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Abstract

In recent decades qualitative inverse scattering methods with eigenvalues as target signatures
received much attention. To understand those methods a knowledge on the properties of the
related eigenvalue problems is essential. However, even the existence of eigenvalues for such
(nonselfadjoint) problems is a challenging question and existing results for absorbing media are
usually established under unrealistic assumptions or a smoothing of the eigenvalue problem.
We present a technique to prove the existence of infinitely many eigenvalues for such problems
under realistic assumptions. In particular we consider the class of scalar and modified Maxwell
nonselfadjoint Steklov eigenvalue problems. In addition, we present stability results for the
eigenvalues with respect to changes in the material parameters. In distinction to existing
results the analysis of the present article requires only minimal regularity assumptions. By
that we mean that the regularity of the domain is not required to be better than Lipschitz,
and the material coefficients are only assumed to be piece-wise W 1,∞. Also the stability es-
timates for eigenvalues are obtained solely in Lp-norms (p < ∞) of the material perturbations.

MSC: 35P05, 35R05, 35R30, 78M35

Keywords: Steklov eigenvalues, Maxwell’s equation, inverse scattering, existence of eigen-
values, stability of eigenvalues

1 Introduction

An important unresolved problem in inverse scattering theory is how to detect changes in the
constitutive parameters in an inhomogeneous anisotropic medium. An example are the efforts to
detect structural changes in airplane canopies due to prolonged exposure to ultraviolet radiation.
Currently this issue is resolved by simply discarding canopies every few months and replacing
them by new ones [25]. The difficulty to construct non-destructive evaluation methods for such
applications is that for anisotropic media the corresponding inverse scattering problem does not
have a unique solution [32]. A possible remedy to this problem is through the use of qualitative
methods [14, 11]. One choice of qualitative properties are so-called target signatures, such as
eigenvalues associated with the direct scattering problem that can be reconstructed from the mea-
surement of the scattering data. Classical methods use the frequency (or its square) as eigenvalue
parameter and among these target signatures are scattering frequencies (resonances) and classical
transmission eigenvalues. More recently developed methods use eigenvalue problems with an ar-
tificial nonphysical eigenvalue parameter and we refer to [12, 25] for an overview on this subject.
Classical methods which use the frequency as the eigenvalue parameter have two major drawbacks.
Firstly, the measured data is only known for real valued frequencies and thus the determination of
the location of complex eigenvalues is difficult. However all resonances have a non-zero imaginary
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part. The same holds also for classical transmission eigenvalues for absorbing media [25]. Secondly,
these methods require multi-frequency data, and their measurement-frequencies cannot be chosen
arbitrary since they must include the eigenvalues to be measured. Recently new methods have
been reported which overcome both of these drawbacks [13, 24, 6]. These methods are based on
a modified far field operator and use an artificial nonphysical eigenvalue parameter instead of the
frequency. Hence complex eigenvalues do not give rise to any difficulties and absorbing materials
can be treated effectively. Further, this way the scattering data is required only for a single fre-
quency, and moreover this frequency can be chosen a priori. Thus these new methods constitute a
great practical advance in qualitative inverse scattering methods. A first variant led to eigenvalue
problems of Steklov type [13]. In order to increase the sensitivity of the eigenvalues to changes in
the material a second variant was proposed [24] through the introduction of an additional sensi-
tivity parameter. A method similar to [24], but with a negative index material as background was
put forward in [6]. This second kind of method leads to equations of transmission type. Further
modifications for the far field operator have been introduced in [19, 26] and [21, 22, 23] to obtain
eigenvalue problems, which are more easily to analyze. Indeed the analysis of classical trans-
mission, modified transmission and Steklov eigenvalue problems requires sophisticated techniques
and can be challenging even for nonabsorbing media [15, 35, 34, 18]. An understanding of the
properties of the eigenvalue problems is essential for the related nondestructive testing methods.
Among the most important questions are the discreteness and existence of eigenvalues, and results
on the relation between changes in the material and the corresponding shifting of the eigenval-
ues. Clearly the existence of eigenvalues is essential, because if no eigenvalues exist, then related
methods for the inverse scattering problem are useless. In general for absorbing media the related
eigenvalue problems are nonselfadjoint, and the proof of existence of eigenvalues for nonselfad-
joint problems is a challenging task. If the domain and all material coefficients are C∞-regular,
then pseudo-differential calculus with a parameter [4, 2] can be used to obtain such results, see
e.g. [7, 43, 13, 24, 33]. However, for realistic applications smooth material coefficients cannot be
expected. If the chosen domain of observation and the object under investigation do not coincide,
then the material coefficients will be discontinuous at the boundary of the object. As mentioned
in the conclusion of [13], such a configuration is of significant practical advantage because compu-
tations for the artificial comparison problem can be done ahead of testing. Also the object might
be made of different materials. Even if the object is homogeneous and the chosen domain and the
investigated object coincide, an experienced flaw in the object is unlikely to be totally smooth.
A different technique which works also for rough coefficients/domains is to apply Lidki’s Theo-
rem (see e.g. [29, Chapter V, Theorem 6.2] for a generalized version). However, Lidki’s Theorem
requires the operator to be in a certain Schatten class, which often prevents its application. For
example [37] reports existence results for classical transmission eigenvalues, but does not cover the
most interesting case of second order problems in R3. As a remedy, the approach in [21, 22] for
Steklov problems was to alter the definition of the particular method such that the corresponding
operator is of trace class. However, such a modification is only known for Steklov problems, but
not for transmission problems. We will see, such a modification for Steklov problems is indeed not
necessary to guarantee the existence of eigenvalues. A second important question, the stability of
eigenvalues with respect to changes in the material, was addressed in [16, 17] for classical trans-
mission and in [22, 23] for smoothed Steklov eigenvalue problems.

In this article we follow [19] and consider the modified Maxwell Steklov eigenvalue problem in
conductive materials to find (λ,u) ∈ C×H(curl; Ω) \ {0} such that

curlµ−1 curlu− ω2
ε̃u− iωσu = 0 in Ω,

ν × µ
−1 curlu− λ∇Γ∆

−1
Γ divΓ(ν × u) = 0 on ∂Ω,

with the permeability µ, the permittivity ε̃ and the conductivity σ. The material coefficients µ,
ε̃, σ are real, symmetric matrix valued, σ is nonnegative and µ, ε̃ are uniformly positive definite
[41]. Henceforth we adopt the notation ε := ε̃ + i

ωσ such that −ω2
ε̃ − iωσ = −ω2

ε. Since we
can find an orthonormal basis of R3 which diagonalizes ε̃(x) and σ(x) simultaneously, it follows

2



that ε(x) is a normal matrix. The remainder of this article is structured as follows. In Section 2
we recall a Keldysh Theorem to prove the existence of eigenvalues for nonselfadjoint operators,
and introduce tools to show that an operator is of finite order. In Section 3 we apply the former
technique to the scalar Steklov eigenvalue problem. In Section 4 we extend the former analysis
to the modified Maxwell Steklov problem. In Section 5 we establish in Theorems 5.3, 5.4, 5.7 the
stability of modified Maxwell Steklov eigenvalues with respect to changes in the material.

2 Notation and framework

For a vector space X (of scalar functions) let X := X3 and X := X3×3, whereas N,R,C still
denote the sets of natural, real and complex numbers. For a manifold D ⊂ R3 and a subspace
X ⊂ L2(D) let X∗ := {u ∈ X : 〈u, 1〉L2(D) = 0}. Recall that for Hilbert spaces X,Y a compact
operator K ∈ L(X,Y ) is in the Schatten class Kp(X,Y ) of order p ∈ (0,+∞), if the sequence of
singular values sn(K), n ∈ N of K is ℓp(N)-summable. Further, a compact operator K ∈ L(X,Y )
is said to be of finite order if there exists p ∈ (0,+∞) such that K ∈ Kp(X,Y ). The following
theorem, which is a slight reformulation of [29, Chapter V, Theorem 8.3] and [40, Theorem 4.2,
Corollary 3.3], will be central for our analysis on the existence of eigenvalues.

