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Abstract. This paper refers to an imaging problem in the presence of nonlinear
materials. Specifically, the problem we address falls within the framework of
Electrical Resistance Tomography and involves two different materials, one or
both of which are nonlinear. Tomography with nonlinear materials in the early
stages of developments, although breakthroughs are expected in the not-too-
distant future.

The original contribution this work makes is that the nonlinear problem can
be approximated by a weighted p0´Laplace problem. From the perspective
of tomography, this is a significant result because it highlights the central role
played by the p0´Laplacian in inverse problems with nonlinear materials. More-
over, when p0 “ 2, this result allows all the imaging methods and algorithms
developed for linear materials to be brought into the arena of problems with
nonlinear materials.

The main result of this work is that for “small” Dirichlet data, (i) one material
can be replaced by a perfect electric conductor and (ii) the other material can
be replaced by a material giving rise to a weighted p0´Laplace problem.
MSC 2020: 35J62, 35R30, 78A46.
Key words and phrases. Inverse problem, Electrical Resistance Tomography,
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1. Introduction

This paper is focused on nonlinear imaging problems in Electrical Resistance
Tomography where the aim is to retrieve the nonlinear electrical conductivity σ,
starting from boundary measurements in stationary conditions (steady currents).
This is a nonlinear variant of the Calderón problem [1, 2].
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Analysis of this class of problems highlights the limiting behaviour of the solu-
tion (electric scalar potential) for boundary data approaching zero. In this case,
the solution approaches a limit which is the solution of a weighted p´Laplace
problem. Moreover, the materials with nondominant growth can be replaced by
either a perfect electric conductor or a perfect electric insulator. These results
are significant from both a mathematical and an engineering point of view, since
they make it possible to approximate a nonlinear phenomenon with a weighted
p´Laplace problem. In one sense, this suggests the “fingerprint” of a weighted
p´Laplace problem in a nonlinear problem. The linear case, i.e. p “ 2, is of
paramount importance. In this case, we have a powerful bridge to apply all the
imaging methods and algorithms developed for linear materials to nonlinear ma-
terials. The behaviour for large data has been studied in [3] where we use different
set of test functions for the Dirichlet energy as we do not have different growth
exponents (p and p0) for the asymptotic behaviour.

Hereafter, we consider steady current operations where the constitutive relation-
ship is nonlinear, local, isotropic and memoryless:

Jpxq “ σpx, |Epxq|qEpxq @x P Ω. (1.1)

In (1.1), σ is the nonlinear electrical conductivity, J the electric current density,
E the electric field and Ω Ă Rn, n ě 2, is an open bounded domain with Lipschitz
boundary. Ω represents the region occupied by the conducting material. The
electric field can be expressed through the electrical scalar potential u as Epxq “

´∇upxq, where u solves the steady current problem:
$

&

%

div
´

σpx, |∇upxq|q∇upxq

¯

“ 0 in Ω

upxq “ fpxq on BΩ,
(1.2)

where f is the applied boundary potential. Both u and f belong to proper function
spaces that will be defined in the following.

The literature contains very few contributions on imaging in the presence of
nonlinear materials. As quoted in [4] (2020), “ ... the mathematical analysis for
inverse problems governed by nonlinear Maxwell’s equations is still in the early
stages of development.”. It can be expected that as new methods and algorithms
become available, the demand for nondestructive evaluation and imaging of non-
linear materials will eventually rise significantly .

Among the contributions to the nonlinear Calderón problem, special atten-
tion has been paid to the case based on the p´Laplacian, where σpx, |Epxq|q “

θpxq|Epxq|p´2 in equation p1.1q, with θ being an appropriate weight function. The
nonlinear p´Laplace variant of the Calderón problem was initially posed by Salo
and Zhong [5] and subsequently studied in [6, 7, 8, 9, 10, 11]. As well as the
nonlinear p´Laplace problem, mention must also be made of the work by Sun
[12, 13] for weak nonlinearities, the work by Cârstea and Kar [14] which treated a
nonlinear problem (linear plus a nonlinear term) and the work by Corbo Esposito
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et al. [15]. The latter treat a general nonlinearity within the framework of the
Monotonicity Principle Method.

From the application perspective, nonlinear electrical conductivities can be
found in semiconducting and ceramic materials (see [16]), with applications to ca-
ble termination in high voltage (HV) and medium voltage (MV) systems [17, 18],
for instance. Nonlinear electrical conductivities characterize superconductors, key
materials for such applications as energy storage, magnetic levitation systems, su-
perconducting magnets (nuclear fusion devices, nuclear magnetic resonance) and
high-frequency radio technology [19, 20]. Nonlinear electrical conductivity also
appears in the area of biological tissues (see [21]). For instance, [22] proved that
nonlinear models fit the experimental data better than linear models.

Problem (1.2) is common to steady currents as well as to other physical settings.
In the framework of electromagnetism, both nonlinear electrostatic and nonlinear
magnetostatic1 phenomena can be modelled as in (1.2). In the first case the con-
stitutive relationship is Dpxq “ εpx, |Epxq|qEpxq (see [23] and references therein,
and [24]), where D is the electric displacement field, ε is the dielectric permittivity
and E the electric field. In the second case Bpxq “ µpx, |Hpxq|qHpxq (see [25]),
where B is the magnetic flux density, µ is the magnetic permeability, and H is the
magnetic field.

From a general perspective, the inverse problem of retrieving a coefficient of a
PDE ( Partial Differential Equation) from boundary measurements, such as the
electrical conductivity σ appearing in (1.2), is nonlinear and ill-posed in the sense
of Hadamard, i.e. it is an inverse problem.

A classic approach for solving an inverse problem consists in casting it in terms
of the minimization of a proper cost function [26, 27]. The minimizer of this
cost function gives the estimate of the unknown quantity. The cost function is
usually built as the weighted sum of the discrepancy on the data and proper a
priori information that must be provided to complement the loss of information
inherent to the physics of the measurement process. There are many iterative
approaches devoted to the search for the solution (the minimizer) of an inverse
problem. An overview can be found in several specialized textbooks [28, 29, 30,
31]. Other than the Gauss-Newton and its variant (see [32] for a review), let
us mention some relevant iterative approaches applied to inverse problems such
as the Quadratic Born approximation [33], Bayesian approaches [34], the Total
Variation regularization [35, 36], the Levenberg-Marquardt method for nonlinear
inverse problems [37], the Level Set method [38, 39], the Topological Derivative
method [40, 41, 42] and the Communication Theory approach [43].

Iterative methods suffer from two major drawbacks: (i) they may be trapped
into local minima and (ii) the computational cost may be very high. Indeed, the
objective function to be minimized in order to achieve the reconstruction might

1In magnetostatics, it is possible to introduce a magnetic scalar potential for treating simply
connected and source free regions.
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present several/many local minima which may constitute points where an iterative
algorithm may be trapped. Moreover, the computational cost at each iteration may
be very high because it entails computing the objective function and, optionally, its
gradient. Both computations are expensive in terms of computational resources.

An excellent alternative to iterative methods is provided by noniterative ones.
Noniterative methods are attractive because they call for the computation of a
proper function of the space (the so-called indicator function) giving the shape
of the interface between two different materials, i.e. the support of the region
occupied by a specific material. They usually require a larger amount of data than
iterative approaches, but the computation of the indicator function is much less
expensive. In general, noniterative methods are suitable for real-time operations.

Only a handful of noniterative methods are currently available. These include
the Linear Sampling Method (LSM) by Colton and Kirsch [44], which evolved into
the Factorization Method (FM) proposed by Kirsch [45]. Ikehata proposed the
Enclosure Method (EM) [46, 47] and Devaney applied MUSIC (MUltiple SIgnal
Classification), a well-known algorithm in signal processing, as an imaging method
[48]. Finally, Tamburrino and Rubinacci proposed the Monotonicity Principle
Method (MPM) [49].

The prototype problem which motivated this study consists in imaging a two-
phase material where the outer phase is linear and the inner phase is nonlinear (see
Figure 1). A configuration of this type may be encountered when testing/imaging
superconducting cables (see, for instance, [50, 51, 52, 53]). The main result of
this work is the proof that for “small” Dirichlet data f , the nonlinear material
can be replaced by either a perfect electric conductor (PEC) or a perfect electric
insulator (PEI). Consequently, when one material is linear, the limiting version of
the original nonlinear problem is linear. These results provide a powerful bridge to
bring all the imaging methods and algorithms developed for linear materials into
the arena of problems presenting nonlinear materials.

Moreover, in order to reach a thorough understanding of the underlying mathe-
matics, the results have been proved in a more general setting where both materi-
als are nonlinear. In this case, one material is replaced by either a perfect electric
conductor or a perfect electric insulator, and the other is replaced by a material
yielding a weighted p0´Laplace problem.

A specific feature of this work concerns the required assumptions, which are
general and sharp, as discussed in Sections 3 and 6. The assumptions are general:
other than the standard conditions for existence and uniqueness of the solution
of (1.2), they involve pointwise convergence, only. The assumptions are sharp:
the fundamental conditions specifically introduced for replacing one material with
either a PEC or PEI cannot be removed, as shown by the counterexamples in
Section 6.

The paper is organized as follows: in Section 2 we present the ideas underpinning
the work; in Section 3 we set out the notations and the problem, together with



5

Figure 1. Description of two possible applications. Left: inverse
obstacle problem where the interface (BA) between two phases is
unknown. A and B are the regions occupied by the inner material
and the outer material, respectively. Right: nondestructive testing
where regions A and B are known, while the position and shape of
region C (a crack) is unknown. The materials in regions A and B
are also known.

the required assumptions; in Section 4 we give a fundamental inequality for small
Dirichlet data; in Section 5 we discuss the limiting case for small Dirichlet data;
in Section 6 we provide the counterexamples proving that the specific assumptions
are sharp; in Section 7 we provide numerical validation of the proposed theory;
finally, in Section 8 we provide some conclusions.

