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Abstract

This paper introduces fractional type evolutionary equations modeling
the interaction between short waves and long waves. We consider a frac-
tional Benney type system, which is given by a fractional Schrodinger equa-
tion coupled with a fractional porous medium equation. Under the assump-
tion of weak coupling or small initial data related to the fractional Schrodinger
equation, it is proved the existence of weak solutions to the Cauchy problem.

1 Introduction

The main issue of this paper is to introduce and study the Cauchy problem for the
following fractional Benney type systems

idu—(-A'u=avu+yluu, xeR,t>0,
v+ (=A)g(v) = B(-A)*ul’>, xeR,t>0, (1.1)
M(O’ X) = MO(.X), V(O’ -x) = VO(.X), X € R’

where @,  and y are real constants. The complex value function u(z, x) is the
unknown of the fractional Schrédinger equation, which describes the short wave,
and the real value function v(¢, x) is the unknown of the fractional porous medium
equation, which describes the long wave. Here (-A)’, (0 < s < 1), denotes the
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usual fractional Laplacian in R”, which characterize nonlocal, long-range diffu-
sion effects and can be defined by F{(=A)f}(€) = [ F{f}(€), where T is the
Fourier Transform. The function g € C!(R) is assumed to be nondecreasing,
hence degenerated zones for the state variable v(z, x) are allowed. A particular
case of (II)), (e.g. g = constant), it has its own interest

idu—(-A'u=avu+yulu, xeR, t>0,
v =BAN"uP, xeR, >0, (1.2)
u(0, x) = up(x), v(0,x) = vo(x), x €R.

The theory of evolutionary equations modeling the interaction between short
waves and long waves goes back to Benney [3]]. Indeed, in that paper Benney
propose a general system (see equations (3.27), (3.28) in that paper), and we recall
below the closer one studied by Bekiranov, Ogawa, Ponce [3], that is to say

{iGtS ~(-=A)S +iCs VS =aSL+y|SI*S, x€R, t>0,
(1.3)

0L+ C,VL+vP(D)L+AVL*=BV|S]?, xeR, t>0,

where Cs @, 7y, Cy, v, A and § are real constants. Moreover, P(D,) is a linear differ-
ential operator with constant coefficients. Applying a proper gauge transformation
and a scaling of the variables, the system (L3, when v = 0, is equivalent to

(1.4)
v+ C Vv =8VuP,
where C = 1. In fact, the authors in [3] claim that, the system (I.4)) is the most
typical case in the theory of wave interaction.
In particular, for s = 1 and g(v) = v, the system (LLI)) recalls (I4)), since we
have the following equivalence

{i O — (—Nu=avu+yulu,

1= fll 2y = IV Sl 2@y, for each f € H'(R™).

Then, one may roughly speaking interpret (LI as a generalization of (L4). In
particular, the system (LLI)) makes sense for x € R” and ¢ > 0. Although, this is
not exactly the case. Indeed, even if Vf and (—A)"?f have the same L?>—norm
they are different objects, that is, the former has local behavior and the other is
nonlocal.

Therefore, we highlight the motivations to consider the fractional Benney type
systems proposed in this paper, besides the multidimensional one. Indeed, the
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short (transversal) wave described by the Schrédinger equation may represent a
signal (wave packets), that is u(#, x) is a function that conveys information to con-
trol, for instance, some underwater equipment. This information propagates in a
generalized medium, where long (longitudinal) waves are described by the porous
medium equation. Here, the fractional Laplacian introduces the long-range inter-
actions in both equations, which are coupled by the a, 5 constants. This discussion
follows to applications in Synthetic Aperture Radar (see [2]), and atmospheric in-
ternal gravity waves (see [19], [25]]), which represent complex anomalous systems
and it seems better modeled by fractional Laplacians.

Last but not least, Benney in [3]] also consider the following system (see equa-
tions (3.8), (3.9) in that paper)

{iS,—(—A)S +iC, VS =a LS +y|SI’S, xeR, t>0,
(1.5)

L +C VL=BV|SP, xeR, t>0.

In particular, when C, = C; long waves and short waves are resonant, and in this
case Tsutsumi and Hatano in [23]] proved that, the transformation: x - y = x—C, ¢
eliminates the first x-derivative terms in (L.3), hence we have

i, — (-Nu=avu+vy lu|*u,
(1.6)

v = B Vlul,
which resembles the fractional short wave and long wave system (1.2).

Statement of the Main Result.

The following definition tells us in which sense a pair (u(t, x), v(t, x)) is a weak
solution to the Cauchy problem (LLI). Hereafter, we fix y = 1, and without loss of
generality g(0) = 0.

Definition 1.1. Given an initial data (uy, vo) € H*(R) x (L>(R) N L*(R)) and any
T > 0, a pair (u,v) € L0, T; H*(R)) x L*(0, T; L*(R) N L*(R)) is called a weak
solution of the Cauchy problem (1)), when it satisfies:

T
i f f (u(r, %) 8,32, %) + (=AY uct, x) (=AY P*G(2, x))dxdt + i f uo(x) B0, x)dx
0 R R

T T
+a f fv(t, x) u(t, x) @(t, x)dxdt + f f lu(t, X)I> u(t, x) @(t, x)dxdt = 0,
0 Jr 0 Jr
(L.7)



T
f f v(t, x) O(t, x) — g(v(t, x)) (—A)‘Y/ 2gb(t, xX)dxdt + f vo(x) ¥(0, x)dx
0 Jr R (1.8)

T
+ f f lul(t, x) (=A)*"?y(t, x)dxdt = 0,
0 R

for each test function ¢,y € CX((—o00, T) X R), with ¢ being complex-valued and
Y real-valued.

Now, we state plainly the main result of this paper.

Theorem 1.2 (Main Theorem). Let (ug, vo) € H*(R)X(L*(R)NL*(R)), (% <s<l,
and g € C'(R) satisfying
0<g'()<M< co.

For any T > 0, there exist ay > 0, Ey > 0, such that, if |a| < ag or ||ugll2x) < Eo,
then there exists a weak solution

(u,v) € L0, T: H*(R)) x L=(0, T; L2(R) N L™(R))
of the Cauchy problem (L1)). Moreover, for a.a. t € (0,T)

IVOllz=®) < [Vollzew).- (1.9)

Clearly, how lower are the @, constants less coupled are the equations in
(LI). In fact, the @ constant makes the difference concerning the global in time
existence, (see Theorem [I.2). Another very important point is the energy input
to the signal, i.e. ||ug|;>. As far as the information has to be sent, more energy is
needed. Again, the statement of the Main Theorem shows that, the global in time
solvability depends on the amount of energy given to the signal.

Finally, we recall that the fractional Schrodinger equation appears in the water
wave models in [14]. In fact, the fractional Schrédinger equation was introduced
in the theory related to fractional quantum mechanics associated to s-stable Lévy
process (see for instance [15]]). This field is developing fast, hence jointly with
[14] we address the reader to the following papers [9]], [10] and [12]]. Moreover,
the fractional porous medium equations has been widely studied in the last years.
For instance, we address Vazquez [24] (and references there in), where is de-
scribed the physical and mathematical background related to nonlinear diffusion
equations involving nonlocal effects.



2 Notation and Background

In this section we fix the notations, and collect some preliminary results. First,
let Q Cc R” be open set. We denote by dx, dé, etc. the Lebesgue measure on Q
and by LP(€), p € [1, +00), the set of (real or complex) p-summable functions
with respect to the Lebesgue measure. Moreover, we denote by Fo(&) = ¢(€) the
Fourier Transform of ¢, which is an isometry in L*(R").

e The space W**(Q)

The Sobolev space is denoted by W*”(€2), where areal p > 1 is the integrability
index and a real s > 0 is the smoothness index. More precisely, for s € (0, 1),
p € [1, +00), the fractional Sobolev space of order s with Lebesgue exponent p is
defined by

W Q) = fu € L7(Q) f f 0 = MO 1 gy < +ool,
QJQ

=P

endowed with norm

1
|u(x) — u(y)l” ’
P
llellwsr ) = (f|u|d +ffg P dxdy| .

