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Abstract 

The global solution of the one-dimensional Broadwell model in the interval [O,l], with 

reflecting boundary conditions at 0 and 1, is shown to converge strongly in L’[O, l] to the 

constant equilibrium solution. 

1. Introduction. We are concerned with the initial boundary value problem 

(3 + &)v =z2-VW 
(a* - a+ = z2 - VW 

at2 = ;(vw - 22) 

v = u(t,~), w = w(t,~), z = z(t,z), t E [O,W), z E [O,l], with initial conditions 

(1) 

v(O,s) = v&) 2 0 

w(O,z) = WI)(Z) >, 0 

@+) = a(z) 10, 

and boundary conditions 
v&O) = w(&O) 

v(t, 1) = w(t, 1) 

(2) 

(3) 

for t > 0. We refer to (3) as “reflecting boundary conditions”. 

The equations (1) are known as “the Broadwell.model in one space dimension”. This 

model, introduced by Broadwell [l] in 1964, is one of the simplest discrete velocity models 

of the Boltzmann equation, and has found much attention since it was first introduced [P-6]. 

?Ve refer to [S] f or a careful introduction and for a very complete list of other references. 
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Here, we are interested in the asymptotic.behavior of the global solutions to (l-3). We 

shall confine our attention to nonnegative bounded continuous initial values, but everything 

we prove generalizes to ug, wo, zo E ty . It is well-known that (l-3) is equivalent to looking 

for 2-periodic solutions of the pure initial value problem, where the data are extended to 

[-l,l] via 

uo( -2) = we(x) 
1 

r: wo(--5) = uo(x) (4) 

l ’ zo(-5) = zo(x) 

and 2-periodically to !R otherwise (if the initial values uo, we and zo are continuous and 

satisfy ~(0) = we(O), us(l) = we(l), then this continuation yields continuous functions; 

however, in terms of the well known mild solution concept disco+mities in the data can 

be handled without difficulty). 

A global mild solution of (l-3) is a triple of functions 

u, w, z : [o, co) x [O, l] - R+ 

assuming the initial values at t = 0, satisfying the boundary conditions (3) for all t L 0, 

and such that for (t,z) E [O,oo) x (0,l) and z + r E (O,l), x - r E (0,l) 

gw + T,x+T)]=(z2-uw)(t+qx+7) 
I gr4t + T,X--)]=(z2-uw)(t+qx--T) 

$z(t + T,X)] = $uw - z2)(t i 7,x). 
In short, we require differentiability of u, w and z along the characteristics. 

A classical solution of (l-3) is a triple of functions V, w and z in C’([O, co) x [0, 11) 

which satisfy (l-3) pointwise everywhere and which satisfy in addition the consistency 

boundary condition 
&u(t,0) = -&w(t,O) 

d,u(t, 1) = -d,w(t, 1) 
(5) 

(which follows from (1) and (3) by subtracting the equations for v and w). Of course, if 

we look for classical solutions, we have to require that UO, 200, to E C1 and that (3) and (5) 

hold for the data. 

The following results are well known. 
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Theorem 1. If vo,wo and zo are nonnegative and continuous, then (l-3) has a global 

nonnegative continuow solution. 

Proof. See [2], (31 or (5). 

Remark. It is not known whether the solution remains uniformly bounded for alI times. 

The boundedness results due to Beale (3) and Bony [5] apply onIy to the pure initial value 
a 

? * problem with initial values in L: 17 LT. 

t Theorem 2. The global solution given by Theorem 1 satisfies 
. 

$ /I(v(t, 5) + w(t,s) + 4z(t, Z))dZ = 0 (6) 
0 

(ma53 conservation) 

v - w)(t, z)dz = 2v(t, 0) - 2v(t, 1) 

(momentum transfer) 

& I’(v + 2z)(t, z)dz = v(t, 0) - v(t;l) 

$ I’(- + 2z)(t, z)dt = w(t, 1) - w(t,O) 

and 

(7) 

(8) 

/ 

1 

t (vlnv + wlnzu +4zlnz)(t,s)da: + 
0 /I 0 0 

‘(VW - z2) In y(T,z) dzd7 

= l(volnvo +wolnwg +4toInzo)dz 
/ 

(9) 

0 

(H-Theorem). 

