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Abstract

We analyze the performance of a variant of Newton method with quadratic regulariza-
tion for solving composite convex minimization problems. At each step of our method, we
choose regularization parameter proportional to a certain power of the gradient norm at
the current point. We introduce a family of problem classes characterized by Hölder con-
tinuity of either the second or third derivative. Then we present the method with a simple
adaptive search procedure allowing an automatic adjustment to the problem class with
the best global complexity bounds, without knowing specific parameters of the problem.
In particular, for the class of functions with Lipschitz continuous third derivative, we get
the global O(1/k3) rate, which was previously attributed to third-order tensor methods.
When the objective function is uniformly convex, we justify an automatic acceleration of
our scheme, resulting in a faster global rate and local superlinear convergence. The switch-
ing between the different rates (sublinear, linear, and superlinear) is automatic. Again,
for that, no a priori knowledge of parameters is needed.
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1 Introduction
Motivation. Newton’s method is one of the most important tools in Numerical Analysis and
Continuous Optimization. It has a reputation for being a powerful algorithm, especially due to
its ability to solve ill-conditioned problems. The method has a local quadratic convergence, thus
converging extremely fast in a neighbourhood of the solution [25]. However, the global behaviour
of Newton’s method has been remaining an active area of research for several decades.

It is widely known that the classical Newton method with a unit stepsize may not converge
globally, even if the problem is strongly convex (see, e.g., Example 1.4.3 in [10]). Consequently,
there were many techniques developed for the method to improve its global behaviour, includ-
ing damped Newton steps combined with line search strategies [25, 41], Levenberg-Marquardt
regularization [28, 30], and trust-region approach [19, 9]. (See also [42] for an extensive histori-
cal overview.) However, it was still difficult to establish global complexity guarantees that are
provably better than that of the Gradient Methods.

A major shift in the paradigm has been made after the work [40], where cubic regularization of
Newton’s method (CNM) with its global convergence guarantees was developed. The main idea
was to start with a particular problem class, the functions with Lipschitz continuous Hessian,
which naturally leads to a globally convergent second-order scheme. The subproblem becomes
the minimization of a quadratic model of the function augmented by the third power of Euclidean
norm. While each iteration of the method requires solving a univariate nonlinear equation, the
arithmetical cost of such an operation remains of the same order as for the standard Newton
step.

Later on, adaptive [6, 7] and universal [20, 14] second-order methods based on cubic regu-
larization with an adjustment of the Lipschitz constant were developed. In [20], it was shown
that the adaptive search makes the CNM work properly on functions with Hölder continuous
Hessian, automatically achieving the correct global complexity, and in [14] the universality of
CNM was studied on uniformly convex functions.

A parallel line of work was done for the Newton method with quadratic regularization.
In [43], the author proposed to use the gradient norm as a regularization coefficient, which
preserves the local quadratic convergence of the Newton iterations. However, to ensure a global
rate, it was needed to use some damped steps, which make the convergence slower than that of
CNM. The idea to approximate the cubic step by a quadratic regularization probably appeared
for the first time in [45], still having a worse rate. Eventually, it was first proven in [31], and
independently rediscovered in [12], that the use of square root of the gradient norm as the
regularization coefficient provides the method with the fast global rate of CNM, while each
iteration requires now just one standard matrix inversion.

Another emerging trend in Optimization has been to use higher-order Taylor’s model of
the objective, which potentially would result in even more powerful methods, called Tensor
Methods ([2, 4, 35, 22, 17, 8]). The price for such an advancement is clear: the subproblem,
which is a minimization of the high-order polynomials, becomes more and more difficult. A
valuable observation was made in [35], showing that the regularized Taylor polynomial of a
convex function is convex, which makes the subproblem solvable. An efficient procedure for
computing the third-order tensor step was also proposed there. Following this direction, and
utilizing the fact that the third derivative of a convex function is weak, there were developed
efficient third-order type schemes which use only the second-order information [37, 24, 38].
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In this paper, we develop a surprisingly simple but very powerful regularization strategy for
Newton’s method, that provides the method with provably fast and universal global convergence
rates.

The main idea behind our algorithm is to regularize the second-order model of the objective
by the square of Euclidean norm, with regularization coefficient proportional to a certain power
of the gradient norm. In the simplest case of unconstrained minimization minx∈Rn f(x), one
iteration of our method is as follows:

λk = Hk‖∇f(xk)‖α, xk+1 = xk −
(
∇2f(xk) + λkI

)−1
∇f(xk), k ≥ 0,

where ∇f(xk) is the current gradient, ∇2f(xk) is the current Hessian, and I is the identity
matrix. In this scheme, the power α can be fixed arbitrarily from the range [2

3 , 1]. At the same
time, the regularization constant Hk is adjusted automatically by a standard backtracking
procedure, based on the following stopping criterion:

〈∇f(xk+1), xk − xk+1〉 ≥ 1
4λk
‖∇f(xk+1)‖2.

Thus, at each iteration, the method needs to compute the Hessian once, and the average number
of the search steps is only two. The algorithm uses matrix inversion as the basic subroutine,
which can be implemented either with Linear Algebra tools, or by using a gradient-type solver
in the large-scale setting.

We show that our strategy works for a wide range of problem classes, characterized by
Hölder continuity of either the third or second derivative. The algorithm itself does not need to
know any parameters of the problem class. Therefore, our method automatically achieves the
rates of convergence of the Gradient Method, Cubic Newton, and third-order Tensor Methods
on the corresponding problem classes. Moreover, when the objective is strictly convex, our
new algorithm makes sure to get an acceleration, automatically switching between superlinear,
linear, and superlinear rates. We attribute the name Super-Universal to a method possessing
all these features.

1.1 Contributions
We present our theory gradually starting with basic results and eventually leading to Super-
Universal Method. We start with Section 2, where we introduce the composite optimization
problem and discuss properties of the regularized Newton method.

In Section 3, we present a family of problem classes characterized by Hölder continuity of
the second and third derivatives of the smooth part of the objective. We provide a univariate
parametrization 2 ≤ q ≤ 4 of these classes, introducing the corresponding smoothness parameter
Mq. The particular cases include Lipschitz continuity of the third derivative (q = 4), Lipschitz
continuity of the Hessian (q = 3), and bounded variation (or boundedness) of the Hessian
(q = 2).

Section 4 contains our main tool, that is the choice of regularization coefficient proportional
to a certain power of the gradient norm. We prove several inequalities leading to the global and
local convergence of the basic steps, which lead to a simple iterative scheme given in Algorithm 1.
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Table 1: A conceptual comparison of our method to basic deterministic algorithms. Since
accelerated methods work on the same problem classes, we do not include them here. For the
convergence rates of our method on convex functions, see Corollary 2.

Method Easy
implementation

Local superlinear
convergence

Global convergence References
Lip. grad. Lip. Hess. Lip. 3rd der.

Gradient Method 3 7 3 7 7 [34]
Classical Newton 3 3 7 7 7 [34]

Universal Cubic Newton 7 3 3 3 7 [40, 20]
Universal 3rd-order

Tensor Method 7 3 7 3 3 [22, 13]

Super-Universal Newton 3 3 3 3 3 Ours

In Section 5, we develop Super-Universal Newton Method (Algorithm 2) with an adaptive
search procedure based on a new stopping criterion. Our method does not need to know any
parameters of the objective, and achieves a universal global complexity for all our problem
classes. For general convex case, the convergence rate is O(k1−q) in terms of the functional
residual, where k is the iteration counter.

In Section 6, we study the global and local convergence of our method on subclasses of
strictly convex functions. We introduce a new characteristic of optimization problems called
s-relative size Ds (s ≥ 2). Our definitions clarify the standard notion of uniform convexity and
allow continuous change in the convexity degree. For s = 2, our assumption implies strong
convexity, and for s =∞ it means that the initial level set is bounded with diameter D ≡ D∞.
We show that our method achieves automatically improved rates on these subclasses.

The following table provides a summary of the global complexity guarantees. We are in-
terested in the number of iterations to reach ε accuracy in terms of the functional residual
(presenting only the main terms and omitting absolute constants).

Table 2: Global Complexity of Super-Universal Newton Method (Algorithm 2). If s = 2, it means the
objective is strongly convex, and we have superlinear convergence. VF denotes the size of the initial
level set measured by symmetrized Bregman divergence, defined by (40).