2. Underlying ideas and expected results

In this section we present the main ideas underpinning this work. The key
is the “educated guess” that when the boundary data is “small”, the electric field
E “ ´∇u is small a.e. in Ω and, therefore, its behaviour has to be governed by the
asymptotic behaviour of σ px,Eq in the constitutive relationship (1.1). Specifically,
let A ĂĂ Ω and B :“ ΩzA, we assume that there exist two constants p0 and q0,
and two functions β0 and α0 which capture the behaviour of σ, as E Ñ 0`, in B
and A, respectively:

σBpx,Eq „ β0pxqEp0´2 for a.e. x P B,

σApx,Eq „ α0pxqEq0´2 for a.e. x P A,

where σB and σA are the restriction of σ to B and A, respectively and E “ |E| “

|∇u|.
Analysis of nonlinear problems is fascinating because of the wide variety of

different cases. The most representative cases are shown in Figure 2.
When, for instance, q0 ă p0 it can be reasonably expected that either (i) region

A is a perfect electric conductor or (ii) region B is a perfect electric insulator,
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Figure 2. The electrical conductivities of the outer material and of
the inner conducting material, when σBp¨, Eq “ Ep0´2 is represented
by the continuous lines and σAp¨, Eq “ Eq0´2 is represented by the
dashed lines. The configurations when the order relation between p0
and q0 is reversed easily follow.

because σB would be dominant if compared to σA, at small electric fields. When
A ĂĂ Ω, the ambiguity between (i) and (ii) is resolved in Section 5, where we
prove that region B cannot be assimilated to a PEI and, therefore, A has to be
assimilated to a PEC. Finally, the case p0 “ q0 (that is the case when A “ H) has
been treated in [15, 54].

Moreover, the limiting problem where the conductor in region A is replaced
by a PEC, can reliably be modelled by a p0´Laplace problem in region B, with
a boundary condition given by a constant scalar potential u, on each connected
component of BA. In other words, u „ up0 in B, where up0 is the solution of the
weighted p0´Laplace problem arising from the electrical conductivity β0pxqEp0´2

in B and |∇up0 | “ 0 on A.
The latter observation is also inspiring as it properly defines the concept of

“small” boundary data and the limiting problem. Specifically, it is well known
that the operator mapping the boundary data f into the solution of a weighted
p0´Laplace problem is a homogeneous operator of degree 1, i.e. the solution
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corresponding to λfpxq is equal to λup0pxq, where up0 is the solution corresponding
to the boundary data f . Thus, the term “problem for small boundary data” means
(1.2) where the boundary data is λf and λ Ñ 0. Moreover, this suggests the need
to study convergent properties of the normalized solution vλ, defined as the ratio
uλ{λ, where uλ is the solution of (1.2) corresponding to the Dirichlet data λfpxq.
Indeed, if uλ can be approximated by the solution of the weighted p0´Laplace
problem, then the normalized solution vλpxq converges in B, i.e. it is expected to
be constant w.r.t. λ, as λ approaches 0. We term this limit as v0 and we expect
it to be equal to up0 , i.e. the solution of the weighted p0´Laplace problem with
boundary data f .

From the formal point of view, when q0 ă p0, vλ weakly converges to w0 P W 1,p0pΩq

for λ Ñ 0`, where w0 is constant in each connected component of A, and it is the
solution of:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

div
´

β0pxq|∇w0pxq|p0´2∇w0pxq

¯

“ 0 in B,

|∇w0pxq| “ 0 a .e. in A,
ş

BA
σpx, |∇w0pxq|qBνw

0pxqdS “ 0

w0pxq “ fpxq on BΩ,

(2.1)

in B. In this case, from the physical standpoint, region A can be replaced by a
Perfect Electric Conductor (PEC).

The solution of problem (2.1) satisfies the minimum problem (5.1), described in
Section 5.

On the other hand, when p0 ă q0, vλ converges, in B, to v0B P W 1,p0pBq, that is
the solution of the weighted p0´Laplace problem in region B:

$

’

’

’

&

’

’

’

%

div
´

β0pxq|∇v0Bpxq|p0´2∇v0Bpxq

¯

“ 0 in B,

β0pxq|∇v0Bpxq|p0´2Bνv
0
Bpxq “ 0 on BA,

v0Bpxq “ fpxq on BΩ.

(2.2)

From the physical standpoint, problem (2.2) corresponds to stationary currents
where the electrical conductivity is σpx,Eq “ β0pxqEp0 , and region A is replaced
by a perfectly electrical insulating material (PEI).

The solution of problem (2.2) satisfies the minimum problem (5.2), described in
Section 5.

3. Framework of the Problem

3.1. Notations. Throughout this paper, Ω denotes the region occupied by the
conducting materials. We assume that Ω Ă Rn, n ě 2, is a bounded domain (i.e.
an open and connected set) with Lipschitz boundary and A ĂĂ Ω is an open
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bounded set with Lipschitz boundary and a finite number of connected compo-
nents, such that B :“ ΩzA is still a domain. Hereafter we consider the growth
exponents p, q, p0 and q0 such that 1 ă p, q ă 8, p ‰ q, 1 ă p0 ď p ă 8,
1 ă q0 ď q ă 8 and p0 ‰ q0. p (p0) is related to the growth of the electrical
conductivity in region B for large (small) electric fields (see Section 3.3 for further
details). Similarly, q (q0) is related to the growth of the electrical conductivity in
region A for large (small) electric fields (see Figure 3).

Figure 3. A two phase problem (left) together with the electrical
conductivity growth exponents for the electric field in a neighbor-
hood of `8 (center) and in a neighborhood of 0 (right).

We denote by dx and dS the n´dimensional and the pn´1q´dimensional Haus-
dorff measure, respectively. Moreover, we set

L8
` pΩq :“ tθ P L8

pΩq | θ ě c0 a.e. in Ω, for a positive constant c0u.

Furthermore, for any 1 ă s ă `8 we denote by W 1,s
0 pΩq the closure set of C1

0pΩq

with respect to the W 1,s´norm.
The applied boundary voltage f belongs to the abstract trace space B1´ 1

p
,p

pBΩq,
which, for any bounded Lipschitz open set, is a Besov space (refer to [55, 56]),
equipped with the following norm:

||u||
B

1´ 1
p ,p

pBΩq
“ ||u||LppBΩq ` |u|

B
1´ 1

p ,p
pBΩq

ă `8,

where |u|
B

1´ 1
p ,p

pBΩq
is the Slobodeckij seminorm:

|u|
B

1´ 1
p ,p

pBΩq
“

˜

ż

BΩ

ż

BΩ

|upxq ´ upyq|p

||x ´ y||
N´1`p1´ 1

p
qp
dSpyqdSpxq

¸
1
p

,

see Definition 18.32, Definition 18.36 and Exercise 18.37 in [56].
This guarantees the existence of a function in W 1,ppΩq whose trace is f [56, Th.

18.40].
For the sake of brevity, we denote this space by XppBΩq and its elements can be

identified as the functions in W 1,ppΩq, modulo the equivalence relation f P rgsXppBΩq

if and only if f ´ g P W 1,p
0 pΩq, see [56, Th. 18.7].
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Finally, we denote by Xp
˛ pBΩq the set of elements in XppBΩq with zero average

on BΩ with respect to the measure dS.

3.2. The Scalar Potential and Dirichlet energy. In terms of the electric scalar
potential, that is Epxq “ ´∇upxq, the nonlinear Ohm’s law (1.1) is

Jpxq “ ´σpx, |∇upxq|q∇upxq,

where σ is the electrical conductivity, E is the electric field, and J is the electric
current density.

The electric scalar potential u solves the steady current problem:
$

&

%

div
´

σpx, |∇upxq|q∇upxq

¯

“ 0 in Ω

upxq “ fpxq on BΩ,
(3.1)

where f P Xp
˛ pBΩq. Problem (3.1) is meant in the weak sense, that is
ż

Ω

σ px, |∇upxq|q∇upxq ¨ ∇φpxq dx “ 0 @φ P C8
c pΩq.

The solution u restricted to B belongs to W 1,ppBq, whereas u restricted to A
belongs to W 1,qpAq; however the solution u as a whole is an element of the largest
between the two functional spaces W 1,ppΩq and W 1,qpΩq. Furthermore, (i) if p ď q
then W 1,ppΩq Y W 1,qpΩq “ W 1,ppΩq, and (ii) if p ě q then W 1,ppΩq Y W 1,qpΩq “

W 1,qpΩq.
The solution u satisfies the boundary condition in the sense that u ´ f P

W 1,p
0 pΩq Y W 1,q

0 pΩq and we write u|BΩ “ f .
Moreover, the solution u is variationally characterized as

argmin
␣

Eσ puq : u P W 1,p
pΩq Y W 1,q

pΩq, u|BΩ “ f
(

. (3.2)

In (3.2), the functional Eσ puq is the Dirichlet energy

Eσ puq “

ż

B

QBpx, |∇upxq|q dx `

ż

A

QApx, |∇upxq|q dx

where QB and QA are the Dirichlet energy density in B and in A, respectively:

QB px,Eq :“

ż E

0

σB px, ξq ξdξ for a.e. x P B and @E ě 0,

QA px,Eq :“

ż E

0

σA px, ξq ξdξ for a.e. x P A and @E ě 0,

and σB and σA are the restiction of the electrical conductivity σ in B and A,
respectively.
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3.3. Requirements on the Dirichlet energy densities. In this Section, we
provide the assumptions on the Dirichlet energy densities QB and QA, to guarantee
the well-posedness of the problem and to prove the main convergence results of
this paper.

For each individual result, we will make use of a minimal set of assumptions,
among those listed in the following.

Firstly, we recall the definition of the Carathéodory functions.

Definition 3.1. Q : Ω ˆ r0,`8q Ñ R is a Carathéodory function iff:
(1) Ω Q x ÞÑ Qpx,Eq is measurable for every E P r0,`8q,
(2) r0,`8q Q E ÞÑ Qpx,Eq is continuous for almost every x P Ω.

