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Abstract

We consider the problem of iteratively solving large and sparse double saddle-point sys-
tems arising from the stationary Stokes–Darcy equations in two dimensions, discretized by the
Marker-and-Cell (MAC) finite difference method. We analyze the eigenvalue distribution of
a few ideal block preconditioners. We then derive practical preconditioners that are based
on approximations of Schur complements that arise in a block decomposition of the double
saddle-point matrix. We show that including the interface conditions in the preconditioners
is key in the pursuit of scalability. Numerical results show good convergence behavior of our
preconditioned GMRES solver and demonstrate robustness of the proposed preconditioner with
respect to the physical parameters of the problem.
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1 Introduction

The numerical solution of coupled fluid problems has attracted a considerable attention of re-
searchers and practitioners in the past few decades, in large part due to the importance of these
problems and the computational challenges that they pose. The Stokes–Darcy model is an example
of such a problem, and is the topic of this paper. The equations describe the flow of fluid across
two subdomains: in one subdomain the fluid flows freely, and in the other it flows through a porous
medium. The interface between the subdomains couples the two flow regimes and plays a central
physical, mathematical, and computational role. It poses a challenge because the flow behaves sig-
nificantly differently in terms of scale and other properties in each of the subdomains, and an abrupt
change of scale may occur at the interface. There are several relevant applications of interest here:
flow of water through sand and rock, flow of blood through arterial vessels, problems in hydrology,
environment and climate science, and other applications; see, e.g., the comprehensive survey [14].
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As far as the numerical solution of the equations is concerned, different types of discretiza-
tions have been investigated; for example, finite element methods [26, 48, 12, 33, 5], finite dif-
ference/volume methods [41, 43, 31], and other methods [47, 18]. In addition to methods that
solve the problem for the entire domain at once, there are also domain decomposition methods or
iteration-by-subdomain methods, which solve separately the Stokes and the Darcy problems in an
iterative fashion [15]. See also [40, 29, 10, 9, 2, 36, 22, 27] and the references therein.

The Marker-and-Cell (MAC) scheme belongs to the class of finite difference methods, and is
our focus in this work. MAC was proposed in [21] for the Stokes and Navier–Stokes equations.
To achieve numerical stability, the scheme uses staggered grids in which the velocity and pres-
sure are discretized at different locations of a grid cell. MAC has been used extensively for fluid
flow problems, and significant effort has been devoted to the study of this scheme for the cou-
pled Navier–Stokes and Darcy flows [28], Stokes–Darcy–Brinkman equations [45], the compressible
Stokes equations [17], and other multiphysics applications [30, 16]. A review of the Marker-and-Cell
method can be found in [35].

As shown in [37, 34, 41] and several other references, the MAC scheme has a few advantages.
It is well-tested and well-understood for standard fluid flow problems, and it allows for a relatively
simple implementation. For the Stokes problem, it has been shown that the MAC method can
be derived directly from a finite element method [20]. For the Navier–Stokes problem, the MAC
method can be interpreted as a mixed finite element method of the velocity-vorticity variational
formulation [19]. Recent papers prove numerical stability and convergence of the Stokes–Darcy
problems [43, 45]. In this paper we use the discretization introduced in [43].

Preconditioners for GMRES for the mixed Stokes–Darcy model discretized by mixed finite ele-
ment method have been proposed in [8]. In [13] an indefinite constraint preconditioner was studied.
In [4] an augmented Lagrangian approach is used, and a field-of-values analysis is performed. For
multigrid solvers, the main challenge is in designing effective smoothers for the coupled discrete sys-
tems. In [31], the authors develop an Uzawa smoother for the Stokes–Darcy problem discretized by
finite volumes on staggered grids. The recent paper [32] provides an interesting description of some
challenges that arise with various formuations of the problem. The authors show that standard
preconditioning approaches based on natural norms are not parameter-robust, and they propose
preconditioners that utilize non-standard and non-local operators, which are based on fractional
derivatives. For additional useful references on solution approaches for solving the problem, see
[42, 4].

In this work, we focus on preconditioning for the stationary Stokes–Darcy problem discretized
by the MAC scheme. We propose block-structured preconditioners, perform a spectral analysis of
the preconditioned operators, and show that they are suitable for preconditioned GMRES. Taking
advantage of the sparsity structure of the matrix and using effectively the coupling equations,
we develop inexact approximations of the Schur complements and show that the iterative scheme
performs robustly.

In Section 2 we review the continuous Stokes–Darcy equations and in Section 3 we describe the
MAC scheme for discretizing them. We develop block preconditioners and their inexact versions
in Section 4. In Section 5 numerical results are presented. Finally, we draw some conclusions in
Section 6.
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Figure 1: Two-dimensional domain for the Stokes–Darcy problem. The interface is marked by Γ.

2 Governing equations

We consider the coupled Stokes–Darcy problem in a two-dimensional domain comprised of two
non-overlapping subdomains, Ω “ Ωd

Ť

Ωs; see Figure 1. In the bounded domain Ωs we have a free
fluid flow, and in Ωd the flow is in a porous region. The flows are coupled across the interface Γ.

The Darcy equations in two dimensions for porous medium flow are given by

K´1ud `∇pd “ 0 in Ωd, (1a)

∇ ¨ ud “ fd in Ωd, (1b)

where ud “ pud, vdq is the velocity and pd is the fluid pressure inside the porous medium. K is
the hydraulic (or permeability) tensor, representing the properties of the porous medium and the
fluid. Throughout this paper we will assume K “ κI, where κ ą 0 and I is the identity matrix.
This amounts to treating the porous medium as homogeneous and isotropic, and we call κ the
permeability constant.

Denoting φ “ pd we rewrite (1a) and (1b) in primal form:

´∇ ¨ pκ∇φq “ fd in Ωd. (2)

The free-flow problem is described by the Stokes equations

´ν4us `∇ps “ fs in Ωs, (3a)

∇ ¨ us “ 0 in Ωs, (3b)

where us “ pus, vsq is the fluid velocity vector, ps is the fluid pressure, and ν is the fluid viscosity.
Denoting pφ,u, pq “ ppd,us, psq, Equations (2)–(3) give us the Stokes–Darcy problem in primal

form, with three variables:

´κ4φ “ fd in Ωd, (4a)

´ν4u`∇p “ fs in Ωs, (4b)

∇ ¨ u “ 0 in Ωs. (4c)
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This is an alternative formulation to the one given by Equations (1) and (3), and we will focus from
this point onward on this primal form. The problem is completed by setting interface conditions
and imposing boundary conditions.

The interface conditions can be thought of as the equivalent of a boundary layer through which
the velocity changes rapidly. The following three interface conditions are often used to couple the
Darcy and Stokes equations at the interface Γ:

v “ ´κ
Bφ

By
; (5a)

p´ φ “ 2ν
Bv

By
; (5b)

u “
ν

α

ˆ

Bu

By
`
Bv

Bx

˙

; (5c)

Equation (5a) is a mass conservation condition, and it guarantees continuity of normal velocity
components. Equation (5b) is a condition on the balance of normal forces, and it allows the pres-
sure to be discontinuous across the interface. Finally, (5c), the Beavers-Joseph-Saffman condition,
provides a suitable slip condition on the tangential velocity.

The physical and mathematical properties associated with the interface conditions have been
extensively studied in the literature; see, e.g., [46, 24]. A central challenge in the solution of the
Stokes–Darcy equations is that the equations governing each domain are fundamentally different.
This difficulty is manifested especially when the parameters involved, specifically the viscosity
coefficient ν and permeability constant κ, differ from each other by a few orders of magnitude.