2 ≤ s < q s = q q < s <∞ s =∞

(
Mq

DssD
q−s

VF

) 1
q−1 + ln ln 1

ε

(
Mq

Dqq
VF

) 1
q−1 ln 1

ε

(
Mq

Dqs
(V qF εs−q)1/s

) 1
q−1

(
Mq

Dq

ε

) 1
q−1

Qualitatively, the rates are split into two regions with a switching line in the rate of con-
vergence given by the case s = q. For 2 ≤ s ≤ q, the complexity depends on target accuracy
ε only logarithmically. When s < q, the method has a superlinear convergence, and the case
s = q gives us the global linear rate. For s > q, the dependence on accuracy is polynomial,
which corresponds to sublinear rates. The whole picture becomes two-dimensional taking into
account the range for the degree of smoothness: 2 ≤ q ≤ 4 (see Figure 1).
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Figure 1: Global Convergence Diagram for Super-Universal Newton Method (Algorithm 2).

Note that our new algorithm provides us with the worst-case complexity bounds for all known
problem classes with computable second derivative supported till now by different first-, second-
and third-order schemes. Moreover, our Super-Universal Newton Method seems to eliminate
the need of using non-accelerated third-order Tensor Methods in Convex Optimization.

Finally, we present our numerical experiments in Section 7, and provide a discussion on
possible future developments in Section 8.

1.2 Notation
In what follows, we denote by E a finite dimensional real vector space, and by E∗ its dual, which
is the space of linear functions on E. The value of function s ∈ E∗ on vector x ∈ E is denoted
by 〈s, x〉.

Let us fix a self-adjoint positive-definite linear operator B : E→ E∗ (notation B = B∗ � 0),
and use it to define the Euclidean norm for the primal space:

‖x‖ def= 〈Bx, x〉1/2, x ∈ E.

Then, in the dual space we apply the induced norm:

‖s‖∗
def= max

h∈E : ‖h‖≤1
〈s, h〉 = 〈s, B−1s〉1/2, s ∈ E∗.

For convex function f(·), we use notation ∂f(x) for its subdifferential at point x ∈ dom f . If
f : dom f → R is several times differentiable, we denote its gradient by ∇f(x) and its Hessian
by ∇2f(x). Note that

∇f(x) ∈ E∗, ∇2f(x)h ∈ E∗, x ∈ dom f ⊆ E, h ∈ E.

Along a fixed direction h ∈ E, we use the following notation for the second directional derivative:

∇2f(x)[h]2 def= 〈∇2f(x)h, h〉 ∈ R, h ∈ E.
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The third derivative, which is a trilinear symmetric form, is denoted by ∇3f(x). Thus,

∇3f(x)[h1, h2, h3] ∈ R, h1, h2, h3 ∈ E.

When h = h1 = h2 = h3, we use a shorthand: ∇3f(x)[h]3 def= ∇3f(x)[h, h, h].
For symmetric multilinear forms, we define the induced norms in the standard way. For

example,

‖∇2f(x)‖ def= max
h1,h2∈E

‖h1‖≤1,‖h2‖≤1

〈∇2f(x)h1, h2〉 = max
h∈E : ‖h‖≤1

‖∇2f(x)h‖∗,

and
‖∇3f(x)‖ def= max

h1,h2,h3∈E
‖hi‖≤1,∀i

∇3f(x)[h1, h2, h3] = max
h∈E : ‖h‖≤1

|∇3f(x)[h]3|,

where the last equation is proved in Appendix 1 of [39].

1.3 Overview of the Main Ideas
Before we proceed to formal proofs and detailed explanation of the main results, let us first
sketch them here to provide a high-level intuition. For simplicity, we start with a discussion on
how to solve the problem minx f(x) without any nonsmooth components.

Removing Third Derivatives. An early observation was made in [35] that a third-order
Tensor Method can be implemented using second-order oracle calls with an auxiliary procedure
that computes the action ∇3f(x)[h]2 of the tensor of the third derivative to an arbitary vector h.
This is in a way similar to how second-order Newton method can be implemented by running a
first-order method on a quadratic subproblem. Where the similarity disappears, however, is that
third-order subproblem requires only near-constant number of inner iterations, independently
of any other function properties.

This observation was also used in [37] to design inexact third-order methods that rely solely
on second-order oracle, approximating the action of the third derivative by a finite difference.
Following upon these results, we find it natural to ask: Is it possible to skip formulating third-
order subproblems and show instead that a simple second-order method is sufficient to achieve
faster convergence?

It turns out that the answer is positive. The first step is to notice that, as stated in Lemma 3
in [35], when the third derivative of a convex function is Lipschitz continuous (with constant
M4 > 0), one can show that its impact is always bounded as follows:

∇3f(x)[h]3 ≤ 1
τ
∇2f(x)[h]2 + τ

2M4‖h‖4 for any τ > 0 and x, h ∈ E.

In other words, the third-order term is fully controlled by a combination of second-order and
fourth-order terms. We can immediately plug this in the global upper bound on function,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ 1
2∇

2f(x)[y − x]2 + 1
6∇

3f(x)[y − x]3︸ ︷︷ ︸
Taylor approximation of f(y)

+ 1
24M4‖y − x‖4,
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which holds for any x, y,∈ E, and get

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
(

1
2 + 1

6τ

)
∇2f(x)[y − x]2 + 1+2τ

24 M4‖y − x‖4. (1)

Optimizing this upper bound exactly would give a Newton-type iteration, but it still has two
disadvantages. Firstly, the coefficient in front of the Hessian is not 1

2 . At the same time, the
factor 1

2 is the best from the local perspective since it is responsible for the local superlinear
convergence of the method. Secondly, the last term in the upper bound makes it polynomial of
degree four and gives us a subproblem which is not trivially to solve. In our work, we provide
a solution to both of these challenges by showing that we do not actually need to minimize
the upper bound exactly. Instead, we prove that a regularized Newton iteration is sufficient to
decrease the functional values despite not being an exact minimizer of this upper bound.

Gradient Regularization. Our idea to simplify the upper bound in (1) stems from the prior
results on simplifying the Cubic Newton iteration. In CNM, each iteration is obtained by solving

argmin
x

{
〈∇f(xk), x− xk〉+ 1

2∇
2f(xk)[x− xk]2 + M3

6 ‖x− xk‖
3
}

(Cubic Newton Step)

with some constant M3 > 0. Because of the cubic term, this equation has no closed-form
solution. At the same time, it was shown in [31] and later in [12] that if we replace the cubic
regularization by a quadratic with an appropriately chosen coefficient, the method would still
converge with the same rate. In particular, if we set λk =

√
M3
3 ‖∇f(xk)‖∗ and produce the

iterates by solving

argmin
x

{
〈∇f(xk), x− xk〉+ 1

2∇
2f(xk)[x− xk]2 + λk

2 ‖x− xk‖
2
}

(Regularized Newton Step)

then the rate of convergence remains the same as for CNM. Conceptually, there is little difference
between cubic and quartic regularization as it appears in (1). Therefore, we can apply the same
ideas and replace the fourth power by the second again. A simple derivation shows that to
lift the quartic regularization to the quadratic one, we need to use λk = Hk‖∇f(xk)‖

2
3∗ with

a sufficiently large constant Hk > 0. An immediate drawback is that this approach requires
knowing the problem class to choose the power of the gradient norm in the expression for λk.
Indeed, we have to choose whether to use λk ∝ ‖∇f(xk)‖

1
2∗ or λk ∝ ‖∇f(xk)‖

2
3∗ , and this choice

is not trivial, since our objective can belong to several problem classes simultaneously. Thus,
we must ask: Is it possible to design a method that would not require to know the parameters
of the problem?

Super Universality. As we have stated, regularized Newton is applicable to several problem
classes at the same time, but it requires different strategies for choosing λk.

In prior works, however, it was shown that one regularization strategy can sometimes work
properly for different problem classes. In particular, [20] and [14] studied CNM for functions
whose Hessian is Hölder continuous, and the method does not need to know the Hölder param-
eter. One of our goals, therefore, is to make our Newton method adaptive not just to the class
of functions based on whether it is second or third derivative that is Lipschitz continuous, but
also to the Hölder constant within each of the classes.