The assumptions on QB and QA, required to guarantee the existence and unique-
ness of the solution, are as follows.
(A1) QB and QA are Carathéodory functions;
(A2) r0,`8q Q E ÞÑ QBpx,Eq and r0,`8q Q E Ñ QApx,Eq are nonnegative,

C1, strictly convex, QBpx, 0q “ 0 for a.e. x P B, and QApx, 0q “ 0 for a.e.
x P A.

The behaviour of QA and QB for small Dirichlet boundary data, satisfies the
following assumptions:
(A3) There exists two exponents p0 and q0 with 1 ă p0 ď p ă 8, 1 ă q0 ď q ă 8

and p0 ‰ q0, such that:

piq Q max

"ˆ

E

E0

˙p0

,

ˆ

E

E0

˙p*

ď QBpx,Eq ď Qmax

"ˆ

E

E0

˙p0

,

ˆ

E

E0

˙p*

for a.e. x P B and @ E ě 0,

piiq Q max

"ˆ

E

E0

˙q0

,

ˆ

E

E0

˙q*

ď QApx,Eq ď Qmax

"ˆ

E

E0

˙q0

,

ˆ

E

E0

˙q*

for a.e. x P A and @ E ě 0.

Assumption (A2) implies that both QB and QA are increasing functions in E;
moreover, (A2) and (A3) imply that both QBpx,Eq ď Q and QApx,Eq ď Q, when
0 ď E ď E0.

Finally, assumption (A3) is implied by the well-known hypothesis used in the
literature (see e.g. assumptions (H4) in [15] and (0.2) in [57]).
(A4) There exists a function β0 P L8

` pBq such that:

lim
EÑ0`

QBpx,Eq

Ep0
“ β0pxq for a.e. x P B.

In Section 6, we will provide another counterexample to show that assumption
(A4) is sharp.
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3.4. Connection among σ, J and Q. This paper is focused on the properties
of the Dirichlet energy density Q, while, in physics and engineering the electrical
conductivity σ is of greater interest. From this perspective, assumptions (Ax) are
able to include a wide class of electrical conductivities (see Figure 4). In other
words, the (Ax)s are not restrictive in practical applications.

Figure 4. Behaviour of the constitutive relationship in a neighbor-
hood of E “ 0 for p0 ą 2, p0 “ 2 and p0 ă 2: in terms of (a)
the electrical conductivity σ and (b) the electrical current density
J . Dashed lines correspond to the upper and lower bounds to either
σ or J .
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There is a close connection between σ, J and Q. Indeed,

QB px,Eq “

ż E

0

JBpx, ξq dξ for a.e. x P B and @E ą 0,

QA px,Eq “

ż E

0

JApx, ξq dξ for a.e. x P A and @E ą 0,

where JB and JA is the magnitude of the current density in regions B and A,
respectively:

JBpx,Eq “ BEQBpx,Eq “ σBpx,EqE for a.e. x P B and @E ą 0,

JApx,Eq “ BEQApx,Eq “ σApx,EqE for a.e. x P A and @E ą 0.
(3.3)

The electrical conductivity σpx,Eq is the secant to the graph of the function
Jσpx,Epxqq and Qσpx,Epxqq is the area of the sub-graph of Jσpx,Epxqq. For a
geometric interpretation of the connections between σ, Jσ and Qσ, see Figure 5.

Figure 5. For any given spatial point in the region Ω, (a) the
electrical conductivity σp¨, Eq is the secant line to the graph of the
function Jσp¨, Eq; (b) Qσp¨, Eq is the area of the sub-graph of Jσp¨, Eq.

3.5. Existence and uniqueness of the solutions. The proof of the existence
and uniqueness of the solution for (3.1) in its variational form, relies on standard
methods of the Calculus of Variations, when the Dirichlet energy density presents
the same growth in any point of the domain Ω. The case treated in this work is
nonstandard, because the Dirichlet energy density presents different growth in B
and A and, hence, we provide a proof in the following.
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Theorem 3.2. Let 1 ă p, q ă `8, p ‰ q and f P Xp
˛ pBΩq. If (A1), (A2), (A3)

hold, then there exists a unique solution of problem (3.2).

Proof. Before distinguishing the two cases depending on the exponents order, we
observe that there exists a function u0 P W 1,ppΩq that assumes a suitable constant
value in A, with Trpu0q “ f on BΩ, such that ||u0||W 1,ppΩq ď CpBΩq||f ||Xp

˛ pBΩq ă

`8, by the Inverse Trace inequality in Besov spaces [56, Th. 18.34].
For this function u0, it is easily seen that Eσpu0q ă `8. As a consequence, Eσ

is proper convex function, as required to apply [58, Th. 3.30].
Moreover, the strictly convex function Qσpx, ¨q is coercive for a.e. x P Ω with

respect to mintp, qu. Indeed, if p ą q and E ě E0, then, by assumption (A3), we
have

QBpx,Eq ě Q

ˆ

E

E0

˙p

ě Q

ˆ

E

E0

˙q

ě Q

„ˆ

E

E0

˙q

´ 1

ȷ

a.e. in B;

QApx,Eq ě Q

ˆ

E

E0

˙q

ě Q

„ˆ

E

E0

˙q

´ 1

ȷ

a.e. in A.

If E ă E0, then

QBpx,Eq ě 0 ě Q

„ˆ

E

E0

˙q

´ 1

ȷ

a.e. in B;

QApx,Eq ě 0 ě Q

„ˆ

E

E0

˙q

´ 1

ȷ

a.e. in A.

Therefore, setting Qσ “ QB in B and Qσ “ QA in A, we have

Qσpx,Eq ě Q

„ˆ

E

E0

˙q

´ 1

ȷ

a.e. in Ω,

for any E ě 0.
Similarly, when p ă q, we have Qσpx,Eq ě Q

”´

E
E0

¯p

´ 1
ı

, for any E ě 0.
Therefore, in both cases (p ą q and p ă q), all the assumptions of [58, Th. 3.30]

are satisfied and, thus, the solution exists and is unique. □

Remark 3.3. By invoking [58, Th. 3.30] one finds that the solution is an element
of W 1,mintp,qupΩq “ W 1,ppΩq Y W 1,qpΩq. In both cases (p ą q and p ă q) the
boundary data f P Xp

˛ pBΩq is compatible with the solution space.

Let us observe that optimization problems on domains with holes have received
a great deal of interest in recent years, see e.g. [59, 60, 61, 62] and references
therein.

3.6. Normalized solution. Through this paper we study the behaviour of the
solution of problem (3.2) for small Dirichlet boundary data, i.e. the behaviour of



14A. CORBO ESPOSITO, L. FAELLA, V. MOTTOLA, G. PISCITELLI, R. PRAKASH, A. TAMBURRINO

uλ defined as:
min

uPW 1,ppΩqYW 1,qpΩq

u“λf on BΩ

Eσpuq, (3.4)

for λ Ñ 0` (small Dirichlet data).
To this purpose, as discussed in Section 2, it is convenient to introduce the

normalized solution vλ defined as:

vλ “
uλ

λ
.

In the following Sections, we prove that the behaviour of the normalized function
vλ is p0´Laplace modeled for λ Ñ 0`.

For any prescribed f P Xp
˛ pBΩq and λ ą 0, vλ is the solution of the following

variational problem:

min
vPW 1,ppΩqYW 1,qpΩq

v“f on BΩ

Gλ
0pvq, Gλ

0pvq “
1

λp0

ˆ
ż

B

QBpx, λ|∇vpxq|qdx `

ż

A

QApx, λ|∇vpxq|qdx

˙

.

(3.5)
The multiplicative factor 1{λp0 is introduced in order to guarantee that the func-
tionals Gλ

0 are equibounded for small λ. The normalized solution makes it possible
to “transfer” parameter λ in (3.4) from the boundary data to the functional Gλ

0 .
Specifically, in the following Sections, we will prove that vλ converges, under

very mild hypotheses, for λ Ñ 0`.
If q0 ă p0, the limiting problem of (3.5) is a problem where the inner region A

is replaced by a PEC. The limit solution is termed w0.
If p0 ă q0, the limiting problem of (3.5) is a problem where the inner region A

is replaced by a PEI. The limiting problem of vλ, is termed v0B in B.
Finally, we remark that v0B and w0 arise from a weighted p0´Laplace problem.

4. The fundamental inequality for small Dirichlet data

In this Section we provide the main tool to achieve the convergence results in
the limiting cases for “small” Dirichlet boundary data. Specifically, we show that
the asymptotic behaviour of the Dirichlet energy corresponds to a p0´Laplace
modelled equation [5, 9] in domain B.

In the following, we study the asymptotic behaviour of the Dirichlet energy in
the outer region B. To do this, we prove the following general Lemma, first for a
weighted p0´Laplace problem and, then, for the quasilinear case.

Let QF px,Eq “ θpxqEp0 be the Dirichlet energy density for a weighted p0´Laplace
problem defined in F , a bounded Lipschitz domain. We observe that QF satisfies
assumption (A4).

Lemma 4.1. Let 1 ă p0 ă `8, F Ă Rn be a bounded domain with Lipschitz
boundary, θ be a nonnegative measurable function in F and twnunPN be a sequence
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weakly convergent to w in W 1,p0pF q. Then we have
ż

F

θpxq|∇wpxq|
p0dx ď lim inf

nÑ`8

ż

F

θpxq|∇wnpxq|
p0dx. (4.1)

Proof. Let us set L :“ lim infnÑ`8

ş

F
θpxq|∇wnpxq|p0dx. If L “ `8, the inequality

(4.1) is trivial; otherwise we consider a subsequence tnjunPN such that

lim
jÑ`8

ż

F

θpxq|∇wnj
pxq|

p0dx “ L.