3 Discretization

The Marker-and-Cell scheme [35, 17] is an established and popular discretization technique that
has been extensively used in the solution of fluid flow problems [45, 41, 43]. The components of the
velocity and the pressure are discretized at different locations on the grid, in a way that aims at
accomplishing numerical stability. Figure 2 shows the location the discrete variables for (2)–(3).

◊ ◊ ◊ ◊

◊ ◊ ◊ ◊

◊ ◊ ◊ ◊

◊ ◊ ◊ ◊

◻ ◻ ◻ ◻ ◻

◻ ◻ ◻ ◻ ◻

◻ ◻ ◻ ◻ ◻

◯ ◯ ◯ ◯

◯ ◯ ◯ ◯

◯ ◯ ◯ ◯

△ △ △ △

△ △ △ △

△ △ △ △

Figure 2: The locations of unknowns on staggered grids. Left: the Stokes variables: l – u, ♦ – v, © – p;
Right: the Darcy variable: 4 – φ.
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The stability and convergence order of the MAC discretization for the Stokes–Darcy equations
have been established in the literature. In [43], a stability analysis is performed for the velocity
and the pressure, and error estimates are given for uniform grids. Let the two subdomains have the
same length, L, in the y direction. By [43, Theorem 4.1], if

h ď min

"

νκ

2L
,

2α

L

*

, (6)

then first-order convergence is guaranteed. In some of the tests in that paper second-order conver-
gence was in fact experimentally observed. Our discretization follows the discretization of [43]. In
Section 5 we provide a brief experimental study of errors. We note that in [41] the authors use a
finite volume technique for the tensor format of the fluid operator near the interface and prove that
under the assumption that the solution is sufficiently smooth, second-order convergence is obtained
in the L2-norm for both velocity and pressure of the Stokes and Darcy flows.

3.1 Discretization at interior gridpoints for Stokes

Suppose the Stokes domain is given by rxsmin, x
s
maxsˆ ry

s
min, y

s
maxs, with xsmax´x

s
min “ ysmax´ y

s
min.

We consider a uniform mesh with n` 1 gridpoints in each direction, yielding meshsize

h “
xsmax ´ x

s
min

n
“
ysmax ´ y

s
min

n
.

For simplicity, throughout we assume that the Stokes and the Darcy domains are both square
and are of the same size. We assign double subscripts to the gridpoints, which mark their locations
on the grid. Throughout we will assume that, for a function fpx, yq for example, a value written as
fi,j corresponds to an approximation or an exact evaluation of the function at x “ ih and y “ jh.
The same applies for a ‘half index.’ Given a double index pi, jq, in the MAC configuration the
discrete solution for the corresponding u variable is denoted as ui,j` 1

2
, and for the corresponding v

variable it is denoted as vi` 1
2 ,j

. Figure 3 provides a schematic illustration of the discretization for
the interior variables.

To further describe the discretization, it is useful to write the Stokes momentum equation (4b)
in scalar form:

$

’

’

&

’

’

%

´ν

ˆ

B2u

Bx2
`
B2u

By2

˙

`
Bp

Bx
“ fs1 ,

´ν

ˆ

B2v

Bx2
`
B2v

By2

˙

`
Bp

By
“ fs2 ,

(7)

where fsi , i “ 1, 2 denote the vector-components of fs corresponding to the velocity components u
and v. Using centered differences for the first and second derivatives, the corresponding discretiza-
tion for the first equation in (7) at gridpoint pih, pj ` 1

2 qhq is given by

´ν

˜

ui`1,j` 1
2
` ui´1,j` 1

2
` ui,j` 3

2
` ui,j´ 1

2
´ 4ui,j` 1

2

h2

¸

`

pi` 1
2
,j` 1

2
´ pi´ 1

2
,j` 1

2

h
“ pfs1 qi,j` 1

2
,

whereas the discretization for the second equation in (7) at gridpoint ppi` 1
2 qh, jhq is

´ν

˜

vi` 1
2
,j`1 ` vi` 1

2
,j´1 ` vi` 3

2
,j ` vi´ 1

2
,j ´ 4vi` 1

2
,j

h2

¸

`

pi` 1
2
,j` 1

2
´ pi` 1

2
,j´ 1

2

h
“ pfs2 qi` 1

2
,j .
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pi, jq

ui,j` 3
2

ui,j` 1
2

ui,j´ 1
2

ui`1,j` 1
2

ui´1,j` 1
2

vi` 3
2 ,j

vi` 1
2 ,j`1

vi` 1
2 ,j´1

vi` 1
2 ,j

vi´ 1
2 ,j

pi` 1
2 ,j`

1
2

pi` 1
2 ,j´

1
2

pi´ 1
2 ,j`

1
2

Figure 3: Discretization of interior gridpoints for the Stokes equations. The gridpoints about which the
discretizations are given are marked with bigger circles. The red circles mark u variables and the blue
circles mark v variables. The black circles denote pressure.

Given the staggered grid configuration, we have npn´ 1q gridpoints for u and the same number for
v, but the internal indexing is different between those two velocity components. For the u variables,
the interior gridpoints correspond to pxi, yj` 1

2
q, 1 ď i ď n´1, 0 ď j ď n´1, and for the v variables

the interior gridpoints correspond to pxi` 1
2
, yjq, 0 ď i ď n´ 1, 1 ď j ď n´ 1.

Boundary conditions. If Dirichlet boundary conditions are given, the values for the u gridpoints
are prescribed for the vertical boundary points corresponding to i “ 0 and i “ n. For the horizon-
tal boundary values corresponding to the u variables, since the discrete values closest to the top
boundary, i.e., with respect to j “ n, appear as ui,n´ 1

2
, 1 ď i ď n ´ 1, and are not right on the

boundary, we define ghost variables ui,n` 1
2
, 1 ď i ď n´ 1, and use an average

ui,n “
ui,n´ 1

2
` ui,n` 1

2

2

to assign the boundary conditions. It follows that ui,n` 1
2
“ 2ui,n ´ ui,n´ 1

2
, which is used in the

discrete Stokes equations for ui,n´ 1
2
. This follows a standard approach; see, for example, [11]. The

points near j “ 0 are treated separately as part of the interface conditions; see Section 3.3.
As for the v variables, for j “ 0 see Section 3.3, which describes the interface conditions. For

j “ n the Dirichlet boundary conditions are prescribed directly. For the discrete values v 1
2 ,j

and
vn´ 1

2 ,j
, 1 ď j ď n´ 1, we use averages

v0,j “
v´ 1

2 ,j
` v 1

2 ,j

2
and vn,j “

vn´ 1
2 ,j
` vn` 1

2 ,j

2

respectively, from which we extract the ghost variables v´ 1
2 ,j

and vn` 1
2 ,j

and substitute them in
the discrete Stokes equations, analogously to the u variables.
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For example, the discretization of the second equation in (7) at gridpoint p 1
2h, hq is given by

´ν
v´ 1

2 ,1
` v 3

2 ,1
` v 1

2 ,0
` v 1

2 ,2
´ 4v 1

2 ,1

h2
`
p 1

2 ,
3
2
´ p 1

2 ,
1
2

h
“ pfs2 q 1

2 ,1
,

where v´ 1
2 ,1

is a ghost variable, which can be eliminated by the linear extrapolation pv´ 1
2 ,1
`

v 1
2 ,1
q{2 “ v0,1 ” vDp0, hq, the given Dirichlet boundary condition. Using this equation to eliminate

the ghost variable, we obtain

´ν
v 3

2 ,1
` v 1

2 ,0
` v 1

2 ,2
´ 5v 1

2 ,1

h2
`
p 1

2 ,
3
2
´ p 1

2 ,
1
2

h
“ pfs2 q 1

2 ,1
`

2νv0,1

h2
. (8)

3.2 Discretization at interior gridpoints for Darcy

The discretization for the Darcy variable, φ, is simpler than the discretization for Stokes. Here we
work on the part of the grid in Ωd. The Darcy domain is given by rxdmin, x

d
maxs ˆ ry

d
min, y

d
maxs. We

assume xdmax ´ x
d
min “ ydmax ´ y

d
min and consider a uniform mesh with meshsize h, similarly to the

Stokes subdomain:

h “
xdmax ´ x

d
min

n
“
ydmax ´ y

d
min

n
.