7



By working in this direction, we managed to obtain a universal regularization rule that works
across all considered function classes. It turned out that we can use λk = Hk‖∇f(xk)‖α∗ with
any α ∈ [2

3 , 1] fixed in advance, without even knowing what properties the minimized function
has. Parameter Hk is adjusted automatically by a standard adaptive procedure. This approach
makes our Newton method much more universal than any other prior regularization techniques,
as for solving unconstrained convex minimization problems.

Composite Optimization. Finally, it is important in many applications to support addi-
tional nonsmooth components, such as constraints or `1-regularization. This corresponds to
minimizing f(x) + ψ(x), where ψ(x) is a nonsmooth function. In first-order optimization, one
can use so-called proximal operator that may even have a closed-form solution. In second-order
optimization, the subproblem becomes more difficult, which requires minimization of quadratic
function with the extra component ψ. Thus, for the complex ψ, we can no longer solve the
iteration as a simple linear system. However, we can use first-order gradient-based solvers for
computing an inexact iteration. The composite formulation covers more applications, and we
still do not have to worry about which problem class function f belongs to. This extension
is more straightforward than the other steps as it has been already considered for regularized
Newton method in [12].

2 Regularized Newton Step
Consider the following composite optimization problem:

min
x∈domψ

{
F (x) = f(x) + ψ(x)

}
. (2)

where function f(·) is convex and several times differentiable, and ψ : E → R ∪ {+∞} is a
proper closed convex function with domψ ⊆ E. For some λ > 0, consider the step of a variant
of Newton method with quadratic regularization:

Tλ(x) def= argmin
y

{
〈∇f(x), y − x〉+ 1

2∇
2f(x)[y − x]2 + λ

2‖y − x‖
2 + ψ(y)

}
,

If the composite part is absent (ψ(y) ≡ 0), this step can be rewritten in an explicit form:

Tλ(x) = x−
(
∇2f(x) + λB

)−1
∇f(x),

which is often called the Levenberg-Marquardt regularization [28, 30]. In the presence of ψ(·),
the point T = Tλ(x) satisfies the following stationary condition:

〈∇f(x) +∇2f(x)(T − x) + λB(T − x), y − T 〉+ ψ(y) ≥ ψ(T ), (3)

for any y ∈ domψ. In other words,

ψ′(T ) def= −∇f(x)−∇2f(x)(T − x)− λB(T − x) ∈ ∂ψ(T ), (4)

and therefore,
F ′(T ) def= ∇f(T ) + ψ′(T ) ∈ ∂F (T ). (5)

8



Algorithm 1 Gradient Regularization of Newton Method
Input: x0 ∈ domψ, ψ′(x0) ∈ ∂ψ(x0), q ∈ [2, 4], Mq > 0

1: for k = 0, 1, . . . do
2: gk = ‖∇f(xk) + ψ′(xk)‖∗
3: λk = (6Mqg

q−2
k )

1
q−1

4: xk+1 = argmin
x

{
〈∇f(xk), x− xk〉+ 1

2∇
2f(xk)[x− xk]2 + λk

2 ‖x− xk‖
2 + ψ(x)

}
5: ψ′(xk+1) def= −∇f(xk)−∇2f(xk)(xk+1 − xk)− λkB(xk+1 − xk)

We also denote r def= ‖T − x‖.
Let us derive some inequalities for one step of the method. Let µ ≥ 0 be a uniform bound

for the minimal eigenvalue of the Hessian: ∇2f(x) � µB, ∀x ∈ domψ. Note that, for any
s ∈ ∂ψ(x), it holds

〈∇2f(x)(T − x), T − x〉 (4)= 〈∇f(x) + ψ′(T ), x− T 〉 − λr2

≤ 〈∇f(x) + s, x− T 〉 − λr2

≤ r‖∇f(x) + s‖∗ − λr2.

(6)

Therefore, we obtain the following inequality.

Lemma 1 For any s ∈ ∂ψ(x), it holds

r ≤ 1
λ+µ‖∇f(x) + s‖∗. (7)

Proof:
Indeed, by bounding the Hessian in (6) from below, we get

µr2 ≤ r‖∇f(x) + s‖∗ − λr2. 2

By maximizing the right hand side of (6) in r, we get the following bound.

Lemma 2 For any s ∈ ∂ψ(x), it holds

〈∇2f(x)(T − x), T − x〉 ≤ ‖∇f(x)+s‖2
∗

4λ . (8)

3 Problem Classes
For the differentiable part of our objective function, let us introduce some smoothness character-
istics. Namely, let us assume that either its Hessian or its third derivative is Hölder continuous.
For that, let us define the following family of constants:

Lp,ν
def= sup

x,y∈E
x 6=y

{
‖∇pf(x)−∇pf(y)‖

‖x−y‖ν

}
,

9



where p = 2 or p = 3 and ν ∈ [0, 1]. Since

lnLp,ν = sup
x,y∈E
x 6=y

{
ln ‖∇pf(x)−∇pf(y)‖ − ν ln ‖x− y‖

}
,

we see that Lp,ν is a log-convex function of ν. Therefore, for any 0 ≤ ν1 ≤ ν2 ≤ 1, we have

Lp,ν ≤
[
Lp,ν1

] ν2−ν
ν2−ν1

[
Lp,ν2

] ν−ν1
ν2−ν1 , ∀ν ∈ [ν1, ν2].

In particular, if Lp,0 and Lp,1 are finite, we conclude that all intermediate Hölder constants also
exist and

Lp,ν ≤ L1−ν
p,0 L

ν
p,1, ∀ν ∈ [0, 1]. (9)

By the triangle inequality, ‖∇3f(x) − ∇3f(y)‖ ≤ ‖∇3f(x)‖ + ‖∇3f(y)‖. Thus, for the
extreme values of parameters, we have

L3,0 ≤ 2L2,1. (10)

Let us consider the following example, which shows that L2,1 and L3,0 can be different.

Example 1 Let f(x) = 1
2x

2 + 1
6 |x|

3 : R→ R. Then,

f ′(x) = x+ 1
2 |x|x, f ′′(x) = 1 + |x|,

and for all x ∈ R \ {0}, we have f ′′′(x) = sign (x). Therefore,

|f ′′(x)− f ′′(y)| =
∣∣∣|x| − |y|∣∣∣ ≤ |x− y|

and
|f ′′′(x)− f ′′′(y)| =

∣∣∣sign (x)− sign (y)
∣∣∣ ≤ 2.

Hence, L2,1 = 1 and L3,0 = 2. 2

We have the following useful bound for the right-hand side of (10).

Lemma 3 For any γ, ν ∈ [0, 1], it holds:

L2,1 ≤ 2+ν
1+ν

[
L2,γ

] ν
1+ν−γ

[
L3,ν

] 1−γ
1+ν−γ . (11)

In particular, for γ = 0 and ν = 1, we get

L2,1 ≤ 3
2

√
L2,0L3,1. (12)

Proof:
Indeed, we assume that the third derivative is Hölder continuous of degree ν with constant
L3,ν < +∞. Hence, for all x, y ∈ E, we have

‖∇2f(y)−∇2f(x)−∇3f(x)[y − x]‖ ≤ L3,ν
1+ν ‖y − x‖

1+ν .

10



By triangle inequality,

‖∇3f(x)[y − x]‖ ≤ ‖∇2f(x)−∇2f(y)‖+ L3,ν
1+ν ‖y − x‖

1+ν

≤ L2,γ‖y − x‖γ + L3,ν
1+ν ‖y − x‖

1+ν .

Let us take y := x+ τh, where ‖h‖ = 1 and τ > 0. Then,

‖∇3f(x)‖ ≤ L2,γ
τ1−γ + L3,ν

1+ν τ
ν , ∀τ > 0.

It remains to substitute τ :=
[
L2,γ
L3,ν

] 1
1+ν−γ

, which balances both terms. 2

We see that parameters of our problem classes for different p ∈ {2, 3} and ν ∈ [0, 1] are
related to each other. It is convenient to have for them a univariate parametrization. Let us
define a family of constants Mq ∈ R ∪ {+∞} with 2 ≤ q ≤ 4 as follows:

M2+ν
def= L2,ν , ν ∈ [0, 1),

M3+ν
def= L3,ν , ν ∈ [0, 1].