This means that for any ε ą 0, there exists ν P N such that

L ´ ε ă

ż

F

θpxq|∇wnj
pxq|

p0dx ă L ` ε (4.2)

for any j ě ν. Then, by the Mazur’s Lemma (refer for example to [63, 64]), there
exists a function N : N Ñ N and a sequence tαn,ku

Npnq

k“n for any n P N such that
(M1) αn,k ě 0 for any pn, kq P N ˆ rn,Npnqs,
(M2)

řNpnq

k“n αn,k “ 1 for any n P N,
(M3) zn :“

řNpnq

k“n αn,kwnk
Ñ w in W 1,p0pF q.

Then there exists a subsequence tznl
ulPN such that

lim inf
nÑ`8

ż

F

θpxq|∇znpxq|
p0dx “ lim

lÑ`8

ż

F

θpxq|∇znl
pxq|

p0dx (4.3)

and another subsequence, again indicated with tznl
ulPN, such that ∇znl

Ñ ∇w a.e.
in F [56, Chap. 18]. Therefore, we have
ż

F

θpxq|∇wpxq|
p0dx “

ż

F

θpxq lim inf
lÑ`8

|∇znl
pxq|

p0dx ď lim inf
lÑ`8

ż

F

θpxq|∇znl
pxq|

p0dx

“ lim
lÑ`8

ż

F

θpxq|∇znl
pxq|

p0dx “ lim inf
nÑ`8

ż

F

θpxq|∇znpxq|
p0dx

ď lim inf
nÑ`8

Npnq
ÿ

k“n

αn,k

ż

F

θpxq|∇wnk
pxq|

p0dx

ă lim inf
nÑ`8

ÿNpnq

k“n
αn,k pL ` εq “ L ` ε

“ lim inf
nÑ`8

ż

F

θpxq|∇wnpxq|
p0dx ` ε,

where in the first line the equality follows from the convergence result of (M3) and
the inequality follows from Fatou’s Lemma, in the second line we applied (4.3), in
the third line we applied the convexity of | ¨ |p0 , and in the fourth line we applied
(4.2).

Conclusion (4.1) follows from the arbitrariness of ε ą 0. □
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The next step consists in extending (4.1) from the weighted p0´Laplace case to
the quasilinear case. In doing this, we restrict the validity of the result to sequences
of the solutions of problem (3.5). The main difficulty in proving this result lies in
evaluating an upper bound of the measure of that part of B where the solutions
vλ admit large values of the gradient (see Figure 6).

Figure 6. The objective of the proof is to show that the set of
the points in B such that the solution vλnj does not satisfy the
fundamental inequality (Cc

δ,nj
) and admit large values of the gradient

(Dc
ℓ,nj

) can be made sufficiently small (shaded region).

Lemma 4.2. Let 1 ă p0 ď p ă `8, f P Xp
˛ pBΩq, (A1), (A2), (A3), (A4) hold,

and let the solution vλ of (3.5) be weakly convergent to v in W 1,p0pBq, for λ Ñ 0`.
Let λn Ñ 0` be a decreasing sequence for n Ñ `8, such that

lim
nÑ`8

1

λp0
n

ż

B

QBpx, λn|∇vλnpxq|qdx “ lim inf
λÑ0`

1

λp0

ż

B

QBpx, λ|∇vλpxq|qdx. (4.4)

Then, for any δ ą 0 and θ ą 0, there exists a set Fδ,θ Ď B with |BzFδ,θ| ă θ such
that

lim inf
nÑ`8

ż

Fδ,θ

pβ0pxq ´ δq|∇vλnpxq|
p0dx ď lim

nÑ`8

1

λp0
n

ż

B

QBpx, λn|∇vλnpxq|qdx. (4.5)
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Proof. Let w0 be the solution of problem (2.1). We have
Q

Ep0
0

ż

B

|∇vλpxq|
p0dx ď

1

λp0

ż

B

QBpx, λ|∇vλpxq|qdx ď Gλ
0pvλq ď Gλ

0pw0
q

“
1

λp0

ż

B

QBpx, λ|∇w0
pxq|qdx

ď max

"

Q

Ep0
0

ż

B

|∇w0
pxq|

p0dx,
Q

Ep
0

λp´p0

ż

B

|∇w0
pxq|

pdx

*

,

where in the first inequality we used the left-hand side of (A3.i), in the second
inequality we added the integral term on A, in the third inequality we tested Gλ

0

with w0, and in the last inequality we used the right-hand side (A3.i).
Since p´p0 ě 0, we find that

ş

B
|∇vλpxq|p0dx is definitively upper bounded and,

therefore,
ş

B
|∇vλnpxq|p0dx is upper bounded by a constant M ą 0, for any n P N.

Let us fix δ ą 0 and θ ą 0. For any n P N, we set

Cδ,n “ Cn :“
␣

x P B : pβ0pxq ´ δqpλn|∇vλnpxq|q
p0 ď QBpx, λn|∇vλnpxq|q

(

.
(4.6)

Now, for any constant L ą 0, we set

Dn,L “ Dn :“ tx P B : |∇vλnpxq| ă Lu

Dc
n,L “ Dc

n :“ tx P B : |∇vλnpxq| ě Lu

By definition of Dc
n, we have

|Dc
n|Lp0 ď

ż

B

|∇vλnpxq|
p0dx ď M,

which gives |Dc
n| ď M

Lp0
, for any n P N. By choosing L ą

`

4M
θ

˘
1
p0 , we have

|Dc
n| ă

θ

4
. (4.7)

Let En be defined as

Eδ,L,n “ En :“ tx P B : pβ0pxq ´ δqEp0 ď QBpx,Eq @ 0 ď E ă λnLu .

Then, for any n P N,
Cn Ě Cn X Dn Ě En X Dn. (4.8)

En is increasing with respect to n and
ˇ

ˇ

Ť`8

n“1En

ˇ

ˇ “ |B|. Therefore there exists
a natural number n1 “ n1pθq such that

ˇ

ˇ

ˇ

ˇ

ˇ

n1
ď

n“1

En

ˇ

ˇ

ˇ

ˇ

ˇ

“ |En1 | ě |B| ´
θ

4
. (4.9)

By considering the complementary sets in B, (4.8) for n “ n1 gives

Cc
n1

Ď Ec
n1

Y Dc
n1

“ Ec
n1

Y Dc
n1
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with

|Cc
n1

| ď
θ

4
`

θ

4
“

θ

2
,

as follows from (4.7) and (4.9). Similarly, repeating the argument and replacing
2j`1 with 4 in the previous argument, we construct a subsequence tλnj

ujPN such
that

|Cc
nj

| ď
θ

2j
.

Then, by defining

Fδ,θ :“
8
č

j“1

Cnj
,

we have

F c
δ,θ “

8
ď

j“1

Cc
nj

with |F c
δ,θ| ď θ

ř`8

j“1 2
´j “ θ, which means

|B| ´ θ ď |Fδ,θ| ď |B|.

Therefore, we have

lim inf
jÑ`8

ż

Fδ,θ

pβ0pxq ´ δq|∇vλnj pxq|
p0dx ď lim inf

jÑ`8

1

λp0
nj

ż

Fδ,θ

QBpx, |λnj
∇vλnj pxq|qdx

ď lim inf
jÑ`8

1

λp0
nj

ż

B

QBpx, |λnj
∇vλnj pxq|qdx “ lim

nÑ`8

1

λp0
n

ż

B

QBpx, λn|∇vλnpxq|qdx,

where in the first inequality we use Fδ,θ Ď Cnj
for any j P N and the inequality

appearing in (4.6), in the second inequality we take into account that Fδ,θ Ď B,
and, in the last equality, we exploit the convergence given by (4.4). □

Finally, we prove the result on the fundamental inequality holding for λ Ñ 0`.

Proposition 4.3. Let 1 ă p0 ď p ă `8, f P Xp
˛ pBΩq, (A1), (A2), (A3), (A4)

hold, and let the solution vλ of (3.5) be weakly convergent to v in W 1,p0pBq, as
λ Ñ 0`. Then

ż

B

β0pxq|∇v|
p0dx ď lim inf

λÑ0`

1

λp0

ż

B

QBpx, λ|∇vλpxq|qdx. (4.10)

Proof. First, we assume that v is nonconstant in B, otherwise the conclusion is
trivial. Therefore, the integral on the l.h.s. of (4.10) is positive because β0 P

L8
` pBq.
Let tλnunPN be a decreasing sequence such that λn Ñ 0` for n Ñ `8, and

lim
nÑ`8

1

λp0
n

ż

B

QBpx, λn|∇vλnpxq|qdx “ lim inf
λÑ0`

1

λp0

ż

B

QBpx, λ|∇vλpxq|qdx. (4.11)
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To prove (4.10), we use Lemma 4.2. To this purpose, the measure

κ : F P BpΩq ÞÑ

ż

F

β0pxq|∇vpxq|
p0dx

where BpΩq is the class of the borelian sets contained in Ω, is absolutely continuous
with respect to the Lebesgue measure. Therefore, for any ε ą 0, there exists θ ą 0
such that κpF q ă ε

2
for any |F | ă θ. Therefore, for any fixed 0 ă δ ď infB β0,

|BzFδ,θ| ă θ implies

κpBzFδ,θq “

ż

BzFδ,θ

β0pxq|∇vpxq|
p0dx ă

ε

2
. (4.12)

Hence, for δ ď min
␣

ε{
`

2
ş

B
|∇vpxq|p0dx

˘

, infB β0pxq
(

, we have
ż

B

β0pxq|∇vpxq|
p0dx ´ ε ă

ż

B

β0pxq|∇vpxq|
p0dx ´

ż

BzFδ,θ

β0pxq|∇vpxq|
p0dx ´

ε

2

ď

ż

Fδ,θ

β0pxq|∇vpxq|
p0dx ´ δ

ż

B

|∇vpxq|
p0dx ď

ż

Fδ,θ

pβ0pxq ´ δq|∇vpxq|
p0dx

ď lim inf
λÑ0`

ż

Fδ,θ

pβ0pxq ´ δq|∇vλpxq|
p0dx ď lim

nÑ`8

1

λp0
n

ż

B

QBpx, λn|∇vλnpxq|qdx

“ lim inf
λÑ0`

1

λp0

ż

B

QBpx, λ|∇vλpxq|qdx,

where in the first line we applied (4.12), in the second line the connection between
δ and ε, in the third line we used Lemma 4.1 with F “ Fδ,θ and the inequality
(4.5) of the previous Lemma 4.2, and in the fourth line we used (4.11).

