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Abstract

Finite difference methods for solving the ~vave equation more accurately capture the physics

of \vaves propagating through the earth than asymptotic solution methods. Unfortunately.

finite difference simulations for 3D elastic lvave propagation are expensive. \Ye model \vaves

in a 3D isotropic ekastic earth. The lvave equation solution consists of three velocity com-

ponents and six stresses. The partial derivatives are discretized using 2nd-order in time

and 4th-order in space staggered finite difference operators. Stag:ercd schemes allow one

to obtain additional accuracy (via centered finite differences) }vithout requiring additional

storage. The serial code is most unique in its ability to model a number of different types

of seismic sources. The parallel implementation uses the \lP1 library, thus allow-ing for

portability bettveen platforms. Spatial parallelism provides a highly efiicient strategy for

paralle!izing finite difference simulations. In this implementation. one can decompose the

global problem domain into one-, two-, and three- dimensional processor decompositions
\vith 3D decompositions generally producing the best parallel speed up. Because i/o is han-

dled largely outside of the time-step loop (the most expensive part of the simulation) \ve

have opted for straight-forward broadc,~t and reduce operations to handle ijo. The ma-

jority of the communication in the code consists of passing subdornain face information

to neighboring processors for use as ‘ghost cells”’. \l’hen this communication is balanced

against computation by allocating subdotnains of reasonable size, \ve observe excellent scaled

speed up. .Allocating subdomains of size 2,5x2.5s2,5 on each node, \ve achieve efficiencies of

9470 on 12S processors. Numerical examples for both a layered earth model and a homoge-

neous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel

code.
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1 Introduction

Realistic-sized elastic wave propagation simulations in 3D are extremely computationally

intensive. Even assuming an isotropic elastic earth (which reduces the number of unknowns

and equations to nine), reasonable-sized simulations require too much memory and too

much time to run on a single-processor machine. Further, finite difference schemes for

solving the wave equation, although very expensive, are able to model more of the physics

of wave propagation than can be achieved using approximate (e.g., asymptotic) schemes.

Attempts to improve on memory management include such finite difference variants as

staggered schemes. However, ultimately, parallel computation is the only effective solution

for running finite difference simulations in 3D.

Much work has gone into finite difference schemes for elastic wave propagation. The

original papers on explicit sta~ered finite difference schemes were written by Madariaga

(1976), and Virieux (1984), (1986). Emerman et al. (1’382) give an interesting discussion
of using an implicit scheme to solve these equations. Their work indicates that explicit

schemes are preferable for the wave equation. More recently, a number of papers have

appeared which attempt to improve on or analyze aspects of the staggered algorithm. Some

examples include the work of Bayliss (19S6), Levander (1988). Luo and Schuster ( 1990).

and Graves (1996). A dispersion analysis of a staggered displacement-stress formulation is

given by Sei (1995). Work on parallel, sta~ered finite difference schemes for the elastic
wave equation include the earthquake modeling paper of Olsen et al. (199.5) and work of

Hestholm (1998), (1999) which makes use of higher-order differencing and covers research

into coordinate change of variables for uneven surface topography.

In this work we apply spatial (or data) parallelism (via JIP1) to the 3D isotropic elastic
wave equations w-hich have been discretized via 2nd-order in time and 4th-order in space

staggered finite difference operators. The serial code is perhaps most unusual in its accurate

modeling of multiple types of seismic sources. Data parallelism is the most efficient way
to parallelize finite difference simulations. Our code is able to achieve a scaled speedup of

9470 on 128 nodes where (for example) each processor solves a small subproblem of size
25x25x2.5. Because the bulk of the cost of this simulation occurs in the time-step loop, the

one-time reads of the earth model and writes of seismograms and plane slices are handled by

processor O issuing broadcasts and reduces for data transmission. To allow the user to place

sources, receivers and requests for slice output anywhere in the physical domain (rather

than only at grid point locations), cubic extrapolation is used extensively in the serial code.

In the parallel code, each processor accurately computes its finite difference updates, as

well as these extrapolated values, by ensuring its neighboring processors have four planes

of up-to-date ghost-cell information for each subdomain face. Within the time-step loop

all communication is accomplished via basic (linear-cost) sends and receives. The parallel

code runs on 1-, 2-, or 3-D processor decompositions (with varying levels of efficiency).