Note that by combining (9),(10), and (12), we obtain

Mq ≤ 3
[
M2

] 4−q
2
[
M4

] q−2
2 , ∀q ∈ [2, 4]. (13)

Hence, if M2 < +∞ and M4 < +∞, then the whole family is bounded. Clearly, it can be
discontinuous at q = 3 (see Example 1).

Our main assumption is as follows.
Assumption 1 The value Mq is finite for at least one q ∈ [2, 4]:

inf
2≤q≤4

Mq < +∞. (14)

Note that M2 ≤ supx ‖∇2f(x)‖. Thus, we cover even the standard class for the first-order
methods.

It appears that the global complexity of the regularized Newton method depends on the
values Mq, 2 ≤ q ≤ 4, in a very natural and universal way. At the same time, it is important
that our super-universal algorithm, presented in Section 5, does not need explicit values of these
constants.

4 Gradient Regularization
At each step of our method, we are going to use the following choice of the regularization
parameter:

λ := Hgα (15)

where H > 0 and α ∈ [0, 1] are some constants, and g := ‖∇f(x) + s‖∗ for some s ∈ ∂ψ(x). Let
us investigate some properties of this choice, taking into account our smoothness condition (14).
We start with the case 2 ≤ q < 3 (Hölder continuity of the Hessian).
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Theorem 1 Let g = ‖∇f(x) + s‖∗ > 0. Assume that for some q, 2 ≤ q < 3, with Mq < +∞,
our parameters satisfy the following conditions:

q−2
q−1 ≤ α ≤ 1, (16)

and
H ≥

(
1
q−1Mq

) 1
q−1
(

1
g

)α− q−2
q−1
. (17)

Then,
〈F ′(T ), x− T 〉 ≥ 1

2λ‖F
′(T )‖2

∗. (18)

Proof:
Condition Mq < +∞ implies that the Hessian is Hölder continuous of degree ν = q − 2 with
constant L2,ν . Thus, we have the following bound for the gradient,

L2,νr1+ν

1+ν ≥ ‖∇f(T )−∇f(x)−∇2f(x)(T − x)‖∗

(4)= ‖F ′(T ) + λB(T − x)‖∗.

Squaring both sides of this inequality, we get(
L2,νr1+ν

1+ν

)2
≥ ‖F ′(T )‖2

∗ + λ2r2 + 2λ〈F ′(T ), T − x〉.

This means that

〈F ′(T ), x− T 〉 ≥ 1
2λ‖F

′(T )‖2
∗ + λr2

2 −
1

2λ

(
L2,νr1+ν

1+ν

)2
.

Hence, for proving (18), it is enough to justify the following relation:

λr2

2 ≥ L2
2,νr

2(1+ν)

2λ(1+ν)2 ⇔ λ ≥ 1
1+νL2,νr

ν .

In view of (7), it is ensured by inequality

λ ≥ 1
1+νL2,ν

(
g
λ

)ν
,

which is equivalent to

λ = Hgα ≥
(

1
1+νL2,νg

ν

) 1
1+ν

⇔

H ≥
(

1
1+νL2,ν

) 1
1+ν ·

(
1
g

)α− ν
1+ν

=
(

1
q−1Mq

) 1
q−1 ·

(
1
g

)α− q−2
q−1
. 2

Now, let us analyze the case 3 ≤ q ≤ 4. This is Hölder continuity of the third derivative with
parameter ν = q − 3. Firstly, let us bound the third derivative of f(·) along direction T − x.

Lemma 4 For any ν ∈ [0, 1] and s ∈ ∂ψ(x), we have

‖∇3f(x)[T − x]2‖∗ ≤ 2
(

1
1+νL3,νr

2
) 1

1+ν
(
‖∇f(x)+s‖2

∗
4λ

) ν
1+ν
. (19)
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Proof:
By convexity of f(·) and Hölder continuity of the third derivative, for all x, y, h ∈ E, we have

0 ≤ ∇2f(y)[h]2 ≤ ∇2f(x)[h]2 + 〈∇3f(x)[h]2, y − x〉+ L3,ν‖y−x‖1+ν

1+ν ‖h‖2.

Taking y = x+ τu, for u ∈ E with ‖u‖ = 1 and arbitrary τ > 0, we get

‖∇3f(x)[h]2‖∗ ≤ 1
τ
∇2f(x)[h]2 + τνL3,ν

1+ν ‖h‖
2.

For τ :=
(

(1+ν)∇2f(x)[h]2
L3,ν‖h‖2

) 1
1+ν

, this gives

‖∇3f(x)[h]2‖∗ ≤ 2
(

1
1+νL3,ν‖h‖2

) 1
1+ν
(
∇2f(x)[h]2

) ν
1+ν
.

Choosing h := T − x , we get the desired inequality by (8). 2

Let us prove now a lower bound for the progress in one iteration.

Theorem 2 Let g = ‖∇f(x) + s‖∗ > 0. Assume that for some q, 3 ≤ q ≤ 4, with Mq < +∞,
our parameters satisfy the following conditions:

q−2
q−1 ≤ α ≤ 1, (20)

and
H ≥

(
6q−2

4q−3(q−2)Mq

) 1
q−1
(

1
g

)α− q−2
q−1
. (21)

Then,
〈F ′(T ), x− T 〉 ≥ 1

4λ‖F
′(T )‖2

∗. (22)

Proof:
Condition Mq < +∞ implies that the third derivative is Hölder continuous of degree ν = q − 3
with constant L3,ν . Hence,

L3,νr2+ν

(1+ν)(2+ν) ≥ ‖∇f(T )−∇f(x)−∇2f(x)(T − x)− 1
2∇

3f(x)[T − x]2‖∗

(4)= ‖F ′(T ) + λB(T − x)− 1
2∇

3f(x)[T − x]2‖∗.

Squaring both sides of this inequality, we get(
L3,νr2+ν

(1+ν)(2+ν)

)2
≥ ‖F ′(T )‖2

∗ + λ2r2 + 1
4‖∇

3f(x)[T − x]2‖2
∗

+ 2λ〈F ′(T ), T − x〉 − 〈∇3f(x)[T − x]2, B−1F ′(T )〉

− λ〈∇3f(x)[T − x]2, T − x〉

≥ 1
2‖F

′(T )‖2
∗ + λ2r2 − 1

4‖∇
3f(x)[T − x]2‖2

∗

+ 2λ〈F ′(T ), T − x〉 − λr‖∇3f(x)[T − x]2‖∗,
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where we applied Cauchy-Schwartz and Young’s inequalities in the last bound. Then, rearrang-
ing the terms and using Lemma 4, we have

〈F ′(T ), x− T 〉 ≥ 1
4λ‖F

′(T )‖2
∗ + λr2

2 −
1

8λ‖∇
3f(x)[T − x]2‖2

∗

− r
2‖∇

3f(x)[T − x]2‖∗ − 1
2λ

(
L3,νr2+ν

(1+ν)(2+ν)

)2

(19)
≥ 1

4λ‖F
′(T )‖2

∗ + λr2

2 −
1

2λ

(
L3,νr2

1+ν

) 2
1+ν
(
g2

4λ

) 2ν
1+ν

− r
(
L3,νr2

1+ν

) 1
1+ν
(
g2

4λ

) ν
1+ν
− 1

2λ

(
L3,νr2+ν

(1+ν)(2+ν)

)2
.

Let us divide the term λr2

2 into three equal parts. Then we need to ensure validity of three
inequalities.

1. λr2

6 ≥
1

2λ

(
L3,νr2

1+ν

) 2
1+ν
(
g2

4λ

) 2ν
1+ν

⇔ λ ≥ 3
λ

(
L3,ν
1+ν

) 2
1+ν
(
g2

4λ

) 2ν
1+ν
r

2(1−ν)
1+ν .

In view of (7), a sufficient condition is

λ ≥ 3
λ

(
L3,ν
1+ν

) 2
1+ν
(
g2

4λ

) 2ν
1+ν
(
g
λ

) 2(1−ν)
1+ν

,

which is equivalent to H = λ
gα
≥

(
3(1+ν)/2L3,ν

4ν(1+ν)

) 1
2+ν
(

1
g

)α− 1+ν
2+ν
.