The conclusion follows from the arbitrariness of ε. □

5. Limiting Problems for small Dirichlet data

In this Section we treat the limiting case of problem (3.4) for small Dirichlet
boundary data.

We will distinguish two cases depending on p0 and q0:
(i) 1 ă q0 ă p0 ă `8 (see Section 5.1);
(ii) 1 ă p0 ă q0 ă `8 (see Section 5.2).

In the first case, we prove that:
(i.a) vλ á w0 in W 1,p0pBq, as λ Ñ 0`, where w0 in B is the unique solution of

problem (2.1);
(i.b) vλ Ñ w0 in W 1,q0pAq, as λ Ñ 0`, where w0 is constant in any connected

component of A;
(i.c) vλ á w0 in W 1,p0pΩq, as λ Ñ 0`, where w0 in B is the unique solution of

problem (2.1) and in A is constant in any connected component.
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The limiting solution in Ω, for 1 ă q0 ă p0 ă `8, is characterized by:

min
vPW 1,p0 pΩq

|∇v|“0 a.e. in A
v“f on BΩ

B0pvq, B0pvq “

ż

B

β0pxq|∇vpxq|
p0dx. (5.1)

Problem (5.1) is the variational form of problem (2.1).
Whereas, in the second case, we prove that:
(ii) vλ á v0B in W 1,p0pBq, as λ Ñ 0`, where v0B in B is the unique solution of

problem (2.2).
For 1 ă p0 ă q0 ă `8, the limiting solution is characterized by the following

problem:

min
vPW 1,p0 pBq

v“f on BΩ

B0pvq, B0pvq “

ż

B

β0pxq|∇vpxq|
p0dx (5.2)

The problem (5.2) is the variational form of (2.2). We recall that v0B P W 1,p0pBq

is the unique normalized solutions of the limiting problems (5.2) in region B.
Using the results developed in Section 4, we are in a position to prove the main

convergence results.

5.1. First case: q0 ă p0. In the whole section we assume q0 ă p0 ď p and
q0 ď q; hence we have the continuous embeddings W 1,pp¨q ãÑ W 1,p0p¨q ãÑ W 1,q0p¨q

and W 1,qp¨q ãÑ W 1,q0p¨q, for any bounded set with Lipschitz boundary.
For any fixed f P Xp

˛ pBΩq we study problem (3.5) as λ approaches zero. The
variational problem (3.5) particularizes as

min
vPW 1,q0 pΩq

v“f on BΩ

Gλ
0pvq, Gλ

0pvq “
1

λp0

ˆ
ż

B

QBpx, λ|∇vpxq|qdx `

ż

A

QApx, λ|∇vpxq|qdx

˙

.

(5.3)
Let vλ be the minimizer of (5.3) and w0 be the minimizer of (5.1); the aim of

this Section is to prove the following convergence result

vλ á w0 in W 1,q0pΩq as λ Ñ 0`.

The condition |∇v| “ 0 is equivalent to saying that v is constant on each con-
nected component of A. This makes it possible to decouple the problems associated
to regions B and A. Specifically, region A behaves as a PEC, with respect to prob-
lem (5.1), whereas the outer region B behaves as p´Laplacian modelled material
with a PEC on BA.

We first prove that vλ is weakly convergent and we identify the limiting function
v0 P W 1,q0pΩq, for λ Ñ 0`; proving that the limiting function v0 satisfies B0pv

0q “

B0pw
0q. The latter equality implies v0 “ w0, because of the uniqueness of the

solution of problem (5.1). Then, assuming stronger hypotheses, we prove the
strong convergence in W 1,q0pΩq.
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Theorem 5.1. Let 1 ă q0 ă p0 ă `8 be such that p0 ď p, q0 ď q, f P Xp
˛ pBΩq

and vλ be the solution of (5.3). If (A1), (A2), (A3) and (A4) hold, then
(i) vλ á w0 in W 1,p0pBq, as λ Ñ 0`,
(ii) vλ Ñ w0 in W 1,q0pAq, as λ Ñ 0`,
(iii) vλ á w0 in W 1,q0pΩq, as λ Ñ 0`,

where w0 P W 1,p0pΩq is the unique solution of (5.1).

Proof. For the sake of simplicity, we will only treat the case when A has one
connected component. The general case can be treated with the same approach.

Let us consider a function in W 1,ppΩq whose trace on BΩ is f and is such that
f ” w0 in A. We again denote this function by f and hence we have w0 ´ f P

W 1,p0
0 pBq.
A density argument [56, Th. 11.35] ensures that there exists tvnunPN Ď C8

c pBq

such that
vn Ñ w0 ´ f in W 1,p0pΩq, as n Ñ 8.

Consequently, we have

lim
nÑ`8

ż

Ω

|∇vn ´ ∇pw0
´ fq|

p0dx “ 0.

We immediately deduce that f ` vn P W 1,ppBq and

lim
nÑ`8

ż

Ω

β0pxq|∇pvn ` fq ´ ∇w0
|
p0dx “ 0.

Hence, this implies that
lim

nÑ`8
B0pvn ` fq “ B0pw0

q.

Therefore, for any ε ą 0, there exists ω P W 1,ppΩq with Trpωq “ f on BΩ and
with constant value on A such that:

B0pωq ă B0pw
0
q ` ε. (5.4)

Hence,
Q

Ep0
0

ż

B

|∇vλpxq|
p0dx ď

1

λp0

ż

B

QBpx, λ|∇vλpxq|qdx

ď Gλ
0pvλq ď Gλ

0pωq “
1

λp0

ż

B

QBpx, |λ∇ωpxq|qdx

ď max

"

Q

Ep0
0

ż

B

|∇ωpxq|
p0dx,

Q

Ep
0

λp´p0

ż

B

|∇ωpxq|
pdx

*

,

(5.5)

where in the first inequality we used (A3.i)-left, in the second inequality we ex-
ploited the fact that Gλ

0 also contains the integral term over A, in the third in-
equality we used the fact that vλ is the minimizer of Gλ

0 , in the last inequality we
used (A3.i)-right.
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Since λp´p0 is bounded, as λ Ñ 0`, we find that
ş

B
|∇vλpxq|p0dx is definitively

upper bounded by (5.5).
We first prove that tvλuλ Ď Lp0pBq is equibounded. By using the Poincaré

inequality [56, Th. 13.19], we have:

||vλ||Lp0 pBq ď ||vλ ´ f ||Lp0 pBq ` ||f ||Lp0 pBq ď C||∇vλ ´ ∇f ||Lp0 ` ||f ||Lp0 pBq

ď C||∇vλ||Lp0 pBq ` C||∇f ||Lp0 pBq ` ||f ||Lp0 pBq.
(5.6)

The claim is proved because the right hand side is equibounded.
Taking into account (5.5) and (5.6), it follows that there exists v0 P W 1,p0pBq

such that, up to a subsequence, vλ á v0 in W 1,p0pBq, as λ Ñ 0`, that is (i).
Similarly to (5.5), for region A, we have

Q

Eq0
0

ż

A

|∇vλpxq|
q0dx ď

1

λq0

ż

A

QApx, λ|∇vλpxq|qdx “
1

λq0´p0

1

λp0

ż

A

QApx, λ|∇vλpxq|qdx

ď
1

λq0´p0
Gλ

0pvλq ď
1

λq0´p0
Gλ

0pωq “
1

λq0´p0

1

λp0

ż

B

QBpx, |λ∇ωpxq|qdx

ď
1

λq0´p0
max

"

Q

Ep0
0

ż

B

|∇ωpxq|
p0dx,

Q

Ep
0

λp´p0

ż

B

|∇ωpxq|
pdx

*

,

(5.7)

where we exploited (A3.ii)-left in the first inequality. Therefore, by passing (5.7)
to the limit, we have

lim
λÑ0`

λq0´p0

ż

A

|∇vλpxq|
q0dx ď

Q

Q
Eq0´p0

0

ż

B

|∇ωpxq|
p0dx.

Therefore, we find that
ş

A
|∇vλpxq|q0dx “ Opλp0´q0q; now, we prove that tvλuλ Ď

Lq0pAq is equibounded. By using the Poincaré inequality [56, Th. 13.19], we have:

||vλ||Lq0 pAq ď ||vλ||Lq0 pΩq ď ||vλ ´ f ||Lq0 pΩq ` ||f ||Lq0 pΩq

ď C||∇vλ ´ ∇f ||Lq0 pΩq ` ||f ||Lq0 pΩq

ď C||∇vλ||Lq0 pΩq ` C||∇f ||Lq0 pΩq ` ||f ||Lq0 pΩq.

(5.8)

The claim is proved because the right hand side is equibounded. Hence, ||vλ||W 1,q0 pAq

is definitively upper bounded.
Moreover, by taking into account (5.5), (5.7), (5.8), that q0 ă p0 ď p, it turns

out that vλ P W 1,q0pΩq and that ||vλ||W 1,q0 pΩq is upper bounded. Therefore, up to a
subsequence, we find that vλ á v0 in W 1,q0pΩq. Moreover, vλ Ñ v0 in W 1,q0pAq and
v0 is constant in A because ∇vλ Ñ 0 in Lq0pAq. We have thus proved convergences
(ii) and (iii).
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The final step is to prove that vλ converges to w0, which is the minimizer for
(5.1). Specifically, we have the following inequalities:

B0pw0
q ď B0pv0q ď lim inf

λÑ0`

1

λp0

ż

B

QBpx, |λ∇vλpxq|qdx ď lim inf
λÑ0`

Gλ
0pvλq

ď lim
λÑ0`

Gλ
0pωq “ B0pωq ă B0pw0

q ` ε,
(5.9)

where in the first inequality we exploited that w0 is the minimizer of B0, in the
second inequality we used the fundamental inequality of Proposition 4.3, in the
third inequality we added the integral term on region A, in the fourth inequality we
exploited that vλ is the minimizer of Gλ

0 , in the equality in the second line we have
taken into account assumption (A4) and the dominated convergence Theorem, and
in the last inequality we have used (5.4).