In the remainder of the paper we describe the elastic wave equations we solve and the
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staggered finite difference scheme. }Ve give a description of spatial parallelism in general

and its use in this code. We also describe how i/o is handled and present theoretical cost

estimates for the finite difference update algorithm and numerical timing studies for both

fixed- and scaled-size problems. Finally we describe two numerical examples. The first

example simulates waves in a simple layered-earth model. The parallel code results match

singlenode results to fuil accuracy as illustrated in this paper with plane-slice output. The

second example is larger and consists of a homogeneous earth model with a high-velocity
blocky inclusion in the top corner of the domain. This example indicates that the parallel
code is indeed capable of capturing 3D wave propagation in a heterogeneous earth.

2 The Serial Algorithm

2.1 Governing Equations

The serial algorithm description in this section is taken in abbreviated form from Chapter

4 of the technical report by Sleefe et al., (1998). For a more classical reference to elastic

wave propagation see Aki and Richards (1980). We solve the elastic wave equation in a 3D

medium occupying a volume V and with boundary S. The medium may be described by

Lam6 parameters J(F) and /(2) and mass density p(Z) where 5 c ~. lf o(Z), /?(5) are

the compressional (P) and shear (S) wave speeds, respectively, then we can relate the wave

speeds and Lam6 parameters via

A(5) = p(5)[cr(F)2 - 2~(Z)2], and p(5) = p(5)~(5)2.

The velocity-stress form of the elastic wave equation consists of nine coupled, first-order
partial differential equations for the three particle velocity vector components Z?i(;, t), and

the six independent stress tensor components ~ij(i, t). Here i.~ = 1,2,3 and the stress

tensor is isotropic SO Uij = Uji. The 3D velocity-stress eqns are

Here, b = I/p, is the mass buoyancy. Sources of seismic \vaves are denoted by fi (force
source) or mij (moment source). The symmetric and anti-symmetric parts of the moment

density tensor are denoted (respectively) by
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Stress boundary conditions are written

for Z on S where t~(~, t) are the components of the time-varying surface traction vector,

and rzi(~) are the components of the outward unit normal to S. Initial conditions on the

dependent variables are specified throughout V and on S at time t = to via

2.2 Sources and Seismograms

Numerous source types are handled by the code. For instance, a unidirectional point force

acting in a volume V is represented by the force density vector

where F is a force amplitude scalar, w(t) is a dimensionless source ~vaveform, and di are

the components of a dimensionless unit vector giving the orientation of the applied force.

As a second example, a point moment acting within V is described by the moment

density tensor

with M a moment amplitude scalar, w(t) a dimensionless source ~vaveform, and dij are

the components of a second-rank tensor giving the orientation of the applied moment.

Seismic sources involving force dipoles, force couples, torques, and explosions/implosions
are represented by a moment density tensor.

Finally, a point surface traction acting on S is described by the stress tensor

t.i(5’,l!) = F’W(t)O!if5(i– Z:)

Here the spatial delta function lives in 2D rather than 3D (as is the case for a point force)

because Z is restricted to the boundary S.

On output, the code produces both seismograms and 2D plane-slices. The seismic
traces represent particle velocity or acoustic pressure. if the orientation of the transducer
sensitivity axis is defined by the dimensionless unit vector & then the particle velocity

seismogram is

Vb(z; ,t) = bkvk(z!; ,t) = bIVl(&, t) + tqL’2(z; ,t) + 63v3(G,~)

and the acoustic pressure seismogram is

p(~;,~) = –;mk(w) = –jail(w) +c722(z-, t) +a33(&, t)].
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2.3 Staggered Finite Difference Scheme

The finite difference aigorithm is an explicit scheme which is second-order accurate in time

and fourth-order accurate in space. Staggered grid storage allows the partial derivatives to

be approximated by centered finite-differences without doubling the spatial extent of the

operators, thus providing more accuracy (see Levander (1988)). Here we apply the finite

difference scheme to the above equations after they have been non-dimensionalized. For a

discussion of the motivation and manner of equation non-dimensionalization see Chapter 4

of SIeefe et al. (1998).