2. λr2

6 ≥ r
(
L3,νr2

1+ν

) 1
1+ν
(
g2

4λ

) ν
1+ν

⇔ λ ≥ 6
(

L3,ν
(1+ν)

) 1
1+ν
(
g2

4λ

) ν
1+ν
r

1−ν
1+ν .

In view of (7), a sufficient condition is

λ ≥ 6
(

L3,ν
(1+ν)

) 1
1+ν
(
g2

4λ

) ν
1+ν
(
g
λ

) 1−ν
1+ν
,

which is equivalent to H = λ
gα
≥

(
61+νL3,ν
4ν(1+ν)

) 1
2+ν
(

1
g

)α− 1+ν
2+ν
.

3. λ ≥ 3
λ

(
L3,ν

(1+ν)(2+ν)

)2
r2(1+ν). Hence, due to (7), a sufficient condition is

λ ≥ 3
λ

(
L3,ν

(1+ν)(2+ν)

)2(
g
λ

)2(1+ν)
,

which is equivalent to H = λ
gα
≥

(
31/2L3,ν

(1+ν)(2+ν)

) 1
2+ν
(

1
g

)α− 1+ν
2+ν
.

We see that in all three cases, the lower bounds for H are very similar. Thus, it is sufficient to
choose one with the maximal absolute constant. This is

H ≥
(

61+νL3,ν
4ν(1+ν)

) 1
2+ν
(

1
g

)α− 1+ν
2+ν

=
(

6q−2

4q−3(q−2)Mq

) 1
q−1
(

1
g

)α− q−2
q−1
. 2
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Corollary 1 Let g = ‖∇f(x) + s‖∗ > 0 and Mq < +∞ for some q ∈ [2, 4]. Then, for
q−2
q−1 ≤ α ≤ 1, and H ≥

(
6Mq

) 1
q−1
(

1
g

)α− q−2
q−1
, it holds

〈F ′(T ), x− T 〉 ≥ 1
4λ‖F

′(T )‖2
∗. (23)

Proof:
Indeed, for 2 ≤ q ≤ 3, we have 1

q−1 ≤ 6, and for 3 ≤ q ≤ 4, we also have 6q−2

4q−3(q−2) ≤ 6. 2

Remark 1 Note that inequality (23) implies

g+
def= ‖F ′(T )‖∗ ≤ 4λr

(7)
≤ 4g. (24)

Now, let us look at the simplest way of choosing regularization constants, when parameter
q ∈ [2, 4] is known and fixed. By Corollary 1, we can take

α := q−2
q−1 and H :=

(
6Mq

) 1
q−1 .

This way, we obtain Algorithm 1.
By convexity, we get the following progress for one step of this method:

F (xk)− F (xk+1) ≥ 〈F ′(xk+1), xk − xk+1〉

(23)
≥ g2

k+1
4λk

= 1
4(6Mq)1/(q−1)

(
gk+1
gk

)2
g

q
q−1
k .

(25)

This inequality results in a global convergence rate for our process. In the next Section 5, we
derive it explicitly. However, the main drawback of this scheme is that we need to fix the
degree of smoothness q ∈ [2, 4] in advance. The parameter Mq is also needed. Hence, the above
scheme is completely theoretical and cannot be used in practice. The super-universal method,
presented in Section 5, resolves both these issues by a simple search procedure.

5 Super-Universal Method
At each iteration of this scheme, we adjust the regularization constant Hk for ensuring inequality
(23). Degree α ∈ [2

3 , 1] of the gradient regularization is chosen in advance and does not depend
on a particular problem class.

We need to prove first that the method is well-defined. Denote

Hα(t) def= inf
2≤q≤4

(
6Mq

) 1
q−1
(

1
t

)α− q−2
q−1
, t > 0. (26)

Since 2 ≤ q ≤ 4 and α ≥ 2
3 , this function is decreasing in t.
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Algorithm 2 Super-Universal Newton Method
Input: x0 ∈ domψ, ψ′(x0) ∈ ∂ψ(x0). Choose arbitrary α ∈

[
2
3 , 1

]
, H0 > 0

1: for k = 0, 1, . . . do
2: gk = ‖∇f(xk) + ψ′(xk)‖∗
3: for jk = 0, 1, . . . do
4: λk = 4jkHkg

α
k

5: x+ = argmin
x

{
〈∇f(xk), x− xk〉+ 1

2∇
2f(xk)[x− xk]2 + λk

2 ‖x− xk‖
2 + ψ(x)

}
6: ψ′(x+) def= −∇f(xk)−∇2f(xk)(x+ − xk)− λkB(x+ − xk)
7: F ′(x+) def= ∇f(x+) + ψ′(x+)
8: until 〈F ′(x+), xk − x+〉 ≥ ‖F ′(x+)‖2

∗
4λk

9: xk+1 = x+

10: Hk+1 = 4jkHk
4

Lemma 5 Assume that Mq < +∞ for some q ∈ [2, 4] and

H0 ≤ Hα(g0). (27)

Let for all iterations {xi}k−1
i=0 of Algorithm 2 with some k ≥ 1, we have

gi
def= ‖F ′(xi)‖∗ > 0.

Then,
Hi+1 ≤ Hα(gi), 0 ≤ i ≤ k − 1. (28)

Moreover, the total number Nk of oracle calls during the first k iterations is bounded as follows:

Nk ≤ 2k + 1
2 log2

Hα(gk−1)
H0

. (29)

Proof:
Let us prove (28) by induction. Denote formally g−1

def= g0, and then (27) is the base of the
induction. Now, consider the ith iteration of the method.

In case ji > 0, the condition of the search procedure is not satisfied for the previous λ :=
4ji−1Hig

α
i = Hi+1g

α
i . Hence, by Corollary 1, we conclude that

Hi+1 ≤ Hα(gi).

In the other case, we have ji = 0, and

Hi+1 = Hi
4 ≤ 1

4Hα(gi−1)
(24)
≤ 4α−

q−2
q−1

4 Hα(gi) ≤ Hα(gi).

Thus, (28) holds for all 0 ≤ i ≤ k − 1.
In order to estimate the total number of oracle calls, note that 4Hk+1 = 4jkHk, where jk is

the number of unsuccessful inner-loop iterations of Algorithm 2. Hence, we have

Nk =
k−1∑
i=0

(1 + ji) = k +
k−1∑
i=0

log4
4Hi+1
Hi

= 2k + log4Hk − log4H0

(28)
≤ 2k + log4

Hα(gk−1)
H0

= 2k + 1
2 log2

Hα(gk−1)
H0

. 2
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Substituting the bound (28) into the formula for our choice of λk, we get

λk = 4Hk+1g
α
k

(28)
≤ 4Hα(gk)gαk

(26)
≤ 4

(
6Mq

) 1
q−1 g

q−2
q−1
k , (30)

for any q ∈ [2, 4]. Thus, one iteration of our adaptive scheme ensures that

F (xk)− F (xk+1) ≥ 〈F ′(xk+1), xk − xk+1〉 ≥
g2
k+1
4λk

(30)
≥ 1

16(6Mq)1/(q−1)

(
gk+1
gk

)2
g

q
q−1
k .

(31)

Up to the factor 1
4 , this bound is the same as inequality (25) for the basic method. However,

our new method is adaptive and it does not need to know any particular values of q and Mq.
Note that the parameter α can be chosen arbitrarily in the interval [2

3 , 1]. For example, one
can stick to the choice α = 1. As we see from (29), the price for the universality is, on average,
just one extra oracle call per iteration.

By the initial condition (27), H0 has to be small. In fact, this requirement is not restrictive.
For fulfilling it, we can start with an arbitrary value for H0 and decrease it twice until stopping
condition from the search procedure is satisfied. There are two options: either the condition is
violated at some moment, and hence H0 satisfies (27) by Corollary 1, or the gradient becomes
smaller and smaller with a linear rate. Thus this simple search is of the logarithmic length, and
it can be used at a preliminary stage.

We are ready to prove the global rate of convergence of Algorithm 2. Denote by

F0
def=

{
x ∈ domψ : F (x) ≤ F (x0)

}
the initial sublevel set, which we assume to be bounded:

D
def= sup

x,y∈F0

‖x− y‖ < +∞.

