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LOCAL EXISTENCE FOR THE LANDAU EQUATION

WITH HARD POTENTIALS

SANCHIT CHATURVEDI

Abstract. We consider the spatially inhomogeneous Landau equation with hard potentials
(i.e. with γ ∈ [0,1]) on the whole space R

3. We prove existence and uniquenss of solutions
for a small time, assuming that the initial data is in a weighted tenth-order Sobolev space
and has exponential decay in the velocity variable.

In constrast to the soft potential case, local existence for the hard potentials case has
been missing from the literature. This is because the moment loss issue is the most severe
for these potentials. To get over this issue, our proof relies on a weighted hierarchy of norms
that depends on the number of spatial and velocity derivatives in an asymmetric way. This
hierarchy lets us take care of the terms that are affected by the moment loss issue the most.
These terms do not give in to methods applied to study existence of solutions to Landau
equation with soft potentials and are a major reason why the local existence problem was
not known for the case of hard potentials.

1. Introduction

We study the Landau equation for the particle density f(t, x, v) ≥ 0 in the whole space R3.
t ∈ R≥0, x ∈ R3 and v ∈ R3. The Landau equation is as follows

∂tf + vi∂xi
f = Q(f, f). (1.1)

Q(f, f) is the collision kernel given by,

Q(f, f)(v) ∶= ∂vi ∫ aij(v − v∗)(f(v∗)(∂vjf)(v) − f(v)(∂vjf)(v∗))dv∗,
and aij is the non-negative symmetric matrix defined by

aij(z) ∶= (δij − zizj∣z∣2 ) ∣z∣γ+2. (1.2)

In all the expressions above (and in the rest of the paper), we use the convention that
repeated lower case Latin indices are summed over i, j = 1,2,3.

The quantity γ encodes the type of interaction potential between the particles. Physically,
the relevant regime is [−3,1]. We will be concerned with the regime [0,1], that is the
Maxwellian (γ = 0) and all of the hard potentials.

For us it will be convenient to work with a slightly modified but equivalent version of (1.1)
which is as follows

∂tf + vi∂xi
f = aij∂2vivjf − cf, (1.3)

where c ∶= ∂2zizjaij(z), aij ∶= aij ∗ f and c ∶= c ∗ f .
Date: October 28, 2019.

1

http://arxiv.org/abs/1910.11866v1


LOCAL EXISTENCE FOR THE LANDAU EQUATION WITH HARD POTENTIALS 2

In this paper, we give local in time solution to the Cauchy problem for the Landau equation,
i.e. we study the solutions arising from prescribed regular initial data:

f(0, x, v) = fin(x, v) ≥ 0.
Our main result is that for sufficiently regular initial data, we have local existence and

uniqueness for (1.3). That is we have a unique, non-negative solution to the Cauchy problem
for a small time.

Theorem 1.1. Let M0 > 0, γ ∈ [0,1], d0 > 0, fin be such that

∑
∣α∣+∣β∣≤10

∥⟨v⟩20−( 32+δγ)∣α∣−( 12+δγ)∣β∣ ∂αx∂βv (ed0⟨v⟩fin)∥2L2
xL

2
v
≤M0,

where,

δγ = {0 if γ ∈ [0,1)
η for some η > 0 if γ = 1.

Then for some T > 0, depending on γ, d0 and M0, there is a non-negative solution, f to
(1.3) with f(0, x, v) = fin(x, v).

In addition, fe(d0−κt)⟨v⟩, is unique in the energy space Ẽ4
T ∩ C0([0, T ); Ỹ 4

x,v) (κ is a large
constant chosen later, that depends on γ, d0 and M0).
Moreover, fe(d0−κt)⟨v⟩ ∈ ET ∩C0([0, T );Yx,v) .

See Section 3 for the definition of spaces ET , Yx,v, Ẽ4
T and Ỹ 4

x,v.
In the case of inhomogeneous equations, this is the first existence result for a binary

collisional model featuring a hard and long-range potential. The major analytic difficulty
in treating hard potentials for inhomogenous case stems from the fact that the velocity
growth of the coefficients is too high to be taken care of by techniques employed for the soft
potentials in [4, 5, 17]. We overcome this by employing weighted (in velocity) energy norms
that ‘penalize’ the spatial and velocity derivatives differently (see Section 2 for more details).

1.1. Related works. We now give a rather inexhaustive list of pertinent results that deal
with a long range interaction potential.

Local existence results. One of the first relevant local existence results is due to the
Alexandre–Morimoto–Ukai–Xu–Yang (AMUXY). The group proved in [4, 5] local existence
for the non cut-off Boltzmann equation when the angular singularity parameter, s is in the
range (0, 1

2
). More specifically, they prove for sufficiently regular initial data that is bounded

by a Gaussian, there exists a local solution that stays bounded by a time dependent Gaussian.
Moreover, they also prove C∞ smoothing for solutions that satisfy a non-vacuum condition.

For the Landau equation, Henderson–Snelson–Tarfulea proved the local existence, mass-
spreading and C∞ smoothing of solutions to Landau equation with soft-potentials in [17].
To prove local existence, they adapt the time-dependent Gaussian idea that appeared in
[4, 5].They also prove a mass-spreading theorem that helps them dispense with the non-
vacuum contition required to prove C∞ smoothing.

Very recently, Henderson–Snelson–Tarfulea proved a local existence result for Boltzmann
equation with s ∈ (0,1) and −3

2
−2s ≤ γ < 0 in [18]. Specifically, they prove that if initial data

is polynomially decaying in velocity, i.e. is bounded in a high weighted L∞ norm and has five
derivatives bounded in a weighted energy norm then there exists a unique and non-negative
local in time solution.
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Global stability results for Landau equation. The global regularity for the inho-
mogenous Landau is a well-known open problem. Most available global results are in the
perturbative regime. Specifically, the stability of Maxwellians is quite well understood.

The stability problem of Maxwellians on a periodic box was established in Guo’s seminal
work, [11]. Since then Guo’s nonlinear method has seen considerable success in understanding
near Maxwellian regime [12, 14, 13, 22, 23, 15, 25]. Remarkably,this regime is well understood
in the case of non-cutoff Boltzmann equation as well see, [10, 2, 3, 1].

Another perturbative result is the stability for vacuum. In contrast to Maxwelians, the
stability problem for vacuum was only recently studied by Luk, in [19], who proved the
stability of vacuum in the case of moderately soft potentials (γ ∈ (−2,0)). Luk combined L∞

and L2 methods to prove global existence of solutions near vacuum. Moreover, Luk shows
that the main mechanism is dispersion by proving that the long-time limit of the solution
to Landau equation solves the transport equation and that the solution does not necessarily
approach global Maxwellians. An interesting feature of Luk’s paper is the use of a hierarchy
in his norm which is necessary for gaining enough time decay. We use a similar weighted
norm inspired from his techniques.

Hard Potentials for Landau. The spatially homogeneous Landau equation with hard
potentials was studied in detail by Desvillettes–Villani in [7, 8], who showed existence and
smoothness of solution with suitable initial data, as well as the appearance and propagation
of various moments and lower bounds. The existence of a lower bound on the coefficient
matrices independent of space was essential in proving such results and this is one reason
why the existence theory for hard potentials in inhomogeneous Landau was missing from the
literature.

For the inhomogeneous case Snelson proved in [21] that the solution to (1.3) with hard
potentials (under assumptions of upper and lower bounded mass, energy and entropy) satis-
fies gaussian upper and lower bounds. The main feature of the paper is the appearance of
these bounds which is reminiscent of the spatially homogenous case.

1.2. Future Directions. We now outline some open problems that could be interesting for
a future work.

(1) Propogating Gaussian bounds instead of exponential ones. We propogate
exponential bounds instead of gaussian decay, which is in contrast to the local theory
for soft potentials (see [17, 4, 5]). It would be interesting to see if one can indeed
propogate the expected Gaussian decay. For a more detailed discussion on this issue
see Section 2.

(2) C∞ smoothing of solutions to hard potentials. A regular enough solution
to (1.3)with hard potentials is expected to become instantaeously smooth as in the
the case of soft potentials (see [17]). It also seems plausible that a mass-spreading
theorem (as in [17]) also remains true for the hard potentials. In that case one could
expect local in space gaussian upper and lower bounds because of the recent work
[21] by Snelson.

(3) Local existence for non cut-off Boltzmann equation. Until recently, the state
of the art results for the local existence of solutions to non cut-off Boltzmann, [4, 5],
was due to the AMUXY group. In these results they can handle angular singularity,
s, in the range (0, 1

2
) and γ + 2s < 1.

Henderson–Snelson–Tarfulea, proved a local existence result for Boltzmann in [18]
for s ∈ (0,1) and −3

2
−2s ≤ γ < 0. This result is comparable to the soft potential result
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of the same authors in [17]. A striking feature of the paper is that they can propagate
polynomial bounds in contrast to Gaussian bounds for the case of Landau. The main
reason why this is possible is that we have fractional derivatives (corresponding to s)
for Boltzmann while we have full derivatives for Landau.
The authors of [18] nicely leverage this fact and although they necessarily have

to bound an L2
v term with higher velocity weights they can handle, the number

of derivatives is a little lower than that for Landau. Thus this gain in derivatives
makes up for the moment loss via an interpolation between polynomially-weighted
L2 estimates and polynomially-weighted L∞ estimates.
Landau equation can be considered ,at least formally, a limit of Boltzmann equation

in the grazing collision limit, i.e. the limit as s → 1. This fact in addition to
the comparison between [17] and [18] strongly suggests that the velocity weight (or
moment loss) issue is most severe for the Landau equation. So we are hopeful that
the ideas developed in this paper will be useful in resolving the local existence issues
in case of Boltzmann, especially for the case 0 ≤ γ ≤ 1. We would also like to remark
that the ideas developed here especially a hierarchical L2 based approach might be
useful in dispensing with the weighted L∞ norm that is required in [18].
We finally note that the local existence question for Boltzmann equation with

γ ∈ (−3,max(−3/2 − 2s,−3)] and γ > 0 is still open.
(4) Global existence and stability of vacuum. The stability of vacuum problem

entails proving global existence for small data and that these solutions converge
to a solution of a linear transport equation in the limit t → ∞ (see [19] for more
details). The stability problem for hard potentials already seems tractable with a
slight variation in the ideas presented in this paper and will be treated in a future
work.

We would also like to point out that the stability of vacuum problem is open for
the non cut-off Boltzmann equation for any physically relevant regime.

1.3. Paper organization. The remainder of the paper is structured as follows.
In Section 2 we give an overview of the additional difficulties one has to overcome in the

case of hard potentials and a proof strategy. In Section 3, we introduce some notations that
will be in effect throughout the paper. In Section 4 we set-up the energy estimate and the
error terms that we need to estimate. In Section 5, we prove estimates for the coefficient
matrix aij, c and its higher derivatives. In Section 6, we bound the error terms and finally
in Section 7, we put everything together to prove Theorem 1.1.

1.4. Acknowledgements. I would like to thank Jonathan Luk for suggesting this problem,
for countless helpful discussions and for constant encouragement. I would also like to thank
Panagiotis Dimakis for various stimulating discussions and for his feedback on the manuscript.
In addition, I am grateful to Scott Armstrong and Cole Graham for their comments on an
earlier version of the paper.

2. Difficulties in hard potential and Proof strategy

In this section we give a brief presentation of the ideas involved in resolution for existence
for soft potentials, new difficulties that arise in the case of hard potentials, why they cannot
be resolved with the techniques employed for the soft potentials in [17] and the resolutions
we propose.
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2.1. Review of the soft potential case. The existence theory of soft potentials for Landau
equation was recently proved in [17] by Henderson–Snelson–Tarfulea. Even at the level of
soft potentials, the velocity growth issue for the coefficients is non-trivial to deal with. To
see this, we fix a γ ∈ (−2,0) and differentiate (1.3) by ∂αx , to get an equation of the form,

∂t∂
α
x f + vi∂xi

f = ∂αx (aij∂2vivjf) − ∂αx cf. (2.1)

To illustrate the issue, we focus on the term ∂αaij(∂2vivjf). More specifically, for any

γ ∈ (−2,0), we have the bound aij(v − v∗) ≲ ⟨v⟩2+γ ⟨v∗⟩2+γ (see Proposition 5.1) thus the best
pointwise bound we can hope for is,

∣∂αx aij ∣(t, x, v) ≲ ∣v∣2+γ.
With this bound we cannot hope to close the estimates, since there is no term on the left

hand side of (2.1) that can absorb a term with so strong a growth in velocity. To overcome
this, Henderson–Snelson–Tarfulea restrict the initial data class to functions bounded by a
Gaussian and propogate bounds with the aid of a time dependent Gaussian that flattens
out over time. This technique is inspired by earlier works of the AMUXY group on local
existence of non-cutoff Boltzmann in [4, 5].

Thus they consider the equation that g = fe−(d0−κt)⟨v⟩2 satisfies, by plugging this ansatz
into (1.3) to get,

∂tg + vi∂xi
g + κ ⟨v⟩2 g = aij[f]∂2vivjg − c[f]g − 2d(t)aij[f] ⟨v⟩∂vjg− d(t) (δij − 2d(t)vivj)aij[f]g. (2.2)

The term κ ⟨v⟩2 g arises due to differentiation of the time dependent Gaussian and is key
to helping us take care of the problem discussed before and close the estimates. Although,
it is not clear a priori, but due to the anisotropy of the matrix a, they are able to control
the term involving aijvivj . For more details on this see [17] or Proposition 5.1.

2.2. The new difficulties of hard potentials. The main reason why the aforementioned
techniques are not very useful for handling the hard potentials case is that the coefficient
matrix has too strong a growth to even be tamed by the time dependent Gaussian. We
specialize to the case when γ = 1 but the same issues are present for the whole hard potentials
regime.
In this case,

aij(z) = (δij − zizj∣z∣2 ) ∣z∣3.
Again consider (2.2). Applying ∂αx∂

β
v , with ∣α∣ = ∣β∣ = 2, to (2.2) we get,

∂t∂
α
x ∂

β
v g + vi∂xi

∂αx∂
β
v g + κ ⟨v⟩2 ∂αx∂βv g = ∂αx∂βv (aij∂vivjg) − ∂αx∂βv (cg) + other terms. (2.3)

To set up energy estimates, we multiply (2.3) by ∂αx∂
β
v g and integrate in time, space and

velocity. To understand why this falls short, we look at the term,

I = ∣∫ T

0
∫
x
∫
v
∂αx∂

β
v g(∂αxaij)∂βv ∂2vivjg dv dxdt∣ .

