[31]. This criterion can also be made more flexible by using parameters t1, . . . , td as in
the definition of ∆t1,...,td

, in order to restrict the computation of qI to a smaller class
of sets I. A disadvantage of using qI instead of `I is that its computation generally
requires much more time than `I .

6.3. A polynomial version of P̃α. For ordinary lattice rules, Hickernell [16]
introduced a measure of discrepancy denoted P̃α. This criterion can be computed in
O(nt) and allows the different projections of the point set Pn to be weighted differently,
e.g., according to the (anticipated) importance of the corresponding projections of the
function f . Here we propose a similar criterion for polynomial lattice rules for the
case α = 2 and using product-type weights. More precisely, we define

P̃2,PLR =
∑

0 6=h∈L∗t

β2
Ih
‖h‖−2

π̃ , (6.3)
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where Ih = {j : hj 6= 0}, ‖h‖π̃ =
∏

j∈Ih
|hj |p, βI = β0

∏
j∈I βj , and βj > 0 for

j = 0, . . . , t.
The next proposition, proved in the appendix, provides a function ψ̃ whose mean

value over Pn equals P̃2,PLR. This can be used to compute P̃2,PLR in O(nt) time
instead of having to deal with an infinite sum as in the representation (6.3).

Proposition 6.1. If Pn is a polynomial lattice point set, then one has

P̃2,PLR =
β2

0

n

n−1∑
i=0

ψ̃(ui), where ψ̃(u) = −1 +
t∏

j=1

[
1 + 2β2

j

(
1− 3 · 2blog2 ujc

)]
.

The relation between P̃2,PLR and other figures of merit such as the dyadic di-
aphony (see, e.g., [14]) is discussed in more details in [25]. The parameters reported
in Section 7 were found using the criterion ∆t1,...,td

instead of P̃2,PLR, mainly for com-
putational efficiency reasons: for large values of n and t – say, n ≥ 216 and 15 ≤ t < 40
– computer searches based on ∆t1,...,td

can be made rapidly, whereas searching with
respect to P̃2,PLR becomes practically infeasible.

7. Implementations and Examples of Parameters. In this section, we
give examples of parameters describing polynomial lattice rules based on simple and
combined LFSR generators, chosen according to the criterion ∆t1,t2,t3,t4 , first with
(t1, t2, t3, t4) = (13, 13, 13, 13) and then with (40,40,30,20). Within each class of rules
considered, we made an exhaustive search for the parameters that minimized this
criterion, using the software package REGPOLY [33]. Ties were broken using the
associated (secondary) criterion Σt1,...,t4 given in (6.2).

Tezuka and L’Ecuyer [23, 40] provide an efficient implementation algorithm for a
LFSR generator whose characteristic polynomial is a primitive trinomial of the form
P (z) = zk + zq + 1, with 0 < 2q < k, and a(z) = zν mod P (z) for some integer ν
satisfying 0 < ν ≤ k − q < k ≤ w, gcd(ν, 2k − 1) = 1, and w equal to the word length
of the computer [23]. This method is also easy to generalize to the case where P (z)
has more than three nonzero coefficients [33], assuming that ν ≤ k− q, where q is the
degree of P (z)− zk (e.g., q = 3 if P (z) = z7 + z3 + 1), although the computing cost
increases with the number of coefficients. Table 7.1 gives the best parameters for LFSR
generators that satisfy these conditions and for which P (z) is either a trinomial or
pentanomial, for three values of n. In this table, ∆ and Σ are the values of the primary
and secondary criteria, and P (z) is represented by a vector containing the exponents
of z whose coefficient are nonzero, e.g., (11,5,3,1,0) represents z11 + z5 + z3 + z + 1.