Theorem 2.1 (Keldysh). Let X be an infinite dimensional separable Hilbert space and L(X)
be the space of bounded operators from X to X. Let T ∈ L(X) be compact and K ∈ L(X)
be injective, selfadjoint and compact. Let T or K be of finite order. Then the spectrum of the
operator function A(λ) = I − T − λK consists of an infinite sequence of eigenvalues, each with
finite algebraic multiplicity, which do not accumulate in C and such that for every δ > 0 only
finitely many eigenvalues lie outside the sectors {z ∈ C : | arg z| < δ} and {z ∈ C : | arg z−π| < δ}.
If K is nonnegative, then for every δ > 0 only finitely many eigenvalues lie outside the sector
{z ∈ C : | arg z| < δ}. Further the closure of the space spanned by the generalized eigenspaces of
A(·) is dense in X.

Note that some authors apply Lidki’s theorem to establish the existence of eigenvalues. How-
ever, Lidki’s theorem requires the operator to be in a particular Schatten class and hence limiting
assumptions on the spatial dimension (as in [37]) or the introduction of additional smoothing
operators (as in [21, 22]) are applied. A major difference of Theorem 2.1 to Lidki’s Theorem is
that K is not required to be in a particular Schatten class, but only needs to be in an arbitrary
Schatten class. Consequently we can avoid restrictive assumptions. To prove that an operator is
of finite order the following two results will be helpful.

Theorem 2.2. Let n ∈ N and Ω ⊂ Rn be a bounded Lipschitz domain. Let s2 > s1 ≥ 0 and
k > max{s2, n/2}. Then the embedding EHs2 ,Hs1 from Hs2(Ω) into Hs1(Ω) is compact and in
K2k/(s2−s1)(H

s2(Ω), Hs1(Ω)).

Proof. It holds EHk ,L2 ∈ K2(H
k(Ω), L2(Ω)) due to Maurin’s Theorem [1, Theorem 6.61]. Let

(sn, ϕn)n∈N be the sequence of the normalized eigenpairs of the operator (E∗
Hk,L2EHk,L2)1/2.

Thus sn ∈ l2(N). We denote real interpolation spaces (see e.g. [9]) as [H0, H1]K,s,p and
Hilbert space interpolation spaces (see e.g. [8, Appendix B]) as [H0, H1]HS,s. It holds
Hs(Ω) = [L2(Ω), Hk(Ω)]K,s/k,2 due to [9, Theorem 14.2.7]. The spaces [L2(Ω), Hk(Ω)]K,s/k,2

and [L2(Ω), Hk(Ω)]HS,s/k coincide and the norms are equivalent due to [8, Theorem B.2]. Hence

the space Hs(Ω) consists of all functions u =
∑

n∈N
cnϕn with

∑
n∈N

s
2(1−s/k)
n |cn|2 < +∞.

It follows that the eigenvalues of (E∗
Hs2 ,Hs1EHs2 ,Hs1 )1/2 are λn = s

(s2−s1)/k
n (whereby Hs(Ω)

is equipped with the scalar product 〈·, ·〉[L2(Ω),Hk(Ω)]HS,s/k
, s = s1, s2). Hence EHs2 ,Hs1 ∈

K2k/(s2−s1)(H
s2(Ω), Hs1(Ω)).

The next lemma is hardly a new result. However, we only found references for the case
W1 = W2 = W3.
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Lemma 2.3. Let W1,W2 and W3 be separable Hilbert spaces. Let B ∈ L(W1,W2) and A ∈
L(W2,W3). If s > 0 and either B ∈ Ks(W1,W2) or A ∈ Ks(W2,W3), then AB ∈ Ks(W1,W3).
and

‖AB‖Ks(W1,W3) ≤ ‖A‖L(W1,W2)‖B‖Ks(W1,W2) or

‖AB‖Ks(W1,W3) ≤ ‖A‖Ks(W1,W2)‖B‖L(W1,W2)

respectively.

Proof. Due to [28, Chapter VI Corollary 1.2] it holds sn(A) = sn(A
∗), sn(B) = sn(B

∗) and
sn(AB) = sn(B

∗A∗). Thus it suffices to consider the case B ∈ Ks(W1,W2). However, by
means of the min-max characterization of singular values it can easily be obtained that sn(AB) ≤
‖A‖L(W1,W2)sn(B) (see also [28, Chapter VI Proposition 1.3]) and the claim follows.

3 Existence of scalar Steklov eigenvalues

In this section we consider the scalar Steklov eigenvalue problem [13, 6, 36] to find (λ, u) ∈
C×H1(Ω) \ {0} such that

− div µ
−1∇u− ω2ǫu = 0 in Ω, (1a)

ν · µ−1∇u − λu = 0 on ∂Ω. (1b)

For real ǫ ≥ 0 and real, positive definite µ the existence of eigenvalues can be studied by means
of the spectral theorem for compact, selfadjoint operators. However, in the nonselfadjoint case
existing results [13] on the existence of eigenvalues are based on Agmon theory and require the
unrealistic assumption that the domain and all parameters are C∞-smooth. An alternative ap-
proach was proposed in [21] to introduce a smoothing operator of sufficiently high degree in the
boundary condition of (1) and to prove the existence of eigenvalues by means of Lidki’s theorem.
However, this does not answer the question if such an approach is indeed necessary, and in addition
the introduction of a smoothing operator into the eigenvalue problem seems challenging for other
kinds of eigenvalue problems.

Assumption 3.1. Let µ
−1 ∈ L∞(Ω) be real, symmetric and such that

inf
x∈Ω,ξ∈C3,|ξ|=1

ξ∗µ−1(x)ξ > 0.

Assumption 3.2. Let the equation

− div µ
−1∇u− ω2ǫu = 0 in Ω, u = 0 on ∂Ω, (2)

admit in H1(Ω) only the trivial solution u = 0.

Theorem 3.3. Let Ω ⊂ R3 be a bounded Lipschitz domain. Let µ satisfy Assumption 3.1, ǫ ∈
L∞(Ω), ω ∈ R and Assumption 3.2 be satisfied. Then the spectrum of (1) consists of an infinite
sequence of eigenvalues, each with finite algebraic multiplicity, which do not accumulate in C and
such that for every δ > 0 only finitely many eigenvalues lie outside the sector {z ∈ C : | arg z| < δ}.

Proof. We aim to apply Theorem 2.1. To this end we consider H1(Ω) with the modified scalar
product 〈u, u′〉H1(Ω) := 〈µ−1∇u,∇u′〉L2(Ω) + 〈u, u′〉L2(Ω), u, u

′ ∈ H1(Ω). Let T,K ∈ L(H1(Ω)) be
defined through

〈Tu, u′〉H1(Ω) := 〈(1 + ω2ǫ)u, u′〉L2(Ω), 〈Ku, u′〉H1(Ω) := 〈tr u, tru′〉L2(∂Ω),

for all u, u′ ∈ H1(Ω) and A(λ) := I−T−λK. Then the weak formulation of (1) is 〈A(λ)u, u′〉H1(Ω)

= 0 for all u′ ∈ H1(Ω) or equivalently in operator form A(λ)u = 0. It readily follows that K is
selfadjoint and by means of standard Sobolev embedding theorems that T and K are compact.
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With the embedding operator EH1,H3/4 ∈ L(H1(Ω), H3/4(Ω)) and the trace operator trH3/4,L2 ∈
L(H3/4(Ω), L2(∂Ω)), K admits the representation K = E∗

H1,H3/4 tr
∗
H3/4,L2 trH3/4,L2 EH1,H3/4 .

Thus it follows with Theorem 2.2 and Lemma 2.3 that K is of finite order, though the di-
mension of kerK = H1

0 (Ω) is infinite. As a remedy we introduce a topological decomposi-
tion H1(Ω) = X ⊕T H1

0 (Ω) such that A(λ) becomes a triangular block operator with respect
to this decomposition. Hence for u ∈ H1(Ω) we define P2u ∈ H1

0 (Ω) to be the solution to
〈(I−T )(P2u−u), u′

0〉H1(Ω) = 0 for all u′
0 ∈ H1

0 (Ω). Note that due to Assumption 3.2 and the Fred-
holm alternative the operator P2 is indeed well-defined and bounded P2 ∈ L(H1(Ω), H1

0 (Ω)). It is
also straightforward to see that P2 is a projection. Consequently with X := ranP1, P1 := (I−P2)
we constructed a topological decomposition H1(Ω) = X ⊕τ H1

0 (Ω) with associated projections
P1, P2 such that A(λ) admits a block operator representation

A(λ) ≈
(
P o
1A(λ)|X P o

1A(λ)|H1
0
(Ω)

0 P o
2A(λ)|H1

0
(Ω)

)
,

whereat P 0
1 , P

o
2 are the orthogonal projections onto X,H1

0 (Ω). Due to Assumption 3.2 and the
Fredholm alternative the operator P o

2A(λ)|H1
0
(Ω) is bijective. Hence the eigenvalues of A(λ) and

AX(λ) := P o
1A(λ)|X = IX − P o

1 T |X − λP o
1K|X coincide. Note that {tru : u ∈ X} = {tru : u ∈

H1(Ω)} = H1/2(∂Ω) from which we deduce that X has an infinite dimension. Now P o
1K|X =

P o
1KP1|X is injective and Theorem 2.1 can be applied. Hence the proof is finished.