We assign negative grid indices for the y variables: ´n ď j ď 0. At the gridpoint ppi` 1
2 qh, pj`

1
2 qhq, the discretization for (4a) is given by

´κ

ˆ

φi` 1
2 ,j´

1
2
` φi` 1

2 ,j`
3
2
` φi` 3

2 ,j`
1
2
` φi´ 1

2 ,j`
1
2
´ 4φi` 1

2 ,j`
1
2

h2

˙

“ pfdqi` 1
2 ,j`

1
2
.

3.3 Discretization of interface conditions

The interface presents a few challenges. We use ghost variable to discretize our variables, as
illustrated in Figure 4. There is a significant difference between the way the u variables and the v
variables are handled on the interface. This is because the discrete v variables lie precisely on the
interface, whereas the discrete u variables do not.

Following [43], the interface conditions are discretized as follows. For 1 ď i ď n´ 1:

• mass conservation, v “ ´κ Bφ
By :

vi` 1
2 ,0
“ ´κ

φi` 1
2 ,

1
2
´ φi` 1

2 ,´
1
2

h
(9)

• balance of normal forces, p´ φ “ 2ν Bv
By :

pi` 1
2 ,

1
2
´ φi` 1

2 ,´
1
2
“ 2ν

vi` 1
2 ,1
´ vi` 1

2 ,0

h
(10)

• Beavers-Joseph-Saffman (BJS) condition, u “ ν
α

´

Bu
By `

Bv
Bx

¯

:

ui, 12 ` ui,´
1
2

2
“
ν

α

ˆ

ui, 12 ´ ui,´
1
2

h
`
vi` 1

2 ,0
´ vi´ 1

2 ,0

h

˙

(11)
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Γ

Ωs

Ωd

vi` 1
2 ,0

vi` 1
2 ,1

ui, 12

ui,´ 1
2

vi´ 1
2 ,0

tp, φui` 1
2 ,

1
2

φi` 1
2 ,´

1
2

Figure 4: Discretization of the variables near the interface. The ghost variables that are to be eliminated
are marked in red.

Equations (9)–(11) are coupled with the discretized Stokes equations and the discretized Darcy
equations. The discretized Darcy equations for φi` 1

2 ,´
1
2

involve the ghost values, φi` 1
2 ,

1
2
, which

can be eliminated using (9).
The discretized equations for interface variables vi` 1

2 ,0
are formed using (10). The discretized

Stokes equations for the ui, 12 variables involve the ghost values, ui,´ 1
2
, which can be eliminated

using (11).

3.4 The linear system

Putting together the equations for the interior gridpoints and the interface conditions, and incor-
porating boundary conditions, we obtain a double saddle-point system of the form

¨

˝

Ad ´GT 0
G As BT

0 B 0

˛

‚

¨

˝

φh
uh
ph

˛

‚“

¨

˝

g1

g2

g3

˛

‚, (12)

where Ad corresponds to ´κ4 for the Darcy equation and Asp‰ ATs q is the discretization of ´ν4
for the Stokes equations coupled with the discretized interface conditions. The last block row in
(12) corresponds to the (negated) divergence-free condition. Due to the boundary and interface
conditions, the coefficient matrix in (12) is nonsymmetric. Double saddle-point systems of a similar
form have been extensively studied recently [6, 23, 8], but the focus of spectral studies has been on
symmetric instances. In this paper we offer new insights on the nonsymmetric case.

The linear system (12) has 4n2´n unknowns, and we have Ad P Rn
2
ˆn2

, As P Rp2n
2
´nqˆp2n2

´nq,

G P Rp2n2
´nqˆn2

, and B P Rn2
ˆn2

. In the sequel we describe the structure of the submatrices of
(12). To avoid ambiguity when it may arise, when necessary we attach subscripts to identity
matrices to indicate their sizes.
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The matrix Ad

The matrix Ad can be naturally partitioned as a 2ˆ 2 block matrix having the following structure:

Ad “

ˆ

Ad,11 Ad,12

Ad,21 Ad,22

˙

, Ad “ ATd , Ad,12 “ ATd,21, (13)

where Ad,11 P Rpn
2
´nqˆpn2

´nq, Ad,21 P Rnˆpn
2
´nq, Ad,22 P Rnˆn, and

Ad,21 “ ´
κ

h2
p0 Inq.

The second block row of Ad, namely pAd,21 Ad,22q, corresponds to the discrete n equations for φ
near the interface Γ, and it is coupled with the discrete interface variables v, which appear in GT ;
see (12).

The matrix As

The matrix As is a 3ˆ 3 block matrix with the structure

As “

¨

˝

A11 A12 0
0 A22 A23

0 A32 A33

˛

‚; (14)

Figure 5 depicts the dimensions of the blocks.
The matrix A12 is pn2 ´ nq ˆ n, as can be inferred from Figure 5, and it is mostly zero. It is

comprised of an pn´1qˆn upper bidiagonal block stacked on top of an pn2´2n`1qˆn zero block.

The bidiagonal block is given by c ¨ bidiagr1,´1s, where c “ 2ν2

h2p2ν`hαq . This matrix represents the

discretization of the discrete function values ui, 12 , 1 ď i ď n´ 1, which interact with the interface

variables vi` 1
2 ,0

, using (11).
The matrix A22, which corresponds to the interface v variables, has dimensions n ˆ n and a

simple structure: it is equal to a scaled identity matrix with 2ν
h2 .

The blocks of As satisfy A11 “ AT11, A22 “ AT22, A33 “ AT33, and

A22 “
2ν

h2
In, A23 “ p´A22, 0q, A32 “

1

2
AT23.

Notice that while both A11 and A33 are pn2 ´ nq ˆ pn2 ´ nq, their internal block structures are
different, due to the staggered grid. The matrix A11 (which corresponds to the u variables) is block
tridiagonal with n blocks of dimensions pn ´ 1q ˆ pn ´ 1q, whereas A33 (which corresponds to the
v variables) is block tridiagonal with n´ 1 blocks of dimensions nˆ n each.

The coupling matrix G

The equations for the ui, 12 variables are coupled with the discrete interface variables vi` 1
2 ,0

, which

are represented by the matrix G shown in (12). GT is a 2 ˆ 3 block matrix with the following
attractively simple structure:

GT “

ˆ

0 0 0
0 ´In{h 0

˙

. (15)

The nonzero block arises from the discretization of φi` 1
2 ,´

1
2
, using (9).

9



A11

0

A12

0

0

A32

A23A22

A33

n2 ´ n

n

n2 ´ n

Figure 5: Block structure of As.

The matrix B

The matrix B is a standard discrete divergence operator given by

B “
`

Bx B0 By
˘

P Rn
2
ˆp2n2

´nq, B0 “

ˆ

In{h
0

˙

P Rn
2
ˆn. (16)

Solvability conditions

For simplicity, we assume that pure Dirichlet boundary conditions are imposed, that is:

us “ gsD on BΩs,

φ “ gdD on BΩd.

The pressure is assumed to satisfy the condition

ż

Ωs

ps dx “ 0,

which yields a unique solution for the discrete system (12).
Neumann or mixed boundary conditions are also commonly considered; see, for example, [31,

41, 43] and the references therein.