By convexity of F (·) and monotonicity of the sequence {F (xk)}k≥0, we have

gk ≥ Fk
D
, Fk

def= F (xk)− F∗. (32)

Without loss of generality, we can assume Fk > 0 for all k ≥ 0.
For 0 ≤ β ≤ 1, function y(x) = xβ, x ≥ 0 is concave, which implies

aβ − bβ ≥ β
a1−β (a− b), ∀a > b ≥ 0. (33)

Thus, for β := 1
q−1 ∈ [1

3 , 1], we have

1
Fβ
k+1
− 1

Fβ
k

= Fβ
k
−Fβ

k+1
Fβ
k
Fβ
k+1

(33)
≥ β(Fk−Fk+1)

FkF
β
k+1

(31)
≥ β

16(6Mq)β
(
gk+1
gk

)2 g1+β
k

FkF
β
k+1

(32)
≥ β

16(6Mq)βD1+β

(
gk+1
gk

)2
.

(34)
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Telescoping the last bound and using the inequality for arithmetic and geometric means, we get

1
Fβ
k

− 1
Fβ0
≥ β

16(6Mq)βD1+β

k−1∑
i=0

(
gi+1
gi

)2

≥ βk
16(6Mq)βD1+β

(
k−1∏
i=0

gi+1
gi

)2
k

= βk
16(6Mq)βD1+β

(
gk
g0

) 2
k .

(35)

These observations prove the following global rate.

Theorem 3 Let Mq < +∞ for some q ∈ [2, 4] and the initial value H0 satisfies (27). Then,
for all k ≥ 1, we have

F (xk)− F∗ ≤ 6MqD
q

(
32(q−1)

k

)q−1
+ g0D exp

(
−k

4

)
. (36)

Proof:
Indeed, from (35), we have

1
Fβ
k

− 1
Fβ0

(35)
≥ βk

16(6Mq)βD1+β

(
gk
g0

) 2
k

(32)
≥ βk

16(6Mq)βD1+β

(
Fk
g0D

) 2
k

= βk
16(6Mq)βD1+β exp

(
− 2
k

ln g0D
Fk

)
≥ βk

16(6Mq)βD1+β

(
1− 2

k
ln g0D

Fk

)
.

(37)

It remains to consider two cases. Either
2
k

ln g0D
Fk
≥ 1

2 ⇔ Fk ≤ g0D exp
(
−k

4

)
,

or 2
k

ln g0D
Fk

< 1
2 , which together with (37) leads to

1
Fβ
k

≥ βk
32(6Mq)βD1+β ⇔ Fk ≤

[
32(6Mq)βD1+β

βk

] 1
β

= (32(q−1))q−16MqDq

kq−1 .

Combining these two bounds, we get inequality (36). 2

Note that the second term in (36) decreases exponentially in k. Indeed, for any ε > 0,
starting from the moment

k ≥ 4 ln g0D
ε
, (38)

this term is bounded by ε.

Corollary 2 Assume that k ≥ 4 ln g0D
ε

. If the third derivative is Lipschitz continuous (q = 4),
we obtain the same convergence rate as that of the third-order Tensor Method:

F (xk)− F∗ ≤ O
(
M4D4

k3

)
.

If the Hessian is Lipschitz continuous (q = 3), then our method achieves the same convergence
rate as Cubic Newton Method [40]:

F (xk)− F∗ ≤ O
(
M3D3

k2

)
.

Finally, if the Hessian has bounded variation (q = 2), then the rate is:

F (xk)− F∗ ≤ O
(
M2D2

k

)
.
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The last rate in Corollary 2 is typical for the Gradient Methods [34]. However, now the
constant M2 bounds the variation of the Hessian. It can be much smaller than the norm of the
Hessian, which is used in the analysis of the first-order methods.

As we have seen, depending on the problem class, the global convergence rate can vary
significantly. Fortunately, our super-universal method does not fix any particular q and thus
achieves the best complexity among all variants.

Corollary 3 According to Theorem 3, in order to reach F (xk)−F∗ ≤ ε, it is enough to perform

k = O
(

inf
2≤q≤4

[
MqDq

ε

] 1
q−1

+ ln g0D
ε

)
(39)

iterations of Algorithm 2.

6 Strictly Convex Functions
Let us analyze convergence of Algorithm 2 on some subclasses of strictly convex functions. As
we will see, an automatic acceleration on such functions ensures much faster global rates, as
well as the local superlinear convergence.

As in the previous sections, consider the initial sublevel set

F0 =
{
x ∈ domψ : F (x) ≤ F (x0)

}
.

We have used the primal norm ‖ · ‖ for measuring its size, denoting

D
def= sup

x,y∈F0

‖x− y‖.

However, this is not the only possibility. The other natural measure would be the sym-
metrized Bregman divergence induced by our objective:

βF (x, y) def= 〈Gx −Gy, x− y〉,

for some fixed selection of subgradients Gx ∈ ∂F (x) and Gy ∈ ∂F (y). Note that strict convexity
ensures βF (x, y) > 0 for x 6= y. Defining

VF
def= sup

x,y∈F0

βF (x, y), (40)

and assuming its boundedness, we can use the following normalized measure:

ξF (x, y) def= 1
VF
βF (x, y) ≤ 1, ∀x, y ∈ F0.

It is interesting that the relations between these two measures have important consequences
for complexity of the corresponding problem (2). Let us introduce a new characteristic called
s-relative size (s ≥ 2). Denote1

Ds
def= sup

x,y∈F0
x 6=y

{
‖x− y‖ · ξF (x, y)−1/s

}
. (41)

1We use a conventional notation 1/∞ = 0.

19



Thus, by our definition D∞ = D. Note that

lnDs = sup
x,y∈F0
x 6=y

{
ln ‖x− y‖+ 1

s
ln 1

ξF (x,y)

}

= sup
x,y∈F0
x 6=y

{
ln ‖x− y‖+ 1

s
ln VF

βF (x,y)

}
.

Since the last expression is a pointwise supremum of convex functions, we conclude that Ds is
a log-convex function of s. Hence, if for some 2 ≤ s1 ≤ s2 we have Dsi < +∞, i ∈ {1, 2}, then

Ds ≤
[
Ds1

] s2−s
s2−s1

[
Ds2

] s−s1
s2−s1 , s1 ≤ s ≤ s2, (42)

and Ds is continuous on this segment.

Example 2 Let F (x) = 1
2‖x‖

2. Then βF (x, y) = ‖x− y‖2 and VF = D2. Consequently,

Ds = sup
x,y∈F0
x 6=y

{
‖x− y‖1− 2

sD
2
s

}
= D, 2 ≤ s ≤ ∞.

Example 3 Let F be uniformly convex of degree s ≥ 2. Then

〈Gx −Gy, x− y〉 ≥ σs‖x− y‖s, ∀x, y ∈ domF, (43)

for all Gx ∈ ∂F (x), Gy ∈ ∂F (y) and some σs > 0. Hence,

Ds ≤
(
VF
σs

)1/s
.

Let us also prove the following useful lifting property.

Lemma 6 For any q ≥ 2 and any 2 ≤ s ≤ q, we have(
Dq
D

)q
≤

(
Ds
D

)s
. (44)

Proof:
Indeed,

Dq = sup
x,y∈F0
x 6=y

{
‖x−y‖

ξF (x,y)1/q

}
= sup

x,y∈F0
x 6=y

{
‖x− y‖1− s

q

(
‖x−y‖

ξF (x,y)1/s

) s
q

}

≤ sup
x,y∈F0
x 6=y

{
‖x− y‖1− s

q

}
D

s
q
s =

(
Dq−sDs

s

)1/q
. 2

An immediate consequence of definition (41) comes from the Mean Value Theorem for convex
functions:

F (y) = F (x) + 〈Gx, y − x〉+
1∫
0

1
τ
〈Gx+τ(y−x) −Gx, τ(y − x)〉dτ

(41)
≥ F (x) + 〈Gx, y − x〉+ 1

s
VF

(
1
Ds
‖y − x‖

)s
, ∀x, y ∈ F0.

20



Hence, when Ds < +∞, by minimizing the left and right hand sides with respect to y indepen-
dently, we get

F∗ ≥ F (x)− s−1
s

(
Dss‖Gx‖s∗

VF

) 1
s−1
⇔ s−1

s

(
Ds‖Gx‖∗

VF

) s
s−1
≥ F (x)−F∗

VF
. (45)

Let us introduce a formal assumption on our objective.