Table 7.1
Best simple generators

w.r.t. ∆13,13,13,13 w.r.t. ∆40,40,30,20

n P (z) ν ∆ (Σ) P (z) ν ∆ (Σ)
211 (11,5,3,1,0) 4 1 (17) (11,5,3,1,0) 3 2 (103)
213 (13,9,7,3,0) 4 2 (84) (13,7,6,3,0) 4 2 (455)
215 (15,4,2,1,0) 8 2 (55) (15,9,4,1,0) 5 3 (355)

It is well recognized [23, 39] that LFSR generators having a polynomial P (z) with
too few nonzero coefficients must be avoided because of their bad high-dimensional
properties. Therefore, in Table 7.2 we give search results for rules based on combined
LFSR generators with two or three components, where the characteristic polynomials
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Pj(z) of the components are primitive trinomials or pentanomials of degrees kj , with
period lengths 2kj − 1 that are pairwise relatively prime, and where the components
satisfy the same conditions as in Table 7.1.

Table 7.2
Best combined generators

w.r.t. ∆13,13,13,13 w.r.t. ∆40,40,30,20

n Pj(z) νj ∆ (Σ) Pj(z) νj ∆(Σ)
211 (4,1,0) 1 1 (17) (4,1,0) 1 2 (115)

(7,3,2,1,0) 4 (7,3,0) 4
213 (6,1,0) 2 1 (87) (3,1,0) 2 2 (469)

(7,3,0) 1 (10,4,3,1,0) 4
215 (3,1,0) 1 2 (55) (3,1,0) 2 3 (332)

(5,2,0) 3 (5,2,0) 1
(7,1,0) 2 (7,3,0) 2

As we see in Table 7.2, the combined generators do not always improve the two
criteria. However, a more careful study of the equidistribution revealed that most of
the simple generators from Table 7.1 have a resolution gap of 2 (i.e., `∗|I| − `I = 2) on
the important two-dimensional projection P ({1, 2}), whereas the combined generators
from Table 7.2 have a gap of 0 or 1 on this projection. We give in the next section
examples illustrating how this hidden defect of simple generators can affect the quality
of their associated estimator. This suggests that perhaps in future and more extensive
searches, more weight should be given to certain projections in the criterion.

To construct Pn for these simple and combined LFSR generators, it suffices to
implement the generator, run it over all of its cycles, and retain all the t-tuples of
successive output values. In practice, one may just store the cycles into some data
structure (this does not require the knowledge of t) and produce each t-tuple only
when evaluating f for it. The case of a random t is nicely handled by this approach.

8. Application to Simulation Models. In this section, we present two simu-
lation problems on which we compare XOR-shifted polynomial lattice rules, randomly
shifted Korobov rules, XOR-shifted Sobol’ point sets [35], and the MC method. These
two problems were also considered in [24]. We used the rules selected via ∆13,13,13,13

for the first example, a 13-dimensional stochastic activity network problem, and those
selected via ∆40,40,30,20 for the second example, an Asian option problem having 40
dimensions. Korobov rules are chosen with the corresponding Mt1,t2,t3,t4 criterion.
Explicit expressions of the functions f for these problems are given in [24]. We de-
note the polynomial lattice rules from Tables 7.1 and 7.2 by “simp.” and “comb.”,
respectively, Korobov rules by “Kor.”, and Sobol’ point sets by “Sob.”.

Before presenting numerical results, we emphasize that even if our polynomial
lattice point sets minimize ∆t1,...,td

within certain families of constructions, they are
not necessarily those yielding the estimators with the smallest variance for a given
problem. From Proposition 5.1, it is clear that the point set with the smallest variance
would be the one minimizing the sum of squared Walsh coefficients over the dual
lattice. Our selection criteria are only based on a tentative anticipation of this sum
for various problems. Hence two point sets with similar values of ∆t1,...,td