3.5 Properties of the matrices

Let us rewrite the linear system (12) in a form that symmetrizes the off-diagonal blocks:

¨

˝

Ad GT 0
G ´As BT

0 B 0

˛

‚

¨

˝

φh
´uh
ph

˛

‚“

¨

˝

g1

g2

´g3

˛

‚.

10



Let

K “

¨

˝

Ad GT 0
G ´As BT

0 B 0

˛

‚. (18)

The blocks of K satisfy a few useful properties.

1. As is nonsymmetric and positive definite.

2. pG BT q has a one-dimensional null space spanned by an all-ones vector of size 2n2.

3. B has full rank.

4. If we consider Neumann boundary conditions for the Darcy problem, then Ad is symmetric
positive semidefinite with a one-dimensional null space spanned by all-ones vector. K is

nonsymmetric and singular with a one-dimensional null space spanned by

¨

˝

e
0
e

˛

‚, where e is

the vector of all ones of length n2 and 0 is the zero vector of length 2n2 ´ n.

5. If we consider Dirichlet boundary conditions for the Darcy problem, then Ad is symmetric
positive definite, and K is nonsymmetric and nonsingular.

Lemma 3.1. All eigenvalues of As, which represents the Stokes equations and interface equations
and is given in (14), are positive.

Proof. The eigenvalues of As are a union of the eigenvalues of A11 and

E “

ˆ

A22 A23

A32 A33

˙

“

ˆ

A22 2AT32

A32 A33

˙

.

The matrix E is symmetrizable by a diagonal matrix D̃ “

ˆ

In 0

0
?

2In2´n

˙

, and therefore its

eigenvalues are real. Since A11 is symmetric and diagonally dominant, its eigenvalues are positive.
Let Ã32 “

?
2A32. The block LDLT decomposition of Ẽ “ D̃ED̃´1 is

Ẽ “

ˆ

A22 ÃT32

Ã32 A33

˙

“

ˆ

In 0

Ã32A
´1
22 In2´n

˙ˆ

A22 0

0 A33 ´ Ã32A
´1
22 Ã

T
32

˙ˆ

In A´1
22 Ã

T
32

0 In2´n

˙

.

A simple calculation shows that

A33 ´ Ã32A
´1
22 Ã

T
32 “ A33 ´

1

2
p´A22 0qTA´1

22 p´A22 0q

“ A33 ´

ˆ

ν
h2 In 0

0 0

˙

.

Thus, the above matrix is the same as A33 except the top left nˆ n block, and we now discuss the
structure of that specific block of A33.

The first and nth rows of A33 have three nonzero elements r´ν{h2, 5ν{h2,´ν{h2s, where the
value 5 is due to Dirichlet boundary conditions; see (8). Rows 2 to n´1 have four nonzero elements
r´ν{h2, 4ν{h2,´ν{h2,´ν{h2s, where the positive values are located at the diagonal position and
we have diagonal dominance here. It follows that all eigenvalues of As are positive, as required.
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Next, we state a rank property of B, which will be used later in our spectral analysis.

Lemma 3.2. Define

B̄ “
`

Bx By
˘

P Rn
2
ˆm2 , (19)

where m2 “ p2n
2 ´ nq ´ n “ 2n2 ´ 2n. Then, rankpB̄q “ n2 ´ 1 and the nullity of B̄ is pn´ 1q2.

4 Block preconditioners

Block factorizations of the double saddle-point matrix K defined in (18) motivate the derivation of
potential preconditioners. We write

¨

˝

Ad GT 0
G ´As BT

0 B 0

˛

‚“

¨

˝

I 0 0
GA´1

d I 0
0 ´BS´1

1 I

˛

‚

loooooooooooooomoooooooooooooon

L

¨

˝

Ad 0 0
0 ´S1 0
0 0 S2

˛

‚

loooooooooomoooooooooon

D

¨

˝

I A´1
d GT 0

0 I ´S´1
1 BT

0 0 I

˛

‚

loooooooooooooooomoooooooooooooooon

U

“

¨

˝

Ad 0 0
G ´S1 0
0 B S2

˛

‚

loooooooooomoooooooooon

LD

¨

˝

I A´1
d GT 0

0 I ´S´1
1 BT

0 0 I

˛

‚

loooooooooooooooomoooooooooooooooon

U

,

(20)

where
S1 “ As `GA

´1
d GT (21)

and
S2 “ BS´1

1 BT (22)

are Schur complements.
In (20) we have written two forms of factorizations. The first is a block LDU factorization with L

a unit lower triangular matrix and D a block diagonal one, and the second is a block decomposition
where the lower block-triangular matrix is simply the product of LD in the LDU block factorization.
We use these forms to consider block preconditioners. The Appendix provides additional options.

Ideal preconditioners we consider and analyze are:

M1 “

¨

˝

Ad 0 0
0 S1 0
0 0 S2

˛

‚, M2 “

¨

˝

Ad 0 0
G S1 0
0 0 S2

˛

‚, M3 “

¨

˝

Ad 0 0
whG ´S1 0

0 B S2

˛

‚.

The choice of M1 arises from the matrix D of the LDU factorization of K; the signs are rearranged
so that M1 is symmetric positive definite.

Since K is nonsymmetric and G is an interface matrix that contains important physical infor-
mation on the coupling effect between the Stokes and Darcy equations, it makes sense to consider
block triangular preconditioners as well. The choice of M2 amounts to a relatively modest revision
of M1, where the interface matrix G is added as the (2,1) block. The matrix M3 is equal to LD
in (20).

Recall from Section 3.5 that if Neumann boundary conditions are considered for the Darcy
problem, then the matrix Ad is positive semidefinite with a one-dimensional null space spanned
by the all-ones vector. The singularity presents a challenge for the design of preconditioners, and
we do not further pursue this scenario in this paper. We therefore focus on Dirichlet boundary
conditions, for which Ad is symmetric positive definite and the Schur complements are well defined.

12



4.1 Spectral analysis

There is an increasing body of literature on symmetric double saddle-point systems. Block diagonal
preconditioners have been extensively analyzed [1, 3, 6, 7, 8, 25, 38, 39, 44], including bounds on
the eigenvalues and theoretical observations on their algebraic multiplicities. The double saddle-
point matrix considered in this paper bears similarities, but it has a few distinct features, including
nonsymmetry and the fact that the interface conditions are associated with only n unknowns and
the corresponding nonzero blocks are nˆ n, and the other blocks of K are quadratic in n.

Theorem 4.1. The matrix M´1
1 K has the following eigenvalues and algebraic multiplicities:

(i) 1 with multiplicity n2 ´ n;

(ii) ´1 with multiplicity pn´ 1q2;

(iii) ´1˘
?

5
2 with multiplicity n2 ´ n for each.

In addition:

(a) At most n eigenvalues are larger than 1.

(b) At most n eigenvalues are located at p0, 1qz
!

´1`
?

5
2

)

.

Proof. By direct calculation,

M´1
1 K “

¨

˝

I A´1
d GT 0

S´1
1 G ´S´1

1 As S´1
1 BT

0 S´1
2 B 0

˛

‚.

Let
`

xT yT zT
˘T

be an eigenvector of M´1
1 K associated with eigenvalue λ, that is

¨

˝

I A´1
d GT 0

S´1
1 G ´S´1

1 As S´1
1 BT

0 S´1
2 B 0

˛

‚

¨

˝

x
y
z

˛

‚“ λ

¨

˝

x
y
z

˛

‚.