For s > 1 we write s = m + o, where m is an integer and o € (0, 1). In this case,
the space W*P(Q) consists of those equivalence classes of functions u € W™?(Q)
whose distributional derivatives D”u, with |a| = m, belong to W?(Q), that is

W) = {u e W(Q): ) 1D ullwera < oo,
|a|=m

which is a Banach space with respect to the norm

ety = (el + > ND Ulcy)”

[ul=m

If s = m is an integer, then the space W*”(Q) coincides with the Sobolev space
W™mP(Q). It is very interesting the case when p = 2, i.e. W3(Q), which is also a
Hilbert space and we can consider the inner product

(U, Viwsaq) = u, v) + f (x) = u0)) (V) = V)

aJo |x_y|§+s Ix—yl%”

dx dy,

where (-, -) is the inner product in L*(Q).



e The space H*(R")
Now, following Tartar [21] we take into account an alternative definition of the
space H*(R") = W*2(R") via Fourier Transform. Precisely, we may define

H'®R") = {ue PR : | (1+[€7) |[Fu@) dé < o (2.10)
RV!

and we observe that the above definition, is valid also for any real s > 1. Moreover,
H*(R"™) is a Hilbert space with the scalar product

R fR (1 + Iy TOTE) de.

The equivalence of the above definitions is stated in the following

Lemma 2.1. Let 0 < s < 1. Then, the definitions of H*(R") and W**(R") are
equivalent. In particular, for any u € H*(R")

_ 2
f W) ~4WF gy =2 ¢! f €7 [Fu@Pdé, (211
R JRo R"

|X _ y|n+25

_ 1 —cos({y)
c;! :f ——dl.
n,s R |§|n+2s g

One remarks that, for s > n/2, the Hilbert space H*(R") is an algebra (see [16]).
Moreover, there exists a constant C = C(s) > 0, such that for any f, g € H*(R")

If gllas@n < C I fllas@nllglas - (2.12)

where

2.1 Fractional Laplacian operator in R”

The fractional Laplacian operator can be defined in R” by

(“AY f&) =1 f&),  (0<s<]1). (2.13)

Hence the fractional Laplacian is a pseudo-differential operator with principal
symbol |£%%. The fractional Laplacian can be similarly described using singular

integrals

S = f(&)
Rn |X _ é:|n+25
Moreover, its inverse denoted by K := (-=A)™*, (0 < s < 1), is given by convolu-
tion with the Riesz kernel K (x) = C,.; [x**™, that is, K, f = K, * f.

(=AY f(x) = C,, P.V. de. (2.14)
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It follows from 2.10), @2.11) and (2.13) that, there exist positive constants mz,,
M, such that, for each f € H*(R")

m(Il fll 2y + ”(_A)S/ZfHLZ(R”)) < fllasemy < Ms(”f”LZ(R") + ”(_A)S/Zf”LZ(R”))’
(2.15)
¢ Bilinear form
In order to study the fractional diffusion term, it will be important to associate
a bilinear form to the operator K in the space H*(R"), 0 < s < 1, which is given
for any pair v,w € H*(R") by

1
By(v,w) = C,, f (00 = V) [ 040 = W) dxdy. (2.16)
The bilinear form B; were considered in as an auxiliary tool in the study of
regularity properties of solutions to the fractional type porous medium equation.
Lemma 2.2 (See [[7]). If v is given by v = G(w), with G’ > 0, then, B,(v,w) > 0.

Furthermore, for every v,w € H'(R") we have the characterization

B(v,w) = ffz Vv(x) |" —————Vw(y) dxdy, (2.17)

where C is a positive constant.

Proposition 2.3. Letv € H'(R"), G € C'(R) with G’(-) > m > 0. Then

f (—-A)PGv)vdx>mC,} |I(— A)S/4V||L2(Rn
RV!

Proof. Tt follows directly from (2.16), (2.17) and applying the intermediate value
theorem. |

2.2 Auxiliary kernels

¢ Unitary group for the Schrodinger equation
For each £ > 0, we consider the following Cauchy problem for u(t, x) € C,
driven by the linear fractional perturbed Schrodinger equation

(2.18)

iou—(-AN’u—-e(-ANu=0, xeR" teR,
M(O, -x) = MO(X)’ X € Rn,



where a € R is a fixed parameter chosen a posteriori. Applying the Fourier trans-
form in the spatial variable, we have

i O, &) — &7 w(t, &) — & |EP W(t,€) = 0, £€R" 1 €R,
{ u(0,&) =up(¢), £ R,
which solution is given by u(t, &) = e (e |§|2)’b7f)(§). Therefore, it follows that
utt, ) = 57! (5 g6 o
solves the Cauchy problem (2.I8). For uy € L*(R"), (Fuy € L*(R")), then
o (e 1)y 2y € I2RY),

Now, we define for each ¢ € R the operator

u s Uou = T (P 1)y, (2.19)

which is bounded in L>(R") for each u € L*>(R"). Indeed, we have
”Us(t)u”]z}(Rn) = f U.(Ou() dx = | |U.(Du©)* d¢
R R

:fkﬂwwwh@hf: &P de.
R» Rn

Therefore, the family (U,(f)).er is a group of isometries in L*>(R").
One remarks that, H°(R"), (s > 0), is invariant by the isometry group (U,(?)),cr.
For each u € H*(R"), we have

1Ue@)ull sy = [Rn(l + 1) U@ dé

= Rn(l +IEPY O dé = Nullscen)-

Thus U.(t)(H*(R")) is a closed subspace in H*(R") and, we have

H'(R") = U:(O(H'(R") & (U()(H* (RM)) "



Moreover, since U.(¢) is symmetric in H*(R")
(Ut Wy = | (1 + €7 UaOu(€) W(E) dé
Rn

|2s

= | (1w 1ePye U 19 ) e de
RV!

= fR (1 + I W) ULw(&) d = (1, U)W
and also an isometry, it follows that (U,.(¢t)(H*(R")))* = {0}.

e Semigroups of contractions for the heat equation
For each £ > 0, we consider the following Cauchy problem for v(z, x) € R,
driven by the linear Heat equation

v —e’Av=0, xeR", t>0,
(2.20)
V(O’ X) = VO(X)’ X € Rn,

where b € R is a fixed parameter chosen a posteriori. Again, applying the Fourier
transform in the spatial variable, we obtain

{am, E+ e |EP WL, 6 =0, £€R”, >0,
7(0’ é:) :"70({:)’ f € Rn,

- Kt 3~

which solution is given by v(¢, &) = e vo(€). Consequently,

V(1. x) = ?_l{e_ ol s%(f)}(x)

solves the Cauchy problem (2.20), and it is well known that, for vy € L*(R"),
(Fvp € LAR™)), it follows that e ¥ Fyo(€) € LA(R™).
Similarly, we define for each ¢ > 0 the operator
vis Woty = Fle™? ¥ gy, (2.21)

The operator W,(¢) is bounded in L*(R"), in fact the family {W,(f)v}.o is a semi-
group of contractions. Indeed, for any ¢ > O, ||W.(t)voll2 < |[vollz2, for any
v e L*(R"). Also in H'(R"), that is

IW(OWoll,) = f (+ER) IW(Ovo@)F dé = | (+IER) e ()P dé < vl
R» R2

One recalls that, the Heat kernel has a regularity effect. Indeed, a refined esti-
mate is given by the following



Lemma 2.4. For any v € L*(R), there exists a constant C > 0 independent of t

and v, such that for any t > 0
C
10 WeOVll12z) < E”VHLZ(R)-

Proof. From (2.21)), we have

1 2
Ws(t)v — ?—le—gb 1Pt Fy = e i x v,
Vanebt
then . 5 i
—2x P
oW .(t)y = —— e b x .
O e

Applying Young’s inequality, it follows that
1

2
1O WOVl 2wy £ — |l

(2.22)

2
e_m”Ll(R)”V”LZ(R) = =05 ||V||L2(R)-
4Pt " \azebt Vreb 117

2.3 Auxiliary inequalities

The next two auxiliary results will be used broadly in this paper.

Proposition 2.5. (Chain Rule) Let f € H*(R"), 0 < s < 1, F € C'(C) with

|F'||Lo®) < M for some M > 0. Then
(=AY PEC)l 2@ < IF o 1=A) Flli2n

Now, we provide the following (sharp) result.