,, Remark. Property (9) is the main ingredient for the proof of Theorem 3 below. Note 

that the integrand of the second term in (9) has only one sign: 

(vw-*2)lny 20. 

It is easy to calculate the (unique) steady solution of (1) which is expected in the limit 

t + ‘x): By time independence, from at-z = 0 we get VW = 2’4; i.e. &v = 8,~ = 0. The 
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boundary conditions (3) imply that u,iu, and z must all be equal to the same constant 

a > 0, and from the mass conservation law (6) a = i ~~(VCI + tie + 4~0) dz. 
Our objective in this paper is to’prove 

Theorem 3. Let g(t,s) denote my of the three function v(t,s), w(t,z) or z(t,z) solving 

(l-9). Then 

/..z o1 lg(t,z) - a(& = 0. 
/ 

(10) 

The asymptotic behavior of solutions of (l-3) has long been a problem of interest. 

The question is intriguing because it is so easy to guess the right limit, but nontrivial to 

prove (10). Besides, a proof of (10) is expected to contain methodology which ought to be 

useful for more realistic kinetic models (whether our methodology will have that property 

is something which remains to be seen. The best result so far is due to Slemrod [6], who 

proved orbital stability for the Broadwetl model. Specifically, he showed that there are 

traveling waves iT(t,s) = I?(Z - t), G(t, z) = ri?(t + t) and a function Z(t,z) such that V,W 

and z approach 6, G and z’ weak- * in an appropriate Orlicz space. 

The methods employed in [6] ( a renormalization similar to the one used in [7], and 

compensated compactness arguments) did not suffice to prove that V = zii = E = a. 

Our proof is based on the following elementary observation. From the mass conserva- 

tion law, 

-4s the left hand side of (11) is a priori bounded by (6), the integral 

T 1 

JJ (2 - uw) &?A! 
0 0 

is bounded uniformly in 2’. Our job would be easy if we could find such bounds on 

T 1 

JJ l (2 - uw)sgn(2 - uw) dz& 
0 0 

(12) 

because then the integrals along characteristics over the right hand sides of (1) would a.e. 

be convergent in the L’ -sense. Now observe that by (9), there is a C > 0 such that 

( VW - 2 *)ln y dsdt 5 C. (13) t 
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In y always has the same sign as (VW - z2), i.e. In y plays apart like sgn(02 -. uw) in 

(12). We shall combine this observation with the renormalkation trick to show that for 

large enough t, V, w and z change very slowly along their characteristics, except on a set of 

small measure. Then, a simple geometrical argument and the boundary conditions yield 

the proof of Theorem 3. 

I 

$ 
2. Some Lemmata, and the Proof of Theorem 3. 

,! 
m Lemma 1. Let {f”} b e a sequence of positive measurable firnctions on [0, l] such that 

,; f,,+f inmeasure~sn-+oo,Jbfdz<Cand~uchthatforolle>O~ere~a6>0’ 

with JM fn ds 5 e if A(M) 5 6 (i.e. the sequence { fn} ti weakly relatively compact in L’). 

> Then f,, + f strongly in L’. 

Proof. Let E > 0. First, we can choose a 6 > 0 such that for all n 

/==fnd+-Mfdx<@ 

if A(M) < 6. Then, there is an No such that for all n 2 No 

vx; Ifn(4 - f(x)! 2 E./q < 6. 