For the case of γ = 1, we again have the bound aij(v −v∗) ≲ ⟨v⟩3 ⟨v∗⟩3 (see Proposition 5.1)
thus, ∣∂αxaij ∣(t, x) ≲ ⟨v⟩3 .
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Since both terms involving derivatives of g has four derivatives, we need to estimate them
in L2

xL
2
v. We thus have the following estimate,

I ≲ ∥⟨v⟩32 ∂αx ∂βv g∥L2([0,T ];L2
xL

2
v)
∥⟨v⟩ 32 ∂βv ∂2vivjg∥L2([0,T ];L2

xL
2
v)
.

Now the best term on the left hand side is of the form ∥⟨v⟩∂αx∂βv g∥L2([0,T ];L2
xL

2
v)
, we have

no hope of closing this estimate.

2.3. A hopeful term. Although things look quite bleak, a trivial observation is quite in-
strumental in coming up with the hierarchy of weighted norms. That is, whenever we have a
spatial derivative hitting aij , then we have one less spatial derivative hitting on ∂2vivjg. Thus
we would like to devise a weight function that uses this information.

Moreover we also note that taking velocity derivatives of aij is helpful. Specifically, we
again consider the example from last subsection but this time, assume both velocity deriva-
tives fall on aij (and say none of the spatial ones do). This term also appears due to
integration by parts at the highest order.
Let,

Ĩ = ∣∫ T

0
∫
x
∫
v
∂αx∂

β
v g(∂βv aij)∂αx ∂2vivjg dv dxdt∣ .

For the case of γ = 1, we have the bound ∂βv aij(v−v∗) ≲ ⟨v⟩ ⟨v∗⟩ (see Proposition 5.1) thus,

∣∂βv aij ∣(t, x, v) ≲ ⟨v⟩ .
Thus we get the following bound,

Ĩ ≲ ∥⟨v⟩12 ∂αx ∂βv g∥L2([0,T ];L2
xL

2
v)
∥⟨v⟩ 12 ∂βv ∂2vivjg∥L2([0,T ];L2

xL
2
v)
.

This time around, we can absorb, this term on the left hand side by the term of the form

∥⟨v⟩∂αx ∂βv g∥L2([0,T ];L2
xL

2
v)
. In fact, we can get away with just ⟨v⟩12 weight in the norm (this

will be useful later).

2.4. A hierarchy of weighted norms. As a lesson from above examples, we take away that
taking velocity derivatives of the coefficient matrix is ‘good’ and taking spatial derivatives
does not do anything.

So a way to get over this problem might be to consider weighted Sobolev norms where we
‘penalize’ taking spatial derivatives in some way, i.e we should expect to bound the terms
with more spatial derivatives in a weaker weighted norm.

To motivate our proposed hierarchy of weighted norms, we work formally with (2.3).

Again, we multiply by ∂αx∂
β
v g and integrate in t, x and v and we specialize to the case

γ = 1.
The need for a hierarchy of velocity weights can be seen with the aid of ∂αx∂

β
v (aij∂2vivjg) term.

There are a few cases that will show us why we need the weights,

(1) When no derivatives fall on aij then in the energy estimate we get a term of the form

∫ T

0
∫ ∫ ∂αx ∂

β
v g(aij)∂2vivj∂αx∂βv g dv dxdt.

In this case we necessarily have to perform integration by parts and we get two

terms −∫ T

0 ∫ ∫ ∂vi∂αx∂βv g(aij)∂vj∂αx ∂βv g dv dxdt which we can ignore assuming f is

non-negative and the other term is ∫ T

0 ∫ ∫ ∂αx∂βv g(∂2vivjaij)∂αx ∂βv g dv dxdt.
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We have already encountered this term in the Subsection 2.3 and as before, this term
poses no problem.

(2) Now assume we have two spatial derivatives hitting aij. That is we have a term of
the form

∫ T

0
∫ ∫ ∂αx ∂

β
v g(∂2xaij)∂2vivj∂α′′x ∂β

′′

v g dv dxdt.

We have also seen this term before in Subsection 2.2 as I and it is one of the terms
that prevents us from closing the estimates with the soft potential methodology.
Thus inspired from the hierarchy of ⟨x − tv⟩ weights in [19] we use velocity weights
dependent on number of derivatives hitting f . If we had a weight function ωα,β =
20 − 2∣α∣, then performing the energy estimates with ⟨v⟩2ωα,β ∂αx ∂

β
v g we have a hope

of closing the estimates.

Indeed the term ∂2vivj∂
α′′

x ∂
β′′

v g has two less spatial derivatives than ∂αx ∂
β
v g and hence

can handle two extra velocity weights which knocks down the unaccounted for velocity
weights to ⟨v⟩ as in the case 1.

(3) Unfortunately, this hierarchy fails for a different configuration of derivatives. Assume
that we hit the equation with 10 velocity derivatives and look at the term when all
the derivatives hit aij . We abuse the multi-index notation by writing ∂10v = ∂βv for
some β such that ∣β∣ = 10.
The term reads

∫ T

0
∫ ∫ ⟨v⟩40 ∂10v g(∂10v aij)∂2vivjg dv dxdt.

Since aij and the first g is being hit by top order derivatives, we have no choice
but to estimate them in L2

x, leaving us to estimate ∂2vivjg in L∞x . Since the number
of derivatives hitting the second f is only two we can use Sobolev embedding to
estimate it in L2

x. But then we are generating spatial derivatives and thus this term
can not take as many as 20 velocity weights.
This means that we need to penalize the number of velocity derivatives in our

hierarchy as well. To deal with a problem we created a different problem!
Hence we need to come up with a hierarchy that penalizes spatial derivatives as

well as velocity derivatives. But this penalty should be skewed in the direction of
spatial derivatives because of the term of the following type

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∂10x g(∂2xaij)∂2vivj∂8xg dv dxdt.

Because we need the term ∂2vivj∂
8
xf to handle two more ⟨v⟩ weights coming from ∂2xaij

as before. Here we again abused the multi-index notation.

With these things in mind, we claim that the hierarchy ωα,β = 20− 3
2
∣α∣− 1

2
∣β∣ works. Indeed,

in our example when only two spatial derivatives hit aij then the weight ∂2vivj∂
α′′

x ∂β
′′

v g can

handle 20 − 3
2
(∣α∣ − 2) − 1

2
2 weights, which is exactly two more than ωα,β.

Next, the case when all the derivatives are velocity derivatives, we again look at the term

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∂10v g(∂10v aij)∂2vivjg dv dxdt.
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In this case ωα,β = 15 and ∂2x∂
2
vivj

g (which we get after applying Sobolev embedding in x) can

handle 16 ⟨v⟩ weights.
We claim that this hierarchy works and is used to estimate the error terms in Section 6.

Remark 2.1. Note that with this definition of weight function, we need to work with more
derivatives than is known for soft-potentials (see [17, 5]). The reason is that when aij is
hit with top or next to top order derivatives then we need to estimate it in L2

x and the
accompanying term in L∞x which is ultimately bounded in L2

x at the cost of two spatial
derivatives and more crucially ⟨v⟩3 weights.

2.5. Why we use exponential instead of Gaussian? Now, we discuss why we propagate
exponential bound and not Gaussian. One reason is that since γ ∈ [0,1], a time dependent
exponential is enough. Second reason, is a bit more subtle, this has mostly to do with the
term of the form aijvivj (this is what one would get instead of

vivj

⟨v⟩2
aij in (4.1) if one tried to

propagate a gaussian bound, see (2.1)).
Again we specialize to γ = 1. We remind ourselves of the pointwise bound from [19] (Prop.

5.7),

∣∂αx∂βv (aijvivj)∣(t, x, v) ≲ ∫ (∣v∣3∣v∗∣2 + ∣v∗∣5)∣∂αx ∂βv f ∣(t, x, v∗)dv∗.
This can also be obtained by adapting our proof of (5.3). Now we see that we are in the

same fix as in Subsection 2.2. There is no way of absorbing this on the LHS and hence
no hope to close the estimates. On the other hand, if we try to propagate the exponential
bound this issue goes away and we are able to almost close the estimates.

Propagating an exponential in conjunction with the weighted hierarchy of norms takes
care of almost all the terms. There is still one problematic term that posed no issues in case
of soft potential. Namely,

−d(t)∫ T

0
∫ ∫ ⟨v⟩2ωα,β (∂αx ∂βv g)2 aii⟨v⟩ dv dxdt.

This term arises when both ∂2vivj hit e−d(t)⟨v⟩ and none hits g (see (4.1)). Since ∣aii∣ ≲ ⟨v⟩3
for γ = 1 (see Proposition 5.1), we have no hope of closing this estimate as the ‘good’ term
that arises by propagating an exponential can only handle an additional ⟨v⟩ weight. But
assuming f is non-negative, we note that aii is non-negative and hence the whole integral
has a good sign. Thus we can safely ignore this term. See Lemma 4.5 for more details.

2.6. Why we need δγ > 0 for γ = 1? We finally comment on why we need to choose a
δγ > 0 for the case of γ = 1 (see Theorem 1.1).

To prove existence of local solutions, we follow the strategy employed in [17]. More
concretely, we first show existence to a linearized problem and show that there is a solution
to the full nonlinear problem using an iteration argument.

To show existence for a linearized equation we use the vanishing viscosity method. That
is we add, a small viscosity to the linearized equation and solve the Cauchy problem on a
bounded but arbitrary size domain. The idea is to get estimates independent of viscosity
and the domain and take a weak limit in an appropriate norm and prove that this weak limit
satisfies the linearized equation.

Since we solve our approximate linear equation on a bounded domain, there are some
boundary error terms that we need to make sure vanish as we increase the size of the domain
to infinity.
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To make sure that these terms do decay, we need to modify the hierarchy in case of γ = 1.
More specifically, we solve our linearized equation onBR (in phase space) and add ε∆x,v∂αx ∂

β
v g

to leverage the existence theory of parabolic equations.
Since we solve on a bounded domain, we use cut-off functions to stay away from the

boundary. We introduce a hierarchy of cut-off functions ψm (where m = ∣α∣+ ∣β∣) in the spirit
of [17].

So for energy estimates, we multiply by ψ2
m ⟨v⟩2ωα,β ∂αx ∂

β
v g instead of just ⟨v⟩2ωα,β ∂αx∂

β
v g.

The presence of these cut-off functions give rise to boundary terms when we perform inte-
gration by parts.

Note that the extra viscous term (after the required integration by parts) gives us a term
on the left hand side of the form,

∥⟨v⟩2ωα,β ψm∂
α′

x ∂
β′

v g∥L2([0,T ];L2
xL

2
v)
. (2.4)

Here ∣α′∣+∣β′∣ = ∣α∣+∣β∣+1 and either ∣α′∣ = ∣α∣+1 or ∣β′∣ = ∣β∣+1. Now, by our definition of ωα,β

in Subsection 2.4 we see that 2ωα′,β′ + 1 ≤ 2ωα,β (since we have at least one extra derivative).
Since we bound this term in a higher weighted norm, we use this to show smallness of the
boundary error terms via an induction.

But a typical boundary error term is of the form,

∣∫ T

0
∫ ∫ ⟨v⟩2ωα,β aijψm∂

2
vivj

ψm(∂αx ∂βv g)2 dv dxdt∣ . (2.5)

We arrange our cut-off so that ∣∂2vivjψm∣ ≲ R−2ψm−1 and since we are in BR, we have ⟨v⟩ ≲ R.
Using this, ∣aij ∣ ≲ ⟨v⟩2+γ (see Subsection 2.2) and Young’s inequality we get,

(2.5) ≲ Rγ−1[∥⟨v⟩ωα,β ⟨v⟩12 ψm∂
α
x ∂

β
v g∥L2([0,T ];L2

xL
2
v)
+ [∥⟨v⟩ωα,β ⟨v⟩12 ψm−1∂

α
x∂

β
v g∥L2([0,T ];L2

xL
2
v)
].

The term from the time dependent exponential takes care of the first term and we hope
to use (2.4) to take of the second term. For γ ∈ [0,1), we get smallness since we are taking
a negative power of R, but for γ = 1 we just get boundedness.

So if we change the hierarchy a little bit for γ = 1, that is if we have

ωα,β = 20 − ∣β∣(1
2
+ η) − ∣α∣(3

2
+ η),

for any η > 0, we see that in (2.4), 2ωα′,β′ + 1 + 2η ≤ 2ωα,β.
Now we can do the boundary estimate a bit differently to get,

(2.5) ≲ Rγ−1−η[∥⟨v⟩ωα,β ⟨v⟩ 12 ψm∂
α
x∂

β
v g∥L2([0,T ];L2

xL
2
v)
+ [∥⟨v⟩ωα,β ⟨v⟩ 12+η ψm−1∂

α
x ∂

β
v g∥L2([0,T ];L2

xL
2
v)
].

Thanks to our new hierarchy of weights, we can both get smallness of the boundary terms
and use the viscosity term to absorb the second term above on the left hand side (formally
achieved by induction).

3. Notations and spaces

We introduce some notations that will be used throughout the paper.
Norms: We will use mixed Lp norms, 1 ≤ p < ∞ defined in the standard way:

∥h∥Lp
v
∶= (∫ ∣h∣p dv) 1p .
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For p = ∞, define ∥h∥L∞v ∶= ess sup
v∈R3

∣h∣(v).
For mixed norms, the norm on the right is taken first. For example,

∥h∥Lp
xL

q
v
∶= (∫

R3

(∫
R3

∣h∣q(x, v)dv)pq dx) 1p ,
and

∥h∥Lr([0,T ];Lp
xL

q
v)
∶= (∫ T

0
(∫

R3

(∫
R3

∣h∣q(x, v)dv)pq dx) rp ) 1r ,
with obvious modifications when p = ∞, q = ∞ or r = ∞.

Japanese brackets. Define

⟨⋅⟩ ∶=√1 + ∣ ⋅ ∣2.
Multi-indices. Given a multi-index α = (α1, α2, α3) ∈ (N∪{0})3, we define ∂αx = ∂α1

x1
∂α2

x2
∂α3

x3

and similarly for ∂βv . Let ∣α∣ = α1 + α2 + α3. Multi-indices are added according to the rule
that if α′ = (α′1, α′2, α′3) and α′′ = (α′′1 , α′′2 , α′′3 ), then α′ + α′′ = (α′1 +α′′1 , α′2 + α′′2 , α′3 + α′′3).

Velocity weights. We define the velocity weight function that we use in our energy norm.
Let ∣α∣ + ∣β∣ ≤ 10 we define

ωα,β ∶= 20 − (3
2
+ δγ)∣α∣ − (1

2
+ δγ)∣β∣,

where

δγ = {0 if γ ∈ [0,1)
η for some η > 0 if γ = 1.

Global energy norms. We now describe the energy norm we use in [0, T ) ×R3 ×R3.