Proposition 2.6. Ler f € H'(R), 3 < s < 1. Then,

2 1-L s 1
Iy < s Il =) gy

and
=AY Pllzgy < 2 1 ls@ 1-A)2 2.
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Proof. 1. First, since s > 1/2, it follows from the well-known Embedding The-
orem that, H* is an algebra of functions. Moreover, a function f € H*(R) may
be represented by a continuous function which vanishes at infinity. Let us show
(2.24), hence applying the inverse Fourier transform, we have for each x € R

1 ix¢ 77 1 iy,
= | [ €T de] < s [ (e ae

! = i
= —_— d AN d ,
Gl flg Renas+ L e

[
where R > 0 is any fixed real number. Then, applying the Cauchy-Schwartz
inequality

1 1/2 . 1/2
[ ld 2 d
001 < L . ) | L 17l ¢)
1 1 1/2 . 12
d 2s 2 d
+ Gl L =l L e de)

1 7 . )
= (27r)1/2(\/§R1/2 112w + 4 -1 R I(=A) /2f||Lz(R))

g s
(Rl + R2I=AY" flloe) ).

(2.26)

= VrV2s -1

1 1
Conveniently, we consider R = [IfIl 5, (=AY £, = in (226)) to obtain

1 -1 ; 1 -1 ; 1
1fG0l < m(llflle(ﬁlg)ll(—A)‘ PAE g, + L =AY A1 )

2. Now, we prove (2.23)). Again, from (2.14) and the definition of the Fractional
Laplacian, we obtain

s Cos [P~ PO
I8P, = 5 [ [ R
o o
o ([ VQTOTOR (] TOUD SR,
RxR |x — y|1+2x BxR lx — y|1+2.s

< 2| fllzeew) ”(_A)S/ZfHLz(R)'
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2.4 Generalized Grownwall Lemma

We consider the following (see [[11]),

Theorem 2.7. Let n(t) be a nonnegative function which satisfies the inequality

nit) <C+ f (a(T) n(t) + b(t) n‘T(T)) dr, C>0,0>0,

fo
where a(t) and b(t) are continuous nonnegative functions for t > t,.
1. ForO<o <1,

n(t) < {Cl_‘f exp [(1 - cr)f a(t) dr

1
1-o

+(1 —0) ft b(t)exp [(1 —-0) ft a(r) dr] dT}

2. Foro =1, )
n(t) < Cexp {f [a(T) + b(1)] dT}.

To

3. For o > 1, with the additional hypothesis

C<{exp[(l—0')fm+ha(7') dr }ﬁ{(a—l)fmwb(f) dT}_ﬁ,

we also get forty <t <ty + h, forh >0

(2.27)

(2.28)

(2.29)

(2.30)

105 ¢ fexpla-of a arl-c o [ by exp|(1-0) [ atrydr) a7

2.5 Entropies

2.31)

Following the scalar conservation laws theory, we say that a Lipschitz convex
function 7 : R — R is an entropy. The most important example is the family of

Kruzkov’s entropies, that is

n(v) :=|v—k|, foreachkeR.
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Then, we recall that any smooth entropy n(v), which is linear at infinity, can be
recovered by the family of KruZzkov’s entropies. Indeed, a straight calculation
shows that

2

modulo an additive constant. Symilarly, given g € C'(R) and ¢ : R — R, such
that, ¢’ = n’ g’, then

1
) = = fR @) - £lde,

1
qv) = 3 f n"(&)1g(v) — g(é)| dé.
R

Under the above conditions, (7, ¢) is called here an entropy pair.

Now, we consider the following

Lemma 2.8. Let v be a real H'(R) function, g € C'(R) satisfying
0<g'()<M< oo,
and s € (0, 1). Then, for each k € R fixed, and each x € R,
(=A)’lg(v(x) = g(h)| = sgn(v(x) — k) (=A)’g(v(x)) — Ri(x), (2.32)

where the non-negative remainder function R;(-) is given by

2Cy, f 80~ 80D 4 v > k),
{v(y)<k}

|.X _ y|l+2x
Ri(x) = (2.33)
20, f SVOD — 80 4y < k.
oyl =yt

Proof. Since the function g is non-decreasing, it follows that

sgn(v(x) = k)(g(v(x) — g(k)) = [g(v(x) — g(k)I.
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Therefore, we have

(=A)*lg(v(x)) — g(k)| = (=A)*((sgn(v(x) — k)(g(v(x)) — g(k)))
= sgn(v(x) — k)(=A) g(v(x)) + (g(v(x)) — g(k)) (=A) sgn(v(x) — k)
(sgn(v(x) — k) — sgn(v(y) — k))

R |X _y|l+2x

= sgn(v(x) = k)(=A)"g(v(x))
+ (g((x)) — g(k)C1s f sEn(r() — K) = sgn(v(y) = k)

R |.X _y|l+2x

- Ci ((g(v(x) — g(v())) dy

sgn(v(x) — k) — sgn(v(y) — k) J
125 Yy
lx =yl

—Ci fR (e((x)) = g(v(y)))

= sgn(v(x) — k)(=A)’ g(v(x))

sgn(v(x) — k) — sgn(v(y) — k) J
|X _ y|1+25

9

+Ci fR (gv(y)) — g(k))

where we have used that {x € R : v(x) > k} and {x € R : v(x) < k} are open sets,
since v is continuous. O

3 On a Perturbed System

In order to show the solvability of the Cauchy problem (L)), we perturbe both
equations (L.I);, and (I.I),, adding Laplacian terms with different velocities of
perturbation. Specifically, let a, b > 0 be fixed parameters and for each ¢ € (0, 1),
we consider the following system posed in (0, 7) X R,

i 0 — (—A)'u® + " Au® = a V¢ uf + |uf]u’,
" — " AV = B (=A)(luPP) = (=A)**g.(°), (3.34)
u®(0, x) = ug(x), v°(0,x) = vg(x),

where T > 0 is a real number, conveniently g.(v) := g(v) + ev, and the pair
(ut,vi) € H'(R) x H'(R) is an approaching sequence converging strongly to
(to, vo) in H'(R) x (L*(R) N L=(R)), (Vellze®) < [vollz=))- First, we show (local
in time) existence and uniqueness of mild solution to (3.34). Then, we derive a
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priori important estimates, which enable us to extend the local in time solution.
Moreover, we stress that these a priori estimates will be also important to show
that the family {(u®, v*)} of solution to (3.34)) is relatively compact.

3.1 Existence and uniqueness

The following definition tell us in which sense the pair (1%, v?) is a solution of the
Cauchy problem (3.34).

Definition 3.1. The pair (u®, ) € C([0, T]; H\(R)) x C([0, T]: H'(R)) is called a
mild solution of 3.34) if satisfies the following integral equations

W) = Unt) ul — i f ULt - t’)(a V@Y () + () us(t')) ar,
’ (3.35)
V(1) = We(0) vg + f We(t - f’)(ﬁ (APl - (—A)S/zgs(vs)) dr,
0

where U(1), W,(t) are given respectively by 2.19) and 2.21)).

We are going to apply the Banach Fixed Point Theorem to show the local-in-
time existence of solutions as defined above. To begin, we consider the following
lemma (we put € = 1 for simplicity with obvious notation).

Lemma 3.2. Let % <s<1, g€ C'(R), satisfying 1 < g'(:-) < M < o0, (g(0) = 0).
ForT > 0, let (i1, ) € C([0, T]; H'(R)) x C([0, T1; H'(R)), then for each (uy, vo) €
H'(R) x H'(R) the Cauchy problem (decoupled system)
Ou+i(—AN)u—iAu=—-iavi—i i, xeR t>0,
v —Av =B (=A)?(lia]*) - (~A)g(#), xeR t>0, (3.36)
(0, x) = uo(x), v(0,x) = vo(x),
admits a unique mild solution (u,v) € C([0,T]; H'(R)) x C([0, T]; H'(R)).
Proof. First, we define for each ¢ € (0, T)
F(1) := =i a V() @) — i |al(@) @),  G(1) := B=A)"(al’) (1) = (=A)"*g(®)(1).
Claim 1: The complex value function F € C([0, T]; L*(R)).
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Proof of Claim: Indeed, for all z€ [0, T, |il*(¢) &i(f) € H'(R), @i(t) ¥(r) € H'(R).
Then, for 4 sufficiently small

F(t+h) = F() =i a () @(e) = 9t + ) it + h))
+i (JaP) a(r) — @l e + by ac + b)) = ia I, +i b,
with obvious notation. A simple algebraic computation shows that
}21(1)||11||L2(R) =0, and }}_{%Hb”Lz(R) =0,
from which the claim is proved.