We thus have

x`A´1
d GT y “ λx, (23a)

S´1
1 Gx´ S´1

1 Asy ` S
´1
1 BT z “ λy, (23b)

pBS´1
1 BT q´1By “ λz. (23c)

(i) eigenvalue λ “ 1: When y “ z “ 0, (23) is reduced to

x “ λx,

S´1
1 Gx “ 0,

which means that λ “ 1 is an eigenvalue of M´1
1 K with Gx “ 0. Since the null space of G has

dimension n2 ´ n, see (15), λ “ 1 is an eigenvalue with multiplicity n2 ´ n.

13



(ii) eigenvalue λ “ ´1: If x “ z “ 0, then (23) is reduced to

A´1
d GT y “ 0, (24a)

´S´1
1 Asy “ λy, (24b)

By “ 0. (24c)

We have As “ S1 ´GA
´1
d GT . Using (24a), we rewrite (24b) as

´S´1
1 pS1 ´GA

´1
d GT qy “ ´y ` 0 “ λy,

which means that λ “ ´1. Next we prove that such y ‰ 0 exists. From (24a) and (15), we see that
y has the following structure

y “

¨

˝

y1

0
y2

˛

‚,

where y1 and y2 can have any value, as long as they are not simultaneously zero. Now, we consider

(24c). Then, y1, y2 satisfy B̄
`

yT1 yT2
˘T
“ 0 (see (19)). From Lemma 3.2 we know that the nullity

of B̄ is pn´ 1q2, which is the multiplicity of the eigenvalue ´1.

(iii) eigenvalues λ “ ´1˘
?

5
2 : If x “ 0, y ‰ 0, z ‰ 0, then (23) is reduced to

A´1
d GT y “ 0, (25a)

´S´1
1 Asy ` S

´1
1 BT z “ λy, (25b)

pBS´1
1 BT q´1By “ λz. (25c)

Using As “ S1 ´GA
´1
d GT and (25a), we rewrite (25b) as

´S´1
1 pS1 ´GA

´1
d GT qy ` S´1

1 BT z “ ´y ` S´1
1 BT z “ λy,

which gives y “ 1
1`λS

´1
1 BT z. Substituting y into (25c) gives

pBS´1
1 BT q´1By “

1

1` λ
pBS´1

1 BT q´1BS´1
1 BT z “

1

1` λ
z “ λz.

It follows that 1
1`λ “ λ. Then we have λ “ ´1˘

?
5

2 . From (25a) we have GT y “ 0, which means

we have a set of n2 ´ n linearly independent vectors y here. It follows that the pair of eigenvalues
´1˘

?
5

2 have multiplicity n2 ´ n each. Next, we prove that the number of eigenvalues that satisfy
λ ą 1 is at most n. From (23a), we have

x “
1

λ´ 1
A´1
d GT y. (26)

We claim that GT y ‰ 0. This can be shown by contradiction, as follows. If GT y “ 0, from (23a),
we would have x “ 0. At this point, if z “ 0, then from the proof of (ii) it would follow that
λ “ ´1, which contradicts our assumption that λ ą 1. So z ‰ 0. If y ‰ 0, from the proof of (iii),

we would have λ “ ´1˘
?

5
2 , which contradicts our assumption that λ ą 1. So y “ 0. However, this
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leads to z “ 0, which is a contradiction. Thus, GT y ‰ 0, that is, y R kerpGT q. Since rankpGT q “ n,
there are at most n such linearly independent vectors y. From (23c), we have

z “ pλBS´1
1 BT q´1By.

So the space spanned by the eigenvectors
`

xT yT zT
˘T

has dimension at most n.
Next, we claim that there are n2 eigenvalues in the interval p0, 1q. Substituting (26) into (23b)

and solving for y gives

y “

ˆ

1

1´ λ
GA´1

d GT ` λS1 `As

˙´1

BT z

Since BT is full rank, it follows that z ‰ 0; otherwise, y “ x “ 0. Thus, z is in the range of BT .

Note that BT has rank n2. The space spanned by the eigenvectors
`

xT yT zT
˘T

has dimension

at most n2. From (iii), we know that ´1`
?

5
2 has multiplicity n2 ´ n, so the number of eigenvalues

in p0, 1qzt´1`
?

5
2 u is at most n2 ´ pn2 ´ nq “ n.

Remark 4.1. For symmetric block diagonal preconditioners applied to symmetric double saddle-
point systems, spectral studies provide results on the boundedness away from zero of all the eigen-
values of the preconditioned matrices; see, e.g., [6, Theorem 3.3]. In Theorem 4.1 we do not know
the location of 2n´ 1 of the 4n2 ´ n eigenvalues.

Theorem 4.2. The eigenvalues of M´1
2 K are

(i) 1 with multiplicity n2;

(ii) ´1 with multiplicity n2 ´ n;

(iii) ´1˘
?

5
2 with multiplicities n2 each.

Proof. It can be shown that

M´1
2 “

¨

˝

A´1
d 0 0

´S´1
1 GA´1

d S´1
1 0

0 0 S´1
2

˛

‚,

and it follows that

M´1
2 K “

¨

˝

I A´1
d GT 0

0 ´I S´1
1 BT

0 S´1
2 B 0

˛

‚.

Let
`

xT yT zT
˘T

be an eigenvector of M´1
2 K associated with eigenvalue λ, that is,

¨

˝

I A´1
d GT 0

0 ´I S´1
1 BT

0 S´1
2 B 0

˛

‚

¨

˝

x
y
z

˛

‚“ λ

¨

˝

x
y
z

˛

‚.

We rewrite the above as

x`A´1
d GT y “ λx, (27a)

´y ` S´1
1 BT z “ λy, (27b)

pBS´1
1 BT q´1By “ λz. (27c)
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It is obvious that
`

xT yT zT
˘T
“

`

xT 0 0
˘T

where x ‰ 0 is an eigenvector of M´1
2 K with

λ “ 1. Since x P Rn2
ˆ1, we have that λ “ 1 is an eigenvalue with multiplicity n2.

If λ “ ´1 and y ‰ 0, from (27b) we have S´1
1 BT z “ 0. It follows that BT z “ 0. Since BT has

full rank, z “ 0. From (27c), we have By “ 0. Since B P Rn2
ˆp2n2

´nq has rank n2, the null space
of B has dimension 2n2 ´ n´ n2 “ n2 ´ n.

If λ ‰ ´1, from (27b) we have By “ 1
1`λBS

´1
1 BT z. Using (27c), we have 1

1`λz “ λz. Thus,

z ‰ 0 and λ2 ` λ ´ 1 “ 0, that is, λ “ ´1˘
?

5
2 . Since z ‰ 0 P Rn2

ˆ1, the eigenvalue ´1 has
multiplicity n2.

Finally, the spectrum of the preconditioned matrix associated with M3 is given as follows.

Theorem 4.3. All of the eigenvalues of M´1
3 K are 1, and the minimal polynomial of this precon-

ditioned matrix is ppzq “ pz ´ 1q3.

Proof. Using the notation of (20), the result follows immediately since M´1
3 K “ pLDq´1LDU “

U

4.2 Approximations of the Schur complements

The choices M1,M2, and M3 as preconditioners are too computationally costly to work with in
practice, so we seek effective approximations. Specifically, in order to make the solver practical, we
investigate the structure of the Schur complements S1 and S2, and derive approximations that are
easier to compute and invert.

4.2.1 Approximations of S1

To find good approximations of S1 in (21), we seek approximations for the action of its additive
components, namely As and GA´1

d GT . Given the sparsity structure of GT , (15), it follows that
GA´1

d GT is given by

GA´1
d GT “

¨

˝

0 0 0
0 T 0
0 0 0

˛

‚, (28)

where T is an nˆ n matrix, to be approximated.
Our first (naive) approximation is to take a scaled identity. To that end, we take the diagonal

approximation pdiagpAdqq
´1
« A´1

d and ignore the corrections near the boundaries: T « τ
κIn with

τ “ 1
3 . The resulting approximation of S1 is

S̃1 “

¨

˝

A11 A12 0
0 A22 `

τ
κIn A23

0 A32 A33

˛

‚. (29)

In our numerical experiments we have found that this simple approach is effective for a limited range
of the parameters κ, ν, and h. It is thus necessary to consider a more sophisticated alternative, as
we do next.