and Σt1,...,td

could conceivably produce estimators with significantly different variances. Examples
illustrating this fact are given below. Nevertheless, the proposed rules outperform the
MC method in our examples.
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8.1. A stochastic activity network. This problem is taken from [1]. A sto-
chastic activity network is a directed acyclic graph with a source and a sink, and
in which each edge represents an activity that has a certain random duration. The
completion time T of the network is the length of the longest path from the source to
the sink. For a given threshold t0, the goal is to estimate Pr(T ≤ t0) by simulation.
The number of dimensions of the corresponding function f is equal to the number
of activities having a non-trivial probability distribution. Conditional Monte Carlo
(CMC) can be used to reduce both the variance and the dimension for this problem
[1]. In the example below, it reduces the dimension from 13 to 8. Denote by MC
the naive Monte Carlo simulation, by MCc the CMC simulation, by QMC the naive
quasi-Monte Carlo simulation, and by QMCc the quasi-Monte Carlo simulation that
uses CMC. The latter amounts to replacing the random numbers by a quasi-Monte
Carlo point set Pn in the CMC simulation. In the results reported in Table 8.1, for
each pair (n, t0), we give the estimated variance ratios MC/QMC and MC/QMCc,
and the estimated relative errors on these ratios, in percentage (in parentheses).

The variance of the randomized quasi-Monte Carlo estimators is estimated by
performing 200 independent randomizations, and the variance of the MC estimator
based on n independent points is also estimated from 200 independent copies. We
then use 250 bootstrap samples to estimate the relative error on the variance ratios.
(The relative error is the standard error divided by the mean.)

Table 8.1
Variance reduction w.r.t. MC for the stochastic activity network; t = 13 for QMC and t = 8

for QMCc

n t0 = 30 t0 = 75 t0 = 90
MC/QMC MC/QMCc MC/QMC MC/QMCc MC/QMC MC/QMCc

211 comb. 2.7 (15%) 187 (13%) 8.0 (16%) 479 (15%) 4.4 (13%) 422 (16%)
simp. 1.6 (14%) 35 (14%) 3.3 (14%) 42 (13%) 3.0 (14%) 30 (12%)
Kor. 1.8 (13%) 133 (14%) 8.6 (16%) 337 (15%) 8.1 (15%) 256 (13%)
Sob. 1.4 (14%) 394 (13%) 5.5 (16%) 350 (15%) 6.2 (14%) 294 (13%)

213 comb. 2.3 (15%) 492 (13%) 10 (14%) 899 (14%) 8.9 (14%) 702 (14%)
simp. 1.3 (14%) 9.5 (13%) 2.1 (13%) 11 (11%) 2.0 (15%) 8.5 (15%)
Kor. 2.3 (15%) 81 (13%) 11 (12%) 449 (12%) 10 (14%) 395 (15%)
Sob. 1.8 (13%) 1490 (13%) 12 (15%) 1016 (13%) 9.3 (16%) 366 (13%)

215 comb. 3.8 (14%) 3449 (14%) 15 (14%) 723 (12%) 12 (14%) 208 (13%)
simp. 2.3 (14%) 80 (15%) 1.6 (12%) 74 (12%) 2.5 (13%) 106 (12%)
Kor. 2.4 (15%) 145 (15%) 12 (15%) 415 (15%) 8.5 (13%) 622 (13%)
Sob. 3.0 (15%) 3093 (14%) 15 (14%) 3069 (14%) 10 (14%) 1209 (15%)

The polynomial lattice rules reduce the variance by important factors, especially
when CMC is used. Also, even if the combined generator of size n = 211 from
Table 7.2 has the same value of ∆13,13,13,13 and Σ13,13,13,13 as the corresponding
simple generator from Table 7.1, the variance reduction factors MC/QMCc obtained
by the latter are much smaller. This also holds for n > 211. We suspect that this
poor performance of simple generators is related to the comparatively bad quality
of their two-dimensional projections Pn({j, j + 1}), for j ≥ 1. The ratio MC/MCc
is approximatively 14 for t0 = 30, and 4 for t0 = 75 and 90. Thus for instance,
when t0 = 90 and n = 213, using QMCc-comb instead of MCc [instead of MC]
reduces the variance (or the computing time required for a given precision) by a
factor of approximately 178 [702]. In most cases the combined generators do better
than Korobov rules, which do better than simple generators. The Sobol’ estimator is
sometimes much better than combined generators and sometimes worse.
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8.2. Asian call options. An Asian call option is a financial contract whose
value depends on an underlying asset. If S(τ) denotes the value of the underly-
ing asset at time τ , the payoff C(T ) of the call at expiration time T is C(T ) =
max