We choose a discretization of the 3D spatial grid so that xi = Zo+(i– l)h=, Yj = yO+(j–

I)hg, andzk=zo +(k–l)h, fori =1,2,3,...,1, j=l,2,3, J,and, and k=l,2,3, . . ..K

respectively. Here Zo, yo, .zOare the minimum grid values and h.=, hy, h~ give the distance

between grid points in the three coordinate directions. Values of the 2 Lam6 parameters

and mass buoyancy at a node are given by ~(~11 gj, zk), ~(zi, ~j, Xk), and b(zi, Yj, zk). The

time discretization is defined by ti = to + (1– I)ht for / = 1,2,3, ..., L. Here to is the

minimum time and ht is the time increment.

Subsets of the dependent variables are stored on different spatial and temporal grids.

Specifically, the diagonal components of the stress tensor are stored on the grid points defined
above:

The off-diagonal stress tensor components are shifted in space by one-half grid interval along

two coordinate axes:

Finally, the three velocity vector components are stored at gridpoints that are shifted in

both space and time by one-half grid interval:

If we define the following oft-used (dimensionless) quantities:

clht.$w clht Sw clhf Sw c2ht Sw
Px=y

c2ht Sw c2ht Sw
?PY= y---” ,p==T ,q=. —

z 3 : h=
,qy=— _

hy ‘q== h=

where SW and SP are characteristic units of measure for wavespeed and mass density, and SV,

S’a are characteristic units of measure for the velocity vector and stress tensor components
respectively. As an example, one might choose SW = 103 nz/s and SP = 103 kg/m3 as

appropriate normalizing values. We generally choose c1 = 9/8 and C2 = – 1/24 as coefficients

in the fourth-order finite-difference operator.
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Then the time update formulas for the three representative unknowns (velocity, diagonal

stress component, and off-diagonal stress component) are given in Equations 1, 2, 3. The

other two velocity and four stress unknowns are similar in form to these exam pies. We solve

the following finite difference equation for the x-component of the particle velocity vector:

In the formula above, the buoyancy (6) between grid nodes is derived from an appropriate

order of interpolation. The xx-component of the stress tensor may be solved for from the
following equation:

(2)

Xo interpolation for Lam& parameters is needed in the formula above. Finally, one solves

for the xy-component of the stress tensor via
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The shear modulus (p) between grid nodes is again obtained by interpolation.

3 Spatial Parallelism

The most efficient parallel programs are ones which attempt to minimize the communication

between processors while still requiring each processor to accomplish basically the same

amount of work. This tradeoff between load balancing and the cost of communication is

best achieved for an explicit finite difference scheme via spatial (data) parallelism. Spatial

parallelism also tends to scale well (see Pacheco ( 1’397), Ch.10). In this case, the original

serial algorithm was not modified to improve parallel efficiency although quite good scaled

speedup is achieved on mp machines.

In spatial parallelism, the physical problem domain is split among the processors so

that each processor solves its own subdomain problem. In our implementation, the user

may specify processor decompositions in one, two, or three dimensions although generally,

a more balanced division (3D decomposition) is the most efficient. Further, there is no

requirement that the number of processors in any one direction must evenly divide the

number of grid points. Divisions with remainders are allowed and are transparent to the

user. A typical ID decomposition is illustrated in Figure 1, a 2D decomposition in Figure

2, and a 3D decomposition in Figure 3.

In order for each processor to completely calculate its finite difference solutions indepen-

dently of the other processors, }ve allocate padded subdomains (ghost cells) of memory (see
Figure 4 for an illustration of a processor subdomain). For a typical fourth-order spatial

finite difference scheme, two extra planes of memory need to be allocated on each face of the

subdomain cube. Because the serial algorithm allows the user the flexibility of specifying

sources, receivers, and plane-slice output anywhere in the domain (not necessarily on a grid

node), cubic extrapolation is used extensively throughout the code. Therefore, w-e allocated

4 planes of ghost cells for each face of the subdomain cube to ensure the extrapolation

had the correct data values at each time step. Most of the subroutines do not need to
communicate all 4 planes of data from processor to processor, however.

10



x

Figure 1: One-dimensional processor decomposition (in the z direction) for spatial paral-

lelism.

After establishing the correct Cartesian communicator for the processor decomposition.

we use the MP1 shi~t commands to ensure that every processor sends edge information to its

neighboring processors (up, down, right, left, front, back). Every subroutine which updates

grid values of velocity or stress must send this information at the start of the routine. The

affected routines include those which do the actual finite difference updates, ones which

calculate the absorbing boundary conditions or insert sources, and all the extrapolation

routines (including the output seismogram and plane slice routines). This rather sizeable

amount of communication negatively impacts parallel efficiency \vhen the size of the sub-

domain problems is small. However, for reasonable-sized subdomain problems, the scaled

speed up is still quite good (see Figure 7 and Table 1).