Therefore, 

J Kfn - f>Wl dx = /, 
=; n- 

,f f,< ,2) Kfn - f,Wl~x + 42 < c 
f 

Lemma 2. For every E > 0, there is a 6 > 0 such that for’ all t > 0 and all it4 with 

X(M) < 6 
J u(t, 4 dx + 

M J w(t,x)dx + 
M J r(t,x)dx < E 

M 

(i.e. the functions u(t, -), w(t, -) and z( t, a), t 2 0, f orm a weakly relatively compact set in 

L’). 

Proof. This follows from the H-Theorem. Let Ho denote the initial value of the H- 

functional, then 



and 

J M 

* 
1, 
il. 

* 

Now, given e, choose m such that 5 (HO + t) c 42, and then choose 6 such that 6em < e/2. 

In view of Lemma 1 and 2, Theorem 3 will be proved if we can show that for every 

sequence TV + 00 u(t~, x), w(t~,x) and z(t~,x) converge to Q in measure. TO this 

end, we next introduce the “renormalized solution concept”, which is for our problem 

completely equivalent to the mild (or classical) solution concept respectively, depending 

on the regularity of the initial values. Let D + , D- and D be shorthands for & + &, at - & 

and & respectively, then (v, W, z) is called a renormalized mild solution of (l-3) if 

2 
D+ln(1+u)=C+:= l;y 

2 
DJn(l+W)=C-:= 1;y (14) 3 

1 VW -z2 
Dln(l+z)=Cs:=~* 

I+% 

and if the initial and boundary conditions hold. 

In the sequel, C(V, w, z) will be an abbreviation for any of the three right hand sides 

in (14). Also, let C > 0 be any positive constant (sufficiently large; C > 3 is enough). 

Then we have 

Lemma 3. FOT every sequence tN + 00 them is a sequence EN \ 0, depending only on 

the initial values and on C, such that 

tN+C 1 

J / 
I&J,w, z)I dxdt 5 eN. (15) 

tN 0 

I: I t Proof. From (13), there is a sequence aN \ 0 such that 

.z2 
(z* - vw)ln VW dxdt < aN. 



kt IN = [t~,t~ + C] and consider C(u, w, z) = $$f! (the other two equations arq dealt 

with in exactly the same way). Also, let M = {(t, z) E IN x [O,l]; z* 5 2uwu). We split 

1, JJ l 12 - VW1 
IN 0 l+w = /,...+ J, /.. =:I+II. 

The integral II is easily estimated: On MC, z* > 2vw, hence 

II 5 J- 

J 

(2” 
2 

In2 Me 
-vw)ln-&dxdf 5 s. 

To estimate I, let {hN} be a sequence with hN \ 0 (later, hN till be chosen as a 

suitable function of aN ), and define 

Ml = {(t,x) E M; VW > hN, z* 2 uw(l + hN) or z* .s uw(l - hN)} 

M2 = {(t,x) E kf; VW 5 hN} . 

kf3 = {(t,x) E kf; vw(1 - hN) 5 t* 5 vw(l+ hN)) 

Clearly, MI U A4 U M3 = M. 

On MI, the imposed conditions entail that /z* - vwl 1 hk and ]& - l] 1 hN. For 

large enough N, the latter implies I ln $1 2 fhN, i.e. we have an estimate 

which means that 
2aN 

~“Wl) I h3’ 
N 

(16) 

Therefore, if we choose hN such that ON/h% + 0 as N/-s 00, it follows from Lemma 2 

that 

J I z2 
-Dw)dxdt < 

M, l+w J 
v dxdt = o(1). 

Ml 

On M2, the conditions z2 < 2vw and VW 5 hN yield z* 5 2hN, hence 

J 
lz2 - vwl dx& < 7 

Mz l+w 
-c,.hN. 

On ll43, the condition jz2 - VW] 5 uw . hN leads to 

lz2 - vwI dxdt < hnr 
MS l+w - J 

= < hN 
MI l+u, - J &faV, 

(17) 

(18) 

, 
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and from mass conservation it follows that 

Choosing hN = ar (say), we see that ON/h% + 0 as N + 00 and that hlv --* 0. 
T&s completes the proof. 