∥h∥2Em
T
∶= ∑
∣α∣+∣β∣≤m

∥⟨v⟩ωα,β ∂αx ∂
β
v h∥2L∞([0,T );L2

xL
2
v)
+ ∑
∣α∣+∣β∣≤m

∥⟨v⟩12 ⟨v⟩ωα,β ∂αx∂
β
v h∥2L2([0,T );L2

xL
2
v)
,

when m = 10, it is dropped from the superscript.
It will also be convenient to define some other energy type norms. Namely,

∥h∥2Y m
v
(t, x) ∶= ∑

∣α∣+∣β∣≤m

∥⟨v⟩ωα,β ∂αx∂
β
v h∥2L2

v
(t, x),

∥h∥2Y m
x,v
(t) ∶= ∑

∣α∣+∣β∣≤m

∥⟨v⟩ωα,β ∂αx∂
β
v h∥2L2

xL
2
v
(t),

∥h∥2Y m
T
∶= ∑
∣α∣+∣β∣≤m

∥⟨v⟩ωα,β ∂αx∂
β
v h∥2L∞([0,T ];L2

xL
2
v)
.

and ∥h∥2Xm
T
∶= ∑
∣α∣+∣β∣≤m

∥⟨v⟩12 ⟨v⟩ωα,β ∂αx∂
β
v h∥2L2([0,T ];L2

xL
2
v)
.

Finally we define the the weaker energy norms used in statement of Theorem 1.1 for
uniqueness of solutions.

∥h∥2Ẽ4

T
∶= ∑
∣α∣+∣β∣≤4

∥⟨v⟩ω̃α,β ∂αx∂
β
v h∥2L∞([0,T );L2

xL
2
v)
+ ∑
∣α∣+∣β∣≤4

∥⟨v⟩12 ⟨v⟩ω̃α,β ∂αx∂
β
v h∥2L2([0,T );L2

xL
2
v)
,
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and ∥h∥2Ỹ 4
x,v
(t) ∶= ∑

∣α∣+∣β∣≤4

∥⟨v⟩ω̃α,β ∂αx ∂
β
v h∥2L2

xL
2
v
(t),

where we define ω̃α,β = 10 − ( 32 + δγ) ∣α∣ − (12 + δγ) ∣β∣, for ∣α∣ + ∣β∣ ≤ 4.
Local energy norms. Since we need to carry out the viscosity method estimates in a

bounded domain, we need local versions of the energy norms. We defer the definitions till
Section 6.

For two quantitites, A and B by A ≲ B, we mean A ≤ C(d0, γ)B, where C(d0, γ) is a
positive constant depending only on d0 and γ.

4. Set-up for the energy estimates

Since we plan to propagate a time dependent exponential bound we start by defining
g ∶= ed(t)⟨v⟩f .
Here d(t) = d0 − κt, t ∈ (0, T0] and T0 = d0

2κ
(κ is some large constant, fixed later).

Substituting f = e−d(t)⟨v⟩g in (1.3), we obtain the equation that g satisfies

∂tg + vi∂xi
g + κ ⟨v⟩g = aij[f]∂2vivjg − c[f]g − 2d(t)aij[f] vi⟨v⟩∂vjg

− d(t)( δij⟨v⟩ − (d(t) + 1⟨v⟩)
vivj

⟨v⟩2)aij[f]g.
(4.1)

As outlined in introduction, we use an iteration argument to prove existence of solutions
to (4.1). Thus as a first step we work towards proving a linearized version of (4.1)

Lemma 4.1. Let Mh > 0, T ∈ (0, T0], gin and h be given nonnegative functions. Also let gin
be such that ∥gin∥Yx,v

<M0 and h be such that ∥hed(t)⟨v⟩∥YT
<Mh. Then there exists a solution

to the linearized problem

∂tG + vi∂xi
G + κ ⟨v⟩G = aij[h]∂2vivjG − c[h]G − 2d(t)aij[h] vi⟨v⟩∂vjG

− d(t)( δij⟨v⟩ − (d(t) + 1⟨v⟩)
vivj

⟨v⟩2)aij[h]G,
(4.2)

with G(0, x, v) = gin(x, v) and κ, a large enough constant. Moreover, G is non-negative and

∥G∥2ET
≤ ∥gin∥2Yx,v

exp (C(d0, γ, κ,Mh)T ). (4.3)

The proof will be concluded in Section 7.
As an intermediate step to proving Lemma 4.1 we use vanishing viscosity method. We

begin by noting existence for equation that is obtained by adding a small viscosity in (4.1).
To appeal to the standard parabolic theory we smoothen out the initial data near boundary
of our domain and make sure that our linearization is also smooth. In the following lemma
and henceforth we use the following notation: for any ε > 0 and R > 3, we define the mollifier
ζε(x, v) = ε−6ζ(x/ε, y/ε) for some non-negative, C∞c function ζ such that ∫ ζ dv dx = 1. We
work on a ball ΩR ∶= {(x, v) ∈ R6 ∶ ∣x∣2 + ∣v∣2 < R2}. Moreover, let χL be a smooth cut-off
function on R6, supported on ΩL−1, equal to 1 in ΩL−2, radially symmetric, monotone and
such that for ∣α∣ + ∣β∣ = n, ∣∂αx∂βv χR∣ < 2n.
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Lemma 4.2. Let gin and h be given nonnegative functions with T > 0. Also let gin be such
that ∥gin∥Yx,v

<∞ and h be such that ∥hed(t)⟨v⟩∥YT
<∞. For any ε > 0, let hε = ζε ∗ h. Then

for R sufficiently large, there exists a unqiue solution G = Gh,R,ε to

∂tG+vi∂xi
G+κ ⟨v⟩G = ε∂2xi,xi

G+ε∂2vi,viG+aij[hε]∂2vivjG−c[hε]G−2d(t)(aij[hε]+εδij) vi⟨v⟩∂vjG
− d(t)( δij⟨v⟩ − (d(t) +

1

⟨v⟩)
vivj

⟨v⟩2)(aij[hε] + εδij)G (4.4)

on [0, T ] ×G such that

G(0, x, v) = χR(x, v)(ζε ∗ gin)(x, v)
G(t, x, v) = 0 for all (t, x, v) ∈ [0,∞) × ∂ΩR

(4.5)

Moreover G is nonnegative and G ∈ C∞([0, T ] ×ΩR).
Proof. Existence of such G follows from standard parabolic theory. Non-negativity is a bit
tricky, because in this form it’s not clear if we can apply maximum principle.

To get over that issue, we conider the equation that F = Ge−d(t)⟨v⟩ satisfies. We just get
(1.3) back with an additional viscosity term. More precisely, we have

∂tF + vi∂xi
F = ε∆x,vF + aij[hε]∂2vivjF − c[hε]F. (4.6)

Thanks to positivity of hε, we have that −c[hε] is positive and thus by maximum principle
we get that F is non-negative as the boundary conditions are positive. Since G = Fed(t)⟨v⟩,
it is non-negative as well. �

Since we have ∥∂αx ∂βv hε∥Lp ≤ ∥∂αx ∂βv h∥Lp , we suppress its dependence on ε and just use the
bounds for h.

Applying ∂αx ∂
β
v to (4.4), we get

∂t∂
α
x∂

β
vG + vi∂xi

∂αx∂
β
vG + κ ⟨v⟩∂αx∂βvG − aij[h]∂2vivj∂αx ∂βvG − ε∂2xi,xi

∂αx∂
β
vG − ε∂

2
vi,vi

∂αx ∂
β
vG

= [∂t + vi∂xi
, ∂αx ∂

β
v ]G´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term 1

+κ(∂αx ∂βv (⟨v⟩G) − ⟨v⟩∂αx∂βvG)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term 2

+ ∂αx∂
β
v (aij[h]∂2vivjG) − aij[h]∂2vivj∂αx∂βvG´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term 3

−∂αx ∂
β
v (c[h]G)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term 4

−2(d(t))∂αx ∂βv ((aij[h] + εδij) vi⟨v⟩∂vjG)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term 5

− d(t)∂αx ∂βv (( δij⟨v⟩ − (d(t) + 1⟨v⟩)
vivj

⟨v⟩2)(aij[h] + εδij)G)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term 6

.

(4.7)
Now Lemma 4.2 only provides zero boundary conditions for G and not for higher deriva-

tives. Thus, we need to multiply by a cut-off function in velocity that vanishes on ∂ΩR.
Unfortunately, we cannot just work with the same cut-off function for all higher derivatives
of G. This is because when we perform integration by parts, we end up with derivatives of
this cut-off function and thus we need to use a hierarchy of these functions, depending on
how many derivatives we take of (4.4). We also note that the terms involving the derivatives
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of the cut-off function can be thought of as the boundary error terms and only show up
because we work on ΩR and not on R6.

Let ψ be a smooth, radial, nonnegative cutoff function in the velocity variable such that
it is identically 1 when ∣v∣ ≤ 1 and vanishes for ∣v∣ ≥ 11/10. For 0 < r < R then define
ψr(v) = ψ(v/r). Finally, for ∣α∣ + ∣β∣ = m, we define ψm(v) = ψR/2m(v). Note that for m = 0
this means that ψ0 ≡ 1 on ΩR and for any m > 0 we have that ψm vanishes at ∂ΩR.
With the above definitions and lemma we can now have the following energy estimate for
the solution of (4.4) and its higher derivatives.

Lemma 4.3. Let G be a solution to (4.7) then for ∣α∣ + ∣β∣ ≤ 10 and T ∈ [0, T0) we have the
following energy estimate

∥⟨v⟩ωα,β (∂αx ∂βvG)ψm∥2L2
vL

2
x
(T ) + κ∥⟨v⟩ωα,β ⟨v⟩12 (∂αx ∂βvG)ψm∥2L2([0,T ];L2

vL
2
x)

+ ε∥⟨v⟩ωα,β ∂x(∂αx ∂βvG)ψm∥2L2([0,T ];L2
vL

2
x)
+ ε∥⟨v⟩ωα,β ∂v(∂αx ∂βvG)ψm∥2L2([0,T ];L2

vL
2
x)
,

≲ ∥⟨v⟩ωα,β (∂αx ∂βv gin)ψm∥2L2
vL

2
x
+∫ T

0
∫ ∫ ⟨v⟩2ωα,β (∂αx ∂βvG)J(t, x, v)ψm dv dxdt

+A
α,β
1 +A

α,β
2 +A

α,β
3 + B

α,β
1 + B

α,β
2 + B

α,β
3 + B

α,β
4 . (4.8)

Here J are Terms 1-Terms 6 and are a mix of bulk and boundary error terms and are
estimated in Lemma 4.5 and

A
α,β
1 ∶=max

i,j
∥⟨v⟩2ωα,β ψ2

m(∂2vivjaij[h])(∂αx ∂βvG)2∥L1([0,T ];L1
vL

1
x)
, (4.9)

A
α,β
2 ∶=max

i,j
∥⟨v⟩2ωα,β−2ψ2

maij[h](∂αx ∂βvG)2∥L1([0,T ];L1
vL

1
x)
, (4.10)

A
α,β
3 ∶=max

i,j,l
∥⟨v⟩2ωα,β−1ψ2

m(∂vlaij[h])(∂αx ∂βvG)2∥L1([0,T ];L1
vL

1
x)
, (4.11)

B
α,β
1 ∶=max

i,j
∥⟨v⟩2ωα,β ψm∂

2
vivj

ψm(aij[h] + εδij)(∂αx ∂βvG)2∥L1([0,T ];L1
vL

1
x)
, (4.12)

B
α,β
2 ∶=max

i,j,k,l
∥⟨v⟩2ωα,β ∂vlψm∂vkψm(aij[h] + εδij)(∂αx ∂βvG)2∥L1([0,T ];L1

vL
1
x)
, (4.13)

B
α,β
3 ∶=max

i,j,l
∥⟨v⟩2ωα,β−1ψm∂vlψm(aij[h] + εδij)(∂αx ∂βvG)2∥L1([0,T ];L1

vL
1
x)
, (4.14)

B
α,β
4 ∶=max

i,j,l
∑

∣α′′′∣+∣α′′∣+∣α′∣=2∣α∣
∣β′′′∣+∣β′′∣+∣β′∣=2∣β∣+1
∣α′′∣+∣β′′∣=∣α∣+∣β∣
∣β′∣+∣α′∣=1

∥⟨v⟩2ωα,β ψm∂vlψm∂
α′′′

x ∂β
′′′

v G(∂α′x ∂β′v aij[h])∂α′′x ∂β
′′

v G∥L1([0,T ];L1
vL

1
x)
.

(4.15)

Proof. We first multiply (4.7) by ⟨v⟩2ωα,β (∂αx ∂βvG)ψ2
m and integrate in [0, T ] × R3 × R3 (we

suppress the domain of integration henceforth). Although, G is only defined on ΩR, we
multiply by the cut-off function ψm, thus we can extend domain of integration to all of R6

by assuming the integrand is zero outside ΩR.
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Then integrating by parts in space and time we get,

1

2 ∫ ∫ ⟨v⟩2ωα,β ψ2
m(∂αx∂βvG)2(T,x, v)dv dx − 1

2 ∫ ∫ ⟨v⟩2ωα,β ψ2
m(∂αx ∂βvG)2(0, x, v)dv dx

(4.16)

+ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ψ2

mκ ⟨v⟩ (∂αx∂βvG)2(t, x, v)dv dxdt (4.17)

− ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ψ2

m∂
α
x ∂

β
vGaij[h]∂2vivj∂αx∂βvGdv dxdt (4.18)

− ε∫ T

0
∫ ∫ ⟨v⟩2ωα,β ψ2

m(∂αx ∂βvG)∂2xi,xi
∂αx∂

β
vGdv dxdt (4.19)

− ε∫ T

0
∫ ∫ ⟨v⟩2ωα,β ψ2

m(∂αx ∂βvG)∂2vi,vi∂αx∂βvGdv dxdt (4.20)

= ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ψ2

m(∂αx∂βvG)J(t, x, v)dv dxdt. (4.21)

Integrating by parts twice in v for (4.18) we get (for brevity we drop the integration signs)

(4.18) ≡ ⟨v⟩2ωα,β ψ2
m∂vi∂

α
x∂

β
vG(aij[h])∂vj∂αx∂βvG + 12 ⟨v⟩2ωα,β ψ2

m∂viaij[h]∂vj((∂αx ∂βvG)2)
+ ωα,βvi ⟨v⟩2ωα,β−2ψ2

maij[h]∂vj((∂αx ∂βvG)2) + ⟨v⟩2ωα,β ψm∂viψmaij[h]∂vj((∂αx ∂βvG)2)
≡ ⟨v⟩2ωα,β ψ2

m∂vi∂
α
x∂

β
vG(aij[h])∂vj∂αx∂βvG´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A1

−
1

2
⟨v⟩2ωα,β ψ2

m∂
2
vivj

aij[h](∂αx ∂βvG)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A2

− ωα,βvj ⟨v⟩2ωα,β−2ψ2
m∂viaij[h](∂αx ∂βvG)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A3

− ⟨v⟩2ωα,β ψm∂vjψm∂viaij[h](∂αx ∂βvG)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A4

− ωα,βδi,j ⟨v⟩2ωα,β−2ψ2
maij[h](∂αx ∂βvG)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A5

−2ωα,β(ωα,β − 1)vivj ⟨v⟩2ωα,β−4ψ2
maij[h](∂αx ∂βvG)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A6

− ωα,βvi ⟨v⟩2ωα,β−2ψm∂vjψm(aij[h])(∂αx ∂βvG)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A7

−ωα,βvi ⟨v⟩2ωα,β−2ψ2
m∂vjaij[h](∂αx ∂βvG)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A8

− 2ωα,βvj ⟨v⟩2ωα,β−2ψm∂viψm(aij[h])(∂αx ∂βvG)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A9

− ⟨v⟩2ωα,β ∂vjψm∂viψm(aij[h])(∂αx ∂βvG)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A10

− ⟨v⟩2ωα,β ψm∂
2
vjvi

ψm(aij[h])(∂αx ∂βvG)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A11

− ⟨v⟩2ωα,β ψm∂viψm∂vjaij[h](∂αx ∂βvG)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A12

.