4 1/0 Issues

For realistic-sized domains, the majority of the time spent in this algorithm will occur in

the tim~step loop. Therefore, I did not focus on researching optimal parallel i/o strategies.

Nonetheless, some simple measures w-ere taken to improve efficiency. The algorithm reads

input information from at least four different files. Most of the recording geometry d“ata and

basic run parameters are scalars which processor O reads in and then broadcasts to all other

processors. These scalar values are packaged and broadcast with a single call. Reading the

earth model information (velocities and density at each grid point) is the most costly of

the i/o operations. Processor O reads in a line (set of records) from the external file, and
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Figure 2: Two-dimensional processor decomposition (in the z and y directions) for spatial

parallelism.

broadcasts this information to all processors. Each processor then determines whether its

subdomain uses that section of the earth model and unpacks and stores the data it requires.

This technique prevents processors (other than O) from sitting idle during the initial reading

of input data. Although this information is only read once, improvements to reading the

earth model could undoubtedly be made.

The output routines (seismogram and plane slice) use \lPI operators that are the inverse

of the input routines. The plane slice routine currently requires every processor to allocate

the total slice plane memory. The processors fill out their portion of that plane and then

a global sum over each point in the plane (reduce operation) is performed before processor

O writes the output to an external file. If the user specifies a recei~’er or slice plane not
on a grid node, cubic extrapolation is used. Therefore, it is possible that (even at a single

grid point in the plane slice) only part of the weighted combination of output values will be

stored on a certain processor. The remainder of values needed for the extrapolation might

be on a neighboring processor. The reduce operation correctly handles receivers or slice
planes which occur in the physical domain on boundaries between processor subgrids. (See

Figure .5 for an illustration.)

The collective communication calls broadcast and reduce are more expensive than sim-

ple sends and receives, but these commands are only used in the i/o routines. All mes-

sage passing used in the finite difference computation is accomplished \vith (linear cost)

sends/receives.
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Figure 3: Three-dimensional

5 Timing Studies

5.1 Background

processor decomposition for spatial parallelism.

Two of the most important concepts in parallel programming are computational speedup

and parallel efficiency. Speedup is loosely defined by how much faster a program will run on

n processors than on a single processor. This quantity can be measured in two basic ways.

The first way is to fix the size of the problem solved and vary the number of processors (fixed-

size problem). The second is to allow the number of processors used to solve the problem
to grow commensurate with the growth in the problem size (scaled-size problem). Both

metrics are important to consider although scaled speedup appears to be more appropriate

for the elastic wave propagation code as large problems (too big to fit on a single processor)

\vere the initial motivation behind the parallelization effort.

For a fixed-size problem, speedup is defined by

s = Tl(7z)/Tp(rl) < P.

Where p = “ideal speedup” (see Amdahl (1967)), and Tl(n), T’P(n) are the times for-running

a problem of size n on 1 and p processors respectively. Eficiency is defined”

E= TI(n)/pz-p(n), os E<1.

For a scaled-size problem, one generally must estimate the run time on a single processor.

Speedup and efficiency are defined as follows:
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global grid domain.

as d~hed lines) taken from

s = pTl(n/p)/Tp(~), E - Tl(~/lJ)/Tp(~). (4)

5.2 Theoretical Cost ,

The cost estimate for this parallel algorithm is straight-forward. I chose not to consider

the cost of i/o in either the analysis or the numerical timing studies since the bulk of the
work in this algorithm occurs in the propagation of w-aves (the \vave equation update) not

in reading the earth model or writing out seismograms. Thus, we must estimate the terms

for computation and communication. Let Z_(n, p) s TP(n). Then

T’(7L,j’))= Tc.*p(~,P) + ~comm(n, P) (.5)

There are two important machine constants which impact the speed of message commu-

nication. The first is latency – the startup cost of sending a message (which is independent

of message size). The second is bandwidth (message dependent) which is the (reciprocal of)

transmission time/byte. Thus, if we denote machine latency by a and l/bandwidth as ,0,
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Location of boti slice plane and division
of grids among 2 processors.