We close this section with a discussion on Assumption 3.2.

Remark 3.4 (Validity of Assumption 3.2). Let us discuss the validity of the Assumption 3.2.
We are interested mainly in nonreal ǫ. In this case ǫ is typically of the form ǫ = ǫ̃ + i

ωσ with
uniformly positive ǫ̃ ∈ L∞(Ω) and σ ∈ L∞(Ω) with σ ≥ 0 in Ω. If σ vanishes nowhere, then
the injectivity of (2) follows by elementary means. If only σ > 0 in a subset Ω1 ⊂ Ω, then it
only follows that any solution u ∈ H1(Ω) to (2) satisfies u = 0 in Ω1. Thence if µ

−1, ǫ,Ω allow
the application of a unique continuation principle, then it follows u = 0 in Ω as well. In cases
which are not covered by the aforementioned considerations one can argue that there exist at most
countably many frequencies ω for which the Assumption 3.2 is violated.

Remark 3.5 (Necessity of Assumption 3.2). When comparing the assumptions of Theorem 3.3
with the assumptions of similar works (e.g. [13, 6]), the question appears if Assumption 3.2 is
indeed necessary. We do not have a definite answer to this question. However, we note that
when Steklov eigenvalues are studied by means of a Neumann-to-Dirichlet or a Robin-to-Dirichlet
operator R ∈ L2(∂Ω), the Assumption 3.2 is implicitly used (often without mentioning it). Indeed
for an eigenpair (λ, u) of (1) it is derived that λR tr u = tr u. To deduce for λ 6= 0 that λ−1 is an
eigenvalue of R it is then necessary that tr u 6= 0. We do not know how tr u 6= 0 can be derived
without any further assumptions. However, if Assumption 3.2 is satisfied, then a solution (λ, u) of
(1) with tr u = 0 would contradict u 6= 0. On the other hand to deduce the existence of infinitely
man distinct eigenvalues of (1) from an analysis of R the Assumption 3.2 is also necessary. For
example if ǫ is real, then R is selfadjoint and the existence of an orthonormal eigenbasis of R
follows. Since L2(∂Ω) is infinite dimensional, there exists an infinite sequence of eigenvalues
τn, n ∈ N to R. However, in the case that the codimension of kerR is finite only finite many
eigenvalues τn, n = 1, . . . , N ∈ N are nonzero. Hence, we can only deduce a finite dimensional
sequence of eigenvalues τ−1

n , n = 1, . . . , N to (1). However, if Assumption 3.2 is satisfied, then it
follows that R is injective and the former situation cannot occur. See e.g. [6, 21, 23] for works
which impose an assumption identical or similar to Assumption 3.2.

Remark 3.6 (Similar assumptions to Assumption 3.2). We mention that in some works [13, 36]
on scalar Steklov eigenvalues the assumption that the equation

− div µ
−1∇u − ω2ǫu = 0 in Ω, ν · µ−1∇u = 0 on ∂Ω,
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admits only the trivial solution u = 0, appears (i.e. the Dirichlet boundary condition in (2) is
replaced by a Neumann boundary condition). This assumption is used to introduce a Neumann-to-
Dirichlet operator, and subsequently to transform the Steklov eigenvalue problem to an eigenvalue
problem posed on the space L2(∂Ω). Note that instead one can work with a Robin-to-Dirichlet
operator (with a suitably chosen Robin parameter) as in e.g. in [21] to avoid such an assumption.

4 Existence of modified Maxwell Steklov eigenvalues

In this section we consider the modified Maxwell Steklov eigenvalue problem [19, 35, 31, 30] to
find (λ,u) ∈ C×H(curl; Ω) \ {0} such that

curlµ−1 curlu− ω2
εu = 0 in Ω, (3a)

ν × µ
−1 curlu+ λSu = 0 on ∂Ω. (3b)

Here the operator S which appears in the boundary condition is as follows. We denote the
differential operators on ∂Ω with a subscript Γ. Thence

S := −∇Γ∆
−1
Γ divΓ trν×,

whereat trν× u := ν × tru and ∆−1
Γ maps into H1

∗ (∂Ω). Note that due to

trν× ∈ L(H(curl; Ω), H−1/2(divΓ; ∂Ω))

the operator S is indeed bounded: S ∈ L(H(curl; Ω),L2(∂Ω)). The eigenvalue problem (3) was
introduced in [19] as a modification of the standard Steklov eigenvalue problem (S = I) to cope
with the complicated nature of this equation. The Fredholmness of the standard Steklov eigenvalue
problem was later established in [35] and the distribution of eigenvalues in the selfadjoint case
reported in [34]. The approach to introduce a smoothing was generalized from the scalar case [21]
in [22] to (3). Note that our forthcoming analysis can easily be extended to those problems. We
are going to establish the existence of eigenvalues of (3) in Theorem 4.8. Before that we recall
some embedding results for the spaces

H(curl, div ε, tr0
ν×; Ω) := {u ∈ H(curl; Ω): div(εu) ∈ L2(Ω), ν × u = 0 on ∂Ω},

H(curl, div ε, tr0
ν·ε; Ω) := {u ∈ H(curl; Ω): div(εu) ∈ L2(Ω), ν · εu = 0 on ∂Ω},

which are equipped with the norm

‖u‖2H(curl,div ε;Ω) := ‖u‖2
L2(Ω) + ‖ curlu‖2

L2(Ω) + ‖ div(εu)‖2L2(Ω),

and investigate the properties of the operator S.

Assumption 4.1. Let ε ∈ L∞(Ω) be such that ε− := infx∈Ω,ξ∈C3,|ξ|=1Re(ξ
∗
ε
−1(x)ξ) > 0.

Proposition 4.2. Let ε satisfy Assumption 4.1. Then the spaces H(curl, div ε, tr0
ν×; Ω) and

H(curl, div ε, tr0
ν·ε; Ω) embed compactly into L2(Ω).

Proof. For real valued matrix functions ε this result is well known due to [44]. The proof from
[44] for complex valued matrix functions ε which satisfy Assumption 4.1 requires only one mi-
nor adaptation: all inequalities of the kind ε−‖u‖2L2(Ω) ≤ 〈εu,u〉L2(Ω) have to be replaced by

ε−‖u‖2L2(Ω) ≤ Re(〈εu,u〉L2(Ω)). See also the proofs of [5, Theorems 8.1.1, 8.1.3].

The set P := {Ωj}, j = 1, ..., N is called a partition of Ω if Ωj ⊂ Ω, j = 1, ..., N are mutually

disjoint connected Lipschitz domains, and it holds that Ω =
⋃N

j=1 Ωj . Let

PW 1,∞(Ω,P) := {ǫ ∈ L∞(Ω): ǫ|Ωj ∈ W 1,∞(Ωj), j = 1, . . . , N}.

We make an assumption on the topology of Ω as in [20] and refer to [5, Chapter 3, Remark 3.2.1,
Theorem 3.3.2] for a discussion on this assumption.
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Assumption 4.3. The Lipschitz domain Ω satisfies one of the following topology conditions:

• (Top)I=0 : “given any curl-free vector field u ∈ C1(Ω), there exists p ∈ C(Ω) such that
u = ∇p in Ω”;

• (Top)I>0 : “there exist I ∈ N nonintersecting manifolds, Σ1, . . . ,ΣI , with boundaries ∂Σi ⊂
∂Ω, such that, if we let Ω̇ := Ω \⋃I

i=1 Σi, given any curl-free vector field u ∈ C(Ω), there

exists ṗ ∈ C(Ω̇) such that u = ∇ṗ in Ω̇”.