By the arbitrariness of ε ą 0, this implies that B0pw
0q “ B0pv0q and, hence,

v0 “ w0 due to uniqueness of the solution of minimization problem (5.1). □

Remark 5.2. (5.9) implies the equality in the fundamental inequality (4.10).

5.2. Second case: p0 ă q0. In the whole section we assume p0 ă q0 ď q and
p0 ď p; hence we have the continuous embeddings W 1,qp¨q ãÑ W 1,q0p¨q ãÑ W 1,p0p¨q

and W 1,pp¨q ãÑ W 1,p0p¨q on any bounded set with Lipschitz boundary.
In this case, problem (3.5) particularizes as

min
vPW 1,p0 pΩq

v“f on BΩ

Gλ
0pvq, Gλ

0pvq “
1

λp0

ˆ
ż

B

QBpx, λ|∇vpxq|qdx `

ż

A

QApx, λ|∇vpxq|qdx

˙

,

(5.10)
for any prescribed f P Xp

˛ pBΩq.
In this case, limiting problem (5.2) plays a key role. Specifically, we have the

following Theorem.

Theorem 5.3. Let 1 ă p0 ă q0 ă `8 with p0 ď p and q0 ď q, f P Xp
˛ pBΩq and

vλ be the solution of (5.10). If (A1), (A2), (A3) and (A4) hold, then
vλ á v0B in W 1,p0pBq, as λ Ñ 0`,

where v0B P W 1,p0pBq is the unique solution of (5.2).

Proof. Let us consider a Sobolev extension ṽ0B in W 1,p0pΩq of v0B P W 1,p0pBq and
a function in W 1,ppΩq whose trace on BΩ is f , that we again denote by f . Hence
we observe that ṽ0B ´ f P W 1,p0

0 pΩq.
A density argument [56, Th. 11.35] ensures that there exists tvnunPN Ď C8

c pΩq

such that
vn Ñ ṽ0B ´ f in W 1,p0pΩq, as n Ñ 8.

Consequently, we have

lim
nÑ`8

ż

Ω

|∇vn ´ ∇pṽ0B ´ fq|
p0dx “ 0.
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Therefore, we immediately deduce that f ` vn P W 1,ppΩq and

lim
nÑ`8

ż

B

β0pxq|∇pvn ` fq ´ ∇v0B|
p0dx “ 0.

Hence, this implies that

lim
nÑ`8

B0pvn ` fq “ B0pv0Bq.

Therefore, for any ε ą 0, there exists ω P W 1,ppΩq with Trpωq “ f on BΩ such
that:

B0pωq ă B0pv
0
Bq ` ε. (5.11)

Hence, we have
Q

Ep0
0

ż

B

|∇vλpxq|
p0dx ď

1

λp0

ż

B

QBpx, λ|∇vλpxq|qdx

ď Gλ
0pvλq ď Gλ

0pωq “
1

λp0

ż

B

QBpx, |λ∇ωpxq|qdx

ď max

"

Q

Ep0
0

ż

B

|∇ωpxq|
p0dx,

Q

Ep
0

λp´p0

ż

B

|∇ωpxq|
pdx

*

,

(5.12)

where in the first inequality we used (A3.i)-left, in the second inequality we ex-
ploited the fact that Gλ

0 also contains the integral term over A, in the third in-
equality we used the fact that vλ is the minimizer of Gλ

0 and in the last inequality
we used (A3.i)-right.

Since ||∇vλ||
p0
Lp0 pBq

is definitively upper bounded and vλ “ f on BΩ, then by
the Rellich–Kondrachov’s compactness Theorem [56, Th. 12.18], there exists a
function v0 P W 1,p0pBq such that

vλ á v0 in W 1,p0pBq as λ Ñ 0`. (5.13)

The final step is to prove that v0 is equal to v0B, the solution of the limiting
problem (5.2).

Let δ ą 0 be prescribed, and let Aδ be the δ-Minkowski neighbourhood of A:

Aδ “ tx P Ω : distpx,Aq ă δu.

For any τ such that 0 ă τ ă δ, we denote the mollified function pωqτ “ ρτ ˚ ω,
where ρτ is the canonical mollifier. Then, for any 0 ă τ ă δ, we define

zpxq “

$

’

&

’

%

ω in BzAδ,
distpx,Aδq

δ
ω `

´

1 ´
distpx,Aδq

δ

¯

pωqτ in AδzA,

pωqτ in A.

Let us observe that the mollification of ω in A (in the definition of z) is well-
defined, because A ĂĂ Ω.
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We have the following inequalities:

B0pv
0
Bq ď B0pv0q ď lim inf

λÑ0`
Gλ

0pvλq ď lim
λÑ0`

Gλ
0pzq

ď

ż

BzAδ

β0pxq|∇ωpxq|
p0dx

`
Q

Ep
0

ˆ
ż

AδzA

|∇ωpxq|
p0 ` |∇pωqτ pxq|

p0 `
|ωpxq ´ pωqτ pxq|p0

δp0
dx

˙

`
Q

Eq0
0

lim
λÑ0`

λq0´p0

ż

A

|∇pωqτ pxq|
q0dx

ď B0pωq ` Iδ,τă B0pv
0
Bq ` Iδ,τ ` ε,

(5.14)

where in the first inequality we exploited the fact that v0B is the minimizer of B0,
in the second inequality we used the fundamental inequality stated in Proposition
4.3 (since assumption (A4) holds), in the third inequality we used the fact that vλ
is the minimizer of Gλ

0 , in the fourth inequality we used the dominate convergence
Theorem thanks to assumption (A4), in the fifth equality we exploited the fact
that limλÑ0` λq0´p0 “ 0 for q0 ą p0, and in the sixth inequality we used (5.11).
The symbol Iδ,τ refers to the terms in round brackets.

Since (5.14) holds for any 0 ă τ ă δ, by first letting τ Ñ 0` and then δ Ñ 0`,
we have

lim
δÑ0`

lim
τÑ0`

Iδ,τ “ 2 lim
δÑ0`

ż

AδzA

|∇ωpxq|
p0dx “ 0,

where in the first equality we exploited the uniform convergence of the Sobolev
extension [65, Prop. IV.21] and in the second equality we exploited the fact that
the measure of AδzA is negligible for δ Ñ 0`.

Hence, by the arbitrariness of ε ą 0, the inequality (5.14) implies that B0pv
0
Bq “

B0pv
0q and, therefore, v0B “ v0 thanks to the uniqueness of (5.2). This result

together with (5.13) yields the conclusion. □

Remark 5.4. We observe that (5.14), implies the equality in the fundamental
inequality (4.10).

Let us observe that from (5.14), we find that the fundamental inequality (i.e.
the second inequality in (5.14)), also stated in Proposition 4.3, holds as equality:

B0pv
0
q “ lim inf

λÑ0`
Gλ

0pvλq.

6. The pointwise convergence assumption in the limiting cases

The main aim of this Section is to prove that assumption (A4) for small Dirichlet
data is sharp. Specifically, we provide one example where (A4) does not hold, and
the previous convergence results (Theorems 5.1 and 5.3) do not hold.
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With a similar approach, not reported here for the sake of brevity, it is possible
to prove that even assumption (A4’) is sharp.

We prove this result by providing a Dirichlet energy density for which the ratio
QBpx,Eq{Ep0 does not admit the limit for E Ñ 0`. As before, we first need to
provide two suitable subsequences (see Figure 7 for the geometric interpretation).

Figure 7. The continuous line represents the function describing
the Dirichlet energy density used in the counterexample for small
Dirichlet data.

Lemma 6.1. Let L ą 1, then there exist two sequences

tλ1
nunPN Ó 0` and tλ2

nunPN Ó 0`

such that
Lλ2

n`1 ă λ1
n, Lλ1

n ă λ2
n @n P N,

and a strictly convex function

Ψ : r0,`8rÑ r0,`8r

such that
Ψ|rλ1

n,Lλ
1
nspEq “ 2E2 Ψ|rλ2

n,Lλ
2
nspEq “ 3E2.

Proof. Let us fix λ2
1 ą 0. For each n P N we set the auxiliary function Φ equal to

2E2 in pλ2
n, Lλ

2
nq and equal to E2 in pλ1

n, Lλ
1
nq. In interval pLλ2

n, λ
1
nq the function Φ

is equal to the tangent line to function 2E2 evaluated at Lλ2
n. Point λ1

n is found at
the intersection of this tangent line with function E2. In interval pLλ1

n, λ
2
n`1q the

function Φ is a straight line, continuous at Lλ1
n and tangent to 2E2. Point λ2

n`1 is
found as the abscissa of the tangent point between this straight line and function
2E2. This procedure is applied iteratively from n “ 1. Function Φ is convex and
sequences tλ1

nunPN and tλ2
nunPN are monotonically decreasing to zero.
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Therefore, the measure of intervals where Φ is equal to E2 or equal to 2E2 is
nonvanishing. It is possible to prove that tλ1

nunPN and tλ2
nunPN are two geometric

sequences. Indeed

λ1
n “

1

c2L
λ2
n, λ2

n`1 “
1

c1L
λ1
n, λ1

n`1 “
1

C2L2
λ1
n, λ2

n`1 “
1

C2L2
λ2
n,

where c1 “ 2 `
?
2, c2 “ 1 `

?
2
2

and C is the geometric mean of c1 and c2, that is
C2 “

`

3 ` 2
?
2
˘

.
Finally, we set ΨpEq “ ΦpEq ` E2. Ψ is a strictly convex function. □

The construction of the counterexample in the planar case (n “ 2) for p0 “ 2
and 1 ă q0 ă `8 follows the steps of the previous Section line by line but with the
aim of showing that limλÑ0` Gλ

0pvλq R R, where Gλ
0 is defined in (3.5). Specifically,

the two sequences tλ1
nunPN Ó 0 and tλ2

nunPN Ó 0 satisfy

lim sup
nÑ`8

Gλ1
n

0 pvλ
1
nq ď m1prq ă m2prq ď lim inf

nÑ`8
Gλ2

n
0 pvλ

2
nq.