(
0,
∑t

i=1 S(τi)/t−K
)
, where K is a constant called the strike price, and τ1, . . . ,

τt are t distinct times between 0 and T . Under the no-arbitrage assumption, the value
of this contract at time 0 is C(0) = E(e−rTC(T )), where r is the risk-free rate in the
economy, and the expectation E is taken under the risk-neutral measure [17]. Even if
we use a simple model such as Black-Scholes for the price process S(τ), no analytical
formula is known for C(0), and therefore one must rely on simulation or numeri-
cal approximations. Other variance reduction techniques not considered here can be
used on this problem (see e.g., [24] and the references therein). The dimension of the
integral here is t.

Table 8.2 gives the estimated variance reduction factors of the randomized QMC
estimators with respect to MC. These quantities were obtained similarly as for the
previous example. The parameters of the option are T = 120 days, the average is
taken over the last 40 days of the contract, r = ln 1.09, the volatility parameter σ of
the Black-Scholes model is set to 0.2, and S(0) = 100. The dimension is thus t = 40.

Table 8.2
Variance reduction w.r.t. MC for the Asian options problem, t = 40

K = 90 K = 100 K = 110
n = 211 comb. 510 (15%) 220 (14%) 45 (11%)

simp. 25 (12%) 13 (14%) 4.2 (11%)
Kor. 177 (14%) 82 (13%) 25 (13%)
Sob. 313 (14%) 209 (13%) 53 (14%)

n = 213 comb. 1500 (15%) 465 (13%) 124 (13%)
simp. 33 (13%) 16 (13%) 5.4 (14%)
Kor. 282 (14%) 105 (14%) 32 (14%)
Sob. 906 (15%) 377 (15%) 158 (14%)

n = 215 comb. 302 (11%) 357 (12%) 13 (10%)
simp. 28 (11%) 14 (11%) 4.7 (10%)
Kor. 605 (13%) 158 (12%) 55 (12%)
Sob. 1741 (12%) 524 (13%) 243 (14%)

We see in Table 8.2 that polynomial lattice rules based on combined generators
provide much more accurate estimators than MC in all cases, with variance reduction
factors ranging between approximately 13 and 1500, depending mostly on the value
of K. Note that when K is much larger than S(0), the function f is zero over most
of the unit hypercube, so its integral C(0) is hard to estimate by simulation. The
simple generators from Table 7.1 give significantly smaller variance reduction factors
than the combined ones, but still improve over MC. Korobov rules always do better
than simple generators and MC, but are often not as good as combined generators.
The Sobol’ estimator is clearly the best for n = 215, but otherwise it is comparable
or worse than the combined generators.

9. Conclusion. We have developed a general theory of polynomial lattice rules
analogous to the theory already available for ordinary lattice rules. Preliminary ex-
amples show that the polynomial rules can be competitive with other types of rules.
Among the advantages of the proposed rules: Their point sets are easy to generate via



POLYNOMIAL LATTICE RULES 19

linear recurrences, they are projection-regular and dimension-stationary under mild
conditions, their equidistribution properties are easy to assess, and explicit variance
expressions are available for simple randomizations. The choice of selection criteria
for their parameters would require further study and experimentation on different
classes of real-life problems.
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Appendix A. Lemmas and proofs.
This appendix contains the proofs that are missing in the core of the paper, as

well as technical lemmas needed in these proofs.
Lemma A.1. The determinant of a matrix V whose lines form a basis for Lt

does not depend on the choice of basis.
Proof. For any two bases V and W for Lt, there is a matrix D with all entries in

F2[z] and with determinant 1 such that V = DW (this is an adaptation from results
in [4, section I.2]). Hence det(V) = det(W).