For now, we just make the following observations,

● A1 is non-negative and thus can be dropped from our estimate. This is true since
h ≥ 0.
● A2 is bounded by Aα,β

1 .
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● A3 and A8 can be bounded by Aα,β
3 from Lemma 4.3.

● A5 and A6 can be bounded by Aα,β
2 from Lemma 4.3.

● A4 and A12 can be bounded by Bα,β4 from Lemma 4.3.

● A7 and A9 can be bounded by Bα,β3 from Lemma 4.3.

● A10 is bounded by Bα,β2 from Lemma 4.3.

● Finally A11 is bounded by Bα,β1 .

All the terms other than A1 will be treated as either “bulk” error terms (when there are
no derivatives falling on ψm) or as “boundary” error terms (when there are some derivatives
falling on ψm).

Continuing integrating by parts we perform the same in x for (4.19) to get

(4.19) = ε∫ T

0
∫ ∫ ⟨v⟩2ωα,β ψ2

m(∂xi
∂αx∂

β
vG)2 dv dxdt.

Integrating by parts in v for (4.20) we get

(4.20) ≡ ε[⟨v⟩2ωα,β ψ2
m(∂vi∂αx∂βvG)2 + ⟨v⟩2ωα,β ∂vi((∂αx ∂βvG)2)ψm∂viψm

+ ωα,βvi ⟨v⟩2ωα,β−2 ∂vi((∂αx ∂βvG)2)ψ2
m]

≡ ε[⟨v⟩2ωα,β ψ2
m(∂vi∂αx∂βvG)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C1

−2ωα,βvi ⟨v⟩2ωα,β−2 (∂αx∂βvG)2ψm∂viψm´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C2

− ⟨v⟩2ωα,β (∂αx ∂βvG)2(∂viψm)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C3

− ⟨v⟩2ωα,β (∂αx∂βvG)2ψm∂
2
vi
ψm´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C4

− ωα,β ⟨v⟩2ωα,β−2 (∂αx ∂βvG)2ψ2
m´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C5

−2ωα,β(ωα,β − 1)v2i ⟨v⟩2ωα,β−4 (∂αx∂βvG)2ψ2
m´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C6

− ωα,βvi ⟨v⟩2ωα,β−2 (∂αx ∂βvG)2ψm∂viψm´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C7

].

We again bound the various Ci terms as follows,

● C1 is positive and will be useful for closing the estimates and hence incorporated on
the LHS.

● C2 and C7 can be bounded by Bα,β3

● C3 can be bounded by Bα,β2

● C4 can be bounded by Bα,β1

● C5 and C6 can be absorbed on the LHS by choosing ε small.

�
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Remark 4.4. For ∣α∣ + ∣β∣ = 0, we have by our convention ψ0 = 1. Thus the terms of the

form Bα,βi are not present. This fact will be crucial later in showing that the boundary error
terms degenerate in the limit R →∞ via an induction.

Now we bound ∫ T

0 ∫ ∫ ⟨v⟩2ωα,β (∂αx ∂βvG)J(t, x, v)ψ2
m dv dxdt with various error terms.

Lemma 4.5. For ∣α∣ + ∣β∣ ≤ 10, we have that

∫ T

0
∫ ∫ ⟨v⟩2ωα,β (∂αx∂βvG)J(t, x, v)ψm dv dxdt ≲ T α,β

1 + T
α,β
2 + T

α,β
3,1 + T

α,β
3,2 + T

α,β
3,3 + T

α,β
4

+ T
α,β
5,1 + T

α,β
5,2 + T

α,β
6,1 + T

α,β
6,2 + B

α,β
4 + B

α,β
5 ,

with Bα,β4 defined in (4.15),

B
α,β
5 ∶=max

i,j,l
∥⟨v⟩2ωα,β ψm∂vlψm ((aij[h] + εδij) vi⟨v⟩) (∂αx∂βvG)2∥L1([0,T ];L1

vL
1
x)
. (4.22)

Moreover,

T
α,β
1 ∶= ∑

∣α′∣≤∣α∣+1
∣β′∣≤∣β∣−1

∥⟨v⟩2ωα,β ψ2
m∣∂αx∂βvG∣ ⋅ ∣∂α′x ∂β′v G∣∥L1([0,T ];L1

xL
1
v)
, (4.23)

T
α,β
2 ∶= ∑

∣β′∣≤∣β∣−1

∥κ ⟨v⟩2ωα,β ψ2
m∣∂αx∂βvG∣ ⋅ ∣∂αx∂β′v G∣∥L1([0,T ];L1

xL
1
v)

(4.24)

T
α,β
3,1 ∶=max

i,j
∑

∣α′∣+∣α′′∣+∣α′′′∣≤2∣α∣
∣β′∣+∣β′′∣+∣β′′′∣≤2∣β∣+2
∣α′′′∣+∣β′′′∣=∣α∣+∣β∣

2≤∣α′∣+∣β′∣≤min{∣α∣+∣β∣,8}
∣α′′∣+∣β′′∣≤∣α∣+∣β∣

∥⟨v⟩2ωα,β ψ2
m∣∂α′′′x ∂β

′′′

v G∣∣∂α′x ∂β′v aij[h]∣∣∂α′′x ∂β
′′

v G∣∥L1([0,T ];L1
xL

1
v)
,

(4.25)

T
α,β
3,2 ∶=max

i,j
∑

∣α′∣+∣α′′∣=∣α∣
∣β′∣+∣β′′∣=∣β∣
∣α′∣+∣β′∣≥9

∥⟨v⟩2ωα,β ψ2
m∣∂αx∂βvG∣∣∂α′x ∂β′v aij[h]∣∣∂2vivj∂α′′x ∂β

′′

v G∣∥L1([0,T ];L1
xL

1
v)
, (4.26)

T
α,β
3,3 ∶=max

i,j,l
∑

∣α′∣+∣α′′∣=∣α∣
∣β′∣+∣β′′∣=β∣
∣α′∣+∣β′∣=1

∥⟨v⟩2ωα,β−1ψ2
m∣∂αx∂βvG∣∣∂α′x ∂β′v aij[h]∣∂vl∂α′′x ∂β

′′

v G∣∥L1([0,T ];L1
xL

1
v)
, (4.27)

T
α,β
4 ∶= ∑

∣α′∣+∣α′′∣≤∣α∣
∣β′∣+∣β′′∣≤∣β∣

∥⟨v⟩2ωα,β ψ2
m∣∂αx∂βvG∣∣∂α′x ∂β′v c[h]∣∣∂α′′x ∂β

′′

v G∣∥L1([0,T ];L1
xL

1
v)
, (4.28)

T
α,β
5,1 ∶= ∑

∣α′∣+∣α′′∣=∣α∣
∣β′∣+∣β′′∣=∣β∣+1

1≤∣α′∣+∣β′∣≤∣α∣+∣β∣

∥⟨v⟩2ωα,β ψ2
m∣∂αx∂βvG∣ ∣∂α′x ∂β′v ((aij[h] + εδij) vi⟨v⟩)∣ ∣∂α′′x ∂β

′′

v G∣∥L1([0,T ];L1
xL

1
v)
,

(4.29)

T
α,β
5,2 ∶=max

j
∥⟨v⟩2ωα,β−1ψ2

m∣∂αx∂βvG∣ ∣((aij[h] + εδij) vi⟨v⟩)∣ ∣∂αx∂βvG∣∥L1([0,T ];L1
xL

1
v)
, (4.30)
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T α,β
6,1 ∶= ∑

∣α′∣+∣α′′∣≤∣α∣
∣β′∣+∣β′′∣≤∣β∣
∣α′∣+∣β′∣≥1

∥⟨v⟩2ωα,β ψ2
m∣∂αx∂βvG∣ ∣∂α′x ∂β′v (a[h]ii + ε⟨v⟩ )∣ ∣∂α′′x ∂β

′′

v G∣∥L1([0,T ];L1
xL

1
v)
, (4.31)

T
α,β
6,2 ∶= ∑

∣α′∣+∣α′′∣≤∣α∣
∣β′∣+∣β′′∣≤∣β∣

∥⟨v⟩2ωα,β ψ2
m∣∂αx∂βvG∣ ∣∂α′x ∂β′v ((aij[h] + εδij)vivj⟨v⟩2 )∣ ∣∂α′′x ∂β

′′

v G∣∥L1([0,T ];L1
xL

1
v)
.

(4.32)

Proof. We proceed by bounding the energy of the various terms appearing on the RHS of
(4.7).

Term 1: We have that

[∂t + vi∂xi
, ∂αx ∂

β
v ]G = ∑

∣β′∣+∣β′′∣=∣β∣
∣β′∣=1

∂β
′

x ∂
β′′

v ∂αxG

Thus it can be bounded by T α,β
1 .

Term 2: For Term 2, the commutator term arises from ∂v acting on ⟨v⟩. Thus, we have

∣Term 2∣ ≲ ∑
∣β′∣≤∣β∣−1

∂αx ∂
β′

v G

This contribution is majorized by T α,β
2 .

Term 3: When only one derivative hits aij[h], we need to perform integration by parts.
We split this into two cases

Case 1 : When (α′, β′) = (1,0). That is ∂α′x = ∂xl
.

We perform integration by parts twice first with ∂vi then followed by ∂xl
.

⟨v⟩2ωα,β ψ2
m∂

α
x ∂

β
vG(∂xl

aij[h])∂2vivj∂α′′x ∂βvG

≡ − ⟨v⟩2ωα,β ψ2
m∂vi∂xl

∂α
′′

x ∂βvG(∂xl
aij[h])∂vj∂α′′x ∂βvG

− 2 ⟨v⟩2ωα,β ψm∂viψm∂
α
x ∂

β
vG(∂xl

aij[h])∂vj∂α′′x ∂βvG

− 2(ωα,β)vi ⟨v⟩2ωα,β−2ψ2
m∂

α
x ∂

β
vG(∂xl

aij[h])∂vj∂α′′x ∂βvG

− ⟨v⟩2ωα,β ψ2
m∂

α
x∂

β
vG(∂vi∂xl

aij[h])∂vj∂α′′x ∂βvG

≡ 1
2
⟨v⟩2ωα,β ψ2

m∂vi∂
α′′

x ∂βv g(∂2xl
aij[h])∂vj∂α′′x ∂βv g (4.33)

− 2 ⟨v⟩2ωα,β ψm∂viψm∂
α
x ∂

β
vG(∂xl

aij[h])∂vj∂α′′x ∂βvG (4.34)

− 2(ωα,β)vi ⟨v⟩2ωα,β−2ψ2
m∂

α
x ∂

β
vG(∂xl

aij[h])∂vj∂α′′x ∂βvG (4.35)

− ⟨v⟩2ωα,β ψ2
m∂

α
x∂

β
vG(∂vi∂xl

aij[h])∂vj∂α′′x ∂βvG. (4.36)

By our definitions we have that ∣(4.36)∣ + ∣(4.33)∣ ≲ T α,β
3,1 , ∣(4.34)∣ ≲ Bα,β4 , ∣(4.35)∣ ≲ T α,β

3,3 .
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Case 2 : When (α′, β′) = (0,1). That is ∂β′v = ∂vl .
We perform integration by parts twice first with ∂vi then followed by ∂vl .

⟨v⟩2ωα,β ψ2
m∂

α
x∂

β
vG(∂vlaij[h])∂2vivj∂αx ∂β′′v G

≡ − ⟨v⟩2ωα,β ψ2
m∂vi∂vl∂

α
x∂

β′′

v G(∂vlaij[h])∂vj∂αx∂β′′v G

− 2 ⟨v⟩2ωα,β ψm∂viψm∂
α
x ∂

β
vG(∂vlaij[h])∂vj∂αx∂β′′v G

− 2(ωα,β)vi ⟨v⟩2ωα,β−2ψ2
m∂

α
x∂

β
vG(∂vlaij[h])∂vj∂αx∂β′′v G

− ⟨v⟩2ωα,β ψ2
m∂

α
x∂

β
vG(∂vi∂vlaij[h])∂vj∂αx ∂β′′v G

≡ 1

2
⟨v⟩2ωα,β ψ2

m∂vi∂
α
x∂

β′′

v g(∂2vlaij[h])∂vj∂αx∂β′′v G (4.37)

+ ⟨v⟩2ωα,β ψm∂vlψm∂vi∂
α
x∂

β′′

v G(∂vlaij[h])∂vj∂αx ∂β′′v G (4.38)

+ (ωα,β)vl ⟨v⟩2ωα,β−2ψ2
m∂

α
x∂

β′′

v G(∂vlaij[h])∂vj∂αx ∂β′′v G (4.39)

− 2 ⟨v⟩2ωα,β ψm∂viψm∂
α
x ∂

β
vG(∂vlaij[h])∂vj∂αx∂β′′v G (4.40)

− 2(ωα,β)vi ⟨v⟩2ωα,β−2ψ2
m∂

α
x∂

β
vG(∂vlaij[h])∂vj∂αx∂β′′v G (4.41)

− ⟨v⟩2ωα,β ψ2
m∂

α
x∂

β
vG(∂vi∂vlaij[h])∂vj∂αx ∂β′′v G. (4.42)

Again, we have that ∣(4.40)∣ + ∣(4.37)∣ ≲ T α,β
3,1 , ∣(4.38)∣ + ∣(4.40)∣ ≲ Bα,β4 , ∣(4.39)∣ + ∣(4.41)∣ ≲

T
α,β
3,3 .