Claim 2: The real value function G € C([0, T]; L*(R)).

Proof of Claim: We observe that (—=A)*?(|it|*)(t) € L*>(R), for each t € (0, T).
Also from the assumptions for the function g, that is g € C'(R), g(0) = 0 and
lg’(v)| < M, (Vv € R), it follows that (=A)"?g(¥)(t) € L>(R). Now, for h suffi-
ciently small, we have

Gt+h) -G =5 ((—A)“'/ (1)t + h) = (=A)" 2(|a|2)(z))
— ((=A)Pg@)t + h) = (=AY Pg(@)(®) = B Jy = ],
with obvious notation. Then, from 2.13)) and the embedding theorem
12y < WP+ ) = POl gy < HaPE + 7Y = 8P O -
Analogously, we have
1201725y < Nlg@)( + 1) = g@)OIlfyszy < llg@)E + h) = g)DI

= llg@)( + 1) = gDz q) + 110:8@)(E + h) = 08N DII72 s,

< Mz(fh”z(t +h,x) — 9(t, VP dx + f
R R

< 2M [[5(t + h) = ()3 -

.5t + h, x) = 0,51, )| dx)

Then, passing to the limit as 7 — 0, the claim is proved.
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Finally, since F, G € C([0, T]; L*(R)) applying Lemma 4.15 and Corollary 4.12
in [8]], there exists a unique solution (u,v) € C([0, T]; H'(R)) x C([0, T]; H'(R))
given by

u(t) = Ut ug — i f UGt 1) (a3 a(t) + )P a(e)) dr,
0 (3.37)

v(t) = W(t) vo + 8 fo W(t—1) (B (=A)"*(la)P) = (=A)Pg@)(¢)) dt,

where U(t) = Uy (t), W(t) = W,,(¢) are given respectively by (2.19), and 2.21)).
O

Proposition 3.3. Let 3 < s <1, g € C'(R), 0 <m < g'(-) £ M < o, (g(0) = 0).
Then, for any (ug,vy) € H '(R) x H'(R), there exists T > 0 such that, the Cauchy
problem (3.34) has a unique mild solution.

Proof. 1. Hereupon, we denote by X7 the Banach space C([0,T]; H 1(R)), where
T > 0 is chosen a posteriori. For R > 2 max{||ug ||z r), Vil 1 (=)}, we define

By :={f € Xr : Ifllz=or.m @y < R}

and the mapping ® : B X By, — X7 x X, (ii,V) — (V") = O(i1, 7), where
(u®,v?) is the unique mild solution of the Cauchy problem (3.36)) (for each & > 0
fixed). Then, from (3.37)) we have for any 7 € [0, T']

O, (i1, ) = u®(t) = Us(Dug — i f Uyt —1t) (a5 () + |a()f ut)) dr,
0

!
Dy (i1, 7) = V(1) = Wa(0)v§ + f Wt — 1) (B (=0 (1)) — (=A)Pg(@)(1)) dr'.
0
2. First, we show that (@ (i, ¥), @2(i1, 7)) € By x Bh. Indeed, since for each
1€ [0,T] 1UDugllg ) = lluglla ), then

Il Ue(')uSHL“(O,T;H'(R)) = ||u(s)||H1(R)-

17



Moreover, we have

I ﬁ Ut — 1) (@ () a(t') + 1a()* (")) dr’ lm
< L I 5" (") + (@) @)l ey dt’
< f C (lal Iy N gy + ”lﬁ(t,)|2”H1(R) it wy) dt’
0

=C |04|f 5 i ) 1@E e vy dt” + C f lla(t’ )||H1(R)

< 2max{lal,R} CR* T,
where we have used (2.12)). Consequently, for T satisfying

1

, 3.38
= Imax(la|.R] C R (3.38)

-~ . R R
D1 (i, V)| z0,7:01 ®)) < gl )y + 2 max{lal, R} C RT< B + B =R.

Similarly, we estimate || (@, )|l ~0.7.11 =y Applying (2.22), it follows that
!
wfwurwﬁweﬂmeﬂﬁ—eAW%wwwdmmm
f ( + — ,)1/2)”5( =AY )) = (=) g )lp2gwy dt’

f B (1 + ~ ,)1/2) (=A@ 2wy di’

fY _OWHKAW%WWNmmdt—h+h
with obvious notation. To follow, we have
- ( ————) lla(@)Il; dt<|'8|R2(T+2C\/_)
= ,)1/2 H'(R) —
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and

b<_fu Vwmwmmmm

< ;S (1 _ /)1/2) (”g(V)(t )||L2(R) + ||axg(‘~))(t/)”iz(R))l/2 dt,
M [ - M
= ms Jo (I+ m) IV 1wy di” < - R (T +2CNT).

Consequently, for T satisfying

T < min{ s (m) } (3.39)
8 max{|BIR, M} 64C%(max{|BIR, M})*"’ '
R R
|@WMmmmmﬂmm®w%wnMﬂwVW-EE:R

3. Now, we show that @ is a contraction on B} x Bk. Let (ii;, ¥;) € By X By,
(i =1,2), then we have

1D (ity, V1) — i (ita, V)l ey

<lal f(; WUt = 1) (52(t") it (') = V1 (2) i1 ()| ry A
+ fo NU(t = ) (Jit(t ) @ (t) — i () 1 ()l ey (3.40)
<lal fo [92(¢") @12 (t') = ¥1(t") ity ()| 1 ) At

!
+ f I (P o (t') = 1y () ()| ey A = lal Ty + T
0
Applying (Z.12)) we obtain
!
lalJy < C |Oé|f 192 gy Wit (t') = @ ()| wy Y
0

t~, e e, , 341
+cmfwmmmwmrmmmmm (341)
0

< ClalRT (litz — itrll 0.7 my) + 192 = Villreoo 7.0 (r)))-
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Similarly, we also have
!
Jr < Cf (IIﬁz(t')II?,l(R) it (") = ity ()| gy
0
+ 118t e gy 1 a2 = 181 ()Pl ey) dE (3.42)

!
<3C R2f lit(t") = i1 ()| wy dt' < 3C R T lity — ||, ) -
0

Therefore, from (3.40)—(3.42), it follows that
1D (i1,91) — Oy (2, V)| g1 ()
< C R max{lal, 3R} T (|lit) — iioll i, r:m1 ) + 171 = Vall oo 7m0 ®))-
To this end, we have

| D@1, V1) — Do (it2, V)l 1y

SIWI IWe(t = )(=A) i () = (=8)Pia ()Pl g1y A

0

+ f IWe(t = 1)(=A)(m)(t) = (=AY gE)E ke d’
fWI(l t,)l/z)ll( =N (i () = i)y At

C ,
+ f (1 + ——=) =) (gP)(1) = )W llcey
0 (t-1)

=K + K,
(3.43)
where we have used (2.22)), and obvious notation. Applying (2.13)), we obtain
K, < —f (1+ )1/2) Iy (P = ()P ||y dt’
f (I+— ,)1/2) (“ﬁl(t/)“Hl(R) ity (2') = ()| g ey

(3.44)

+ i) a1 gy NNt () — ftz(t')IIHl(R)) dr’

8
<R T+ CNT) |ty — ol 720 )
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and
!

1 C - N /
K, < o (1+ m) lg(2)(#) — (VD) ms () dt

IA
|
—_
—

C ~ ’ ~ ’
|0 i) - @O, .