Suppose the Cholesky decomposition of Ad is given by

Ad “ FFT ,
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and letGA´1
d GT “WTW , whereW “ F´1GT . Taking the block structure ofGT into consideration,

we partition F as follows:

F “

ˆ

F11 0
F21 F22

˙

,

where F11 P Rpn
2
´nqˆpn2

´nq and F22 P Rnˆn. It readily follows that

W “

ˆ

0 0 0
0 F´1

22 {h 0

˙

and
T “ pF´T22 F´1

22 q{h
2,

where F22 is an nˆ n lower triangular matrix.
In practice, since the Cholesky factorization is too expensive to compute, we compute an in-

complete Cholesky factorization of Ad with a moderate drop tolerance. We then replace F22 by the
corresponding incomplete factor, which we denote by F̃22.

Using the above approach, we denote the corresponding approximation to S1 as

Ŝ1 “

¨

˝

A11 A12 0

0 A22 ` pF̃
´T
22 F̃´1

22 q{h
2 A23

0 A32 A33

˛

‚. (30)

We have found this approach to be robust with respect to κ, ν, and h; see Section 5.

4.2.2 Approximation of S2

Recall from (22) that S2 “ BS´1
1 BT . Consider S̃1 of (29), and let us further sparsify it as follows:

we keep the block diagonal part of S̃1 and A23, which contains important information about the
interface, and drop the off-diagonal blocks A12 and A32. We further replace the p2, 2q block of the
approximation S̃1 by its diagonal part:

rA22 “
2ν

h2
In `

τ

κ
In.

We then use this as a sparser approximation of S1:

qS1 “

¨

˝

A11 0 0

0 rA22 A23

0 0 A33

˛

‚.

Then we have

B qS´1
1 BT «

`

Bx B0 By
˘

¨

˝

A´1
11 0 0

0 rA´1
22 ´ rA´1

22 A23A
´1
33

0 0 A´1
33

˛

‚

¨

˝

BTx
BT0
BTy

˛

‚

“ BxA
´1
11 B

T
x `ByA

´1
33 B

T
y `B0

rA´1
22 B

T
0 `B0

rA´1
22 A23A

´1
33 B

T
y .
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The matrix BxA
´1
11 B

T
x ` ByA

´1
33 B

T
y can be approximated by a scaled identity, since in the MAC

discretization we have that BxB
T
x and ByB

T
y are scaled Laplacians. In fact,

BxA
´1
11 B

T
x `ByA

´1
33 B

T
y «

1

ν
In2´n.

Then,

B0
rA´1

22 B
T
0 “

ˆ

In{h
0

˙ˆ

2ν

h2
In `

τ

κ
In

˙´1
`

In{h 0
˘

“

ˆ

κ
2νκ`h2τ In 0

0 0

˙

.

Further, we have

B0
rA´1

22 A23A
´1
33 B

T
y “

ˆ

In{h
0

˙ˆ

2ν

h2
In `

τ

κ
In

˙´1
`

´ 2ν
h2 In 0

˘

A´1
33 B

T
y

“

ˆ

´ 2νκ
hp2νκ`h2τqIn 0

0 0

˙

A´1
33 B

T
y .

This matrix contains entries that are smaller by a factor of h than B0
rA´1

22 B
T
0 and therefore we drop

it and do not incorporate it into the approximation.
Based on the above, we approximate S2 by

pS2 “
1

ν
In2´n `

ˆ

κ
2νκ`h2τ In 0

0 0

˙

“

˜

3νκ`h2τ
νp2νκ`h2τqIn 0

0 1
ν In2´2n

¸

. (31)

4.2.3 Practical block preconditioners

Based on the discussion in Subsections 4.2.1 and 4.2.2, for our numerical experiments we will
consider mostly the following block preconditioners:

xM1 “

¨

˝

Ad 0 0

0 ´pS1 0

0 0 pS2

˛

‚, xM2 “

¨

˝

Ad 0 0

G ´pS1 0

0 0 pS2

˛

‚, xM3 “

¨

˝

Ad 0 0

G ´pS1 0

0 B pS2

˛

‚,

where pS1 and pS2 are given by (30) and (31), respectively.

5 Numerical experiments

We consider three numerical examples. The first two are taken from [43], but with a different
formulation of the BJS condition. We use those examples to perform an error validation and
confirm that we observe the expected order of the error. These two examples impose specific
constraints on the values of the physical parameters ν, κ.

We then move to consider a third example from [31], where there is no restriction on the physical
parameters; this allows us to investigate the convergence behavior of our solver for a broad range
of the parameters. As explained in Section 4, we assume Dirichlet boundary conditions in all our
examples. Our code is written in Matlab.

18



Table 1: Values of n and the dimensions of the corresponding linear systems

n dimensions
32 4,064
64 16,320
128 65,508
256 261,888
512 1,048,064
1024 4,193,280

The dimensions of the linear systems used in our numerical experiments are given in Table 1.
Example 1: We take Ωs “ r0, 1s ˆ r1, 2s and Ωd “ r0, 1s ˆ r0, 1s. The analytical solution is

given by

u “ ´
1

π
ey sinpπxq,

v “ pey ´ eq cospπxq,

p “ 2ey cospπxq,

φ “ pey ´ yeq cospπxq.

The interface equations (5) require that α “ ν “ 1.
Example 2: We consider Ωs “ r0, 1s ˆ r1, 2s and Ωd “ r0, 1s ˆ r0, 1s. The analytical solution is

given by

u “ py ´ 1q2 ` xpy ´ 1q ` 3x´ 1,

v “ xpx´ 1q ´ 0.5py ´ 1q2 ´ 3y ` 1,

p “ 2x` y ´ 1,

φ “ xp1´ xqpy ´ 1q `
py ´ 1q3

3
` 2x` 2y ` 4.

By (5) it is required that α “ ν “ κ “ 1.
Example 3: We consider Ωs “ r0, 1s ˆ r0, 1s and Ωd “ r0, 1s ˆ r´1, 0s. The equation is

constructed so that the analytical solution is given by

u “ η1pyq cosx,

v “ ηpyq sinx,

p “ 0,

φ “ ey sinx,

where
ηpyq “ ´κ´

y

2ν
`

´

´
α

4ν2
`
κ

2

¯

y2.

Using interface condition (5a), there is no constraint on κ. Using interface condition (5b), there is
no constraint on ν. Using interface condition (5c), there is no constraint on α and ν. Our numerical
experiments suggest that α “ ν gives a good performance.
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5.1 Convergence order study

First, we check the convergence order of the velocity and pressure for the three examples.
Example 1: Table 2 shows the convergence rates for the values of the physical parameters

α “ ν “ κ “ 1. We observe second-order convergence for the velocity and pressure components for
Stokes, while for the Darcy the convergence order of φ is approximately 1.8.

Table 2: Convergence rates for Example 1. Each row shows the ratio between error norms for two adjacent
grids.

n1{n2 32/64 64/128 128/256 256/512
u 1.9888 1.9957 1.9983 1.9994
v 1.9895 1.9965 1.9990 1.9998
p 1.9946 1.9982 1.9994 1.9998
φ 1.7136 1.7759 1.8198 1.8514

Example 2: Table 3 shows the convergence rates for the values of the physical parameters
α “ ν “ κ “ 1. We observe second-order convergence for the pressure components of Stokes and
first-order convergence for the remaining components.