Lemma A.2. Any t-dimensional polynomial integration lattice Lt admits a basis
{v1(z), . . . ,vt(z)} such that for j = 1, . . . , t,

ej = hj1(z)v1(z) + . . .+ hjj(z)vj(z), (A.1)

where ej is the jth unit vector in t dimensions (a vector with a 1 in position j and
zeros elsewhere), and the hij(z) are in F2[z], with hjj(z) 6= 0.

Proof. The proof follows by adapting Part B of Theorem I in [4, section I.2.2]
in the following way. Let P (z) = det(L∗t ), as in Definition 3.3. Since (F2[z])t ⊆
Lt, any basis V for Lt must be such that V−1 has entries that are all in F2[z].
But P (z)V = P (z)(detV)(adj(V−1)) = (adj(V−1)) has all its entries in F2[z], so



POLYNOMIAL LATTICE RULES 21

P (z)Lt ⊆ (F2[z])t. Now for each j = 1, . . . , t, there is a non-zero polynomial wjj(z) of
smallest degree such that for some other polynomials wj1(z), . . . , wj,j−1(z), the vector
ṽj(z) = wj1(z)e1 + . . .+wjj(z)ej is in P (z)Lt, a sublattice of (F2[z])t. Without loss
of generality, we can assume that for each j, wjl(z) ∈ F2[z]/(P ) or wjl(z) = P (z), for
l = 1, . . . , j. It is then easy to show that ṽ1(z), . . . , ṽt(z) form a triangular basis for
P (z)Lt by adapting the proof of [4, Theorem I]. Hence the vectors vj(z) = ṽj(z)/P (z),
j = 1, . . . , t, are a triangular basis for Lt.

We then need to show that the basis v1(z), . . . ,vt(z) satisfies (A.1) with each
hij(z) in F2[z] and hjj(z) 6= 0 for j = 1, . . . , t. Let W be the lower triangular matrix
whose jth row is ṽj(z), and let w−1

ij (z) denote the element in position (i, j) of W−1.
We have that ej = P (z)w−1

j1 (z)v1(z) + . . .+ P (z)w−1
jj (z)vj(z) for all j and therefore

(A.1) holds with hij(z) = P (z)w−1
ij (z) ∈ F2[z]. Also, since det(W−1) 6= 0, w−1

jj (z) 6= 0
and hence hjj(z) 6= 0 for each j.

Lemma A.3. Let Lt be a polynomial integration lattice. Then (detLt)−1 =
det(L∗t ) is in F2[z].

Proof. This follows from Lemma A.2, in which we saw that a basis for L∗t is
formed by vectors whose components are in F2[z], and therefore det(L∗t ) ∈ F2[z].

Proof of Proposition 3.5. From the proof of Lemma A.2, we know that if
P (z) = det(L∗t ), we can find a basis v1(z), . . . ,vt(z) such that for each j = 1, . . . , t,
vj(z) = (wj1(z), . . . , wjj(z), 0, . . . , 0) /P (z), where the wjj(z) ∈ F2[z] are non-zero
and wjl(z) ∈ F2[z]/(P ) or wjl(z) = P (z).

Lemma A.4. Let Lt be a polynomial integration lattice with basis v1(z), . . . ,vt(z)
of the form (A.1), with the polynomials hjj(z) also taken from this representation, for
j = 1, . . . , t. Then, every c(z) in Ξt = Lt ∩ Lt

0 is equal, modulo F2[z], to exactly one
vector in the set

{q1(z)v1(z) + . . .+ qt(z)vt(z) : qj(z) ∈ F2[z]/(hjj), j = 1, . . . , t}. (A.2)

Proof. Let c(z) ∈ Ξt. We know that there are unique polynomials w1(z), . . . , wt(z)
such that c(z) =