When we have more than 1 derivative hitting aij[h] then we don’t need to perform integration
by parts. Since we treat the two cases- when less than 8 derivatives hit aij[h] and when at
least 9 derivatives hit aij[h]- differently, we use different error terms to bound them.

Explicitly, when ∣α′∣ + ∣β′∣ ≤ 8 we have ∣Term 3∣ ≲ T α,β
3,1 and when ∣α′∣ + ∣β′∣ ≥ 9 we have

∣Term 3∣ ≲ T α,β
3,2 .

Thus in total we have,

∣Term 3∣ ≲ T α,β
3,1 + T

α,β
3,2 + T

α,β
3,3 +B

α,β
4 .

Note that depending on how many derivatives hit aij[h] some of these terms might be zero.

Term 4: This term can be bounded in a straight forward way by T α,β
4 .

Term 5: Again, if we have no derivatives falling on aij[h] vi⟨v⟩ then we need to do integration

by parts. More precisely, we have

∂αx∂
β
v ((aij[h] + εδij) vi⟨v⟩∂vjG) = ∑

∣α′∣+∣α′′∣=∣α∣
∣β′∣+∣β′′∣=∣β∣
∣α′∣+∣β′∣≥1

(∂α′x ∂β′v ((aij[h] + εδij) vi⟨v⟩)) (∂vj∂α′′x ∂β
′′

v G)

+ (aij[h] + εδij) vi⟨v⟩∂vj∂αx∂βvG.
(4.43)
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For the second term we use integration by parts in ∂vj to get,

2(d(t)) ⟨v⟩2ωα,β ψ2
m∂

α
x ∂

β
vG(aij[h] + εδij) vi⟨v⟩∂vj∂αx∂βvG
≡ −(d(t)) ⟨v⟩2ωα,β ψ2

m (∂vj ((aij[h] + εδij) vi⟨v⟩)) (∂αx∂βvG)2 (4.44)

− 2d(t)ωα,β ⟨v⟩2ωα,β−2 vjψ
2
m ((aij[h] + εδij) vi⟨v⟩) (∂αx ∂βvG)2 (4.45)

− 2d(t) ⟨v⟩2ωα,β ψm∂vjψm ((aij[h] + εδij) vi⟨v⟩) (∂αx∂βvG)2. (4.46)

The first term in (4.43) is bounded by T α,β
5,1 . We also have,

∣(4.44)∣ ≲ T α,β
5,1 , ∣(4.45)∣ ≲ T α,β

5,2 and ∣(4.46)∣ ≲ Bα,β5

Term 6: For first part of Term 6 note that δijaij[h] = aii[h] and when no derivatives hit
aii[h]
⟨v⟩ then we have the term

−d(t)∫ T

0
∫ ∫ ⟨v⟩2ωα,β ψ2

m(∂αx ∂βvG)2aii[h] + ε⟨v⟩ dv dxdt.

Note, crucially that since h ≥ 0, we have that aii[h]
⟨v⟩ ≥ 0 implying that the whole integral is

negative and thus can be dropped.

When at least one derivative fall on aii[h]+ε
⟨v⟩ then we can bound it by T α,β

6,1 .

Similarly the second part of Term 6 can be bounded by T α,β
6,2 . �

Remark 4.6. It is seen easily that Aα,β
1 ≤ T α,β

3,1 and Aα,β
3 ≤ T α,β

3,3 . Thus it suffices to bound

the T α,β
i , Aα,β

2 and Bα,βi terms.

5. Estimates for the coefficients

In the next section we estimate all the errors but before we can do that we need to get a
bound on the coefficient matrices, a and c, and their derivatives. We thus begin with bounds
for a and its derivatives.

Proposition 5.1. We assume ∣α∣ + ∣β∣ ≤ 10.
The coefficient aij and its higher derivatives satisfy the following pointwise bounds:

max
i,j
∣∂αx∂βv aij ∣(t, x, v) ≲ ∫ ∣v − v∗∣2+γ ∣∂αx∂βv f ∣(t, x, v∗)dv∗, (5.1)

max
j
∣∂αx∂βv (aij vi⟨v⟩)∣ ≲ ⟨v⟩1+γ ∫ ⟨v∗⟩2+γ ∣∂αx∂βv f ∣(t, x, v∗)dv∗, (5.2)

∣∂αx ∂βv (aij vivj⟨v⟩2)∣ (t, x, v) ≲ ⟨v⟩γ ∫ ⟨v∗⟩4 ∣∂αx∂βv f ∣(t, x, v∗)dv∗. (5.3)

The first v-derivatives of aij and the corresponding higher derivatives satisfy:

max i, j, k ∣∂αx∂βv ∂vkaij ∣ (t, x, v) ≲ ∫ ∣v − v∗∣1+γ ∣∂αx∂βv f ∣(t, x, v∗)dv∗, (5.4)
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max i, j, k∣∂αx∂βv ∂vk (aij(t, x, v) vi⟨v⟩) ∣ ≲ ⟨v⟩γ ∫ ⟨v∗⟩2+γ ∣∂αx∂βv f ∣(t, x, v∗)dv∗. (5.5)

Finally, the second derivatives of aij and its higher derivatives follow:

max
i,j,k,l
∣∂αx∂βv ∂2vkvlaij ∣(t, x, v) ≲ ∫ ∣v − v∗∣γ ∣∂αx∂βv f ∣(t, x, v∗)dv∗. (5.6)

Proof. We use the following facts for convolutions with ∣β′∣ ≤ 2,
∂αx ∂

β
v ∂

β′

v aij[h] = ∫ (∂β′v aij(v − v∗))(∂αx ∂βv h)(t, x, v∗)dv∗
∂αx∂

β
v ∂

β′

v (aij[h] vi⟨v⟩) = ∫ (∂β′v (aij vi⟨v⟩) (v − v∗))(∂αx ∂βv h)(t, x, v∗)dv∗
Proof of (5.1): For this we just notice via the form of matrix a in (1.2) that

∣aij(v − v∗)∣ ≤ ∣v − v∗∣2+γ .
Proof of (5.2): For (5.2) we use (1.2) to get

aij(v − v∗)vi = ∣v − v∗∣2+γ (vj − (v ⋅ (v − v∗))(v − v∗)j∣v − v∗∣2 )
= ∣v − v∗∣γ (vj(v − v∗)l(v − v∗)l − vl(v − v∗)l(v − v∗)j)
= ∣v − v∗∣γ(v − v∗)l(vl(v∗)j − vj(v∗)l).

(5.7)

Thus we have using triangle inequality that ∣aij(v − v∗) vi
⟨v⟩ ∣ ≲ ⟨v⟩1+γ ⟨v∗⟩2+γ .

Proof of (5.3): For (5.3) we again begin with (1.2) and see using triangle inequality

aij(v − v∗)vivj = ∣v − v∗∣2+γ (∣v∣2 − (v ⋅ (v − v∗))2∣v − v∗∣2 )
= ∣v − v∗∣γ(∣v∣2(∣v∣2 + ∣v∗∣2 − 2(v ⋅ v∗)) − ∣v∣4 + 2∣v∣2(v ⋅ v∗) − (v ⋅ v∗)2)
= ∣v − v∗∣γ(∣v∣2∣v∗∣2 − (v ⋅ v∗)2)
≲ ∣v − v∗∣γ ∣v∣2∣v∗∣2
≲ ⟨v⟩2+γ ⟨v∗⟩4+γ .

(5.8)

Hence we have that ∣aijvivj
⟨v⟩2
∣ ≲ ⟨v⟩γ ⟨v∗⟩4+γ .

Proof of (5.4): Using homogeneity we have,

∣∂vkaij ∣ ≲ ∣v − v∗∣1+γ,
which implies (5.4).

Proof of (5.5): To prove (5.5), we use (5.7) to get

∂vk (aij(v − v∗) vi⟨v⟩) = ∂vk (
1

⟨v⟩ ∣v − v∗∣γ(v − v∗)l(vl(v∗)j − vj(v∗)l)) .
Using the product rule we get mutiple terms which we treat one by one now.
When ∂vk hit 1

⟨v⟩ we get upto a constant vk
⟨v⟩3

, thus we have using triangle inequality

vk⟨v⟩3 ∣v − v∗∣γ(v − v∗)l(vl(v∗)j − vj(v∗)l) ≲ ⟨v⟩γ ⟨v∗⟩2+γ .
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When ∂vk hit ∣v − v∗∣γ we get upto a constant (v − v∗)k∣v − v∗∣γ−2, hence using the fact that
(v−v∗)k(v−v∗)l

∣v−v∗ ∣2
≲ 1 and triangle inequality we get

1⟨v⟩ ∣v − v∗∣γ (v − v∗)k(v − v∗)l∣v − v∗∣2 (vl(v∗)j − vj(v∗)l) ≲ ⟨v⟩γ ⟨v∗⟩γ+1 .
Finally when ∂vk hits (vl(v∗)j − vj(v∗)l) we get (δlk(v∗)j − δjk(v∗)l).
Again, by triangle inequality we get

1

⟨v⟩∣v − v∗∣γ(v − v∗)l(δlk(v∗)j − δjk(v∗)l) ≲ ⟨v⟩γ ⟨v∗⟩2+γ .
Hence in total we have

∂vk (aij(v − v∗) vi⟨v⟩) ≲ ⟨v⟩γ ⟨v∗⟩2+γ .
Proof of (5.6): Finally, for the second derivatives of aij we obtain by homogeneity

∣∂vl∂vkaij(v − v∗)∣ ≲ ∣v − v∗∣γ.
which implies (5.6) �

Since c = ∂2zizjaij(z), we see that c and its higher derivatives satisfy the same bounds as

(5.6).
Now we note a very simple interpolation inequality that will let us estimate the coefficient

matrices in L∞v .

Lemma 5.2. Let h ∶ [0, T0) ×R3 ×R3 be a smooth function, then

∥h∥L1
v
(t, v) ≲ ∥⟨v⟩2 h∥L2

v
(t, x).

Proof. We just use Holder’s inequality to get

∫ ∣h∣(t, x, v)dv ≲ (∫ ⟨v⟩4 h2(t, x, v)dv) 12 (∫ ⟨v⟩−4 dv) 12
≲ (∫ ⟨v⟩4 h2(t, x, v)dv) 12 .

�

As will become clear from Lemma 5.7 and Lemma 5.8, we estimate the derivatives of aij[h]
and c[h] in different Lp

x spaces but always in L∞v . Thus in the following lemma we establish
an estimate in L∞v .

But before that we note a simple bound on derivatives of h.

Lemma 5.3. For every l ∈ N, the following estimate holds with a constant depending on l, γ
and d0 for any (t, x, v) ∈ [0, T0) ×R3 ×R3

⟨v⟩l ∣∂αx∂βv h∣(t, x, v) ≲l ∑
∣β′∣≤∣β∣

∣∂αx∂β′v H∣(t, x, v),
where H(t, x, v) = hed(t)⟨v⟩.
Proof. This is immediate from differentiating H and using that ⟨v⟩n e−d(t)⟨v⟩ ≲n 1 for all
n ∈ N. �
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Lemma 5.4. For ∣α∣ + ∣β∣ ≤ 10, we have the following L∞v bounds

∥⟨v⟩−2−γ ∂αx∂βv aij[h]∥L∞v (t, x) ≲ ∥H∥Y α+β
v
(t, x), (5.9)

∥⟨v⟩−1−γ ∂αx∂βv (aij[h] vi⟨v⟩)∥L∞v (t, x) ≲ ∥H∥Y α+β
v
(t, x), (5.10)

∥⟨v⟩−γ ∂αx∂βv (aij[h]vivj⟨v⟩2)∥L∞v (t, x) ≲ ∥H∥Y α+β
v
(t, x). (5.11)

If ∣β∣ ≥ 1 then we have,

∥⟨v⟩−1−γ ∂αx∂β′v ∂vlaij[h]∥L∞v (t, x) ≲ ∥H∥Y α+β′

v
(t, x), (5.12)

∥⟨v⟩−γ ∂αx ∂β′v ∂vl (aij[h] vi⟨v⟩)∥L∞v (t, x) ≲ ∥H∥Y α+β′

v
(t, x), (5.13)

where ∂βv = ∂β′v ∂vl .
if ∣β∣ ≥ 2 then we have,

∥⟨v⟩−γ ∂αx∂β′v ∂2vlvkaij[h]∥L∞v (t, x) ≲ ∥H∥Y α+β′

v
(t, x)(t, x), (5.14)

where ∂βv = ∂β′v ∂2vkvl .
Proof. This is just a straightforward combination of appropriate bounds in Proposition 5.1
and Lemma 5.2 which implies the bound of the form,

LHS ≲ ∥⟨v⟩k ∂αx∂βv h∥L2
v
(t, x).

We finish of by using Lemma 5.3. �

In the following lemma we establish an L∞v bound for c[h].
Lemma 5.5. For ∣α∣ + ∣β∣ ≤ 10, we have

∥⟨v⟩−γ ∂αx∂βv c[h]∥(t, x) ≲ ∥H∥Y α+β
v
(t, x), (5.15)

where, again, H = hed(t)⟨v⟩.
Proof. Since we have

∣∂αx∂βv c∣(t, x, v) ≲ ∫ ∣v − v∗∣γ ∣∂αx∂βv h∣dv∗,
the required result just follows by triangle inequality and in the same way as Lemma 5.4. �

Remark 5.6. At the level of the linear equation we can bound h in a much weaker norm
but since we will perform an iteration, we stick to the strong norm.

Having bounded the coefficient matrices we note two general but specialized inequalities
which play a crucial role in bounding the error terms in the next section. In fact, we will
reduce all the error terms to fit one of the following lemmas.
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Lemma 5.7. Let G be a solution to (4.4) and H = ed(t)⟨v⟩h where h is the nonnegative
function from Lemma 4.2. For ∣α′′∣ + ∣β′′∣ ≤ 10 and ∣α′′′∣ + ∣β′′′∣ ≤ 10 we have the following
estimate,

∥⟨v⟩ωα′′,β′′+ωα′′′,β′′′ ∣∂α′′′x ∂β
′′′

v G∣ ⟨v⟩γ ∥H∥Y 8
v
∣∂α′′x ∂β

′′

v G∣∥L1([0,T ];L2
xL

2
v)

≲ ∥H∥YT
[∥⟨v⟩ωα′′,β′′ ⟨v⟩ 12 ∂α′′x ∂β

′′

v G∥2L2([0,T ];L2
xL

2
v)
+ ∥⟨v⟩ωα′′′,β′′′ ⟨v⟩ 12 ∂α′′′x ∂β

′′′

v G∥2L2([0,T ];L2
xL

2
v)
].

Proof. The idea is to estimate ∥H∥Y 8
v
in L∞x and then use Sobolev embedding to go to L2

x at
the cost of two spatial derivatives.