Table 3: Convergence rates for Example 2. Each row shows the ratio between error norms for two adjacent
grids.

n1{n2 32/64 64/128 128/256 256/512
u 1.9070 1.7649 1.4823 1.2078
v 2.0639 1.9929 1.5441 1.0405
p 2.0035 2.0197 2.0306 2.0009
φ 1.0139 1.0072 1.0036 1.0018

Example 3: Table 4 shows the convergence rates for ν “ 1 and κ “ 10´2, where we observe
first-order convergence for all components. This is typical for most values of the physical parameters
that we have tested. We note that for ν “ κ “ 1 we have observed nearly second-order convergence
rates for all components.

Table 4: Convergence rates for Example 3 with ν “ 1 and κ “ 10´2. Each row shows the ratio between
error norms for two adjacent grids.

n1{n2 32/64 64/128 128/256 256/512
u 1.0386 1.0158 1.0065 1.0027
v 1.0940 1.0458 1.0224 1.0110
p 1.0767 1.0351 1.0165 1.0079
φ 0.9750 0.9872 0.9935 0.9968

In summary, in all examples we observe either first or second-order convergence, depending on
the values of the physical parameters and the model problems. This is in line with or better than
the theoretically-guaranteed first-order convergence [43]. We also note that although the values of
the meshsize h used in our tests do not always satisfy (6), the scheme still converges and we obtain
the theoretically-guaranteed first-order convergence.
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In the remainder of this section we conduct our numerical tests using Example 3.

5.2 Eigenvalue distribution of the double saddle-point matrix (Example
3)
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Figure 6: The eigenvalue distribution of K with different values of ν and κ.

We explore the effect of κ and ν on the eigenvalue distribution of K for Example 3. We take
n “ 32 and vary the values of κ and ν. The results are shown in Figure 6. Notice that in all
examples, the magnitudes of the real parts of the eigenvalues are significantly larger than the
magnitudes of the imaginary parts.

We observe that for ν “ κ “ 1 (top left plot) the real part of the eigenvalues is spread rather
evenly (in terms of magnitudes) over both sides of the real axis. We also notice that the eigenvalues
with a negative real part are complex, whereas the eigenvalues on the right half of the plane are
real. While the imaginary parts of the eigenvalues do not exceed approximately 2.5, the largest
positive and negative real parts are almost 104 in value.

Taking κ “ 0.01 and keeping ν “ 1 (top right plot) generates a rather dramatic effect on the
real part of the eigenvalues; they are shifted towards the negative axis. In our computations we
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have found that the eigenvalue with the algebraically maximal real part was approximately equal to
81.9, whereas the eigenvalue with the algebraically minimal real part was approximately ´8, 183.0.

Taking κ “ 1 and ν “ 0.01 (bottom left plot) shifts the real parts of the eigenvalues to be mostly
positive. The scales of the imaginary parts are now smaller. The algebraically smallest eigenvalue
in this case was ´0.4 and the algebraically largest eigenvalue was approximately 8, 189.5.

Finally, we show the interesting case where ν “ 10´4 and κ “ 10´8 (bottom right plot). All
eigenvalues in this case are real and are spread over both axes in a rather symmetrical fashion. The
algebraically maximal value in this case was 90.0 and the algebraically minimal one was ´90.8.

The above observations indicate that the spectral properties of the coefficient matrix highly
depend on the values of the physical parameters κ and ν.

5.3 GMRES performance

In our numerical tests we run GMRES(20) and stop the iteration once the initial relative residual
is reduced by a factor of 10´8 or a maximum iteration count of 500 iterations has been reached.
For the incomplete Cholesky factorization of the Schur complement S1, we use a drop tolerance of
10´2.

In Table 5 we report the iteration counts of preconditioned GMRES using preconditioners xM1

and xM2. We see that these two preconditioners scale poorly with respect to small physical param-
eters. To better understand this behavior, we explore an improved version of the preconditioner,
where we use the approximation pS1 and exact S2 for the Schur complements in M1 and M2. We
report the corresponding results in Table 6. We see a much better performance. However, the
cost of inverting S2 exactly is too high in practice, and we seek less costly alternatives. We thus
consider approximations of M3: we use the simple approximations pS1 and pS2 defined in (30) and
(31), respectively, and include the block B to couple the Stokes velocity and Darcy variable. This
is the preconditioning approach that we have found to be the most promising.

Table 5: Iteration counts of GMRES(20) for the preconditioners xM1 and xM2 with ν “ 1 and varying n
and κ. The symbol ‘-’ marks no convergence to a relative residual tolerance of 10´8 within 500 iterations.
The two schemes failed to converge for κ ă 10´4.

κ
n xM1

xM2

32 64 128 32 64 128
100 60 62 60 55 57 62
10´1 67 75 87 62 64 70
10´2 186 215 275 67 125 114
10´3 - - - 99 159 204
10´4 444 285 - 239 78 -
10´5 - - - - - -

As per Theorem 4.3, the preconditioned matrix M´1
3 K has one eigenvalue 1 with a minimal

polynomial of degree 3. We have confirmed for this ideal (yet impractical) preconditioner that
GMRES takes three iterations to converge.

In all our experiments reported below, we use the approximation Ŝ2 in (31) for S2; we have
found this approximation to be robust with respect to the physical parameters. On the other hand,
the quality of the approximation of S1 has a more dramatic effect on convergence of GMRES, as
we discuss below.
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Table 6: Iteration counts of GMRES(20) for the inexact versions M1,in and M2,in corresponding to

preconditioners M1 and M2 with ν “ 1 and varying n and κ, using approximation pS1 and the exact S2.

κ
n M1,in M2,in

32 64 32 64
100 14 15 10 11
10´1 17 19 12 14
10´2 25 26 15 16
10´3 33 35 17 21
10´4 34 40 17 21
10´5 29 38 16 21
10´6 24 34 15 19
10´7 25 31 15 17
10´8 22 31 14 18

Table 7: Iteration counts of GMRES(20) with an inexact version of M3, using a scaled identity approxi-

mation of S1 and pS2 with ν “ 1 and varying n and κ. The symbol ‘-’ marks no convergence to a relative
residual tolerance of 10´8 within 500 iterations.

n
κ

100 10´1 10´2 10´3 10´4 10´5 10´6 10´7 10´8

32 18 19 21 37 49 76 79 360 -
64 18 19 24 39 75 - - - -
128 19 20 25 44 280 - - - -
256 20 21 28 44 - - - - -
512 21 22 31 39 448 105 - - -
1024 22 23 31 37 464 300 - - -

In Table 7 we show that the approximation of S1 based on the scaled identity approximation
of T , namely S̃1 given in (29), is only effective for relatively large values of ν and κ. We set ν “ 1
and observe a good degree of scalability (nearly constant iteration counts) for κ “ 1 and κ “ 0.1,
but convergence starts degrading for smaller values of κ, with poor convergence for κ ď 10´4.

In Tables 8 and 9 we consider the much superior approximation of S1 based on the incomplete
Cholesky factorization with drop tolerance 10´2, namely Ŝ1 defined in (30). We see that for both

values of ν and varying values of κ, the preconditioner xM3 is quite robust, although convergence
degrades as κ becomes smaller. In Table 10 we replace the approximation of Ŝ1 by the exact S1, just
to confirm that indeed, the source of the decline in performance for small values of κ is related to the
quality of the approximation of S1. We therefore expect that a better approximation, for example
an incomplete Cholesky factorization with a tighter drop tolerance would yield faster convergence
in most cases.