Figure .5: Example in which slice plane requested lies at the same point as the division of

the grid between processors O and 1.

the cost to send a single message with k units of data is a + L-3. On the Sandia Terraflops

machine (an Intel Paragon), the following values are approximately correct (in seconds),
~ = z x 10-3, ~ = 3 x 10–9. Let I- denote the computation time per flop. C)n the Tflops

machine, r = 1 x 10-8. (These timing constants are independently confirmed as reasonable

for the Paragon in Pacheco (19!37), pp. 251-252.)

If, for simplicity, we assume a uniform number of grid points in each direction, then the

costof performing a finite difference calculation on a grid of size IY x N x IV on P processors

is C~N3/P where the factor C takes into account the number of floating point operations

in the finite difference stencil as well as the fact that there are !3output quantities to update

(six stresses and three velocities). Since one pIane face of data is communicated to each

neighbor in the 3D cube, communication costs for a ID decomposition are 2(a + 8BN~).

(Here the factor of 8 comes from assuming each data point uses 8 bytes of memory.) For

a 2D decomposition the cost of communication is 4(a + 8,i3;V2/~).

decomposition we get 6(Q + 8@N2/~). So, for a 3D decomposition,

T’(N, P) = C~N3/P + 6(0 + 8,0N2/~).

and speedup defined by Z’(N, 1)/T(N, P) is

CTN3/{CTN3/P + 6CY+ 48~N2/@}.

15

Finally, for a 3D



Scaled Size Problem Timings (Without Output)

Each Processor Always Solves Problem of Size 25x25x25

ProblemSize P P. Py P. Total Run Time Speedup Efficiency

25x25x25 1 1 1 1 150.56 1.00 1.00

50x25x25 2 2 1 1 146.81 2.05 1.03

.50x.50x25 4 2 2 1 145.16 4.15 1.04

50X.50X.50 8 2 2 ‘2 145.63 8.27 1.03

100X5OX5O 16 4 2 2 148.50 16.22 1.01

100X1OOX5O 32 4 4 2 153.38 31.41 .98

100X1OOX1OO 64 4 4 4 160.36 60.09 .94

2OOX1OOX1OOI 128 8 4 4 160.28 120.24 .94

Table 1: Timings for scaled-size problem.

Note, that in our algorithm, we do multiple transmissions of ghost cell plane information

not only during finite difference update but also for insertion of sources at non-grid point

locations, etc. So, another constant could be inserted in front of the communication cost

estimate for our algorithm (which jvould be problem dependent).

s.3 Numerical Timing Studies

Three timing studies ~vill be discussed in this paper. The first is for a fixed-size problem
with a total of 48x48x49 grid points run on the Intel Paragon. This problem \vas run on

different numbers and configurations of processors ranging from 1x1x1 to 4x4x4 (total of

64 processors). One-dimensional, two-dimensional, and thre~dimensional decompositions
\vere tested. In this case, communication costs were too high relative to the amount of

computation performed, and efficiency dropped off rapidly (see Figure 6). .~ problem larger

than about .50x.50x50 would not fit on a single node of our Intel Paragon.

The scaled-size problem showed much better speedup and efficiency (when also run on

the Paragon). In this case a constant 25x2.5x25 size problem was run on each node. From

1 to 128 nodes \vere used where the problem size on 128 nodes (processor decomposition

of 8x-!x4) was 2OOX1OOX1OOgrid points. Table 1 and Figure 7 sho~v the timings. .\ote that

the efficiencies remain high (13470) even for 128 processors. In this study. no slice plane

or seismogram output was produced in order to keep the algorithm simple (linear.). Jlore

complicated computational cost is incurred with seismogram or slice output. In this case,
\ve expect ideal speedup to be the straight line (constant) shown in Figure 7. In fact,
timings were also done for runs which including seismogram and s[ice-plane output. Very

little additional cost was incurred. However, the calculation of the cost function \vould need

to include reduce (O(log) operations).
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Figure 6: Timing curves for fixed-size problem (48x48x48) run on the Intel Paragon. The

dashed curve is ‘ideal” or linear speedup and the solid curve is the speedup exhibited by

the parallel program. Circles further indicate data points.
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Figure 7: Timing curves for scaled-size problem run on Intel Paragon. Each node always

solves problem of size 25x25x25. Largest problem is size 2OOX1OOX1OOrun on an 8x4x4

processor grid. Dashed curve gives ideal speedup. Solid curve gives actual program speedup.