The Dirichlet energy density defined as QBpx,Eq “ ΨpEq, satisfies all the as-
sumptions except (A4). This energy density is the basis to build a counterexample
proving that (A4) is sharp. Specifically, we consider a 2D case (n “ 2) and p0 “ 2
in the outer region. The growth exponent q0 satisfies condition 1 ă q0 ă 8.

Let r be greater than or equal to 10, and let the outer region Ω be the annulus
centred in the origin with radii 1 and r. This annulus is DrzD1, where Dr and D1

are the disks of radii r and 1, respectively, and centered at the origin. The inner
region is, therefore, D1. We focus on problem (3.5), where the Dirichlet energy
density is defined as

QBpx,Eq “ ΨpEq in DrzD1 ˆ r0,`8r,

QApx,Eq “ Eq0 in D1 ˆ r0,`8r.

Let γ be defined as γ “ 7 ` 12
r2

. We denote x “ px1, x2q P R2 and we consider the
problem

min
vPW 1,qpDrq

v“γx1 on BDr

Gλ
pvq, Gλ

pvq “
1

λ2

ˆ
ż

DrzD1

Ψpλ|∇vpxq|qdx `

ż

D1

λq
|∇vpxq|

qdx

˙

.

(6.1)
Here we prove that limλÑ`8 Gλpvλq does not exist. Specifically, the two se-

quences tλ1
nunPN Ò `8 and tλ2

nunPN Ò `8 of Lemma 6.1 give

lim sup
nÑ`8

Gλ1
npvλ

1
nq ď ℓ1 ă ℓ2 ď lim inf

nÑ`8
Gλ2

npvλ
2
nq. (6.2)

As usual, vλ is the solution of (6.1).
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Let us consider the following problem

min
vPH1pDrzD1q

v“γx1 on BDr
v“const. on BD1

B0pvq, B0pvq “

ż

DrzD1

|∇vpxq|
2dx. (6.3)

The symmetry of the domain and the zero average of the boundary data imply
that the constant appearing in (6.3) on BD1 is zero.

An easy computation reveals that

vDrpxq “
7r2 ` 12

r2 ´ 1

ˆ

1 ´
1

x2
1 ` x2

2

˙

x1 in DrzD1

is the solution of (6.3), that ∆vDr “ 0 in DrzD1, and that we have

7r2 ´ 12

r2 ´ 1

ˆ

1 ´
1

ρ2

˙

ď |∇vDrpxq| ď
7r2 ` 12

r2 ´ 1

ˆ

1 `
1

ρ2

˙

on BDρ, 1 ă ρ ď r.

Consequently, when ρ ě 2, we have

1 ď
3

4

7r2 ´ 12

r2 ´ 1
ď |∇vDrpxq| ď

5

4

7r2 ` 12

r2 ´ 1
ď 10 in DrzD2. (6.4)

Let L be greater than 10, λ1
n Ò `8 and let λ2

n Ò `8 be the two sequences of
Lemma 6.1. It turns out that

λ1
n ď λ1

n|∇vDrpxq| ď Lλ1
n in DrzD2. (6.5)

We have

lim sup
nÑ`8

Gλ1
npvλ

1
nq ď lim sup

nÑ`8

Gλ1
npvDrq

“ lim sup
nÑ`8

1

pλ1
nq2

ż

DrzD2

Ψpλ1
n|∇vDrpxq|qdx ` lim sup

nÑ`8

1

pλ1
nq2

ż

D2zD1

Ψpλ1
n|∇vDrpxq|qdx

ď 2

ż

DrzD2

|∇vDrpxq|
2dx ` 3

ż

D2zD1

|∇vDrpxq|
2dx,

(6.6)

where in the first line we used the minimality of vλ1
n for Gλ1

n and that vDr is an
admissible function for problem (6.1), in the second line we exploited the property
that the gradient of vDr in D1 is vanishing, and in the third line we used (6.5). By
setting ℓ1 equal to (6.6):

ℓ1 :“ 2

ż

DrzD2

|∇vDrpxq|
2dx ` 3

ż

D2zD1

|∇vDrpxq|
2dx,

we have the leftmost inequality in (6.2).
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To obtain the rightmost inequality in (6.2), we consider the following problems

min
vPH1pDrzD1q

v“γx1 on BDr

Hλ
pvq, Hλ

pvq “
1

λ2

ż

DrzD2

Ψpλ|∇vpxq|qdx ` 2

ż

D2zD1

|∇vpxq|
2dx.

(6.7)

min
vPH1pDrzD1q

v“γx1 on BDr

Dpvq, Dpvq “ 3

ż

DrzD2

|∇vpxq|
2dx ` 2

ż

D2zD1

|∇vpxq|
2dx. (6.8)

The unique solution of (6.8) is

wDrpxq “

$

&

%

´

7 ` 12
x2
1`x2

2

¯

x1 in DrzD2

8
´

1 ` 1
x2
1`x2

2

¯

x1 in D2zD1.

Analogously to (6.4), it can be easily proved that

1 ď 4 ď

ˆ

7 ´
12

ρ2

˙

ď |∇wDrpxq| ď

ˆ

7 `
12

ρ2

˙

ď 10 ă L on BDρ, 2 ď ρ ď r.

and hence we choose L ą 10 such that

λ2
n ď λ2

n|∇wDrpxq| ď Lλ2
n in DrzD2. (6.9)

Therefore, we have

Gλ2
npvλ

2
nq ě Hλ2

npwDrq “ DpwDrq, (6.10)

where the inequality comes from the definition of Ψ. The equality follows from the
fact that Hλ2

n coincides with D by (6.9) and the definition of Ψ. Note that wDr is
a local minimizer in W 1,8pDrq XW 1,2pDrq, since Ψ does not depend on x (see [66]
for details). Finally, wDr is a global minimizer thanks to the uniqueness of (6.7).

By setting
ℓ2prq :“ DpwDrq.

we have the rightmost inequality in (6.2) by passing to the limit in (6.10).
At this stage, it only remains to be proved that ℓ1prq ă ℓ2prq. To this purpose,

we notice that:

ℓ1prq “ 2

ż

DrzD2

|∇vDrpxq|
2dx ` 3

ż

D2zD1

|∇vDrpxq|
2dx

ℓ2prq “ 3

ż

DrzD2

|∇wDrpxq|
2dx ` 2

ż

D2zD1

|∇wDrpxq|
2dx.

Condition ℓ1prq ă ℓ2prq holds for large r, by observing that (i) vDr and wDr

solve the same associated Euler-Lagrange equation on D2zD1, (ii) ∇vDrpxq and
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∇wDrpxq are bounded functions on the bounded domain D2zD1 by (6.5) and (6.9),
respectively, and (iii) it turn out that

lim
rÑ`8

ş

DrzD2
|∇vDrpxq|2dx

ş

DrzD2
|∇wDrpxq|2dx

“ 1,

lim
rÑ`8

ż

DrzD2

|∇vDrpxq|
2dx “ lim

rÑ`8

ż

DrzD2

|∇wDrpxq|
2dx “ `8.

7. Forward and Inverse Problems: Applications and Numerical
analysis

Figure 8. Picture of the cross section for typical superconducting
cables. The cable consists in several petals (36 petals for (a), and
18 petals for (b) and (c)). Each petal is made up of many thin SC
wires (19 wires for (a), 37 wires for (b) and 61 for (c)). The picture
is in [67, Fig. 4] and it is courtesy of Instruments-MPDI.

In this Section we propose some applications of the theoretical results of the
previous Sections. The case of study refers to superconducting wires: a major
component in technological applications. After a brief presentation of supercon-
ducting materials, we show the impact of the theoretical results on both the For-
ward Problem, i.e. finding the scalar potential u assigned to the materials and
the boundary data, and the Inverse Problem, i.e retrieving the shape of defects
in the cross section of the wire. Figure 8 shows a typical cross section for a few
superconducting cables.

A type II High Temperature Superconducting (HTS) material [19, 20], in its
superconductive state, is well described by a constitutive relationship given by

EpJq “ E0 pJ{Jcq
n . (7.1)

This constitutive relationship, named E-J Power Law, was proposed by Rhyner
in [68] to properly reflect the nonlinear relationship between the electric field and
the current density in HTS materials.
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An HTS described by an ideal E-J Power Law behaves like a PEC for a “small”
boundary potential, when “immersed” in a linear conductive material. Indeed, its
electrical conductivity is given by

σ “
Jc
E0

ˆ

E

E0

˙
1´n
n

,

and it turns out that σ Ñ `8 as E Ñ 0`.
Typical parameters for Jc and n are given in Table 1. They refer to commercial

products from European Superconductors (EAS-EHTS) and American Supercon-
ductors (AMSC) [69]. The value of E0 is almost independent of the material and
equal to 0.1 mV/m [70].

Type Jc[A/mm2] n
BSCCO EAS 85 17
BSCCO AMSC 135 16
YBCO AMSC 136 28
YBCO SP SF12100 290 30
YBCO SP SCS12050 210 36

Table 1. Typical parameters for Jc and n.

The numerical examples have been developed with an in-house Finite Element
Method (FEM) based on [71]. We consider a standard Bi-2212 round wire. The
geometry of the cable is shown in Figure 9 (left), together with the finite element
mesh used for the numerical computations (see Figure 9 (right)).

The radius Re of this HTS cable is equal to 0.6 mm [72]. The geometry of the
problem is simplified w.r.t. those in Figure 8. Specifically, each “petal” is assumed
to be made up of an individual (solid) superconducting wire, rather than many
thin superconducting wires. The electrical conductivity of the matrix surrounding
the petals is 5.55 ˆ 107 S/m [73]. This electrical conductivity is equal to 95.8%
IACS. As reported in [74], the superconducting material is characterized by a very
high value of critical current Jc. In particular, we assume

Jc “ 8000A/mm2, n “ 27.