∫ T

0
∫
ΩR

∫ ⟨v⟩ωα′′,β′′+ωα′′′,β′′′ ∣∂α′′′x ∂β
′′′

v G∣ ⟨v⟩γ ∥H∥Y 8
v
∣∂α′′x ∂β

′′

v G∣dv dxdt
≤ ∫ T

0
∫
ΩR

∫ ⟨v⟩ωα′′,β′′+ωα′′′,β′′′ ∣∂α′′′x ∂β
′′′

v G∣ ⟨v⟩γ ∥H∥L∞x Y 8
v
∣∂α′′x ∂β

′′

v G∣dv dxdt
≤ ∥H∥L∞([0,T ];L2

xYv)∫
T

0
∫
ΩR

∫ ⟨v⟩ωα′′,β′′+ωα′′′,β′′′ ∣∂α′′′x ∂β
′′′

v G∣∣∂α′′x ∂β
′′

v G∣dv dxdt
≲ ∥H∥YT ∫

T

0
∫
ΩR

∫ ⟨v⟩ωα′′,β′′+ωα′′′,β′′′ ∣∂α′′′x ∂β
′′′

v G∣ ⟨v⟩γ ∣∂α′′x ∂β
′′

v G∣dv dxdt.
Now we use Cauchy-Schwatrz followed by Young’s inequality to get the desired result

∥⟨v⟩ωα′′,β′′+ωα′′′,β′′′ ∂α
′′′

x ∂β
′′′

v G ⟨v⟩γ ∂α′′x ∂β
′′

v G∥L1([0,T ];L1
xL

1
v)

≤ 1
2
∥⟨v⟩ωα′′′,β′′′ ⟨v⟩ γ2 ∂α′′′x ∂β

′′′

v G∥2L2([0,T ];L2
xL

2
v)
+
1

2
∥⟨v⟩ωα′′,β′′ ⟨v⟩ γ2 ∂α′′x ∂β

′′

v G∥2L2([0,T ];L2
xL

2
v)
.

�

Lemma 5.8. Let G be a solution to (4.4) and H = ed(t)⟨v⟩h where h is the nonnegative
function from Lemma 4.2. For ∣α′′∣ + ∣β′′∣ ≤ 8, we have the following estimate,

∥⟨v⟩ωα,β+ωα′′,β′′−(3+2δγ) ∣∂αx∂βvG∣ ⟨v⟩γ ∥H∥Y 10
v
∣∂α′′x ∂β

′′

v G∣∥L1([0,T ];L2
xL

2
v)

≲ ∥H∥YT
[∥⟨v⟩ωα,β ⟨v⟩ 12 ∂αx∂βvG∥2L2([0,T ];L2

xL
2
v)
+ ∥⟨v⟩ωα′′′,β′′ ⟨v⟩12 ∂α′′′x ∂β

′′

v G∥2L2([0,T ];L2
xL

2
v)
],

where we sum over α′′′ such that ∣α∣ ≤ ∣α′′′∣ ≤ ∣α′′∣ + 2.
Proof.

∫ T

0
∫
ΩR

∫ ⟨v⟩ωα,β+ωα′′,β′′−(3+2δγ) ∣∂αx∂βvG∣ ⟨v⟩γ ∥H∥Y 10
v
∣∂α′′x ∂β

′′

v G∣dv dxdt
≤ ∫ T

0
∫
ΩR

(∥H∥Y 10
v
∥⟨v⟩ωα,β ⟨v⟩γ2 ∂αx∂βvG∥L2

v
∥⟨v⟩ωα′′,β′′−(3+2δγ) ⟨v⟩ γ2 ∂α′′x ∂β

′′

v G∥L2
v
)

≤ ∥H∥YT
∥⟨v⟩ωα,β ⟨v⟩ γ2 ∂αx ∂βvG∥L2([0,T ];L2

xL
2
v)
∥⟨v⟩ωα′′,β′′−(3+2δγ ) ⟨v⟩ γ2 ∂α′′x ∂β

′′

v G∥L2([0,T ];L∞x L2
v)

≲ ∥H∥YT
∥⟨v⟩ωα,β ⟨v⟩ γ2 ∂αx ∂βvG∥L2([0,T ];L2

xL
2
v)
∥⟨v⟩ωα′′,β′′−(3+2δγ ) ⟨v⟩ γ2 ∂α′′′x ∂β

′′

v G∥L2([0,T ];L2
xL

2
v)
.

Here ∣α′′′∣ ≤ ∣α′′∣ + 2. Thus ωα′′′,β′′ ≥ ωα′′,β′′ − (3 + 2δγ) which implies the following bound,

∥H∥YT
∥⟨v⟩ωα,β ⟨v⟩ γ2 ∂αx∂βvG∥L2([0,T ];L2

xL
2
v)
∥⟨v⟩ωα′′,β′′−(3+2δγ) ⟨v⟩ γ2 ∂α′′′x ∂β

′′

v G∥L2([0,T ];L2
xL

2
v)

≤ ∥H∥YT
∥⟨v⟩ωα,β ⟨v⟩ γ2 ∂αx ∂βvG∥L2([0,T ];L2

xL
2
v)
∥⟨v⟩ωα′′′,β′′ ⟨v⟩ γ2 ∂α′′′x ∂β

′′

v G∥L2([0,T ];L2
xL

2
v)
.
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Using Young’s inequality we get,

∥H∥YT
∥⟨v⟩ωα,β ⟨v⟩ γ2 ∂αx∂βvG∥L2([0,T ];L2

vL
2
x)
∥⟨v⟩ωα′′′,β′′ ⟨v⟩ γ2 ∂α′′′x ∂β

′′

v G∥L2([0,T ];L2
xL

2
v)
,

≤ 1
2
∥H∥YT

∥⟨v⟩ωα,β ⟨v⟩γ2 ∂αx ∂βvG∥2L2([0,T ];L2
xL

2
v)
+
1

2
∥H∥YT

∥⟨v⟩ωα′′′,β′′ ⟨v⟩ γ2 ∂α′′′x ∂β
′′

v G∥2L2([0,T ];L2
xL

2
v)
.

�

6. Bounding Error Terms

We are now in a position to bound all the error terms.
Before we start estimating, we make a few notational definitions,

∥G∥2Y m,s

l,ΩR

∶= m∑
i=0

∑
∣α∣+∣β∣=i

∥⟨v⟩2ωα,β ⟨v⟩s (∂αx ∂βvG)2ψ2
i−l∥L1

xL
1
v
. (6.1)

And

∥G∥2Em
T,ΩR

∶= ∥G∥2
L∞([0,T ];Y m,0

0,ΩR
) + ∫ T

0
∥G∥2

Y
m,1
0,ΩR

dt. (6.2)

Here m denotes the number of derivatives we take, s is the extra velocity weights needed
and l is the off-set in the hierarchy of cut-off. This is needed to handle the boundary error
terms and l = 1 in that case. In the case of bulk error terms, l = 0.

We remind ourselves again that boundary error terms are 0 when ∣α∣ + ∣β∣ = 0 thus with
the convention that ψ0 = 1, the above definition makes sense for l = 1 as soon as m ≥ 1.

In this whole section we fix α,β such that ∣α∣ + ∣β∣ =m ≤ 10.
For this section, all the integrals are taken over ΩR but the explicit dependence

is dropped for the sake of brevity.

Proposition 6.1. We have the following bound on T α,β
1 in (4.23) for all T ∈ [0, T0),

T
α,β
1 ≤ C(γ, d0,m)∫ T

0
∥G∥2

Y
m,1
0,ΩR

dt.

Proof. We fix a particular term in T α,β
1 , and assume α′, β′ satisfies the required conditions,

that is ∣α′∣ ≤ ∣α′∣ + 1 and ∣β′∣ ≤ ∣β∣ − 1.
Now using Young’s inequality we have,

∥⟨v⟩2ωα,β ψ2
m∣∂αx∂βvG∣∣∂α′x ∂β′v G∣∥L1([0,T ];L1

xL
1
v)
= 1

2
∥⟨v⟩2ωα,β ψ2

m ⟨v⟩ (∂αx ∂βvG)2∥L1([0,T ];L1
xL

1
v)

+
1

2
∥⟨v⟩2ωα,β−2ψ2

m ⟨v⟩ (∂α′x ∂β′v G)2∥L1([0,T ];L1
xL

1
v)
.

Now since ∣α′∣ ≤ ∣α∣ + 1 and ∣β′∣ ≤ ∣β∣ − 1, we thus have

ωα′,β′ = 20 − (3
2
+ δγ)∣α′∣ − (1

2
+ δγ)∣β′∣ ≥ 20 − (3

2
+ δγ)∣α∣ − (1

2
+ δγ)∣β∣ − 1 = ωα,β − 1.

Since we have that ∣α′∣ + ∣β′∣(= i) ≤ m, we must have that ψi ≥ ψm. Thus, summing over
all such α′, β′, we get the required result. �

Proposition 6.2. We bound T α,β
2 in (4.24) for all T ∈ [0, T0) as follows,

T α,β
2 ≤ C(d0, γ,m)κ∫ T

0
∥G∥2

Y
m,0
0,ΩR

.
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Proof. Again, we fix a particular term in T α,β
2 with ∣β′∣ ≤ ∣β∣ − 1.

Using Cauchy-Schwartz and then Young’s inequality we have that,

∥⟨v⟩2ωα,β ψ2
m∣∂αx∂βvG∣∣∂αx∂β′v G∣∥L1([0,T ];L1

xL
1
v)
≤ ∥⟨v⟩ωα,β ψm∂

α
x∂

β
vG∥L2([0,T ];L2

xL
2
v)
∥⟨v⟩ωα,β ψm∂

α
x ∂

β′

v G∥L2([0,T ];L2
xL

2
v)

≤ ∥⟨v⟩ωα,β ∂αx∂
β
vGψm∥2L2([0,T ];L2

xL
2
v)

+ ∥⟨v⟩ωα,β ∂αx∂
β′

v Gψm∥2L2([0,T ];L2
xL

2
v)
.

Since ∣β′∣ ≤ ∣β∣ − 1 we trivially have ωα,β′ ≥ ωα,β.
Summing, we get the required result. �

Proposition 6.3. For T α,β
3,1 in (4.25) and T ∈ [0, T0) we have the bound,

T
α,β
3,1 ≤ C(d0, γ,m)∥H∥YT ∫

T

0
∥G∥2

Y
m,1
0,ΩR

.

Proof. We fix a typical term such that α′, β′, α′′, β′′, α′′′, β′′′ satisfy the required conditions.
In this case we have less than 8 derivatives hitting aij[h] and thus we estimate it in L∞x

and then use Sobolev embedding at the cost of two derivatives in x. Thus the idea is to
reduce to a point when we can use Lemma 5.7 to deduce the required lemma.

(1) Case 1: ∣β′∣ ≥ 2.
We bound ∥⟨v⟩2ωα,β ∣∂α′′′x ∂

β′′′

v G∣∣∂α′x ∂β′v aij[h]∣∣∂α′′x ∂
β′′

v G∣∥L1([0,T ];L1
xL

1
v)

using (5.14).

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂α′′′x ∂β

′′′

v G∣∣∂α′x ∂β′v aij[h]∣∣∂α′′x ∂β
′′

v G∣dv dxdt
≤ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂α′′′x ∂β

′′′

v G∣ ⟨v⟩γ ∥H∥Y 8
v
∣∂α′′x ∂β

′′

v G∣dv dxdt.
Since we have ∣α′′′∣ + ∣α′′∣ + ∣α′∣ ≤ 2∣α∣ and ∣β′′′∣ + ∣β′′∣ + ∣β′∣ ≤ 2∣β∣ + 2 we get that,

ωα′′′,β′′′ + ωα′′,β′′ = 40 − (3
2
+ δγ)(∣α′′′∣ + ∣α′′∣) − (1

2
+ δγ)(∣β′′′∣ + ∣β′′∣)

≥ 40 − (3 + 2δγ)∣α∣ − (1 + 2δγ)∣β∣ + (3 + 2δγ)∣α′∣ + (1 + 2δγ)∣β′∣
2

− 1 − 2δγ.

In this case ∣β′∣ ≥ 2 thus, we get that

ωα′′′,β′′′ + ωα′′,β′′ ≥ 2ωα,β.

(2) Case 2 : ∣β′∣ = 1.
In this case we have that ∣α′∣ ≥ 1. Proceeding as above and using (5.12) we get

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂α′′′x ∂β

′′′

v G∣∣∂α′x ∂β′v aij[h]∣∣∂α′′x ∂β
′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β+1 ∣∂α′′′x ∂β

′′′

v G∣ ⟨v⟩γ ∥H∥Y 7
v
∣∂α′′x ∂β

′′

v G∣dv dxdt.
Now since ∣α′∣ ≥ 1, we have by above computations, that

ωα′′′,β′′′ + ωα′′,β′′ ≥ 2ωα,β +
(3 + 2δγ)∣α′∣ + (1 + 2δγ)∣β′∣

2
− 1 − 2δγ ≥ 2ωα,β + 1.

Again putting things together we get an equation that can be handled by Lemma 5.7.
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(3) Case 3: ∣α′∣ ≥ 2.
For this case we use (5.9) to get,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂α′′′x ∂β

′′′

v G∣∣∂α′x ∂β′v aij[h]∣∣∂α′′x ∂β
′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β+2 ∣∂α′′′x ∂β

′′′

v G∣∥H∥Y 8
v
⟨v⟩γ ∣∂α′′x ∂β

′′

v G∣dv dxdt.
Since ∣α′∣ ≥ 2, we have ωα′′′,β′′′ + ωα′′,β′′ ≥ 2ωα,β + 2.
Hence we again get the equation of the desired form.

Thus in each case we get a bound of the form,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂α′′′x ∂β

′′′

v G∣∣∂α′x ∂β′v aij[h]∣∣∂α′′x ∂β
′′

v G∣dv dxdt
≤ ∫ T

0
∫ ∫ ⟨v⟩ωα′′′,β′′′+ωα′′,β′′ ∣∂α′′′x ∂β

′′′

v G∣ ⟨v⟩γ ∥H∥Y 8
v
∣∂α′′x ∂β

′′

v G∣dv dxdt.
Hence we can apply Lemma 5.7 as summing over the various indices after noting that ∣α′′∣+∣β′′∣ ≤m and also ∣α′′′∣ + ∣β′′′∣ =m, to get the result of the lemma. �

Proposition 6.4. For T α,β
3,2 as in (4.26) and T ∈ [0, T0) we have the following estimate,

T
α,β
3,2 ≤ C(d0, γ,m)∥H∥YT ∫

T

0
∥G∥2

Y
m,1
0,ΩR

.