Circles indicate data points.
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Figure 8: Timing curves for scaled-size problem run on the Iinux cluster. Each node always

solves problem of size .50x50x50. Largest problem is size 2OOX2OOX1OOrun on an 4x4x2

processor grid. Dashed curve gives ideal speedup. Solid curve gives actual program speed up.

Circles indicate data points.

Finally, for comparison, we show a graph of scaled speedup timings for a homogeneous

medium problem run on a finux cfuster. Both bandwidth and latency speeds on a cluster

are 2-3 orders of magnitude slower than on the Paragon (an mp machine). For example,

whereas latency runs 20-40 ps on the Paragon, it can be on the order of one millisecond for

a typical (optimized) cluster. As expected, the communication costs on the cluster cause

a drop in eficiency to 6.570 when going from a 50x50x50 sized problem on a single node to

running a 100x5OX5O sized problem on two nodes. The largest problem run in this study
was size 2OOX2OOX1O()run on a 4x4x2 processor decomposition. Figure 8 shows a graph

of speedup for this problem. AS in the fixed-size problem, the large amount of ghost-cell

face communication due to extrapolation and interpolation of sources. receivers and plane

slice output to grid nodes prohibits ideal speedup when high latency is present. In the

absence of restructuring the serial algorithm (i.e., eliminating the excessive interpolation), “

such speedup is to be expected on a cluster.

6 Numerical Examples

In this section, I describe two

propagation code. Example 1
numerical examples to illustrate the parallel elastic wave

consists of a small domain with 48x48x48 grid points in
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Layered Earth Example Elastic Properties

Layer Depth (m) II VP (m/s) I V, (m/s) [ p (leg/m3)

REEEEEl

Table 2: Earth model specifications for numerical Example 1.

(z, y, z). The grid spacing is 4 m in each direction. In this example the earth is assumed

layered (velocities and density depend only on depth, z). This model has eight layers with

P-wave velocity, S-\vave velocity, and density ranging in values as shown in Table 2. The

model is characterized by a shallow low-velocity layer near the top of the model and then

a monotonic increase in velocity and density with depth below the low-velocity zone.

The small problem was run on both a single processor and on a processor decomposition

of size 24 (p= = 2. PY = 4, p= = 3) for 400 time steps (or 0.2 seconds total runtime). The

Rlcker source wavelet extends from -.04 s to .04 s with peali frequency of 30 Hz. Tw-enty-

two receivers were located at varying z locations and g = SO m. Plane slices of acoustic

pressure in both the ry and gz planes (; = !30 m and z = 90 m respectively) are sho~vn

in Figures ‘3 and 11 for the problem run on a single processor of the Intel Paragon. The

same experiment was run on 24 processors, and the corresponding plane slices are sho~vn

in Figures 10 and 12. The \vave field is spherical in the zy slices because the earth model

varies only in the z direction. The y; slices are not spherical due to the velocity variation.

This example illustrates the accuracy of the parallel version of the code. In fact the slices

and seismograms are identical for the serial and parallel runs to full precision.

The second example is a larger case (with 150x150x1.50 grid points) \vhich demonstrates

using the paralle! code for simulating wave propagation in non-layered media. The model’s

physical domain is size (750 m, 7,50 m, 7.50 m) with 5 m grid spacing in all directions. The

earth model (sho\vn in Figure 13) has homogeneous background velocities P; = 2.500 m/s,

l;; = 1500 m/s, and density p = 2000 ltg/m3. Located at (r, g, s) = (200 m, 200 m; 200 m)

(and parallel to the coordinate axes) is a fast (high-velocity) blocky inclusion of size (100

m. 100 m, 100 m). It has elastic properties VP = 4500 m/s, V, = 2500 m/s, and p = 2200

kg/m3.

This larger problem would not fit on a single node of the Intel Paragon. It was run

instead on 125 nodes (processor decomposition of p= = 5, pu = 5, p= = 5,) for 1 second of
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Figure 9: Plane slices in Zy at depth z = 90 m for a problem of size (43x48x48) run

on a single processor. Figures in upper left. upper right, and lower left correspond to

pressure snapshots at times O, .0125, .025 seconds wave propagation. This problem assumed

heterogeneous but layered velocity, density model.
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Figure 10: Plane slices in Zy at depth z = 90 m for a problem of size (48x48x48) run

on a 2x4x3 processor grid. Figures in upper left, upper right, and Io\ver left correspond to

pressure snapshots at times O, .0125, .025 seconds wave propagation. This problem assumed

heterogeneous but layered velocity, density model.
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Figure 11: Plane slices in g= at fixed x location z = !30 m for a problem of size (4 SX4SX4S)

run on a single processor. Figures in upper left. upper right, and Io\ver left correspond to
pressure snapshots at times O, .012,5 ..025 seconds w-ave propagation. This problem assumed

heterogeneous but layered velocity, density model.