We call ε ∈ L∞(Ω) normal, if ε(x) is a normal matrix for almost all x ∈ Ω.

Proposition 4.4. Let Ω be a Lipschitz domain which satisfies the topology Assumption 4.3. Let
ε ∈ PW1,∞(Ω,P) be normal and satisfy Assumption 4.1. Then there exist constants s1, s2 > 0
such that H(curl, div ε, tr0

ν×; Ω) and H(curl, div ε, tr0
ν·ε; Ω) embed continuously in Hs(Ω) for all

s ∈ (0, s1) and s ∈ (0, s2) respectively.

Proof. The result follows from [20]. Let u ∈ H(curl, div ε, tr0
ν×; Ω) or u ∈ H(curl, div ε, tr0

ν·ε; Ω).
Due to Theorems 5.5 and 5.6 of [20] we can make decomposition u = vreg + ∇p such that
‖vreg‖H1/2(Ω) ≤ C‖u‖H(curl,div ε;Ω) with a constant C > 0 independent of u. The function

p ∈ H1(Ω) is a solution to (5.4) or (5.7) in [20] respectively. Due to Lemma 6.10 of [20] there
exists s > 0 such that the Hs−1(Ω)-norm of the right hand-sides in (5.4) and (5.7) is bounded by a
constant times ‖u‖H(curl,div ε;Ω). Hence Theorem 6.8 of [20] yields that ‖p‖H1+s(Ω) is bounded by
a constant times ‖u‖H(curl,div ε;Ω). Note that Lemma 6.10 and Theorem 6.8 of [20] are formulated
only for matrix functions ε which are multiples of the identity matrix. However, as the explained
on Page 3029 of [20] Lemma 6.10 and Theorem 6.8 of [20] extend to normal matrix functions ε.
Thus the proof is finished.

Next we investigate the properties of the operator S.

Lemma 4.5. The operator S ∈ L(H(curl; Ω),L2(∂Ω)) is compact.

Proof. We recall S = −∇Γ∆
−1
Γ divΓ trν× and that −∆−1

Γ f is the solution to the problem to find
u ∈ H1

∗ (∂Ω) such that

〈∇Γu,∇Γu
′〉L2(∂Ω) = 〈f, u′〉H−1(∂Ω)×H1(∂Ω) for all u′ ∈ H1

∗ (∂Ω).

For u ∈ H(curl; Ω) we know that div trν× u ∈ H−1/2(∂Ω), and hence one might expect that Su
admits some extra regularity, i.e. Su ∈ H1+s(∂Ω) with s > 0. However, for Lipschitz domains
the usual definition of Hs(∂Ω) via local coordinates is only well-defined for s ∈ [−1, 1]. Nonstan-
dard definitions of Hs(∂Ω), s > 1 e.g. as trHs+1/2(Ω) exist, but such spaces lack some classical
properties of Sobolev spaces. In the following we consider the space H1

∗ (∂Ω) equipped with the
norm ‖∇Γu‖L2(∂Ω) (which is equivalent to the standard H1(∂Ω)-norm on H1

∗ (∂Ω)). Will work
with the spaces [L2

∗(∂Ω), H
1
∗ (∂Ω)]HS,s, s ∈ R generated by Hilbert space interpolation (see e.g. [8,

Appendix B]). For s ∈ [−1, 1] it holds [L2
∗(∂Ω), H

1
∗ (∂Ω)]HS,s = Hs

∗(∂Ω) (see e.g. [3, p. 232]). How-
ever, the spaces [L2

∗(∂Ω), H
1
∗ (∂Ω)]HS,s are also well-defined for s > 1 (and in this case the name

extrapolation spaces might be more apt). Let (sn, ϕn), n ∈ N be the eigenpairs of (E∗E)1/2 with
the embedding operator E ∈ L(H1

∗ (∂Ω), L
2
∗(∂Ω)). Recall that [L

2
∗(∂Ω), H

1
∗ (∂Ω)]HS,s consists of all

functions u =
∑

n∈N
cnϕn with

∑
n∈N

s
2(1−s)
n |cn|2 < +∞. Since div trν× u ∈ H−1/2(∂Ω) it follows

div trν× u ∈ [L2
∗(∂Ω), H

1
∗ (∂Ω)]HS,−1/2 and thus −∆−1

Γ div trν× u ∈ [L2
∗(∂Ω), H

1
∗ (∂Ω)]HS,3/2. Thus

Su =
∑

n∈N
cn∇Γϕn with

∑
n∈N

s−1
n |cn|2 < +∞. Since ‖Su‖2

L2(∂Ω) =
∑

n∈N
|cn|2 it follows that

S ∈ L(H(curl; Ω),L2(∂Ω)) is compact.

Lemma 4.6. Let Ω be a C∞ domain. Then it holds that

S ∈ L(H(curl; Ω),H1/2(∂Ω)).

Proof. For C∞ domains the Sobolev spaces Hs(∂Ω), s ∈ R can be defined in the convenient way
and it follows from [27, Proposition 1] that indeed S ∈ L(H(curl; Ω),H1/2(∂Ω)).
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Assumption 4.7. For kerS := {u ∈ H(curl; Ω): Su = 0} let the equation

〈µ−1 curlu, curlu′〉L2(Ω) − ω2〈εu,u′〉L2(Ω) = 0 for all u′ ∈ kerS

admit only the trivial solution u = 0 in kerS.

Now we are prepared to establish the main result of this section.

Theorem 4.8. Let Ω ⊂ R3 be a bounded Lipschitz domain. Let µ satisfy Assumption 3.1 and ε

satisfy Assumption 4.1. Let Ω be a C∞ domain, or Ω satisfy the topology Assumption 4.3 and
ε ∈ PW

1,∞(Ω) be normal. Let ω ∈ R \ {0} and Assumption 4.7 be satisfied. Then the spectrum of
(3) consists of an infinite sequence of eigenvalues, each with finite algebraic multiplicity, which do
not accumulate in C and such that for every δ > 0 only finitely many eigenvalues lie outside the
sector {z ∈ C : | arg z| < δ}.

Proof. We aim to mimic the technique for the scalar case (see Theorem 3.3) and to apply
Theorem 2.1. To this end we consider H(curl; Ω) equipped with the modified scalar prod-
uct 〈u,u′〉H(curl;Ω) := 〈µ−1 curlu, curlu′〉L2(Ω) + 〈u,u′〉L2(Ω), u,u′ ∈ H(curl; Ω). Let T,K ∈
L(H(curl; Ω)) be defined through

〈Tu,u′〉H(curl;Ω) := 〈(1 + ω2
ε)u,u′〉L2(Ω), 〈Ku,u′〉H(curl;Ω) := 〈Su, Su′〉L2(∂Ω),

for all u,u′ ∈ H(curl; Ω) and A(λ) := I − T − λK. Then the weak formulation of (3) is
〈A(λ)u,u′〉H(curl;Ω) = 0 for all u′ ∈ H(curl; Ω) or equivalently in operator form A(λ)u = 0.
Next we introduce a suitable topological decomposition H(curl; Ω) = X ⊕T kerS (with kerS ⊂
H(curl; Ω)) such that A(λ) becomes a triangular block operator with respect to this decomposition.
For u ∈ H(curl; Ω) we define P2u ∈ kerS to be the solution to 〈(I − T )(P2u−u),u′〉H(curl;Ω) = 0
for all u′ ∈ kerS, or equivalently formulated P2u ∈ kerS solves

〈µ−1 curl(P2u− u), curlu′〉L2(Ω) − ω2〈ε(P2u− u),u′〉L2(Ω) = 0 (4)

for all u′ ∈ kerS. Note that Z := {∇z : z ∈ H1
∗ (Ω)} ⊂ kerS. Let

Y := {u ∈ kerS : 〈u,∇z〉H(curl;Ω) = 0 for all z ∈ H1
∗ (Ω)}

= {u ∈ kerS : divu = 0 in Ω, ν · u = 0 on ∂Ω}

be the orthogonal complement of Z in kerS. Let PY and PZ the orthogonal projections on
the respective subspaces. Then with T̃ := PY − PZ the sesquilinearform 〈(I − T )u,u′〉H(curl;Ω),

u,u′ ∈ kerS is weakly T̃ -coercive. Hence Assumption 4.7 and the Fredholm alternative yield that
the operator associated to the sesquilinearform 〈(I − T )u,u′〉H(curl;Ω), u,u