Assumption 2 For some s ≥ 2, we have Ds < +∞.

If s = 2, this assumption implies strong convexity. If s = ∞, it means that the set F0 is
bounded.

Since we define the relative size Ds for the entire composite objective, parameter s ≥ 2 is not
necessarily consistent with the degree of smoothness q ∈ [2, 4]. Let us analyze the convergence
rate of our method for different ranges of these parameters. We start with establishing the
bound on the functional progress during one iteration.

Lemma 7 For any q ∈ [2, 4] and s ∈ [2,∞], we have

1
(γ−1)F γ−1

k+1
− 1

(γ−1)F γ−1
k

≥ ωq,s
(
gk+1
gk

)2
, k ≥ 0, (46)

where γ def= q(s−1)
s(q−1) ∈ [2

3 , 2] and ωq,s def= 1
16

(
s
s−1

)γ( V
q/s
F

6MqD
q
s

)1/(q−1)
.

Remark 2 Since lim
α→0

xα−yα
α

= lim
α→0

eα ln x−eα ln y

α
= ln x

y
, for γ = 1⇔ s = q, we treat the left-hand

side of (46) as its limit, which gives

lim
γ→1

[
1

(γ−1)F γ−1
k+1
− 1

(γ−1)F γ−1
k

]
= ln Fk

Fk+1
.

Proof:
For one step of the method, we have

Fk − Fk+1
(31)
≥ 1

16(6Mq)1/(q−1)

(
gk+1
gk

)2
g

q
q−1
k

(45)
≥ 1

16(6Mq)1/(q−1)

(
gk+1
gk

)2
(
V

1/s
F

Ds

) q
q−1( s

s−1Fk
) q(s−1)
s(q−1)

= ωq,s
(
gk+1
gk

)2
F γ
k ,

(47)

First, let us consider the case s ≥ q. Then, γ ∈ [1, 2]. Using concavity of y(x) = xγ−1, x ≥ 0,
and monotonicity of {Fk}k≥0, we obtain

1
(γ−1)F γ−1

k+1
− 1

(γ−1)F γ−1
k

= F γ−1
k
−F γ−1

k+1
(γ−1)F γ−1

k+1 F
γ−1
k

≥ Fk−Fk+1
F γ−1
k+1 Fk

(47)
≥ ωq,s

(
gk+1
gk

)2
.
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When 2 ≤ s < q, we have γ < 1. In this case, we can use concavity of y(x) = x1−γ, x ≥ 0.
This yields

1
(γ−1)F γ−1

k+1
− 1

(γ−1)F γ−1
k

= F 1−γ
k

1−γ −
F 1−γ
k+1

1−γ ≥ Fk−Fk+1
F γ
k

(47)
≥ ωq,s

(
gk+1
gk

)2
. 2

Inequality (46) provides us with a continuous in γ characterization of the global behavior of
the method. We are ready to describe its global complexity. Let us start with the case s ≥ q.

Theorem 4 Let Mq < +∞ for some q ∈ [2, 4], and Ds < +∞ for s ≥ q . Assume that
the initial value H0 satisfies (27) and that the functional residual for all iterations {xi}ki=0 of
Algorithm 2 is big enough:

Fi
def= F (xi)− F∗ ≥ ε, (48)

with some ε > 0. Then,

k ≤ 16
(
s−1
s

) q(s−1)
s(q−1)

(
6MqD

q
s

V
q/s
F

) 1
q−1 s(q−1)

s−q

[
ε−

s−q
s(q−1) − F

− s−q
s(q−1)

0

]
+2 ln g0D

ε
. (49)

For s = q , we treat the right-hand side of (49) as its limit, which gives the linear convergence
rate:

k
(49)
≤ 16

(
q−1
q

)(6MqD
q
q

VF

) 1
q−1

ln F0
ε

+ 2 ln g0D
ε
. (50)

Proof:
Telescoping bound (46) and using the inequality for arithmetic and geometric means, we get

1
(γ−1)F γ−1

k

− 1
(γ−1)F γ−1

0

(46)
≥ ωq,s

k−1∑
i=0

(
gi+1
gi

)2
≥ kωq,s

(
gk
g0

)2/k

(32)
≥ kωq,s

(
Fk
g0D

)2/k
= kωq,s · exp

(
− 2
k

ln g0D
Fk

)

≥ kωq,s ·
(

1− 2
k

ln g0D
Fk

)
= kωq,s − 2ωq,s ln g0D

Fk
.

Therefore,
k ≤ 1

ωq,s(γ−1)

[
1

F γ−1
k

− 1
F γ−1

0

]
+ 2 ln g0D

Fk
.

Substituting the bound (48) for Fk, and using the definitions of γ and ωq,s, we obtain (49). 2

Note that for s = q = 2 (strongly convex functions with bounded variation of the Hessian),
inequality (50) implies global linear rate. Thus, it covers the standard problem class for the
Gradient Methods.

Let us consider now 2 ≤ s < q. According to (44), we have Dq
q ≤ Dq−sDs

s. Substituting this
bound into (50), we would get the complexity estimate for this case. However, it would only
give us a linear rate. As we will see, if 2 ≤ s < q, the method has a superlinear convergence.
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Theorem 5 Let Mq < +∞ for some q ∈ [2, 4], and Ds < +∞ for 2 ≤ s < q . Assume that
the initial value H0 satisfies (27), and for all iterations {xi}ki=0 of Algorithm 2, we have

Fi
def= F (xi)− F∗ ≥ ε, gi

def= ‖F ′(xi)‖∗ ≥ δ, (51)

for some ε > 0 and δ > 0. Then,

k ≤ 16q
s

(
s−1
s

) s−1
q−1
(

6Mq
DssD

q−s

VF

) 1
q−1

× s(q−1)
q−s

[
1− s

q

((
s−1
s

)s−1 Dss
DsVF

ε
) q−s
s(q−1)

]
+ 2 ln g0

δ
.

(52)

For s = q , we treat the right-hand side of (52) as its limit, which gives the linear rate of
convergence:

k
(52)
≤ 16

(
q−1
q

)(6MqD
q
q

VF

) 1
q−1

ln
[(

q
q−1

)q−1DqVF
Dqqε

]
+ 2 ln g0

δ
.

Proof:
We split iterations of the method into two consecutive stages k = m + n. During the first m
iterations, we use bound (35), that provides us with the guarantee

Cq
(

1
Fm

) 1
q−1 ≥ Cq

[(
1
Fm

) 1
q−1 −

(
1
F0

) 1
q−1
] (35)
≥ m

(
gm
g0

) 2
m

= m exp
(
− 2
m

ln g0
gm

)
≥ m− 2 ln g0

gm
= m+ 2 ln gm

δ
− 2 ln g0

δ
.

(53)

where Cq def= 16(q−1)(6Mq)
1
q−1D

q
q−1 . During the second stage, which lasts n iterations, we have

1
ωq,s(1−γ)

[
F 1−γ
i − F 1−γ

i+1

] (46)
≥

(
gi+1
gi

)2
, i = m, . . . , k − 1.

Note that 1− γ = q−s
s(q−1) > 0. Telescoping these inequalities, we get

1
ωq,s(1−γ)

[
F 1−γ
m − ε1−γ

] (51)
≥ 1

ωq,s(1−γ)

[
F 1−γ
m − F 1−γ

k

]

≥
k−1∑
i=m

(
gi+1
gi

)2
≥ n

(
gk
gm

) 2
n

(51)
≥ n

(
δ
gm

) 2
n ≥ n− 2 ln gm

δ
.

(54)

Hence,

k = m+ n
(53),(54)
≤ Cq

(
1
Fm

) 1
q−1 + 1

ωq,s(1−γ)

[
F 1−γ
m − ε1−γ

]
+ 2 ln g0

δ
.

The maximum of the right-hand side as a function of Fm is attained at

τ ∗ = argmax
τ>0

{
Cq
(

1
τ

) 1
q−1 + 1

wq,s(1−γ)τ
1−γ

}
=

(
Cqωq,s
q−1

) s(q−1)
q

.
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Substituting this value, we get

k ≤ C
q−s
q

q

(
q−1
ωq,s

) s
q + s(q−1)

q−s

[(
Cq
q−1

) q−s
s
(

1
ωq,s

) s
q − 1

ωq,s
ε

q−s
s(q−1)

]
+ 2 ln g0

δ
.