∑t
l=1 wl(z)vl(z). We want to show that there exists a unique vector

(q1(z), . . . , qt(z)) such that qj(z) ∈ F2[z]/(hjj) for each j and (
∑t

l=1 ql(z)vl(z)) −
c(z) ∈ (F2[z])t. Now by using the representation (A.1) for the vectors e1, . . . , et

(which form a basis for (F2[z])t), we have that
∑t

l=1(ql(z)−wl(z))vl(z) is in (F2[z])t

if and only if there exist polynomials g1(z), . . . , gt(z) such that

g1(z)h11(z)v1(z)+. . .+gt(z)(ht1(z)v1(z)+. . .+htt(z)vt(z)) =
t∑

l=1

(ql(z)−wl(z))vl(z).

(A.3)
This holds if we define aj(z) = wj(z)+

∑t
l=j+1 gl(z)hlj(z) and gj(z) = baj(z)/hjj(z)c

for j = t, t − 1, . . . , 1. Then qj(z) ≡ aj(z) mod hjj(z) is the unique element in
F2[z]/(hjj) satisfying qj(z) = aj(z)+ gj(z)hjj(z), and with this choice of qj(z) we get
equal coefficients for vj(z) on both sides of (A.3).

The following lemma states a result similar to the one for ordinary lattice rules to
the effect that any unit hypercube in t dimensions that has its sides aligned along the
axes of Rt always contains n points of the integration lattice Lt, where n = det(L∗t ).

Lemma A.5. Let Lt be a polynomial integration lattice and y(z) be a vector in
Lt. Let Hy = {w(z) + y(z) : w(z) ∈ Lt

0}, n be the cardinality of Hy ∩ Lt, and k be
the degree of det(L∗t ). Then n = 2k.

Proof. The proof proceeds by adapting arguments used in [4] for lattices in Rt.
Following [4, section I.2.2], we say that c(z),d(z) in Lt are in the same class with
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respect to (F2[z])t if c(z) − d(z) ∈ (F2[z])t. We first show that nc, the number of
different classes in Lt, is equal to 2k.

Let P (z) = det(L∗t ). By (A.1), we must have P (z) = h11(z) · · ·htt(z), and thus
if dj = degree of hjj(z), d1 + · · ·+ dt = k. Now, by Lemma A.4, we know that every
c(z) ∈ Lt∩Lt

0 is in the same class as precisely one of the 2d1 · · · 2dt = 2k vectors in the
set (A.2). Since (F2[z])t ⊆ Lt, this implies that nc ≤ 2k. But nc cannot be smaller
than 2k, so we must have nc = 2k.

We now show that nc = n. Let c(z),d(z) ∈ Lt be in the same class. Then c(z)
and d(z) cannot be both in Hy, and thus n ≤ nc. Now assume n < nc. This means
there exists a class C1 such that C1∩Hy = φ. However C1∩{Hy+x1(z)} 6= φ for some
x1(z) ∈ (F2[z])t, for otherwise C1 would be empty. Hence we can assume that there
exists w1(z) ∈ C1∩{Hy +x1(z)} with w1(z) ∈ (F2[z])t. Since w1(z)−x1(z) ∈ Hy and
is in the same class as w1(z), we have that w1(z)−x1(z) ∈ C1∩Hy. This contradicts
the statement that C1 ∩Hy is empty, and thus n = nc.

Proof of Proposition 6.1. Let g(u) = ψ̃(u). If we expand g(u) as a Walsh
series, we get g(u) =

∑
h g̃(h)(−1)〈h,u〉 where, for h 6= 0, we have
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∫
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The last equality follows from [15, Corollary 4.4]. For h = 0, a simple adaptation
from [15, Corollary 4.4] shows that g̃(0) = 0. Thus, we have that
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where the next-to-last equality follows from Lemma 3.16, and it is easy to see that the
sum

∑
h 6=0(−1)〈h,ui〉

∏
j∈Ih

|hj |−2
p converges absolutely (it is equal to 3t − 1), which

validates the change in summation order from the first to the second line.