Finally, in Table 11 we show that when the difference in scale between ν and κ is smaller, then
preconditioned GMRES with xM3 performs remarkably well even when the parameters are small.
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Table 8: Iteration counts of GMRES(20) for the preconditioner xM3 with ν “ 1 and varying n and κ.

n
κ

100 10´1 10´2 10´3 10´4 10´5 10´6 10´7 10´8

32 18 17 18 18 18 18 20 21 23
64 19 19 19 20 21 23 24 38 39
128 20 20 20 23 24 35 37 37 38
256 21 22 22 25 37 32 35 37 39
512 22 23 23 36 36 34 38 39 42
1024 24 25 24 39 37 41 59 60 61

Table 9: Iteration counts of GMRES(20) for the preconditioner xM3 with ν “ 10´2 and varying n and κ.

n
κ

100 10´1 10´2 10´3 10´4 10´5 10´6 10´7 10´8

32 16 15 16 16 17 19 20 37 39
64 17 16 17 18 20 21 35 36 38
128 18 18 18 11 21 32 33 35 37
256 18 20 21 11 11 11 11 11 11
512 20 30 14 13 12 12 11 11 11
1024 20 32 16 14 13 13 12 12 12

Table 10: Iteration counts of GMRES(20) for the inexact version of preconditioner M3 with ν “ 10´2

and varying n and κ, using the exact S1 and approximation pS2.

n
κ

100 10´1 10´2 10´3 10´4 10´5 10´6 10´7 10´8

32 14 14 15 15 16 17 19 20 22
64 14 14 15 15 15 17 19 20 31
128 14 14 14 7 15 16 18 20 37

Table 11: Iteration counts of GMRES(20) for the preconditioner xM3 with ν “ 10´4 and varying n and κ.

n
κ

100 10´1 10´2 10´3 10´4 10´5 10´6 10´7 10´8

32 9 8 7 7 7 7 7 7 7
64 9 8 6 6 6 6 6 6 6
128 10 7 6 6 6 6 6 6 6
256 11 8 6 6 6 6 6 6 6
512 12 9 7 6 6 6 6 6 6
1024 14 9 7 6 5 5 5 5 5
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6 Concluding remarks

We have considered the MAC discretization of the Stokes–Darcy equations and have designed a
robust and scalable preconditioner for the corresponding linear system. Our conclusions are: (i)
The MAC discretization gives rise to attractive sparsity patterns of some of the block matrices,
which we are able to take advantage of for approximating the Schur complements. (ii) It is crucial to
include the coupling equations (interface conditions) in the preconditioner. (iii) The nonsymmetry
of the coefficient matrix is mild and it is possible to design a solver based on spectral considerations.
The analysis reveals a rich and interesting spectral structure.

The inexact block lower triangular preconditioner xM3 seems promising in terms of robustness
with respect to the values of the physical parameters. Among its attractive features is our ability
to form effective and relatively cheap approximations of the Schur complements S1 and S2.

A Related block preconditioners

We have considered several additional options for block preconditioners, with some minor changes
(e.g., sign changes) in comparison to the ones we have analyzed in Section 4.1:

M̃1 “

¨

˝

Ad 0 0
0 ´S1 0
0 0 S2

˛

‚, M̃2 “

¨

˝

Ad 0 0
G ´S1 0
0 0 S2

˛

‚, M̃3 “

¨

˝

Ad 0 0
G S1 0
0 B S2

˛

‚.

The preconditioned matrix M̃´1
1 K has a large number of complex eigenvalues. The preconditioned

matrix M̃´1
2 K has three distinct eigenvalues: the eigenvalue 1 with algebraic multiplicity 2n2 ´ n

and the complex eigenvalues 1˘
?

3ı
2 (ı2 “ ´1) with multiplicity n2 each. Compare this with M´1

2 K,

which has four distinct eigenvalues, as per Theorem 4.2. The preconditioned matrix M̃´1
3 K has

three distinct eigenvalues: the eigenvalue 1 with algebraic multiplicity n2, the eigenvalue ´1 with
algebraic multiplicity n2 ´ n, and the eigenvalues ˘

?
2 ´ 1 with multiplicities n2 each. We prove

these results below.

Theorem A.1. The eigenvalues of M̃´1
2 K are

(i) 1 with multiplicity 2n2 ´ n;

(ii) 1˘
?

3i
2 with multiplicity n2 each.

Proof. The preconditioned matrix is given by

M̃´1
2 K “

¨

˝

I A´1
d GT 0

0 I ´S´1
1 BT

0 S´1
2 B 0

˛

‚.

Let
`

xT yT zT
˘T

be an eigenvector of M̃´1
2 K associated with eigenvalue λ. We write the corre-

sponding eigenvalue problem as follows:

x`A´1
d GT y “ λx, (32a)

y ´ S´1
1 BT z “ λy, (32b)

pBS´1
1 BT q´1By “ λz. (32c)
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We have
`

xT yT zT
˘T
“

`

xT 0 0
˘T

where x ‰ 0 is an eigenvector of M̃´1
2 K with λ “ 1.

Since x P Rn2
ˆ1, 1 is an eigenvalue with multiplicity n2.

If λ “ 1 and y ‰ 0, the three equations of (32) are simplified to

A´1
d GT y “ 0, (33a)

BT z “ 0, (33b)

By “ 0. (33c)

Since BT has full rank, (33b) leads to z “ 0. From (33c) we have By “ 0. Since B P Rn2
ˆp2n2

´nq

has rank n2, the null space of B has dimension p2n2´nq´n2 “ n2´n. From the proof of Theorem

4.1, y satisfies GT y “ 0. Thus, the multiplicity of 1 with eigenvector
`

xT yT 0
˘T

with y ‰ 0 is
n2 ´ n. Therefore, 1 has multiplicity 2n2 ´ n.

If λ ‰ 1, from (32b), we have By “ 1
1´λBS

´1
1 BT z. Using (32c), we have

1

1´ λ
z “ λz.

Thus, z ‰ 0 and
λ2 ´ λ` 1 “ 0,

that is λ “ 1˘
?

3i
2 . Since z ‰ 0 P Rn2

ˆ1, the eigenvalues 1˘
?

3i
2 have multiplicity n2 each.

Theorem A.2. The eigenvalues of M̃´1
3 K are

(i) 1 with multiplicity n2;

(ii) ´1 with multiplicity n2 ´ n;

(iii)
?

2´ 1 « 0.4142 and ´
?

2´ 1 « ´2.4142 with multiplicity n2 each.

Proof. The preconditioned matrix is given by

M̃´1
3 K “

¨

˝

I A´1
d GT 0

0 ´I S´1
1 BT

0 2S´1
2 S´1

1 ´I

˛

‚.

Thus, n2 of the eigenvalues of M̃´1
3 K are 1, and the remaining ones are the eigenvalues of

H “

ˆ

´I S´1
1 BT

2S´1
2 S´1

1 ´I

˙

.

We write the corresponding eigenvalue problem for H and obtain

´y ` S´1
1 BT z “ λy, (34a)

2S´1
2 By ´ z “ λz. (34b)

If λ “ ´1, then

S´1
1 BT z “ 0

2S´1
2 By “ 0
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Therefore, BT z “ 0 and By “ 0. Since B is full rank, z “ 0 and y is the null space of B with
dimension p2n2 ´ nq ´ n2 “ n2 ´ n.

If λ ‰ ´1, from (34a) we have y “ p1` λq´1S´1
1 BT z. Therefore y, z ‰ 0. From (34b), we have

p1` λqz “ 2S´1
2 By “ 2S´1

2 p1` λq´1S´1
1 BT z “ 2p1` λq´1z,

which gives p1` λq2 “ 2. Therefore λ “ ˘
?

2´ 1. Since BT has full rank, the eigenvalues ˘
?

2´ 1
have multiplicity n2 each.
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