1/2
+10:8F(0) = gD | i

IA

M .~
— (T + CNT) |15 = Wall oo 71 o)-

Consequently, from (3.43)—(3.43)) we obtain
1D (ity,V1) — Po(ita, Vo)l )

max{2R |5, M} o o

< —————— (T + VT) (llity — @l @y + 191 = Pall o1 m)-

nmg

4. Finally, from items (2) and (3) there exists a T > 0, sufficiently small, such
that @ : Bl x B, — B} X B} is a (strict) contraction. Hence we can apply the
Banach Fixed Point Theorem and obtain a unique (local in time) solution (u?, v*)
of the Cauchy problem (3.34). i

3.2 A priori estimates

For each £ > 0, let (u®, v*) be the unique solution for the Cauchy problem (3.34),
and recall that, the sequences {u(} and {vj} are uniformly bounded in H '(R) with
respect to € > 0 fixed.

Lemma 3.4 (First estimate). Let 1 < s < 1. Then, for eacht € (0,T)

d
o f (2, 1) dx = 0, (3.46)
dt Js

d 1
—( f I(=A)?ul(t, x)|* dx + &° f 10,u5(t, x)|* dx + = f luf(t, x)|* dx
dt R R 2 R

+a f V() (1, 0 dx) = o B f (=) (| (t, 0)I) lu* (2, ) dx
R R

—a f s, X)I* (=A)**g,(v*(t, x)) dx — a € f A, ul(t, x)|* 0,V°(t, x) dx,
: . (3.47)
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d% f Ve(r, x)I> dx + f (=A)*2g(v®)(t, x) Vvi(t, x) dx
R

R

D] —

(3.48)
+ & f 0,1, ) dx = B f (=AY (|u®(2, 0)) V¥(2, x) dx.
R R

Proof. 1. First, by approximating the initial data in H'(R) by functions in CZ(R),
and a standard limit argument, we can assume that (u®, v®) satisfies the Cauchy
problem (3.34), (at least almost everywhere), and we are allowed to make the
computations below. Indeed, since H*(R) is an algebra for any s > 1/2, we may
follow the same strategy developed in the previous section, and for 0 < 77 < T,
we obtain (u?,v*) € (C([0,T’]; H*R)) n C'([0, T’]; H**(R)))*, for each integer
k> 2.

2. To follow, multiplying equation (3.34)); by u#(t, x) and integrating in R, we
have

if@tu‘g(t, x) ut(t, x) dx — f I(=A)"uf(t, x)|* dx — & f 10,1, x)* dx
R R R

= ozfvs(t, x) [uf(t, x> dx + flus(t, x)|* dx.
R R

Therefore, taking the imaginary part of the above equation, we obtain

1d _
—— f lu®(t, x)|* dx = Re f Aus(t, x) ué(t, x) dx = 0.
2dt Jp B

3. Now, let us multiply equation (3.34), by d,u?(t, x), and integrate in R to
obtain

ifatu‘g(t, x) Oué(t, x) dx — f(—A)“'us(t, x) Oué(t, x) dx
R R
+&° fAu‘g(t, x) Oué(t, x) dx
R

—a f V1, X) u®(t, x) (1, x) dx + f Ju(t, ) u®(t, x) du(t, x) dx.
R R
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Then, writing u® = uf + iuj and integrating by parts, it follows that
i fR 10,5 (2, x)> dx — fR (=AU (t, x) B, (=AY Pus(t, x) dx
— & fR 0. (t, x) 0,0,u%(t, x) dx
= fR Ve(t, x) (ui(t, x)0ui(t, x) + u5(t, x)0u5(t, x))dx
+ia fé Ve(t, x) (u5(t, x)0ui(t, x) — ui(t, x)0u5(t, x)) dx

e f W (1, x))* 9,((u®)2(t, X)) dx.
2 Ju

Taking the real part we have

d 1
—[ f I(=A)?ul(t, x)* dx + &° f 10,.45(2, X)|* dx + = f lu®(t, x)|* dx
(3.49)

+a f Ve(t, x) [uf(t, x)| dx] =a f lu®(t, x)|* 0,v°(t, x) dx.
R R

The right-hand side of the above equation is computed by multiplying (3.34), by
alu®(t, x)|* and integrating in R, that is to say

@ f lué(t, x)|* 0,°(t, x) dx = a B f (=AY (ufP)(t, x) [u(t, x)|* dx
R R

—a f e (2, x)I* (=A)g.(V)(t, x) dx — o & f B, uf(t, x)I* 00°(t, x) dx,
R R

and replacing it in (3.49), we obtain

1
i[ f I(=A)?u?(t, x)|* dx + & f 10,15 (t, x)|* dx + = f lu®(t, x)|* dx
R R 2 R

dt

+a f Ve(t, x) |ul(t, x)|? dx] =apf f (=AY P)(t, x) [u(t, ©)|* dx
R R

—-a f lu®(t, x)l2 (—A)‘Y/zgs(vs)(t, xX)dx—a g f@xluslz(t, x) 0,V°(t, x) dx.
R R
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3. Finally, equation (3.48) follows directly by multiplying (3.34), by v*(z, x)
and integrating in R. Indeed, we have

1d
—— f Ve(r, x)I> dx + f (=N g (vO)(t, x) Vo(t, x) dx + & f 10,V (2, x)[*> dx

=p f(—A)s/z(luslz)(t, x) Ve(¢, x) dx.
R

Now we pass to the second estimate.
Theorem 3.5 (Second estimate). Let % < s <1, and g € C'(R) satisfying
O<e<g()<M.
Then for any T > 0, there exist ay > 0 and Ey > 0, such that, for eacht € (0,T)

f‘l(—A)Y/2 (¢, x)|? dx+sf|8 ub(t, 0)|> dx + - flu (¢, x)|* dx < h(r), (3.50)
R

6|ﬁ|2 r 2-1 1+ —
IF\{|v (&, ) dx < " IVGl e, + m“ olle(R) h(T) % dr = H(t),
(3.51)
1 K f ||81/2( A)S/4VS(T)”L2(R) dT + f ”87/2 VV (T)”LZ(R)
(3.52)

8 8 1812 . [
(R) £12"s 2+1 2 2
< > + 725 = 1)||uO||L2(R)f0 h(T)™s dt + > f(; H*(7)dr,

forlal < ag or |lugll 2wy < Eo, where h is a continuous positive function (indepen-
dent of €).

Proof. 1. First, from Proposition2.3]

f (=8)g, ()1, %) V(1 x) dx > & C7L (=0 v (D)l
R

From the above inequality and equation (3.48)), it follows that

1
Edﬁ f|V8(t’ 0P dx+e Cl"lsfl(—A)‘/4 Vit x> dx + & fla Vv(t, x)* dx
r Jr R

<p f (=D Huf (8, )PP (=A)VE(t, x) dx
R

Cl 3182

C—l
f (=AYl (t, )1 dx + —= 5 f [(=A)"*Vv*(t, x)* dx,
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where we have used Young’s inequality. Then, integrating from O to ¢ > 0,
!
f |v8(t’ x)lz d-x +& Cl_,lg f ||(_A)S/4 S(T)”LZ(R) dT + 2 & f ||axv (T)”LZ(R)
R 0

& 2 Cl,s B2 ' s/4y,,€12 2
< | eMl” dx + - =AY (Ol g dT
R 0

(3.53)
2. Now, applying Proposition[2.6land equation (3.46)), we have
=8P POl < 20" Ol 124" O)ll 2w
(3.54)

4 1+L
s/2 & 2s

Then, we obtain from (3.53) and (3.54)
flv (t,x)f dx+eCy Yf =2V (Ol dT +2 & f 10, (O} e, dT
16 lsﬁz 3/2 & S
< “Vo”Lz(R) 7r(—|| ()“Lz(R)f I(=A) (T)||L2(R) dr.