′ ∈ kerS is bijective.
Thus P2u is indeed well-defined and bounded P2 ∈ L(H(curl; Ω), kerS). Further it can easily be
seen that P2 is a projection. Consequently with X := ranP1, P1 := (I − P2) we constructed a
topological decomposition H(curl; Ω) = X ⊕T kerS with associated projections P1, P2 such that
A(λ) admits a block operator representation

A(λ) ≈
(
P o
1A(λ)|X P o

1A(λ)|kerS
0 P o

2A(λ)|kerS

)
,

whereat P o
1 , P

o
2 are the orthogonal projections onto X, kerS. As we already discussed the operator

P o
2A(λ)|kerS is bijective. Hence the eigenvalues of A(λ) and AX(λ) := P o

1A(λ)|X = IX −P o
1 T |X −

λP o
1K|X coincide. Due to the definition of the space X the operator P o

1K|X is injective. It can
easily be seen that P o

1K|X is selfadjoint, and P o
1K|X is compact due to Lemma 4.5. Note that

it follows from (4) and Z ⊂ kerS that X ⊂ H(curl, div ε, tr0
ν·ε; Ω). Thus Proposition 4.2 implies

that P o
1 T |X is compact. If Ω is a C∞ domain, then P o

1K|X is of finite order due to Lemma 4.6,
Theorem 2.2 and Lemma 2.3. If Ω satisfies the topology Assumption 4.3 and ε ∈ PW

1,∞(Ω)
is normal, then P o

1 T |X is of finite order due to Proposition 4.4, Theorem 2.2 and Lemma 2.3.
It remains to show that X has an infinite dimension. To this end we apply some results from
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[10]. Due to [10, Theorem 4.1] we know that the image of H(curl; Ω) under the tangential trace

operator trν× equals H−1/2(divΓ; ∂Ω). Let H(∂Ω) := {p ∈ H1
∗ (∂Ω): ∆Γp ∈ H

−1/2
∗ (∂Ω)}. Due to

[10, Theorem 5.5] it holds that ∇ΓH(∂Ω) ⊂ H−1/2(divΓ; ∂Ω). For p ∈ H(∂Ω) let u(p) ∈ H(curl; Ω)
be such that ν×u(p) = ∇Γp on ∂Ω. It follows that P1u(p) ∈ X and that SP1u(p) = ∇Γp. Hence
∇ΓH(∂Ω) ⊂ SX . Since the dimension of ∇ΓH(∂Ω) is infinite, it follows that the dimension of X
is infinite too. Now Theorem 2.1 can be applied. Thus the proof is finished.

To interpret the injectivity Assumption 4.7 we can apply similar considerations as in Re-
marks 3.4, 3.5, 3.6 for the scalar case. Compared to the Assumption 3.2 for the scalar case,
Assumption 4.7 looks a bit odd. However, this is exactly the Assumption which is e.g. missing in
[19].

5 Stability of modified electromagnetic Steklov eigenvalues

In this section we consider eigenvalue problem (3) for different pairs (µ, ε) = (µ0, ε0), (µh, εh)
of parameters, and investigate the convergence of eigenvalues as (µh, εh) → (µ0, ε0). That is
we study the stability of eigenvalues of (3) with respect to perturbations in (µ, ε). If (µh, εh)
converges to (µ0, ε0) in L∞(Ω)-norms, then it is rather straightforward to obtain the convergence
of eigenvalues. However, the former consideration excludes an important class of perturbations.
Consider e.g. µh = µ0 + δ1χBh(x1)I, εh = ε0 + δ2χBh(x2)I with scalar constants δ1, δ2, χB being
the characteristic function of a set B, I being the 3 × 3 identity matrix, x1, x2 ∈ Ω, h ≥ 0 and
the balls Bh(x) := {y ∈ R3 : |x − y| < h}. Then ‖µ0 − µh‖L∞(Ω) = |δ1|, ‖ε0 − εh‖L∞(Ω) = |δ2|,
while ‖µ0 − µh‖Lp(Ω) = O(|δ1|h3/p), ‖ε0 − εh‖Lp(Ω) = O(|δ2|h3/p) for each p ∈ [1,∞). Hence in
this case (µh, εh) converges to (µ0, ε0) in Lp(Ω), p ∈ [1,∞), but not in L∞(Ω). Thus we would
like to obtain stability results in terms of Lp(Ω)-norms. To this end we are going to reformulate
the eigenvalue problems (3) into eigenvalue problems for analytic Fredholm operator functions
T0(·),Th(·). Subsequently we will estimate in Lemma 5.2 the difference ‖T0(λ) − Th(λ)‖L(V ) in
terms of ‖µ0−µh‖Lp(Ω) and ‖ε0−εh‖Lp(Ω). Then general perturbation theory for analytic operator
functions [38, 39] will yield in Theorem 5.3 the convergence of eigenvalues in terms of ‖µ0−µh‖Lp(Ω)

and ‖ε0 − εh‖Lp(Ω). In Theorem 5.4 we will apply a more specialized perturbation theorem [42]
to obtain an improved convergence rate under an additional assumption. In Theorem 5.7 we will
extend the former results to topologically nontrivial domains. Note that the forthcoming analysis
which will result in Theorems 5.3, 5.4 and 5.7 is a significant improvement of [22, 23]. Indeed
here we will require only uniform L∞ bounds on µh, εh (see Assumption 5.1). In comparison
[22] requires that ‖ε0 − εh‖L∞(Ω) is sufficiently small and the analysis [23] for scalar problems
requires that Ah converges to A0 in PW1,∞(Ω,P) with a fixed partition P , whereat A0, Ah in [23]
correspond to µ

−1
0 ,µ−1

h here.

Assumption 5.1. Let (µh)h≥0, (εh)h≥0 be sequences with µh, εh ∈ L∞(Ω) such that
suph≥0 ‖µ−1

h ‖L∞(Ω), suph≥0 ‖εh‖L∞(Ω) < ∞. Let (µh)h≥0 be real and symmetric, ε0 be normal,

and µ− := infx∈Ω,ξ∈C3,|ξ|=1,h≥0 ξ
∗
µ
−1
h (x)ξ > 0 and ǫ− := infx∈Ω,ξ∈C3,|ξ|=1,h≥0Re(ξ

∗
εh(x)ξ) > 0.

Let

Vh := H(curl, div ε
0
h, tr

0
ν·εh ; Ω) := {u ∈ H(curl; Ω): div(εhu) = 0 in Ω, ν · εhu = 0 on ∂Ω},

〈u,u′〉Vh
:= 〈µ−1

h curlu, curlu′〉L2(Ω).

Let V := V0. For (µh)h≥0, (εh)h≥0 satisfying Assumption 5.1 it is well-known that we can make
the topological decomposition H(curl; Ω) = Vh ⊕T ∇H1

∗ (Ω). The projection onto Vh is given by

PVh
u := u−∇w

with w ∈ H1
∗ (Ω) being the solution to

〈εh∇w,∇w′〉L2(Ω) = 〈εhu,∇w′〉L2(Ω) for all w ∈ H1
∗ (Ω). (5)
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In addition if Ω is simply connected, which we assume from now on, then 〈·, ·〉Vh
is on Vh an

equivalent scalar product to the standard H(curl; Ω) scalar product. Lateron we will extend our
analysis in Section 5.1 to topologically nontrivial domains. Recall that the variational formulation
of (3) is to find (λ,u) ∈ C×H(curl; Ω) \ {0} such that

〈µ−1
h curlu, curlu′〉L2(Ω) − ω2〈εhu,u′〉L2(Ω) − λ〈Su, Su′〉L2(∂Ω) = 0 (6)

for all u′ ∈ H(curl; Ω). Testing (6) with ∇w,w ∈ H1
∗ (Ω) we obtain that any solution (λ,u) ∈