Proof. Since we have more than 8 derivatives hitting aij[h], we can no longer estimate it in

L∞x and we have to estimate it necessarily in L2
x. On the other hand the term ∂α

′′

x ∂
β′′

v G has
atmost 4 derivatives hitting it and so we estimate it in L∞x and use Sobolev embedding at
the cost of two derivatives. Hence this is where Lemma 5.8 comes handy.

(1) Case 1: ∣β′∣ ≥ 2
Using (5.14) we have

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣∣∂α′x ∂β′v aij[h]∣∣∂2vivj∂α′′x ∂β

′′

v G∣dv dxdt
≤ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ⟨v⟩γ ∥H∥Y 10

v
∣∂α′′x ∂β

′′′

v G∣dv dxdt.
Here ∣β′′′∣ = ∣β′′∣ + 2.
To be able to use Lemma 5.8 we need to prove that ωα,β ≤ ωα′′,β′′′ − 3 − 2δγ.
Now note that since,

ωα′′,β′′′ = 20 − (3
2
+ δγ)∣α′′∣ − (1

2
+ δγ)∣β′′′∣

≥ 20 − (3
2
+ δγ)∣α′′∣ − (1

2
+ δγ)∣β′′∣ − 1 − 2δγ .

But,

ωα′′,β′′ = 20 − (3
2
+ δγ)∣α′′∣ − (1

2
+ δγ)∣β′′∣

= 20 − (3
2
+ δγ)∣α∣ − (1

2
+ δγ)∣β∣ + (3 + 2δγ)∣α′∣ + (1 + 2δγ)∣β′∣

2
.
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Putting this together we get

ωα′′,β′′′ ≥ ωα,β + (3 + 2δγ)∣α′∣ + ∣β′∣
2

− ∣β′∣ − 1 − 2δγ.
Now when ∣α′∣ + ∣β′∣ = k, we trivially have ∣β′∣ ≤ k, which implies for 9 ≤ k ≤ 10.

ωα′′,β′′′ ≥ ωα,β +
(3 + 2δγ)k

2
− k − 1 − 2δγ

= ωα,β +
k

2
− 1 + δγ(k − 2)

≥ ωα,β + 3 + 2δγ.

(2) Case 2: ∣β′∣ = 1.
In this case we necessarily have ∣α′∣ ≥ 8.
Proceeding as in Case 1, and using (5.12) we get the following bound,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣∣∂α′x ∂β′v aij[h]∣∣∂2vivj∂α′′x ∂β

′′

v G∣dv dxdt
≤ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β+1 ∣∂αx∂βvG∣ ⟨v⟩γ ∥H∥Y 10

v
∣∂α′′x ∂β

′′′

v G∣dv dxdt.
Where again, ∣β′′′∣ = ∣β′′∣ + 2.

This time we need to show ωα,β + 4 + 2δγ ≤ ωα′′,β′′ (to take care of the extra ⟨v⟩
power).
As before

ωα′′,β′′′ ≥ ωα,β + (3 + 2δγ)∣α′∣ + ∣β′∣
2

− ∣β′∣ − 1 − 2δγ.
But this time since ∣β′∣ = 1, ∣α′∣ ≥ 8, thus

(3 + 2δγ)∣α′∣ + ∣β′∣
2

− ∣β′∣ − 1 − 2δγ > 4 + 2δγ .
Hence ωα,β + 4 + 2δγ ≤ ωα′′,β′′′ .

(3) Case 3: ∣β′∣ = 0.
In this case we necessarily have ∣α′∣ ≥ 9.
Using (5.9), we get,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣∣∂α′x ∂β′v aij[h]∣∣∂2vivj∂α′′x ∂β

′′

v G∣dv dxdt
≤ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β+2 ∣∂αx∂βvG∣ ⟨v⟩γ ∥H∥Y 10

v
∣∂α′′x ∂β

′′′

v G∣dv dxdt.
In this case we need to show ωα,β + 5 + 2δγ ≤ ωα′′,β′′′ .
Again,

ωα′′,β′′′ ≥ ωα,β + (3 + 2δγ)∣α′∣ + ∣β′∣
2

− ∣β′∣ − 1 − 2δγ.
Since ∣β′∣ = 0, (3 + 2δγ) ∣α′∣+∣β′∣2

− 1 − 2δγ ≥ 27
2
− 1 + 2δγ > 5 + 2δγ .

Hence ωα,β + 5 + 2δγ ≤ ωα′′,β′′′.
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In each case we proved a bound of the form ,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣∣∂α′x ∂β′v aij[h]∣∣∂2vivj∂α′′x ∂β

′′

v G∣dv dxdt
≤ ∫ T

0
∫ ∫ ⟨v⟩ωα,β+ωα′′,β′′′−(3+2δγ) ∣∂αx∂βvG∣ ⟨v⟩γ ∥H∥Y 10

v
∣∂α′′x ∂β

′′′

v G∣dv dxdt.
Thus applying Lemma 5.8 and summing gives us the required estimate. �

Remark 6.5. In case 1 of Proposition 6.4, since we have two ∂v hitting aij[h], we can
actually apply Sobolev embedding on this term itself but this is no longer true when ∣β′∣ < 2.
Proposition 6.6. For T α,β

3,3 as in (4.27) and T ∈ [0, T0) we have the following estimate,

T
α,β
3,3 ≤ ∥H∥YT

C(d0, γ,m)∫ T

0
∥G∥2

Y
m,1
0,ΩR

.

Proof. Each term in T
α,β
3,3 only has one derivative hitting aij[h], but we have one less ⟨v⟩

weight to worry about. Let α′, α′′, β′ and β′′ satisfy the required conditions.

The idea is the same as that of Proposition 6.3, and we bound ∂α
′

x ∂
β′

v aij[h] in L∞x and
then use Sobolev embedding in space.
We handle the two cases, when ∣α′∣ = 1 and when ∣β′∣ = 1, differently.

(1) Case 1: ∣β′∣ = 1 (or ∣α′∣ = 0).
In this case we proceed as in Case 2 of Proposition 6.3 to get the following bound

∫ T

0
∫ ∫ ⟨v⟩2ωα,β−1 ∣∂αx∂βvG∣∣∂α′x ∂β′v aij[h]∣∣∂vl∂α′′x ∂β

′′

v G∣dv dxdt
≤ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ⟨v⟩γ ∥H∥Y 10

v
∣∂α′′x ∂β

′′′

v G∣dv dxdt.
Here ∣β′′′∣ = ∣β′′∣ + 1.
We would like to use Lemma 5.7 but we need to make sure that ωα′′,β′′′ ≥ ωα,β.
Indeed,

ωα′′,β′′′ = 20 − (3
2
+ δγ)∣α′′∣ − (1

2
+ δγ)∣β′′′∣ = ωα′′,β′′ −

1

2
− δγ .

But,

ωα′′,β′′ = ωα,β +
(3 + 2δγ)∣α′∣ + (1 + 2δγ)∣β′∣

2
= ωα,β +

1

2
+ δγ.

Thus ωα′′,β′′′ = ωα,β.
(2) Case 2: ∣α′∣ = 1( thus β′ = 0).

Using (5.1), we get the following estimate,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β−1 ∣∂αx∂βvG∣∣∂α′x ∂β′v aij[h]∣∣∂vl∂α′′x ∂β

′′

v G∣dv dxdt
≤ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β+1 ∣∂αx∂βvG∣ ⟨v⟩γ ∥H∥Y 10

v
∣∂α′′x ∂β

′′′

v G∣dv dxdt.
Again ∣β′′′∣ = ∣β′′∣ + 1.
To use Lemma 5.7 we need to prove that ωα′′,β′′′ ≥ ωα,β + 1.

Since ∣α′∣ = 1,we have as above,

ωα′′,β′′′ = ωα′′,β′′ −
1

2
− δγ = ωα,β +

3

2
+ δγ −

1

2
− δγ .
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Thus ωα′′,β′′′ = ωα,β + 1.

In both cases, we showed a bound which allows us to use Lemma 5.7 to give us the required
estimate. �

Proposition 6.7. For T α,β
4 as in (4.28) and T ∈ [0, T0) we have the following estimate

T
α,β
4 ≤ ∥H∥YT

C(d0, γ,m)∫ T

0
∥G∥2

Y
m,1
0,ΩR

.

Proof. Using Lemma 5.5 we see that the proof is the same as the first case of Proposition 6.3.
�

Proposition 6.8. For T α,β
5,1 as in (4.29) and T ∈ [0, T0) we have the following estimate,

T
α,β
5,1 ≤ (∥H∥YT

+ ε)C(d0, γ,m)∫ T

0
∥G∥2

Y
m,1
0,ΩR

.

Proof. First we bound the term involving ε. From our restrictions on α′′ and β′′, we trivially
have

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v (ε vi⟨v⟩)∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ε∥∂αx ∂βvGψm ⟨v⟩ωα,β ⟨v⟩12 ∥L2([0,T ];L2

xL
2
v)
+ ε∥∂α′′x ∂β

′′

v Gψm ⟨v⟩ωα′′,β′′ ⟨v⟩12 ∥L2([0,T ];L2
xL

2
v)

This gives us the required bound after summing over the multi-indices.
We split this into two cases and each case into two further subcases:

(1) Case 1: ∣β′∣ + ∣α′∣ ≤ 8.
In this case we will set up to use Lemma 5.7.
● Subcase 1a. ∣β′∣ ≥ 1.
Using (5.13) we get the following bound,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v (aij[h] vi⟨v⟩)∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣∥H∥Y 8

v
⟨v⟩γ ∣∂α′′x ∂β

′′

v G∣dv dxdt.
Now we just need to show that ωα,β ≤ ωα′′,β′′.
Since ∣β′∣ + ∣β′′∣ = ∣β∣ + 1 and ∣α′∣ + ∣α′′∣ = ∣α∣, we have

ωα′′,β′′ = ωα,β +
(3 + 2δγ)∣α′∣ + (1 + 2δγ)∣β′∣

2
−
1

2
− δγ.

In this case ∣β′∣ ≥ 1, so we have that

ωα,β ≤ ωα′′,β′′ .

● Subcase 1b. ∣β′∣ = 0 (which implies, ∣α′∣ ≥ 1)
Using (5.10) we get,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v (aij[h] vi⟨v⟩)∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β+1 ∣∂αx∂βvG∣∥H∥Y 8

v
⟨v⟩γ ∣∂α′′x ∂β

′′

v G∣dv dxdt.
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This time we need to prove ωα,β + 1 ≤ ωα′′,β′′′.
As above,

ωα′′,β′′ = ωα,β +
(3 + 2δγ)∣α′∣ + (1 + 2δγ)∣β′∣

2
−
1

2
− δγ.

Since ∣α′∣ ≥ 1, we get that ωα′′,β′′ ≥ ωα,β + 1.
In both cases we proved an inequality of the form,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v (aij[h] vi⟨v⟩)∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩ωα,β+ωα′′,β′′ ∣∂αx∂βvG∣∥H∥Y 8

v
⟨v⟩γ ∣∂α′′x ∂β

′′

v G∣dv dxdt.
Hence we can use Lemma 5.7 to prove the required result.

(2) Case 2: ∣α′∣ + ∣β′∣ ≥ 9 In this case we will set up to use Lemma 5.8
● Subcase 2a. ∣β′∣ ≥ 1.
Again using (5.13) we get the bound,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v (aij[h] vi⟨v⟩)∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣∥H∥Y 10

v
⟨v⟩γ ∣∂α′′x ∂β

′′

v G∣dv dxdt.
To be able to use Lemma 5.8 we need to prove that ωα,β + 3 + 2δγ ≤ ωα′′,β′′.
But note as above that

ωα′′,β′′ = ωα,β +
3 + 2δγ

2
(∣α′∣ + ∣β′∣) − ∣β′∣ − 1

2
− δγ .

And since ∣α′∣ + ∣β′∣ ≥ 9 and ∣β′∣ ≤ ∣α′∣ + ∣β′∣, we get that

ωα′′,β′′ ≥ ωα,β + 3 + 2δγ.

● Subcase 2b. ∣β′∣ = 0 (thus ∣α′∣ ≥ 9).
Using (5.10) we get the following bound,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v (aij[h] vi⟨v⟩)∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β+1 ∣∂αx∂βvG∣∥H∥Y 10

v
⟨v⟩γ ∣∂α′′x ∂β

′′

v G∣dv dxdt.
Now we need to prove that ωα,β + 4 + 2δγ ≤ ωα′′,β′′.
Since we have that

ωα′′,β′′ = ωα,β

3 + 2δγ
2
(∣α′∣ + ∣β′∣) − ∣β′∣ − 1

2
− δγ ,

we get by noting that, ∣β′∣ = 0 and ∣α′∣ ≥ 9,
ωα,β + 4 + 2δγ ≤ ωα′′,β′′.

In both cases we were able to prove a bound that let’s us use Lemma 5.8 and finish
the proof.

�
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Proposition 6.9. For T α,β
5,2 as in (4.30) and T ∈ [0, T0) we have the following estimate,

T
α,β
5,2 ≤ (∥H∥YT

+ ε)C(d0, γ,m)∫ T

0
∥G∥2

Y
m,1
0,ΩR

.

Proof. We again bound the term involving ε as before.
Although we don’t enjoy the reduced number of velocity weights as in (5.13), we have one

less velocity to worry about from the beginning.
Using (5.2), we get the bound,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β−1 ∣∂αx∂βvG∣ ∣(aij[h] vi⟨v⟩)∣ ∣∂αx∂βvG∣dv dxdt

≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣∥H∥Y 0

v
⟨v⟩γ ∣∂αx∂βvG∣dv dxdt.

Now the required lemma follows directly from Lemma 5.7. �

Proposition 6.10. For T α,β
6,1 as in (4.31) and T ∈ [0, T0) we have the following estimate,

T
α,β
6,1 ≤ (∥H∥YT

+ ε)C(d0, γ,m)∫ T

0
∥G∥2

Y
m,1
0,ΩR

.

Proof. We get the required bound for the ε term trivially. Indeed,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v ( ε⟨v⟩)∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ε∥∂αx ∂βvGψm ⟨v⟩ωα,β ⟨v⟩12 ∥L2([0,T ];L2

xL
2
v)
+ ε∥∂α′′x ∂β

′′

v Gψm ⟨v⟩ωα′′,β′′ ⟨v⟩12 ∥L2([0,T ];L2
xL

2
v)

Following our ususal line of reasoning, we split this lemma into two cases and further subdi-
vide into two subcases.