(3.55)
Similarly, we obtain

!
f Vo(t, x)I dx + 2& C f f [(=A)*e(t, x)I* dxdt + 26 f 10, (2, X)I* dxdt
R 0JR

!
< Wl e, + 18P f f (=AYl (1, 0P Pdx + f v (z, ),
0JR 0JR

and applying Gronwall’s Lemma

!
levs(h X dx < €T||V8||22(R) +|Bl%e" f(; ||(—A)‘Y/2|M8(T)|2||iz(R)dT-
Therefore, from the above inequality and (3.34)), we have

|B|2 T
|| O”LZ(R)f ||( A)Y/2 S(T)”LZ(;R) dT

(3.56)

f V0 dx < Il + o
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and

’ VeI
8C1_’1Sf f Ay X dxdr + 2 f 0", 1) dxdr < °2Lz<R>

(3.57)
+— 816 || I ||( —N U@ dT+ ||V‘8(T)||2 dr
n(2s — “o LZ(R) 2(R) o 2®) 47
Now, from equations (3.47) it follows that
d
—[ f (=AY il (1, 0 dx + & f 01, ) dx
il Je
1
+—f|u‘9(t,x)|4 dx+ozfv8(t,x) lu®(t, x)|* dx
2 Jr R
< o/ f (=AY (2, x) g(v°)(t, x)ldx (3.58)
R

+lal 8] f [(=A) (1), )| |uf (£, x)I*dx
R

+lal & f 0.’ (1, X)I* 0,°(t, x)|dx =: |@|E + || |BIF + |a| "G,
R

with obvious notation. Again, from Proposition 2.6 and equation (3.46)), we may
write:

(i) E < llg:0") Oz 1A P POl 2y
< Mgl VOl 2 1@l (=AY u (@)l
1+5

2 -
g2l =) IIMOIILZ(R) IV Oll2w I(=A)u wOll o)

4

= Va(2s—1)

(i) F < lu® (@)l o) f | (, 0| [(=A)*(ufP)(2, )| dx
R

/21,612
< @Ol oy N1 (Ol 2wy I(=A)*"|u| Ol 2wy

4 2__ s/2. e £ s/2 £
< e I35 168 WO g, 0 Dll 1-8) Ol
8
s/2 &
< oy s Wl 10 Ol
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(i) G < f (|axu8(t,x)| ()| + i (4, )| |aﬁ(t,x)|)|axv8(z, )| dx
R

< 20| ()|l Lo r) f |0,u®(t, x)| 10,V°(t, x)| dx
R

< 2/uf (Ol oy 10V (Ol 2y 101" (Ol 2Ry

4 1/2 1/2
—= OIS 10,06 Ol o) 100 ey 10 Dl

<|

1/2 32
—= Mleggll gy 102" (Dl z2ey 1050”5, -

§|

Replacing in equation (3.38))

d
—( f I(=A)2ué (2, X)) dx + & f 10,45 (t, x)I* dx
t R R

1
+ = f e, )|* dx + @ f Ve(t, x) Ju(t, X)) dx)
2 Jr R

4 I+4
=g v R — |1 [P Y ||V Ol (=D 2uE Ol 52
JT(ZS — 1) ellL>R) 0 Lz(R) ®) L2(R)
2
+ |a'/| |B| ) || 0||L2(R) ||( A)S/ s(t)”LZ(R)
+ 4 | bp,,e1/2 OV O.u’ 3/2
—=lal & lugll 2 q) 10V Ol 2@y [10:6” OI o

V=
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and integrating from O to t > 0
1
f I(=A)?u?(t, x)* dx + &° f 10,.5(2, X)|* dx + = f lu®(t, x)|* dx
R R 2 R

1
2 4 2
< =AY, + & 1030652y, + §||u3||L4(R)+ f ! (0P dox

4 |al| s/2 . & +2Y
8 lol 1] ol
T ( IIB || 0||L2(R) f ||( A) /2 (T)”LZ(R) d’['

4 b 1/2 3/2
+plale ||uz||Lé(R) oy Ol 1045 @I, dT

+ | f Ve(t, x)| luf (¢, x)I* dx.
R

Then, we have
1
f I(=A)2u?(t, x)|* dx + &° f 10,152, x)? dx+E f lu®(t, x)|* dx
R

< =AY Pl ey + € 1055112z, + ||u0||L4(R)+||uo||L°°(R)f|V0(x)| lug(x)| dx
4 lal
n2s—1)

8 || 8] s12, e ;
+ = ﬂ'( 1) || O”LZ(R)f ||( A) /2 (T)“LZ(R) dT

2 L+ 55
gl Mgl f Ol A Pu @I dr

4 b 1/2 3/2
gzl & s, | 100 @l 10, Ol 47

Vr

& 2
V3 el e o (P o
+ fR (V2 la] (2, 0)]) (—\5 ) dx
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from which follows that
1
f (=AY 2ué(t, x)* dx + &° f 10,15 (t, x)|* dx + — f lu®(t, x)|* dx
R R 4 R

2 4
<A PUl| s ) + N0y + NG s, + etz oyl Vi 20 et 2 e
L2(R) LXR) © 9 L*(R)

4 |a/| ’ & 1_% ! & 8/2 E +23
+ m 18 llow) HMOHLZ(R)L IV (Oll2w) (=AY (T)”Lz(R) dr
8 |Q| |B| v/2 £
(2 || Olle(R) ||( A) (T)”LZ(R) dT

4 !
+ ol &gl o, f 10,0 Ol ey 10,6 @, dt + laf? f Vo, x) dx.
0 R
(3.59)

3. Now, replacing (3.36) in (3.39), we have

1
f I(=A)?ué(t, x)|* dx + £° f 10,.u°(t, X)* dx + - f lu®(t, x)|* dx
R R 4 Jr

< |I(=A)"?u 8||L2(R) + & ||6xu(8)”L2(R) + §||u3||L4(R) + Ul Loy Vil 2o e | 2y
4 || )
B — /2. &
ALLTE] S
/2 &
( ” 0||L2(R) ”( A) (T)”LZ(R) dr

4 b 1/2 3/2
e ||u3||Lé(R) o (Ol 104 @I, dr,

16|a|2ﬁzeT £ 2_% ' s/2 £
I2(R) + JT(T—D”MO”LZ(R) 0 ”(_A) (T)”LZ(R) dr

2,7
+ el IvglI7
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or conveniently we write
1
1+ f I(=A)?u?(t, )| dx + &° f 10,15 (t, X)|* dx + 1 f luf(t, 0)|* dx < 0(f) := 1
R R R

+ =AUl gy + 8 10117

Lz(R) 12 (R) | |I/l0 | |L4(]R)

2T
+ [lugl =@ Vol 2w 1l 2y + e ||V0||L2(R)
4 |af
+ —_—
Vr(2s—1)

8 la] I8 e
oo uilli, f 1A Pl dr

v/2 & L+5;
llgallo) | olle(R)f IV ©Oll2wy I(=A) (T)||LzéR) dr

4 b 1/2 3/2
+ —lal GG, | 100 Ol 1046 IR, dv,

16]af’p%e” 52,6 |
+ 71_(2—” ()“LZ(R)f ||( A) (T)“LZ(R) dT
(3.60)
From the above definition, we have
0(1) < —1U gl ST VG0 ey OG0
= 7T(2S — 1) ellL*(R) 0 LZ(R) L*(R)

Blal 8]

( 1) || OHLZ(R) G(t)z 23

4|a’|8 1/2 ° 3/4 | |2ﬁ2 r 1

Il 55, 100 @llzey 60 + 2=l il 60",

LY=o Vel
where we have used (3.60). Since 1/2 < s < 1, then

3 1 1
Z<§+4_s<1’ 1<

<

2

NSNS}

+1
2s

N =
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and consequently dividing the above inequality by H(I)%%, we obtain

1 11 4 ||
[0 %] e £ ——==lIg.ll1~ (s ||v Ollew) €
%_ % s — 1) 8ellLem) it Lz(R) [A(R)
Blal 8]

ol o, ()%

222 ,T
16lal"B"e o

1/2 s
71_(2 ) || Olle(R) H(I)z 4 D)

4 b —3aj4
+ —=lal &” e Nlugl o) 107" Dl €' +

V=

where we have multiplied the inequality by ¢’. Then, integrating from O to r > 0

! 114 - |a,|(4s - 2) ’ & -5 ' & T
f [0(r)"%] e dT < ———— lIgllli~®) ||Mo||Lzé§)f IV (Dl 2w € dT
0 0

2sVr(2s — 1)
2 e |8l 3-1 ft i 4af’pe’ f’ 1
+ — il 0(t)% e dr + ———— 0(t)2*% e dr
ST || OHLZ(R) 0 ( ) ST || 0||L2(R) 0 ( )
la| e 734425 — 1) 1/2 !
+ gl oy | 1007 @lliegey € d
\/ES 0

and integrating by parts in the left hand side

T <6(0)F + f@(r)

N lal 25 — 1) I
s\2rn(2s—1) 8

_1
% el d

o=
Nl—=

0(1)

dr

2 1/2
||L *(R) ||u0||L2(R) (e f — 1)

T 1 :32 ! 512, 172
X (e" VIl + xas DM OIILZ(R) II( A) (T)IILZ(R)d 7)
2l Bl o3 Lo
+TLB letoll 2z, fo 0()% ¢ dr (3.61)
lal &” e 25— 1) p

2, 1/2
||u8||L2(R)(e ' - 1)

V2r s

VG117 8C ,B v
(R) Ls s/2 & s

2P et+lp(2s —
4-|CL’|2B2 r ! 1,1
- 2tE ot

31




where we have used Holder’s inequality and equations (3.32))-(3.36).