Figure 12: Plane slices in y= at fixed z location r = 90 m for a problem of size (-!8,x4SX4S)

run on a 2x4x3 processor grid. Figures in upper left, upper right. and lotver left correspond

to pressure snapshots at times 0, .0125, .025 seconds ~vave propagation. This problem
assumed heterogeneous but layered velocity, density model.



simulation time.

Figure 14 shows acoustic pressure snapshots of the yz plane slice through the blocky

inclusion simulation at fixed z location z = 250m and times O, 0.0.5, 0.1, 0.15 seconds wave

propagation. The first two snapshots are not affected by the high-velocity zone. The third

and fourth, however, show the effect the inclusion has on the wave propagation.

Figures 15 and 16 give snapshots in the cv plane at fixed z location z = 250m and times

of O, 0.025, 0.05, 0.073, 0.1, 0.125, 0.15 seconds wave propagation. Again, the impact of the

high-velocity zone is cIearly seen in the second snapshot.

7 Conclusions

Finite difference solutions

than asymptotic methods

of the 3D elastic wave equation are considerably more accurate

such as ray tracing. However, they are also much more expen-

sive computationally. Two methods of speeding up the computation are to use staggered

finite differencing (to obtain additional accuracy without additional storage) and spatial

parallelism. In this paper the set of nine isotopic elastic velocity-stress wave equations are

discretized using staggered finite differences which are second-order accurate in time and

fourth-order accurate in space. The simulation code models multiple source/receiver types.

lye decompose the physical domain via spatial (or data) parallelism allowing for 1-, 2-, and

3-D processor decompositions of any configuration. Each processor allocates memory for
its subdomain and four plane faces of padding (ghost cells) per cube face to allow passage

of information to neighbors for independent finite difference calculations. The parallel im-

plementation uses the LIPI library for portability across platforms ;vith i/o handled via

LIPI broadcast and reduce, and the finite difference algorithm using simple sends/nxeices

for communication. }Ve present three sets of timing studies. The first show-s a fixed-sized

problem of size 48x-18x48 run on varying numbers of processors of a (massively parallel) Intel

Paragon machine. The second study is of scaled-speedup for a problem \vhich varies in size

depending on the number of processors used. Performance on the mp machine is outstand-

ing — with scaled speedup matching the ideal speedup curve even out to 128 processors.

For comparison. ~ve ran a scaled problem (size EJOX.50X50on each node) on a linux cluster.

The performance degrades on the cluster due to much higher bandividth and latency costs

relative to the mp machine. The serial code is flexible in that the user need not place

‘sources, slice output, etc., at gridpoint locations. However. this flexibility requires extra
communication \vhich serious[y impacts efficiency on the cluster. The parallel implementa-

tion is accurate to all decimal digits of precision as illustrated by two numerical experiments
—a layered earth example and a homogeneous medium problem with a high-velocity blocky

inclusion.
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Figure 13: Earth model for Experiment 2. Homogeneous medium with high-velocity blocky

inclusion located at (z, y, z) = (200 m, 200 m, 200 m).
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Figure 14: Plane slices in y: at fixed z = 250 m for blocky inclusion problem run on a 5x5x5
processor grid. Figures correspond to pressure snapshots at times 0, 0.05, 0.1, 0.15 seconds.

This problem had a blocky high-velocity cube embedded in a homogeneous background

model.
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Figure 15: Plane slices in xy for depth of ; = 250 m for blocky inclusion problem, run on

a 5x5x5 processor grid. Figures correspond to pressure snapshots at times 0, 0.025, 0.05,

0.075 seconds. This problem had a blocky high-velocity cube embedded in a homogeneous

background model.
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Figure 16: Same plane slice in zy as in Figure 15. Ho\vever, snapshots correspond to later
times of wave propagation (namely, 0.1, 0.125, 0.15 seconds). This problem had a blocky
high-velocity cube embedded in a homogeneous background mo(iel.
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