C × H(curl; Ω) \ {0} satisfies u ∈ Vh, and trivially (λ,u) satisfies (6) for all u′ ∈ Vh. On the
other hand if (λ,u) ∈ C × Vh \ {0} satisfies (6) for all u′ ∈ Vh, then (λ,u) ∈ C × Vh \ {0}
satisfies (6) also for all u′ ∈ H(curl; Ω). Thus we can consider the variational formulation of the
eigenvalue problem (3) in the space Vh instead of H(curl; Ω). This is advantageous, because the
space Vh admits better embedding properties than H(curl; Ω). However, when we compare now
the eigenvalue problems for h = 0 and h > 0 we recognize that these problems are posed now on
different spaces V0 6= Vh, h > 0. To circumvent the latter we are going to reformulate the eigenvalue
problem for h > 0 in terms of the space V . Note that PVh

∈ L(V, Vh). Since curlPVh
u = curlu

for u ∈ V and Ω is simply connected it follows that PVh
ins injective. Due to Vh = PVh

H(curl; Ω),
H(curl; Ω) = V ⊕T ∇H1

∗ (Ω) and PVh
∇H1

∗ (Ω) = {0} it follows that PVh
surjective. Thus PVh

is
bijection between V and Vh. Consequently we can reformulate the eigenvalue problem for h > 0
to find (λ,u) ∈ C× V \ {0} such that

〈µ−1
h curlu, curlu′〉L2(Ω) − ω2〈εhPVh

u, PVh
u′〉L2(Ω) − λ〈Su, Su′〉L2(∂Ω) = 0 (7)

for all u′ ∈ V , whereat we used that curlPVh
u = curlu and SPVh

u = Su. We introduce
Aµh

, Aεh
, Atr ∈ L(V ) through

〈Aµh
u,u′〉V := 〈µ−1

h curlu, curlu′〉L2(Ω),

〈Aεh
u,u′〉V := 〈εhPVh

u, PVh
u′〉L2(Ω)

〈Atru,u
′〉V := 〈Su, Su′〉L2(∂Ω)

for all u,u′ ∈ V . Note that Aµ0
= I. Let Th(λ) := A−1

µh
(ω

2

λ Aεh
+ Atr) and Th(λ) := I − λTh(λ)

for λ ∈ C \ {0}. Recall that due to Assumption 4.7 λ = 0 is not an eigenvalue of (3). Thence the
eigenvalue problem (7) is equivalent to find (λ,u) ∈ C \ {0} × V \ {0} such that Th(λ)u = 0. We
recall the three-term Hölder’s inequality

‖f1f2f3‖L1(Ω) ≤ ‖f1‖Lp(Ω)‖f2‖Lq(Ω)‖f3‖Lrp(Ω),
1

p
+

1

q
+

1

r
= 1, (8)

for p, q, r ∈ [1,∞]. We also recall the continuous Sobolev embedding for

t ∈ (0, 3/2), t∗ := 6/(3− 2t), ‖u‖Lt∗(Ω) ≤ CL,t‖u‖Ht(Ω) ∀u ∈ Ht(Ω), (9)

with the embedding constant CL,t > 0.

Lemma 5.2. Let Ω be a simply connected Lipschitz domain. Let (µh)h≥0, (εh)h≥0 satisfy As-
sumption 5.1, µ0 ∈ PW1,∞(Ω,P1), ε0 ∈ PW1,∞(Ω,P2), and sµ0

, sε0
> 0 be the maximal Sobolev

embedding indices of H(curl, div µ0, tr
0
ν×; Ω) and H(curl, div ε0, tr

0
ν·ε0 ; Ω) (see Proposition 4.4)

and s̃µ0
:= min{1/2, sµ0

}. Let s̃∗
µ0
, s∗

ε0
be as defined in (9). Then for each p1 ∈ ( 2

1−2/s̃∗
µ0

,∞),

p2 ∈ ( 2
1−2/s∗

ε0

,∞), there exists a constant C > 0 such that

‖T0(λ) − Th(λ)‖L(V ) ≤ C(1 + 1/|λ|)
(
‖µ0 − µh‖Lp1(Ω) + ‖ε0 − εh‖Lp2(Ω)

)

for all λ ∈ C \ {0}. The constant C depends only on Ω, ω, µ0, ε0, p1, p2, and the infinums and
supremums in Assumption 5.1.
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Proof. We compute

T0(λ)− Th(λ) = A−1
µh

(Aµh
− I)

(
ω2

λ
Aε0

+Atr

)
+

ω2

λ
A−1

µh
(Aε0

−Aεh
). (10)

Note that due to Assumption 5.1 it holds suph≥0 ‖A−1
µh

‖L(V ) < ∞. First we estimate ‖Aε0
−

Aεh
‖L(V ). We compute for u,u′ ∈ V that

〈(Aε0
−Aεh

)u,u′〉L(V ) = 〈ε0u,u′〉L2(Ω) − 〈εhPVh
u, PVh

u′〉L2(Ω)

= 〈ε0u,u′〉L2(Ω) − 〈εhPVh
u,u′〉L2(Ω)

= 〈(ε − εh)u,u
′〉L2(Ω) + 〈εh(1− PVh

)u,u′〉L2(Ω).

(11)

Let t∗2 := 2/(1− 2/p2), i.e. 1/p2 + 1/t∗2 + 1/2 = 1. Let t2 := 3/2− 3/t∗2, i.e. t
∗
2 = 6/(3− 2t2). Let

CH,t > be the V →֒ Ht(Ω) embedding constant. Recall that (1 − PVh
)u = ∇w with w ∈ H1

∗ (Ω)
being the solution to (5), and that ǫ− is defined in Assumption 5.1. It follows

‖∇w‖L2(Ω) ≤ ǫ−1
− ‖〈εhu,∇·〉‖H−1(Ω) = ǫ−1

− ‖〈(ε0 − εh)u,∇·〉‖H−1

≤ ǫ−1
− ‖ε0 − εh‖Lp2(Ω)‖u‖Lt∗

2 (Ω)

≤ CL,t2ǫ
−1
− ‖ε0 − εh‖Lp2(Ω)‖u‖Ht2(Ω)

≤ CH,t2CL,t2ǫ
−1
− ‖ε0 − εh‖Lp2(Ω)‖u‖V .

Thence

|〈εh(1−PVh
)u,u′〉L2(Ω)| ≤ (sup

h≥0
‖εh‖L∞(Ω))CH,0CH,t2CL,t2ǫ

−1
− ‖ε0 − εh‖Lp2(Ω)‖u‖V ‖u′‖V . (12)

Further we estimate

|〈(ε0 − εh)u,u
′〉L2(Ω)| ≤ ‖ε0 − εh‖Lp2(Ω)‖u‖Lt∗

2 (Ω)
‖u′‖L2(Ω)

≤ CL,t2CH,0‖ε0 − εh‖Lp2(Ω)‖u‖Ht2 (Ω)‖u′‖V
≤ CH,t2CL,t2CH,0‖ε0 − εh‖Lp2(Ω)‖u‖V ‖u′‖V .

(13)

Together (11), (12),(13) yield that

‖Aε0
−Aεh

‖L(V ) ≤ C‖ε0 − εh‖Lp2(Ω) (14)

with a constant C > 0.
Next we estimate ‖(Aµh

− I)Aε0
‖L(V ). For u ∈ V let v1 := Aε0

u. Thence v1 satisfies

〈µ−1
0 curlv1, curlu

′〉L2(Ω) = 〈v1,u
′〉V = 〈Aε0

u,u′〉V = 〈ε0u,u′〉L2(Ω)

for all u′ ∈ V , and even also for all u′ ∈ H(curl; Ω). Hence curlµ−1
0 curlv1 = ε0u ∈ L2(Ω) and

ν × µ
−1
0 v1 = 0 on ∂Ω, i.e. µ

−1
0 curlv1 ∈ H(curl, div µ0, tr

0
ν×; Ω). Let t∗1 := 2/(1 − 2/p1), i.e.