4. The goal now is to apply the Generalized Gronwall Lemma (Section 2.4]).
We observe that

1
) 2 4
0(0) = 1 + ”(_A)S/ MSHLZ(R) + Sa ||axu8”L2(R) + §||u3||L4(R)

2T 2
+ gl Vol 2@ llugllzg) + lal“e ||V3||L2(R) )

hence from that and taking the square in equation (3.61]), we have

1-L 2 6 282 2 1 4
G(t) ne ! < 2 [1 + ”(_A)S/ ugllLZ(R) + 8a ||axu8”L2(R) + 5””8”[/1(]1@

2. T 2 l_%
o e ey + b IV |

¢ 2 2l 2s -1 1
6.2 1L - " 2s =1 ., eF"s L
+ 2°t (JE O(rt)7" % e dT) + —SZJT ||gg||L°°(R) HMOHLZ(R) e

& 16B26T & 25 t N & 2+5
< (IR, + 2l [ IR IS, ar)

28|a,|2 Iﬁ|2t2 N 62 ! ' 2
- s I pl
+ T il L ar)
25|a,|2 82h 8—3a/2 (2S _ 1)2
ns?
VG, 8C, , 1B C ;
2®) 1s Bl - o2 g2t

210|al4lﬁl4e2T 42 5 t 1.1 2
+ P gl 7 Fomth e ar).

2
||M8||L2(R) e”!
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Then, we apply Jesen’s inequality to obtain

o) & < 26[1 AR+ 6 0]

2 2 g4
||L2(]R) L2(R) + §||u0||L4(R)

1

1_2€
2T 2 ‘
+ lugll=@ Vol 2@ gz + lal e ||V8||L2(R)]

t RIS
6 1-L 2 2 |a'| (2S B 1) 2 2_qu 2T
£ 20T f 00 & dr+ = gl Il e
0
16B2€T 2-1 ! 241
T 2 S s/2 s
X (e Vol 2@ + mlluélle(R) ; =AY @l g, dT)

Blaf BPT | 62 (T 1
T ||u0||L2(R) 0 H(T)zs e dT
25|a,|2 82b 8—311/2 (25 _ 1)2
ms?
[ [ 8C1, |82 — 1
L*(R) 1,s £112—% ANS/2, 8 2+5

210|CZ|4|,8|4€2T 42 ! Ll o
+ g lillg, T | 60E

2T
||u(8)||L2(R) e

Moreover, after an algebraic manipulation and using that ¢’ > 1 for any ¢ > 0, we
may write

!
00" ¥ < C+C, f 0(t)" % ¥ dr
Ot , (3.62)
+C, f 0(T)F ¥ dt + Cy f 0(t) 5™ dr,
0 0
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where

C = 2°(1 + (=) " ul 75 ) + 10,145l

oll2 (R) 12 (R) | | u() | |L4 (R)

+ gl VoIl 2@ llugll 2y + |CY| e ||v0||L2(]R))

2lal* (25 - 1) A7
+ T ||gg||L°°(R) ||u0”L2(R)”v0”L2(R)
, 2lal? & &7 25— 1)? i e IR . &7
7TS2 oL~ (R)I1VQ I2(R) s
2laf® IBPT
._n6 . F
Cy :=2T, G, = T 2 ||u0”L2(R),
2l IBF |, -3 57
G = o2 gellzem) ||M3||L2(R) €
28C1,S|a/|2 |B|2 Sb_l 8—3a/2 (25 _ 1) 3__ - 210|a/|4 I,B|462T . 4_% -

Therefore, taking @ = 4 and b = 7 the above positive constants C, Cy, C, and Cj
are independent of € > 0. Now, since

2s + 1 1 1 1 1
(1——)( ) 1+2_s’ and (1—2—S)(m)—z—s,

then we have from (IEZI)

!
0(1)" > ¥ < C + C, f 0(t)" % ¥ dr
0

! L1 ! 1 25+l
+C, f (6(7)'"2)5T ¥ dr + C3 f (O()'"2) 5T dr.
0 0

Foreach 1/2 < s < 1 we have
1 25+ 1
<
2s—-1 2s-1
therefore from the above inequality we may write

1<

!
0n)'"% ¥ < C+C f 0(t)"F & dr
0
t 1 st ; 1 -
+C2f (Q(T)l—ﬁ 627')2“71 dT+C3f (9(7’)1_%627')25*1 dr
0 0
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or defining 7(¢) := 6(1)""> &

n(t) < C+ fo t |Cin@) + (€2 + C3) )| . (3.63)

Therefore, applying the Generalized Grownwall Lemma, more precisely (2.31)
with o = % > 1, we must have for each s € (1/2,1)

1

C<{exp[(1_§jji)fq el B (2] _1)f0T(c2+c3)dT}‘m

_@2s—- DT exp[- 7]

2s—1

{20+ c5) 1} °

or equivalently

(B lyE (3.64)

C(Ca+C3) 7 expl64T*] T

One remarks that

2s — 1\ &
im(25)
Hence for any s € (1/2,1) fixed, there exists @y > 0 and E, > 0, such that
condition (3.64)) is satisfied when |luo||;2z) < Eo, or |a| < ay. In fact, if there is no
coupling, that is @ = 0 (C, = C3 = 0), then condition (3.64) is trivially satisfied.
Consequently, we have

2s+ 1\ (7
n(t) < C{exp[(l by 1)[ C,dr
- 0

25+ 1 ! 2s+ 1\ (7
—cl(zz_l—l)fo(cz+c3) exp[(l—zi_l)[Cldr

= 1.

dT} 2s5—1

2C, L2 f 2C, &
_ C{exp[l —]-C s (C +C3)f0 exp[r—5=(t = 7] dT}
. 2¢, G+ Gy) 1 20, 1
= |- — —t ,
{eXp[l—Zs] C ( eXp[l—Zs ])}
from which follows the proof of the theorem. O
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Finally, we establish a maximum principle for the solution v¢ of (3.34)),.

Proposition 3.6 (Maximum Principle). Let (u?, v¥) be the unique solution of (3.34).
Then, v* satisfies

sup V| < [vollzer).- (3.65)
0,T)xR

Proof. For € > 0 fixed, let us define w := v® — ||vy||r~®), and we will show that,

wt = max{w,0} = 0. Clearly w* > 0, then we assume by contradiction that,

w* > 0. Therefore, there exists u > 0, such that w* > u. Since w*(¢) € H'(R) for
each 7 € (0,T), we can use w* as a test function for equation (3.34),, (similar to

equation (4.69)), that is to say

4 f w* ()] dx + f g:0°(10) (=A)"w* (1) dx
dt)x

—ﬁflu OF (=A)w* (1) dx fs IVw* () dx.