Using the definitions of Cq and ωq,s completes the proof. 2

It remains to analyze local convergence of the method. Denoting rk = ‖xk − xk+1‖, we have

gkrk ≥ 〈F ′(xk), xk − xk+1〉

(41)
≥ 〈F ′(xk+1), xk − xk+1〉+ VF

(
rk
Ds

)s
≥ VF

(
rk
Ds

)s
.

(55)

Hence,

gk+1
(24)
≤ 4λkrk

(55)
≤ 4λk

(
gkD

s
s

VF

) 1
s−1

(30)
≤ 16

(
6Mq

) 1
q−1
(
Dss
VF

) 1
s−1 g

1
s−1 + q−2

q−1
k ≡

(
1
∆

)ζ
g1+ζ
k ,

(56)

where ζ def= q−s
(s−1)(q−1) and ∆ def=

[
V

1/(s−1)
F

16Ds/(s−1)
s (6Mq)1/(q−1)

]1
ζ

. So, we have just proved the local super-
linear convergence of power 1 + ζ.

Theorem 6 Let 2 ≤ s < q . Assume the gradient is small enough:

g0 ∈ Q
def=

{
g : ‖g‖∗ ≤ 1

e
∆
}
. (57)

Then, for any δ > 0, by doing
k =

⌈
1

ln(1+ζ) ln ln ∆
δ

⌉
(58)

iterations, we have gk ≤ δ.

Proof:
Dividing both sides of (56) by ∆, we get: gk+1

∆ ≤
(
gk
∆

)1+ζ
. Hence,

gk
∆ ≤

(
gk−1

∆

)1+ζ
≤ . . . ≤

(
g0
∆

)(1+ζ)k (57)
≤

(
1
e

)(1+ζ)k
.

After (58) iterations, we ensure
(

1
e

)(1+ζ)k
≤ δ

∆ , which completes the proof. 2

For example, for q = 3 (Lipschitz Hessian) and s = 2 (strongly convex functions), inequal-
ity (56) implies

gk+1 ≤ O
(
M

1/2
3 D2

2
VF

g
3/2
k

)
= O

(
M

1/2
3
µ
g

3/2
k

)
,

where µ > 0 is the parameter of strong convexity. Note that this is slightly worse than the local
quadratic convergence of the pure Newton Method [34]. However, it seems to be a reasonable
price for the universality.
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For q = 4 (Lipschitz third derivative) and s = 2, we get

gk+1 ≤ O
(
M

1/3
4 D2

2
VF

g
5/3
k

)
= O

(
M

1/3
4
µ
g

5/3
k

)
.

Note that now the target accuracy δ enters into (58) under two logarithms. This is a very
fast convergence, and for all practical applications it is enough to do only a constant number of
steps, after reaching (57).

7 Numerical Experiments
Polytope Feasibility. We model the problem of finding a feasible point x∗ ∈ P of a polytope
P =

{
x ∈ Rn : 〈ai, x〉 ≤ bi, 1 ≤ i ≤ m

}
, by the following minimization objective:

min
x∈Rn

[
f(x) :=

m∑
i=1

(
〈ai, x〉 − bi

)p
+

]
,

where (t)+
def= max{0, t} is positive slicing and p ≥ 2 is our parameter.

We compare our method for α = 2
3 and α = 1 with the following algorithms: Cubic Newton,

Gradient Method, and Fast Gradient Method [34]. In all the methods we use adaptive estimation
of the regularization parameter.

We generate data from random uniform distribution on [−1, 1], and start the methods from
x0 = (1, . . . , 1)> ∈ Rn. In many cases, we had degenerate Hessian at the initial point ∇2f(x0),
and so it is impossible to use a Damped Newton Method. The results are shown below2.
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Thus, the second-order methods demonstrate extremely good performance in terms of the
number of iterations (oracle calls). The practical convergence of the Cubic Newton seems to be

2The source code can be found at https://github.com/doikov/super-newton/
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slightly better than those with quadratic regularization. However, each iteration of the latter
methods is cheaper, which results in much better total computational time (see the second
graph in each pair).

Soft Maximum. For µ > 0, consider the unconstrained minimization problem minx∈Rn f(x)
with the following objective,

f(x) := µ ln
(

m∑
i=1

exp
(
〈ai,x〉−bi

µ

))
≈ max

1≤i≤m

[
〈ai, x〉 − bi

]
.

The entries of vectors a1, . . . , am ∈ Rn and b ∈ Rm are generated randomly and independently
from the uniform distribution on [−1, 1], and µ is a smoothing parameter. We use the primal
norm, with the following matrix: B = ∑m

i=1 aia
>
i . Then we have (Example 1.3.5 in [10]):

M2 ≤ 1
µ
, M4 ≤ 4

µ3 ⇒ Mq

(13)
≤ 3 · 4

q−2
2

µq−1 ≤ 12
µq−1 , ∀q ∈ [2, 4].

Thus, for ε > 0, our method needs to do the following number of iterations:

k
(39)= O

(
1
µ

inf
2≤q≤4

(
Dq

ε

) 1
q−1 + ln g0D

ε

)
By an appropriate shifting of all vectors {ai}mi=1, we can ensure ∇f(0) = 0, placing the

optimum to the origin. We run Algorithm 2 with different values of the gradient power α =
0, 1

2 ,
2
3 , 1. The results are presented below.
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The method shows a robust behaviour in terms of the dependence on α (left graph). However,
the choice α := 1 enforces a more stable range for the regularization parameter Hk adjusted by
the adaptive search (right graph).

Worst Instances. In this experiment, we apply our methods to unconstrained minimization
of the following objective,

f(x) := 1
q

n−1∑
i=1
|x(i) − x(i+1)|q + 1

q
|x(n)|q, x ∈ Rn,
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where q ≥ 2 is a parameter. Note that the structure of this objective is very similar to the
worst-case function from lower bounds for high-order methods [35], and there is a bound for
the smoothness constants: Mq ≤ 2q(q!). We compare the method with fixed constants of
regularization and super-universal methods. The results are shown below.
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We observe a switching point in the behaviour when the number of iterations reaches the
dimensionality of the problem. In the case of super-universal methods, the rate becomes super-
linear after this moment, and any desirable accuracy can be achieved just in few extra steps.

8 Discussion
In this paper, we have developed and analyzed the Super-Universal Newton Method based on
regularization of the second-order model by the square of Euclidean norm. The regularization
parameter is proportional to a power of the gradient norm. Each step of our method is easily
computable, employing in the unconstrained case just the standard matrix inversion.

We have proved that using a simple adaptive search procedure in each iteration, the method
has a universal global convergence rate among problem classes with Hölder continuous second
or third derivatives. If the problem is uniformly convex, the method automatically switches
between sublinear, linear, and superlinear rates, adjusting to the best possible problem class.

A natural extension of our results would be development of accelerated super-universal
schemes (see [33, 32, 21, 22, 18, 11, 36, 26, 5] for the line of works on accelerated second-
and high-order methods matching the corresponding lower bounds [1, 34, 22]). One of the ma-
jor obstacles remains to be the sensitivity of accelerated methods to the parameters of a problem
class. In addition, these methods usually require knowledge of the constant of strong/uniform
convexity. For practical applications, it is also crucial for a second-order method to have a
superlinear convergence (at least locally), which is missing for most of the accelerated schemes.

Another important direction is the creation of methods that are suitable for non-Euclidean
geometry. In our method we fix the Euclidean norm as a regularizer, while it is also possible
to use for that a contraction of the feasible domain, leading to affine-invariant contracting-point
methods [15], or an appropriate Bregman divergence [12] (see also [3, 29] for the framework of
relative smoothness).
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For solving large-scale problems, our method can be equipped with modern stochastic tech-
niques [44, 16, 27, 23] which are able to keep versatile convergence guarantees. Another potential
way to make the methods more applicable to high-dimensional objectives is to consider quasi-
Newton updates, which at the moment seems to be very challenging due to the lack of theoretical
results on their global behavior.
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