1/p1 + 1/t∗1 + 1/2 = 1. Let t1 := 3/2 − 3/t∗1, i.e. t
∗
1 = 6/(3 − 2t1). Recall that µ− is defined in

Assumption 5.1, and let C̃H,t be the H(curl, div µ0, tr
0
ν×; Ω) →֒ Ht(Ω) embedding constant. We

estimate for u,u′ ∈ V that

|〈(Aµh
− I)Aε0

u,u′〉L(V )| = |〈(µ−1
h − µ

−1
0 ) curlv1, curlu

′〉L2(Ω)|
= |〈µ−1

h (µ0 − µh)µ
−1
0 curlv1, curlu

′〉L2(Ω)|
≤ (sup

h≥0
‖µ−1

h ‖L∞(Ω))‖µ0 − µh‖Lp1(Ω)‖µ−1
0 curlv1‖

L
t∗
1 (Ω)

‖ curlu′‖L2(Ω)

≤ CL,t1µ
−3/2
− ‖µ0 − µh‖Lp1(Ω)‖µ−1

0 curlv1‖Ht(Ω)‖u′‖V
≤ C̃H,t1CL,t1µ

−3/2
− ‖µ0 − µh‖Lp1(Ω)‖µ−1

0 curlv1‖H(curl;Ω)‖u′‖V
≤ C‖µ0 − µh‖Lp1(Ω)‖u‖V ‖u′‖V ,

(15)
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with C = (CH,0µ
−1/2
− + 1)CH,0‖ε0‖L∞(Ω)

√
2C̃H,t1CL,t1µ

−3/2
− , whereat we used that

‖µ−1
0 curlv1‖H(curl;Ω) ≤

√
2(‖µ−1

0 curlv1‖L2(Ω) + ‖ε0u‖L2(Ω))

≤ µ
−1/2
−

√
2‖v1‖V + CH,0‖ε0‖L∞(Ω)

√
2‖u‖V

≤ C2
H,0‖ε0‖L∞(Ω)µ

−1/2
−

√
2‖u‖V + CH,0‖ε0‖L∞(Ω)

√
2‖u‖V .

Hence

‖(Aµh
− I)Aε0

‖L(V ) ≤ C‖µ0 − µh‖Lp1(Ω). (16)

Next we estimate ‖(Aµh
− I)Atr‖L(V ). For u ∈ V let v2 := Atru. In a similar way as for v1

we obtain that curlµ−1
0 curlv2 = 0 and ν × µ

−1
0 curlv2 = Su ∈ L2(∂Ω). Since Ω is simply

connected and curlµ−1
0 curlv2 = 0 it follows that µ

−1
0 curlv2 = ∇w for a w ∈ H1(Ω). Thence

ν × µ
−1
0 curlv2 ∈ L2(∂Ω) implies that trw ∈ H1(∂Ω). Note that this point of the proof requires

us to work with s̃µ instead of sµ. It also holds that div µ∇w = div curlv2 = 0 in Ω. Let R be a
bounded extension operator H1(∂Ω) → H1+t1(Ω). Then w1 := w −R trw ∈ H1

0 (Ω) solves

〈µ0∇w1,∇w′〉L2(Ω) = −〈µ0∇R trw,∇w′〉L2(Ω)

for all w′ ∈ H1
0 (Ω). Note that the regularity index sµ0

equals the regularity index for the former
scalar Dirichlet problem (see the proof of Proposition 4.4). The right hand-side of the former
equation is in H−1+t1(Ω). Thus it follows with [20, Theorem 6.8] that

‖µ−1
0 curlv2‖Ht1 (Ω) ≤ ‖∇w1‖Ht1 (Ω) + ‖∇R trw‖Ht1 (Ω) ≤ C‖u‖V

with a constant C > 0. Hence estimates similar to (15) yield that

‖(Aµh
− I)Atr‖L(V ) ≤ C‖µ − µh‖Lp1(Ω) (17)

with a constant C > 0. The claim follows now from (10), (14), (16) and (17).

Theorem 5.3. Let Ω be a simply connected Lipschitz domain. Let (µh)h≥0, (εh)h≥0 satisfy As-
sumption 5.1, µ0 ∈ PW1,∞(Ω,P1), ε0 ∈ PW1,∞(Ω,P2), and sµ0

, sε0
> 0 be the maximal Sobolev

embedding indices of H(curl, div µ0, tr
0
ν×; Ω) and H(curl, div ε0, tr

0
ν·ε0 ; Ω) (see Proposition 4.4) and

s̃µ0
:= min{1/2, sµ0

}. Let s̃∗
µ0
, s∗

ε0
be as defined in (9) and p1 ∈ ( 2

1−2/s̃∗
µ0

,∞), p2 ∈ ( 2
1−2/s∗

ε0

,∞).

Let limh→0 ‖µ0 − µh‖Lp1(Ω) = limh→0 ‖ε0 − εh‖Lp2(Ω) = 0. Then

1. if (λh)h>0 is a sequence of eigenvalues of (3) with (µ, ε) = (µh, εh), which converges to λ0,
then λ0 is an eigenvalue of (3) with (µ, ε) = (µ0, ε0);

2. for every eigenvalue λ0 of (3) with (µ, ε) = (µ0, ε0) exists a sequence (λh)h>0 with λh being
an eigenvalue of (3) with (µ, ε) = (µh, εh) for almost all h > 0 such that (λh)h>0 converges
to λ0;

3. let Λ ⊂ C be compact and such that ∂Λ is contains no eigenvalues of (3) with (µ, ε) =
(µ0, ε0). Then there exists an index h0 > 0 such that for all h < h0 the sum of the algebraic
multiplicities of all eigenvalues of (3) in Λ are equal for (µ, ε) = (µ0, ε0) and (µ, ε) = (µh, εh);

4. let λ0 ∈ C be an eigenvalue of (3) with (µ, ε) = (µ0, ε0) and κ be the maximal length of its
Jordan chains. Let Λ ⊂ C be compact, such that the λ0 ∈ Λ is the only eigenvalue of (3)
with (µ, ε) = (µ0, ε0) contained in the closure of Λ. Let λmean

h be the weighted mean (with
respect to the algebraic multiplicity) of all eigenvalues of (3) with (µ, ε) = (µh, εh) in Λ. Let
λh ∈ Λ be an eigenvalue of (3) with (µ, ε) = (µh, εh). Then it holds that

|λ0 − λh| = O
(
‖µ0 − µh‖

1
κ

Lp1(Ω) + ‖ε0 − εh‖
1
κ

Lp2(Ω)

)

and

|λ0 − λmean
h | = O

(
‖µ0 − µh‖Lp1(Ω) + ‖ε0 − εh‖Lp2(Ω)

)
.
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Proof. We apply [38, 39] to T0(·), Th(·) and use Lemma 5.2. The first two claims follow from [38,
Theorem 2]. The third claim follows from [38, Theorem 3]. The fourth claim follows from [39,
Theorem 2].

Note that in the following Theorem 5.4 the allowed range of p1 is p1 ∈ ( 1
1−2/s̃∗

µ0

,∞), whereas

in Theorem 5.3 it is required that p1 ∈ ( 2
1−2/s̃∗

µ0

,∞). Further note that (19) does not depend on
κ.

Theorem 5.4. Let the assumptions of Theorem 5.3 be satisfied. Let λ0 be an eigenvalue of (3)
with (µ, ε) = (µ0, ε0) and (un), n = 1, . . . , N be a normalized basis of the corresponding generalized
eigenspace. Assume that

1 +
λ2
0

N

N∑

n=1

〈T ′
0(λ0)un,un〉V 6= 0, (18)

whereat T ′
0(λ) is the derivative of T0(λ) with respect to λ and un denotes the complex conjugation

of un. Then the last statement of Theorem 5.3 improves with p1 ∈ ( 1
1−2/s̃∗

µ0

,∞) to

|λ0 − λh| = O
(
‖µ0 − µh‖Lp1(Ω) + ‖ε0 − εh‖Lp2(Ω)

)
. (19)

Proof. First note that (un), n = 1, . . . , N is a normalized basis of the generalized eigenspace of the
adjoint problem. Also note that 2p1 ∈ ( 2

1−2/s̃∗
µ0

,∞). We apply [42, Theorem 4.1] to T0(·), Th(·)
and use Lemma 5.2. Let C 6= 0 be the left hand-side of (18). Thence

CN

λ2
0

(λ0 − λh) =
N∑

n=1

〈(T0(λ0)− Th(λ0))un,un〉V

+O
(
‖µ0 − µh‖2L2p1(Ω) + ‖ε0 − εh‖2Lp2(Ω)

)
.

Recall (10):

T0(λ0)− Th(λ0) = A−1
µh

(Aµh
− I)

(
ω2

λ0
Aε0

+Atr

)
+

ω2

λ0
A−1

µh
(Aε0

− Aεh
).