Now, we consider the following estimate

g:(V°) (=0)Pw* + & [Vw' P = Blu (=) 2w

> —M [wH |(-A) 2wt + & |Vw]? -

1Bl 1117
L (R)K A)1/2W+|
e

. 2
_(M:u + 61 | ||%N(R))
= 2672
where we have used Young’s inequality. Consequently, since w*(0) = 0 we have
(M g+ Bl Ry [
f w* (0) dx < © f f w* (z, x)]* dx d,
R 262 0JR
which applying the Gronwall’s lemma implies a contradiction. Therefore, we have
wh (1) = V(1) = IvollLe)” = 0. (3.60)
A similar argument can also show that
(=) = Ivoll=@))" = 0. (3.67)
Nonetheless, the equations (3.66) and (3.67) mean nothing other than

|W+|2 _ 87 |(—A)1/2 +|2 + 87 |VW+|2,

IV Oll~®) < Vollz~®) foreacht e (0,7).
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4 Existence of Weak Solutions

The main issue of this section is to show the solvability of the Cauchy problem
(LD, that is, we prove Theorem (Main Theorem). More precisely, from the
equivalence of mild solutions (when it exists) and weak solutions, we obtain a
weak formulation from (3.33), see Lemma (4.1l and the goal is to pass to the
limit as & — 0% to show a solution of the Cauchy problem (I.I)) in the sense of
Definition [[LTI We apply the Aubin-Lions Theorem to show that the family {u*}
is relatively compact in L?. The similar result for the family {v*} does not follow
analogously, since (LIl), degenerates. Hence we apply Tartar’s methodology in
[20], (see also [18]]), adapted to our context of fractional porous media equation.

First, we have the following

Lemma 4.1. Let ag > 0, Ey > 0 be given by Theorem 3.3 such that, |a| < aq or
luoll 12y < Eo. Then, the unique mild solution (u®,v°) of (3.34) satisfies,

T
i f f (u(t, x) Bip(t, %) + (=AUl (2, x) (=Nt 1) )dxdt + i f Ut (x) (0, x)dx
0 R

R
T T
- f fus(t, x) Ap dxdt + « f fvs(t, x) u®(t, x) @(t, x) dxdt
0 Jr 0 Jr

T
+ f f luf(t, x)|* u®(t, x) @(t, x) dxdt = 0,
b (4.68)

T
f f V(LX) (. x) = 8oV (1, X)) (~A)y(t, x) dxdt + f V() (0, %) dx
0 JR R

T T
+g f f VE(t, x) Ay(t, x) dxdt + 3 f f luf*(t, x) (=A)*"*y(t, x) dtdx = 0
0 JR 0 JR

(4.69)
for each test functions ¢, € C>((—o0, T) X R), with ¢ being complex-valued and
Y real-valued.

Moreover, there exists a positive constant C independent of € > 0, such that

T T
fo 1046 DIyl < C. fo 10V O dt < C. (A.70)

Proof. Equations (4.68), (.69) are obtained from (3.33)), that is, applying the
equivalence between mild solutions and weak solutions, (see Ball [1], p. 371),
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which are obtained via functional analysis arguments. Similarly, the inequalities
in equation (@.70) are obtained from the weak formulation, i.e. equations (4.68)
and (4.69)), applying standard functional analysis results, the uniform boundedness
of ug, v§, and also the uniform estimates from Lemma[3.4] and Theorem 3.3 m|

4.1 Proof of main theorem
Now, we are ready to show the main result of this article.

Proof. 1. First, under the conditions of Lemma[4.1] for each £ > 0, let (u®,V°) €
C([0,T); H'(R)) x C([0,T); H'(R)) be the unique mild solution of (3.34), sat-
isfying (3.33). Then, the pair(u®(t, x), v®(t, x)) satisfies the equations (4.68) and
#.69). To obtain (7)), (L8) we pass to the limit respectively in @.68) and (4.69)
as € — 0". Therefore, we need to show strong convergence, which implies a.e.
convergence (along subsequences) of the sequences {u°}..¢, and {V*}.¢.

2. Let us show that the family {u*},. is relatively compact. From (3.46), (3.50),
it follows that {#®}..( is (uniformly) bounded in L*(0, T'; H*(R)), hence it is possi-
ble to select a subsequence, still denoted by {#°} ..o, which converges weakly-x to
uin L=(0, T; H°(R)). Applying the Rellich’s Theorem, for any compact set K C R,
the embedding of H*(K) in L?*(K) is compact. Therefore, since the sequence
{4} 450 is uniformly bounded in L*(0, T; H~'(R)), we apply the Aubin-Lions The-
orem and obtain (along a suitable subsequence) that u® converges strongly to u in
L*(0, T; L*(K)), and thus

u®(t, x) — u(t, x) as € — 0 almost everywhere in (0, 7) X R. 4.71)

3. Now, we show that the family {v*}.. is relatively compact. First, we mul-
tiply equation (3.34)), by 77,(v°), (see Section [2.3]), and applying a standard proce-
dure (e.g. the theory of scalar conservation laws), we obtain in distribution sense

A (V) + (=A)P1g.(v*) = g (k)] = B (V) =AYl + & A (v°)

; ) 4.72)
- &'V (V) = Ry,

where we have used (2.32) and obvious notation. Let 1 be any smooth (say C?)
entropy (which is linear at infinity, i.e. ”(-) € Cp(R)). Then, multiplying equation
#.72) by n” (k) and integrating in R with respect to k, we obtain in the sense of
distributions
AmO°) + (=8)"q(") = B () =AY Pl + &' An(v°)
(4.73)
—&(=N)"n0") = 'V () = R,
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where the function ¢ satisfies ¢’ = n'g’, (recall that g.(v*) = g(v*) + &v®), and

1
R = = fn"(k) R; dk.
2 Jr
From (3.36), (3.63) it follows that the family {V*},.¢ is (uniformly) bounded in
L>(0, T; L*(R) N L=(R)), hence it is possible to select a subsequence, still denoted
by {V®}.-0, Which converges weakly-x to vin L*(0, T; L*(R) N L*(R)). Moreover,
we show that for any entropy pair (1, ¢),

dm(©) + (—4)"?q(v*) € {compact set of Hipt((0, c0) X R)}. (4.74)
Indeed, we first observe that the left hand side of (@.73)) is uniformly bounded in
W, (0, 00) x R). From equation (3.32) the terms &’An(v®), & (~A)*/*n(v*) are
compact in H, i((O, 00) X R), let us show the former the second one is similar. Let
K c(0,T) X R be any compact set, and ¢ € C:°((0,T) X R). Then, we have

T
(&7 An(v*), ¢ < f f l€"Vn(*) - V| dxdt
0 JR

T 1/2
<& f f 72900 dxdr) IVl < &7C 19l
0 JR

where C > 0 does not depend on &, and we have used that 7 is linear at infinity.
Then, taking the supremum with respect to the set W = {¢ € H' : ||¢||;n < 1} and
passing to the limit as € — 0%, the family {¢" An(v*)} converges to zero in H; ..

From equation equation (3.32)) the family {&’|Vv*|’y” (v¥)} is uniformly bounded
in LI ((0, ) x R), and thus in the space of Radon measures M, ((0, o) X R).

loc
Hence compact in ngi’q((O, o) X R), for 1 < g < 3/2. Similarly, from (3.30),
(3:34), the family {r (v*)(~=A)**|u**} is uniformly bounded in L] ((0, ) X R),

and hence compact in ngi’q((O, o00) X R), for 1 < g < 3/2. Finally, we consider the
following

Claim: The family {R®} is compact in Wl;i’q((O, ) X R), for 1 < g < 3/2.
Consequently, we have 9,7(v®) + (=A)*"?g(v*) in

{bounded set of ngi"”((O, 00) X R)} N {compact set of ngi’q((O, 00) X R)},

and due to a well known interpolation argument, (see Lemma 3.12 in [18]]), it

follows (4.74).
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Proof of Claim: It is enough to show that, the family {R®} is uniformly bounded
in M. ((0, 00) X R). To this end, we observe that the left hand side of (.73) is also
uniformly bounded in H, }((0, o) X R), and jointly with the others terms clearly
shows that, R? is a uniformly bounded distribution ( in D’), which is positive by
definition, hence from a well known result a Radon measure.

Now, from (4.74) we may apply the Tartar’s method in [20], (see also [18]]),
which implies the compactness of the sequence {v°} in Llloc((O, 00) X R). Thus
along a suitable subsequence

Vi(t, x) = v(t, x) as € — 0 almost everywhere in (0, T) X R. 4.75)

4. Finally, from ({.71)), @.73) and due to a standard diagonalization procedure,
we apply the Dominated Convergence Theorem to pass to the limit as € — 0 in the
equations (4.68) and (4.69), which togheter the Definition[I.T] gives the solvability
of the Cauchy problem (I.I)). Moreover, inequality (I.9) follows from (3.63). O
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