Now, given tN, we will denote by I’ any point (t, z) E IN x [0, l), and by L+(P), L-(P) 

and Lo(P) the ‘characteristics in IN X [0, l] associated with D+, I)- and D which pass 
through P. We extend L+ and L- by the reflecting boundary conditions (see Figure 1). 

Figure 1. 

t 
L+ IPI L, (PI 

.X 

BY JLi(p) Ci ds , i = +, -, 0, we denote the integrals of the r.h.s. of (14) along the 

corresponding characteristic. 

* Corollary 4. Let t E IN and P = (t, 2). There i.9 a con&ant c > 0 such that 

X(x;, max 
/ :=+,-to &(P) 

ICijds > 61 <_ c*fie 

;.I 
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Proof. Straightforward from Lemma 3, by Fubini’s theorem. 

Consequently, J titPj ICi( ds will be smaller than 6, except on a set of small LL~RLISUNS 

This implies 

Corollary 5. Ezcept on a Jet of meusu~ 5 cfi, ln(l+u) (ln(l+w), In(l+z) respectioety) 

vmy less than 6 along their characteristics in IN X [0, l]. 

Lemma 6. There tJ a constunt Cl > 0 such thut for a0 t >, 0 und uZZ N E N 

X{x;z(t,x) 2 N} I C,/(NlnN). 

Proof. N - X(x; r&x) 2 N} 5 Sr>N zdx 5 &-(I&, + !). 

Let 0 c p c l/2 and define M. = {x; J:L+c w(T, x)dr 5 m. By corollary 4, 

qf*) L 1 - C&J. In addition, let 

hf,L = {(t, 2); 2 5 E;;P} n (kf, x IN). 

From Lemma 6, 

4J X2(.M,‘) > C(1 - c&q - c1cj-g = c - 4), 

N 

i.e. M,’ is a set of approximately full measure in IN x [0, 1). From the previous considera- 

j tions we have 

J 
I 

uw - 
vw- I z21 4-p 

W 
I+= dxdt 5 2eN * 

We use this to prove 

Lemma 7. For q < $ - p, I(vw - z2)(t, x)1 5 eh on IN x [O,l], with the ezception of a 

set of Lebesgue measure less than 

Proof. Note that 

EQN . J dxdt 5 [VW - z21 dxdt 
M,‘n{luw-rzI>t;} J W 



t 

This immediately implies 

and the rest of the Lemma follows from the previous estimates. ,. s 

Finally, we use the properties which we have proved to show that v(t~,s) cannot be 
l 

8; 

1.; 
close to zero except on sets M ‘C [0, 1J o measure o(l). This is a consequence of the mass f 

conservation and 
! l 

1  : , ,: 
:! 

/ 

Lemma 8. Suppose that there is a 6 > 0 such that for a subsequence {Ni) of the inte- 

gets there are times t INi E INi and measurable sets Mb; C [0, 11 with X(Mhi) > 6 and 

SUPZEM~. u(t’N,, z) = e(1). Th en U(t, i), w(t,z), z(t,z) = O(l) On INd x (0, l] CzCept 0% 

sets of Xeasure o(1). 

Proof. We give only a sketch which can be detailed along the lines of our previous 

reasoning. Here and in the sequel, we use NN as an abbreviation for %qu&ty up to order 

o(1) as N -I, 00”. 

By the ,previous considerations, we can find a point P E Mbi such that u(P) k: 0 and 

such that u varies slowly along the characteristic L+(P) (see Figure 2). 
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Figure 2. 

t 

t’ 
Ni 

A 

L, (PI 

/ 

ti i 

P ‘X 

Hence v M 0 on L+(P), and because z2 w VW except on a set of measure o(l), it 

follows that z x 0 on L+(P) with the exception of a small set (“small set” is used here and 

in the sequel in the obvious sense). As z varies slowly along mod of the characteristics LO, 
we conclude that z x 0 in rNi x [0, 11, with the exception of a small set. 