We estimate as in the proof of Lemma 5.2 that

〈A−1
µh

(Aε0
−Aεh

)un,un〉V = O
(
‖ε0 − εh‖Lp2(Ω)

)
.

For the other term we compute

A−1
µh

(Aµh
− I)

(
ω2

λ0
Aε0

+Atr

)
= (Aµh

− I)

(
ω2

λ0
Aε0

+Atr

)

− (Aµh
− I)A−1

µh
(Aµh

− I)

(
ω2

λ0
Aε0

+Atr

)

and estimate with vn := (ω
2

λ0
Aε0

+Atr)un that

∣∣∣
〈
A−1

µh
(Aµh

− I)
(ω2

λ0
Aε0

+Atr

)
un,un

〉
V

∣∣∣

≤ ‖µ‖L∞(Ω)µ
−1
− |〈(µh − µ0)µ

−1
0 curlvn,µ

−1
0 curlun〉L2(Ω)|

+ (sup
h≥0

‖µ−1
h ‖L∞(Ω))µ

−1
− ‖(Aµh

− I)vn‖V ‖(Aµh
− I)un‖V .

Hence by means of (8) we estimate similarly as in the proof of Lemma 5.2 further that

|〈(µh − µ0)µ
−1
0 curlvn,µ

−1
0 curlun〉L2(Ω)| = O

(
‖µ0 − µh‖Lp1(Ω)

)

13



and

‖(Aµh
− I)vn‖V ‖(Aµh

− I)un‖V = O
(
‖µ0 − µh‖2L2p1(Ω)

)
,

whereat we exploited that µ
−1
0 curlun has the same regularity properties as µ

−1
0 curlvn. We recall

Hölder’s interpolation inequality

‖f‖Lr ≤ ‖f‖αLp‖f‖1−α
Lq (20)

for q ∈ [1,∞], p ∈ [1, q], r ∈ [p, q] and α ∈ [0, 1] with 1
r = α

p + 1−α
q . At last we estimate as in [23]

by means of (20) with q = ∞, p = p1, r = 2p1, α = 1/2 that

‖µ0 − µh‖2L2p1(Ω) ≤ ‖µ0 − µh‖Lp1(Ω).

Hence altogether we obtain that

|λ0 − λh| = O
(
‖µ0 − µh‖Lp1(Ω) + ‖ε0 − εh‖Lp2(Ω)

)
.

Remark 5.5. Note that for a semisimple eigenvalue (i.e. κ = 1) the left hand-side of (18)

equals 1
N

∑N
n=1〈Sun, Sun〉L2(∂Ω). If we compare Theorem 5.4 with N = 1 to [23, Theorem 7], we

observe that here we require (18) whereas no such assumptions occurs in [23, Theorem 7]. The
explanation is that there is a slight mistake in [23]. Indeed [23, Theorem 6] is an incorrect version
of [42, Theorem 4.1], which assumes that the eigenspaces for T0(·) and its adjoint problem are
equal. However, in general this is only true for selfadjoint operators. Thus in the right arguments
of scalar products in [23, Theorems 6,7] u0 needs to be replaced by u∗

0. For Steklov eigenvalue
problems it holds u∗

0 = u0 (with the overline indicating the complex conjugation). Thus one cannot
deduce from Su 6= 0 that 〈Su, Su〉L2(∂Ω) 6= 0.

Remark 5.6. Note that for Theorem 5.4 we apply [42, Theorem 4.1] and can obtain an explicit
formula for the leading order perturbation term with respect to perturbations in ε. However, for
perturbations in µ the explicit perturbation term turns out to be of the same order as the remainder.

5.1 Topologically nontrivial domains

Until now we have assumed in this section that the domain Ω is simply connected. Let us discuss
now how to extend the former analysis and in particular Theorems 5.3 and 5.4 to domains Ω
which satisfy Assumption 4.3 with (Top)I>0. To construct a suitable topological decomposition
of H(curl; Ω) in this case we follow [5, Chapter 3] with some minor adaptations. Let

P∗(Ω̇) := {ẇ ∈ H1
∗ (Ω̇) : [ẇ]Σi = C for all i = 1, . . . , I},

whereat [ẇ]Σi denotes the jump of w on Σi. Functions ẇ ∈ P∗(Ω̇) in general do not admit a weak
gradient ∇ẇ in Ω. However, the weak gradient ∇ẇ is well defined in L2(Ω̇), which we can identify

with L2(Ω). We use the notation ∇̃ẇ ∈ L2(Ω) for the former function to emphasize the difference.

Note that curl ∇̃ẇ = 0 and S∇̃ẇ = 0 for ẇ ∈ P∗(Ω̇). Recall [5, Theorem 3.3.2] which tells that

for u ∈ H(curl; Ω), curlu = 0, if and only if u = ∇̃ẇ with ẇ ∈ P∗(Ω̇). Let

Ṽh := {u ∈ H(curl; Ω): 〈εhu, ∇̃ẇ〉L2(Ω) = 0 for all ẇ ∈ P∗(Ω̇)}.

The projection onto Ṽh is given by PṼh
u := u− ∇̃ẇ with ẇ ∈ P∗(Ω̇) being the solution to

〈εh∇̃ẇ, ∇̃ẇ′〉L2(Ω) = 〈εhu, ∇̃ẇ′〉L2(Ω) for all ẇ′ ∈ P∗(Ω̇). (21)

Hence we have a topological decomposition H(curl; Ω) = Ṽh ⊕T ∇̃P∗(Ω̇) and 〈u,u′〉Ṽh
:=

〈µ−1
h curlu, curlu′〉L2(Ω) is on Ṽh an equivalent scalar product to the standard H(curl; Ω) scalar

product. Thus we can repeat the preceding analysis to reformulate eigenvalue problem (3) in
terms of T̃h(λ) = I − λT̃h(λ) on the space Ṽ := Ṽ0, whereat in the definitions of T̃h(·) quantities
V, PVh

merely need to be replaced by Ṽ , ˜PVh
, etc..
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Theorem 5.7. Let Ω satisfy Assumption 4.3 with (Top)I>0. Then Theorems 5.3 and 5.4 still

hold true, whereat in the latter Theorem 5.4 quantities V, T0(·) need to be replaced by Ṽ , T̃0(·).

Proof. First we show that Lemma 5.2 can be generalized. Note that Proposition 4.4 holds already
for (Top)I>0 and hence Estimates (14), (16) do not require any adaptation. To obtain (17) it

suffices to bound ‖µ−1
0 curlv2‖Ht1 (Ω), v2 := Atru in terms of ‖u‖Ṽ . It holds curlµ−1

0 curlv2 = 0

and ν × µ
−1
0 curlv2 = Su ∈ L2(∂Ω). Due to [5, Theorem 3.3.2] we obtain µ

−1
0 curlv2 = ∇̃ẇ for

a ẇ ∈ P∗(Ω̇). Note that functions in P∗(Ω̇) have a well-defined trace in Hs(∂Ω), s < 1/2. From
ν × µ

−1
0 curlv2 = Su ∈ L2(∂Ω) we deduce that tr ẇ ∈ H1(∂Ω). Let w ∈ H1(Ω) be the solution

to div µ∇w = 0 in Ω, w = ẇ on ∂Ω. As in the proof of Lemma 5.2 we can bound ‖∇w‖Ht1 (Ω) in

terms of ‖u‖Ṽ . In addition it holds ∇̃ẇ − ∇w ∈ H(curl, div µ0, tr
0
ν×; Ω) and hence by means of

Proposition 4.4 we can estimate

‖µ−1
0 curlv2‖Ht1 (Ω) ≤ ‖∇̃ẇ −∇w‖Ht1 (Ω) + ‖∇w‖Ht1 (Ω)

≤ C̃H,t1‖∇̃ẇ −∇w‖L2(Ω) + ‖∇w‖Ht1 (Ω)

≤ C̃H,t1‖∇̃ẇ‖L2(Ω) + (C̃H,t1 + 1)‖∇w‖Ht1 (Ω)

≤ C1(‖µ−1
0 curlv2‖L2(Ω) + ‖Su‖L2(∂Ω))

≤ C2‖u‖Ṽ

with a constants C1, C2 > 0. Altogether we established the generalization of Lemma 5.2 from
which the generalization of Theorem 5.3 follows directly. For the generalization of Theorem 5.4
we make the same modifications as for the generalization of Lemma 5.2.
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