7.1. Solution of the forward problem. The replacement of the original prob-
lem with its limiting “version” has a major impact when numerically solving the
Forward Problem, i.e. the computation of the scalar potential u for prescribed
materials and boundary data. Specifically, the solution of the original nonlinear
problem is carried out by an iterative method. At each iteration the solution of a
linear system of equations is required. This linear system of equations is charac-
terized by a sparse matrix and, therefore, its solution is obtained by an iterative
approach. However, the regions corresponding to the nonlinear materials may give
rise to strongly ill-conditioned matrices, posing relevant challenges when solving
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Figure 9. Left: geometry of the cross-section of the superconduct-
ing cable. The solid superconducting material (light grey) in the
linear matrix (white). Right: the finite element mesh used in the
numerical computations.

the related linear system of equations. On the other hand, when it is possible
to replace the original problem with its limiting version, the nonlinear material is
replaced by a PEC and the overall problem is linear.

In the following we compare the solution of the Forward Problem obtained by
simulating the actual (nonlinear) superconducting material and the limiting prob-
lem where the superconducting material is replaced by the PEC.

In all numerical calculations, the applied boundary potential is equal to fpx, yq “

V0x{Re. In this way the parameter V0 represents the maximum value for the
boundary potential.

Figure 10 shows the errors for “small” boundary potential when replacing the
superconducting material with a PEC. The error metrics are equal to the relative
error in the L2´norm (e2) and in the L8´norm (e8). As expected, the PEC
approximation is valid for “small” V0. The accuracy of the approximation is very
high in its domain of validity.

Figure 11 shows the spatial distribution of the electric field E (top) and of the
electric scalar potential u (bottom) for small (V0 “ 10´6V) boundary potential,
in the presence of the actual HTS cable. It is evident from the plot that E is
perpendicular to the HTS regions for small V0. This is in line with the concept
that for small V0 the HTS regions behave like a PEC, where E is orthogonal to
their boundaries.

7.2. Imaging via linear methods. In this Section we provide numerical exam-
ples related to the solution of the inverse problem. We treat the case of p0 “ 2
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Figure 10. Plot of the error for the PEC approximation (“small”
boundary potential).

since the limiting problem, being linear, provides a powerful “bridge” toward well
assessed and mature methods and algorithms developed for linear problems.

From a more general perspective (p0 ‰ 2), the limiting case approach is very
relevant because it brings to the light that, when facing an inverse problem with
nonlinear materials, the canonical problem consists in solving an inverse problem
for the weighted p0´Laplace equation, regardless of the specific nature of the
nonlinearity.

The configuration is that of section 7.1, and it refers to a superconducting cable.
Specifically, the inverse problem consists in retrieving the shape of defects in the
Mg-Al alloy matrix of a superconducting wire, starting from boundary data. This
is a very challenging task because of the nonlinear behaviour of the superconductive
petals, which results in a nonlinear relationship between the applied boundary
voltages and the measured boundary currents.

From a general perspective, the inverse problem can be tackled as follows: (i)
the data are collected on the actual (nonlinear) configuration under small bound-
ary data operations and (ii) the data are processed assuming that the governing
equations are those for the limiting problem that, in this case, is linear.

As mentioned above, this means that the inverse problem of retrieving the po-
sition and shape of anomalies in the Mg-Al matrix can be addressed by means of
the imaging methods developed for linear materials.

7.2.1. The imaging algorithm. The imaging algorithm attempts to estimate a to-
mographic reconstruction of the shape and position of the anomalies in the Mg-Al
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Figure 11. Plot of the electric field E (top) and of the electric
scalar potential u (bottom) for a “small” boundary potential (V0 “

10´6 V).

matrix, starting from boundary data. The boundary data we adopt is the Dirichlet-
to-Neumann (DtN) operator, which maps a prescribed boundary potential into the
corresponding normal component of the electrical current density entering through
BΩ. In other words, the DtN operator gives the voltage-to-current relationship on
the boundary BΩ.
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In a practical setting we can measure a noisy version of a discrete approximation
of the DtN operator, that is a noisy version of the DtN operator restricted to a
finite dimensional linear subspace of applied voltages, as in the case of a finite set
of boundary electrodes. Hereafter, this discrete approximation is referred as G,
the conductivity matrix.

In order to solve the inverse problem we adopt an imaging method based on the
Monotonicity Principle [49], here briefly summarized for the sake of completeness.

Both the DtN operator and its discrete counterpart, the conductances matrix
G, satisfy a Monotonicity Principle (see [75, 49, 15]):

σ1 ď σ2 ùñ G1 ĺ G2, (7.2)

where σ1 ď σ2 is meant a.e. in Ω and G1 ĺ G2 means that G1 ´ G2 is a negative
semi-definite matrix. The Monotonocity Principle states a monotonic relationship
between the pointwise values of the electrical conductivities and the measured
boundary operator.

The targeted problem, that is the imaging of anomalies in the Mg-Al phase of
a superconducting cable, is a two phase problem. One phase corresponds to the
healthy material (the Mg-Al phase plus the PEC which replaces the superconduc-
tor, at small boundary data) while the other phase corresponds to the damaged
region, having an electrical conductivity σI smaller than the electrical conductivity
σBG of the Mg-Al phase. As a consequence, if V1 and V2 are two possible anomalies
well-contained in the Mg-Al phase, and V1 Ď V2, it turns out that σ1 ě σ2 and,
therefore

V1 Ď V2 ùñ GV1 ľ GV2 (7.3)
Equation (7.3) can be translated in terms of an imaging method, as originally

proposed in [49]. Specifically, (7.3) is equivalent to GV1 ń GV2 ùñ V1 Ę V2, which
gives for V1 “ T and V2 “ V

GT ń GV ùñ T Ę V, (7.4)

where V is the domain occupied by the unknown anomaly and T a known domain
occupied by test domain. Equation (7.4) makes it possible to infer whether the
test domain T is not contained in the unknown region occupied by the anomaly
V . By repeating this type of test for several prescribed test anomalies occupying
regions T1, T2, . . ., we get an estimate VU of the unknown anomaly V as:

VU “
ď

kPΘ

Tk, Θ “ tTk |GV ´ GTk
ľ 0u.

In the presence of noise, as is the case in any real-world problem, we adopt a
slightly different strategy (see [76, 77]). Specifically, let G̃V “ GV ` N be the
noisy version of the data, where δ is an upper bound to the 2-norm of the noise
matrix N, i.e. }N}2 ď δ, then the reconstruction is obtained as

ṼU “
ď

kPΘ

Tk, Θ “ tTk | G̃V ´ GTk
` δ I ľ 0u (7.5)
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where I is the identity matrix. Moreover, it has been shown that, under proper
assumptions V Ď ṼU even in the presence of noisy data [77]. With a similar
imaging method it is possible to reconstruct a lower bound ṼL to V . Existence of
upper (ṼU) and lower (ṼL) bounds to the unknown anomaly is an unique feature
of this imaging method.

Finally, the matrices related to test domains Tk are evaluated numerically by
replacing the superconducting petals with perfect electric conductors.

7.2.2. Numerical Results. The reference geometry is that of the superconducting
cable in Figure 9 (left). We apply 16 electrodes at the boundary. The electrodes
are equal and uniformly spaced.

We assume the following noise model

N “ η∆GmaxA

where A is a random matrix belonging to the Gaussian Orthogonal Ensamble
(GOE) (see [78] for details),

∆Gmax “ max
i,j

|pGV qij ´ pGBGqij| ,

GBG is the conductance matrix associated to the healthy superconducting wire,
i.e. without defects, and η is a parameter representing the (relative) noise level.

Hereafter we assume the noise level η equal to 0.01. Figure 12 shows the recon-
structions obtained with this method. The reconstructed defects are represented
in black whereas the red line is the boundary of the real defects. The boundary of
the petals is reported in black, like the electrodes but with a thicker line. These
reconstructions clearly demonstrate the effectiveness of the approach.

The conductance matrix was evaluated by applying boundary voltages of 1mV.

8. Conclusions

This study is a contribution to Inverse Problems in the presence of nonlinear
materials. This subject is still at an early stage of development, as stated in [4].

We focus on Electrical Resistance Tomography where the aim is to retrieve
the electrical conductivity/resistivity of a material by means of stationary (DC)
currents. Our main results consist prove that the original nonlinear problem can be
replaced by a proper weighted p0´Laplace problem, when the prescribed Dirichlet
data is small”. Specifically, we prove that in the presence of two different materials,
where at least one is nonlinear, the scalar potential in the outer region in contact
with the boundary where the Dirichlet data is prescribed, can be computed by
(i) replacing the interior region with either a Perfect Electric Conductor (q0 ă p0)
or a Perfect Electric Insulator (q0 ă p0) and (ii) replacing the original problem
(material) in the outer region with a weighted p0´Laplace problem. The presence
of the “fingerprint” of a weighted p0´Laplace problem can be recognized to some
extent in an arbitrary nonlinear problem. From the perspective of tomography,
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Figure 12. Reconstructions obtained by means of monotonicity
based algorithm for linear materials in the “small” boundary data
regime.
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this is a significant result because it highlights the central role played by the
p0´Laplacian in inverse problems with nonlinear materials. For p0 “ 2, i.e. when
the material in the outer region is linear, these results constitute a powerful bridge
allowing all theoretical results, imaging methods and algorithms developed for
linear materials to be brought into the arena of problems with nonlinear materials.

The fundamental tool to prove the convergence results is the inequality appear-
ing in Proposition 4.3. These results express the asymptotic behaviour of the
Dirichlet energy for the outer region in terms of a factorized p0´Laplacian form.
Moreover, we have proved that our assumptions are sharp, by means of proper
counterexamples.

Finally, we provide a numerical example, referring to a superconducting cable,
as an application of the theoretical results proved in this paper.
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