We use a contradiction argument to show that also u z 0 and w R 0 on INi x [O, l] 

except on small sets. Otherwise, there would be a subsequence of the t ~~ (denoted for 

simplicity by tN) and sets MN C [O, l] with X(MN) f, 0 and, say, W(tN,z) f+ 0 for 

x E MN. Because the boundary value problem is equivalent to the periodic pure initial 

value problem with data extended by (4), U(tN,x) $0 for x E -MN (see Figure 3). 
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Figure 3. 

I 

\ 

/;; -_ 
1-l 

-%l 

t 

1 
l X 

As v and w vary slowly along (most of) their forward characteristics, it follows that 

VW $ 0 for (t , z) E Mz, where Mz is a set of macroscopic (i.e. $ 0) two-dimensional 

measure. On the other hand, we already know that z x 0 on (most of) Mz , and z2 M MU 

on (most of) A42. This contradicts uw $0, and the assertion of the Lemma follows. 

Corollary 9. Emxpt on sets of measunz o(1) in IN x [0, 11, u(t,z) $0. 

Proof. This follows from mass conservation and Lemma 8. 

We collect the relevant information which we have obtained so far. On IN x [0, l] (with 

the exception of a set of measure o(l)), ln(1 + u), ln(1 + ID) and ln(1 + a) (and hence v,‘u) 

and z) vary less that fi (less than exp fi - 1) along their characteristics. For small 

enough q > 0, I( ww - z2)(t,5)( 5 e; except on a set of 2-dimensional Lebesgue measure 

o(1). With these observations, we are ready for the 

Proof of Theorem 3. Consider a point P E IN x [0, l] (see Figure 4). 
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Figure.4. 

S (t=t 

y-t,=3 

1) 

On the forward characteristic L+(P), choose a point 8 such that l(z’ -TN)(Q)] 5 c& 

(our Lemmata imply that for all P except those in a set of measure o(1) there is a set 

of small one-dimensional measure of points on L+(P) such that le2 - vzol 5 e% outside 

this set). The other two backward characteristics from Q intersect in a point ,Pr along 

the line S R. Again we can assume that I(2 - vw)(Pl)l 5 eQN except for Pr in a set of 

small measure, and that the corresponding dependent variables u, w and z vary less than 

efi - 1 along the characteristics connecting PI and &. We find 

z(Q) = 4Pd 

z2tQ> = VW(&) 
Z”(Pl) M .w(P,) 

v(Q) = W(Pl) 

w(Q) = VP’)- 

It follows that VW(&) x v~(Pl), and, f rom Lemma 6, because v, zu and t can be assumed 

to be bounded except on a set of, small measure, this implies u(Q)v(P) M v(Q)v(P~), i.e. 
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U(Pl) a u(P) because, by Corollary 9, u(Q) can be assumed to be positively bounded 

below uniformly over N except on small sets. 

Summarizing, we have proved that there is a P E IN x [0, l] such that 

u(E) = u(P) 

for P. on the line SR, with the exception of a set of one-dimensional measure o(1) on SR. 

In other words, v is close to a constant on SR, except on a set of small measure (see Figure 
4). As u varies less than e@ - 1 along most L +-characteristics through SR, v is close 
to a constant in (ti, tz) x [O, l] (except on a set of small measure), where t2 - tr = 3. from 

the boundary conditions it follows then that w is close to the same constant C2 except on 

a set of small measure in (ti,tz) x [0, l], and from z2 - VW w 0 also z R C2. By mass 

conservation, it follows that C2 = a. Using once more that u, w and z vary slowly along 

most characteristics, we observe that for every sequence fN + 00 

(U(tN,‘),w(tN,‘),z(tN,‘)) -+ (a*a*a) 

in measure. In view of the remarks after Lemma 2, this completes the proof of Theorem 

3. 
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