(1) Case 1: ∣α′∣ + ∣β′∣ ≤ 8.
● Subcase 1a. ∣β∣ ≥ 1.
Using (5.12) with the slight change coming from the already existing 1

⟨v⟩ weight,

we get the following bound,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v (aii[h]⟨v⟩ )∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣∥H∥Y 8

v
⟨v⟩γ ∣∂α′′x ∂β

′′

v G∣dv dxdt.
Since ∣α′′∣ ≤ ∣α∣ and ∣β′′∣ ≤ ∣β∣, we trivially have the requirements for Lemma 5.7
satisfied.
● Subcase 2a. ∣β′∣ = 0 (which means ∣α′∣ ≥ 1).
Using (5.9), we get the following bound,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v (aii[h]⟨v⟩ )∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β+1 ∣∂αx∂βvG∣∥H∥Y 8

v
⟨v⟩γ ∣∂α′′x ∂β

′′

v G∣dv dxdt.
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Again, since ∣α′′∣ ≤ ∣α∣, ∣β′′∣ ≤ ∣β∣ and ∣α′∣ ≥ 1, it is easily seen that ωα,β +1 ≤ ωα′′,β′′ .
Indeed,

ωα′′,β′′ = ωα,β + (3
2
+ δγ)∣α′∣ + (1

2
+ δγ)∣β′∣.

In both cases we are in good shape to apply Lemma 5.7 whose application gives the
required result.

(2) Case 2: ∣α′∣ + ∣β′∣ ≥ 9.
● Subcase 2a. ∣β′∣ ≥ 1.
Using (5.12) with appropriate changes we get the bound,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v (aii[h]⟨v⟩ )∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣∥H∥Y 10

v
⟨v⟩γ ∣∂α′′x ∂β

′′

v G∣dv dxdt.
Again we have,

ωα′′,β′′ = ωα,β + (3
2
+ δγ)(∣α′∣ + ∣β′∣) − ∣β′∣.

Since ∣α′∣ + ∣β′∣ ≥ 9 and ∣β′∣ ≤ 10 we get that

ωα,β + 3 + 2δγ ≤ ωα′′,β′′.

● Subcase 2b. ∣β′∣ = 0 (or ∣α′∣ ≥ 9).
Using (5.1) we get,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v (aii[h]⟨v⟩ )∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β+1 ∣∂αx∂βvG∣∥H∥Y 10

v
⟨v⟩γ ∣∂α′′x ∂β

′′

v G∣dv dxdt.
Since ∣α′∣ ≥ 9 and ∣β′∣ = 0, we get easily that

ωα,β + 4 + 2δγ ≤ ωα′′,β′′.

Finally applying Lemma 5.8 in both cases gives us the required lemma.

�

Proposition 6.11. For T α,β
6,2 as in (4.32) and T ∈ [0, T0) we have the following estimate,

T
α,β
6,2 ≤ (∥H∥YT

+ ε)C(d0, γ,m)∫ T

0
∥G∥2

Y
m,1
0,ΩR

.

Proof. As before, the term with ε poses no problem and is bounded in a similar way as in
Proposition 6.10.

Now we look at the term involving the coefficient matrix.
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(1) Case 1: ∣α′∣ + ∣β′∣ ≤ 8.
Using (5.11) we get the following bound,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v (aij[h]vivj⟨v⟩2 )∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣∥H∥Y 8

v
⟨v⟩γ ∣∂α′′x ∂β

′′

v G∣dv dxdt.
Trivially, we have ωα,β ≤ ωα′′,β′′. Thus applying Lemma 5.7 gives us the desired
inequality.

(2) Case 2: ∣α′∣ + ∣β′∣ ≥ 9.
Using (5.11) we get the following bound,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣ ∣∂α′x ∂β′v (aij[h]vivj⟨v⟩2 )∣ ∣∂α′′x ∂β

′′

v G∣dv dxdt
≲ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ∣∂αx∂βvG∣∥H∥Y 10

v
⟨v⟩γ ∣∂α′′x ∂β

′′

v G∣dv dxdt.
Since ωα′′,β′′ = ωα,β + (32 + δγ)(∣α′∣ + ∣β′∣) − ∣β′∣, ∣α′∣ + ∣β′∣ ≥ 9 and ∣β′∣ ≤ 10 we have that

ωα,β + 3 + 2δγ ≤ ωα′′,β′′.

Thus applying Lemma 5.8 gives us the required result.

�

Now we estimate the final bulk error term that comes up when we apply integration by
parts at the hghest order.

Proposition 6.12. For Aα,β
2 as in (4.10), and T ∈ [0, T0), we have the following estimate,

A
α,β
2 ≤ ∥H∥YT

C(d0, γ,m)∫ T

0
∥G∥2

Y
m,1
0,ΩR

.

Proof. Although, we have no derivative hitting aij[h] but we have two less ⟨v⟩ weights to
handle. Thus using (5.9) we have,

∥⟨v⟩2ωα,β−2ψ2
maij[h](∂αx ∂βvG)2∥L1([0,T ];L1

vL
1
x)
≤ ∥⟨v⟩2ωα,β ψ2

m∥H∥Y 0
v
⟨v⟩γ (∂αx∂βvG)2∥L1([0,T ];L1

vL
1
x)
.

Now using Lemma 5.7 we get the required result. �

We now begin bounding the boundary error terms. Note that the term with ε, has no
dependence on ⟨v⟩ and so we can get decay of that term in R by a trivial adaptation of the
proofs below. Thus we safely ignore that term in our propositions below

Proposition 6.13. For Bα,β1 in (4.12) and T ∈ [0, T0) we have the estimate,

B
α,β
1 ≲ Rγ−1−δγ∥H∥YT

[∫ T

0
∥G∥2

Y
m,1
0,ΩR

+ ∫ T

0
∥G∥2

Y
m,1+2δγ
1,ΩR

].
Proof. Using (5.9), the fact that ∂2vivjψm ≲ R−2ψm−1 and that ⟨v⟩ ≤ 2R we get the bound,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ψm∂

2
vivj

ψm(aij[h])(∂αx ∂βvG)2 dv dxdt
≲ Rγ−1−δγ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ⟨v⟩1+δγ ∥H∥Y 0

v
ψmψm−1(∂αx ∂βvG)2 dv dxdt.
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Applying Sobolev embedding and Cauchy Schwatrz we get the following inequality,

Rγ−1−δγ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ⟨v⟩1+δγ ∥H∥H0

v
ψmψm−1(∂αx ∂βvG)2 dv dxdt,

≲ Rγ−1−δγ∥H∥ET
[∥⟨v⟩ωα,β ⟨v⟩ 12 ψm∂

α
x∂

β
vG∥2L2([0,T ];L2

vL
2
x)
+∥⟨v⟩ωα,β ⟨v⟩ 12+δγ ψm−1∂

α
x∂

β
vG∥2L2([0,T ];L2

vL
2
x)
].

�

Proposition 6.14. For Bα,β2 in (4.13) and T ∈ [0, T0) we have the estimate,

B
α,β
2 ≲ Rγ−1−δγ∥H∥YT ∫

T

0
∥G∥2

Y
m,1+2δγ
1,ΩR

.

Proof. Using (5.9), ∂viψm ≲ R−1ψm−1 and that ⟨v⟩ ≤ 2R we get,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β∂vkψm∂vlψm(aij[h])(∂αx ∂βvG)2 dv dxdt

≲ Rγ−1−δγ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ⟨v⟩1+δγ ∥H∥Y 0

v
ψ2
m−1(∂αx∂βvG)2 dv dxdt

≲ Rγ−1−δγ∥H∥ET
∥⟨v⟩ωα,β ⟨v⟩ 12+δγ ∂αx∂βvG∥2L2([0,T ];L2

vL
2
x)
.

�

Proposition 6.15. For Bα,β3 in (4.14) and T ∈ [0, T0) we have the estimate,

B
α,β
3 ≲ Rγ−1−δγ∥H∥YT

[∫ T

0
∥G∥2

Y
m,1
0,ΩR

+ ∫ T

0
∥G∥2

Y
m,1+2δγ
1,ΩR

].
Proof. Proceeding as in Proposition 6.13 we get,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β−1ψm∂vlψm(aij[h])(∂αx ∂βvG)2 dv dxdt

≲ Rγ−1−δγ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ⟨v⟩1+δγ ∥H∥Y 0

v
ψmψm−1(∂αx ∂βvG)2 dv dxdt.

Which again as in Proposition 6.13 implies the required bound. �

Proposition 6.16. For Bα,β4 in (4.15) and T ∈ [0, T0) we have the estimate,

B
α,β
4 ≲ Rγ−1−δγ∥H∥YT

[∫ T

0
∥G∥2

Y
m,1
0,ΩR

+ ∫ T

0
∥G∥2

Y
m,1+2δγ

1,ΩR

].
Proof. Working with a typical term and assuming that α′, β′, α′′, β′′, α′′′, β′′′ satisy the re-
quired conditions, we break the proof into two cases,

(1) Case 1: ∣β′∣ = 1.
In this case we have that ωα′′,β′′ + ωα′′′,β′′′ = 2ωα,β.
Using this, (5.12) and that ∂vlψm ≲ R−1ψm−1 we get,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ψm∂vlψm∂

α′′′

x ∂β
′′′

v G(∂α′x ∂β′v aij[h])∂α′′x ∂β
′′

v Gdv dxdt

≲ Rγ−1−δγ ∫ T

0
∫ ∫ ⟨v⟩ωα′′,β′′+ωα′′′,β′′′ ⟨v⟩1+δγ ∥H∥Y 0

v
ψmψm−1∂

α′′′

x ∂β
′′′

v G∂α
′′

x ∂β
′′

v Gdv dxdt.
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Using Sobolev embedding and Cauchy Schwartz we get,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ψm∂vlψm∂

α′′′

x ∂β
′′′

v G(∂α′x ∂β′v aij[h])∂α′′x ∂β
′′

v Gdv dxdt

≲ Rγ−1−δγ∥H∥YT
[∥⟨v⟩ωα′′′,β′′′ ⟨v⟩ 12 ψm∂

α′′′

x ∂β
′′′

v G∥2L2([0,T ];L2
vL

2
x)
+∥⟨v⟩ωα′′,β′′ ⟨v⟩12+δγ ψm−1∂

α′′

x ∂β
′′

v G∥2L2([0,T ];L2
vL

2
x)
].

(2) Case 2: ∣α′∣ = 1.
Using (5.9) and ∂vlψm ≲ R−1ψm−1 we get,

∫ T

0
∫ ∫ ⟨v⟩2ωα,β ψm∂vlψm∂

α′′′

x ∂β
′′′

v G(∂α′x ∂β′v aij[h])∂α′′x ∂β
′′

v Gdv dxdt

≲ Rγ−1−δγ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β+1 ⟨v⟩1+δγ ∥H∥Y 0

v
ψmψm−1∂

α′′′

x ∂β
′′′

v G∂α
′′

x ∂β
′′

v Gdv dxdt.

But since ∣α′∣ = 1,we have in this case ωα′′,β′′ + ωα′′′,β′′′ = 2ωα,β + 1.
Now proceeding in the same way as in the case above we get the required result.

�

Proposition 6.17. For Bα,β5 in (4.22) and T ∈ [0, T0) we have the estimate,

B
α,β
5 ≲ Rγ−1−δγ∥H∥YT

[∫ T

0
∥G∥2

Y
m,1
0,ΩR

+ ∫ T

0
∥G∥2

Y
m,1+2δγ

1,ΩR

].
Proof. Using (5.2) that ∂vlψm ≲ R−1ψm−1 we get,

d(t)∫ T

0
∫ ∫ ⟨v⟩2ωα,β ψm∂vlψm (aij[h] vi⟨v⟩) (∂αx∂βvG)2 dv dxdt

≲ Rγ−1−δγ ∫ T

0
∫ ∫ ⟨v⟩2ωα,β ⟨v⟩1+δγ ∥H∥Y 0

v
ψmψm−1(∂αx ∂βvG)2 dv dxdt.

Now proceeding as in Proposition 6.13 gives us the desired result. �

7. Putting everything together

By choosing ε small enough and using the estimates from last section and (4.8) we get,

∥⟨v⟩ωα,β ∂αx ∂
β
vGψm∥2L2

vL
2
x
(T ) + κ∥⟨v⟩ωα,β ⟨v⟩ 12 ∂αx∂βvGψm∥2L2([0,T ];L2

vL
2
x)

+ ε∥⟨v⟩ωα,β ∂xi
∂αx∂

β
vGψm∥2L2([0,T ];L2

vL
2
x)
+ ε∥⟨v⟩ωα,β ∂vi∂

α
x ∂

β
vGψm∥2L2([0,T ];L2

vL
2
x)

≤ ∥⟨v⟩ωα,β ∂αx∂
β
v gin∥2L2

vL
2
x
+C(d0, γ,m)[∥H∥YT

+Rγ−1−δγ ]∫ T

0
∥G∥2

Y
m,1
0,ΩR

+C(d0, γ,m)κ∫ T

0
∥G∥2

Y
m,0
0,ΩR

+C(d0, γ,m)Rγ−1−δγ ∥H∥YT ∫
T

0
∥G∥2

Y
m,1+2δγ
1,ΩR

.

Remark 7.1. For m = 0 the boundary terms are zero since ψ0 = 1 on ΩR.
Moreover, the term coming from the viscosity has an extra derivative, so even when the

derivative is ∂v we have that ωα,β′ = ωα,β −
1
2
− δγ . Thus we bound this term with atleast an

extra ⟨v⟩1+2δγ weight in L2([0, T ];L2
vL

2
x).
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Summing over all α,β such that ∣α∣ + ∣β∣ ≤m and noting that ψm ≤ ψi for i ≤m, we get,

∥G∥2
Y

m,0
0,ΩR

(T ) + κ∫ T

0
∥G∥2

Y
m,1
0,ΩR

(t)dt + ε∫ T

0
∥G∥2

Y
m+1,1+2δγ

1,ΩR

(t)dt
≤ ∥gin∥2Yx,v

+C(d0, γ,m)[∥H∥YT
+Rγ−1−δγ ]∫ T

0
∥G∥2

Y
m,1
0,ΩR

dt

+C(d0, γ)κ∫ T

0
∥G∥2

Y
m,0
0,ΩR

dt +C(d0, γ,m)Rγ−1−δγ ∥H∥YT ∫
T

0
∥G∥2

Y
m,1+2δγ

1,ΩR

dt.

We can absorb the second term on the left hand side by κ∥⟨v⟩ωα,β ⟨v⟩ 12 ∂αx∂βvGψi∥2L2([0,T ];L2
vL

2
x)

by choosing R large enough, and noting that the constant is independent of κ. That is we
can apriori make κ large enough to absorb this term, although this choice must depend on
the Mh from Lemma 4.1, since ∥H∥YT

does. More concretely, let κ = C(d0, γ)Mh.

Since the dependence of κ on Mh is linear, we can safely substitute the depen-

dence of constants on κ by Mh.

∥G∥2
Y

m,0
0,ΩR

(T ) +∫ T

0
∥G∥2

Y
m,1
0,ΩR

dt + ε∫ T

0
∥G∥2

Y
m+1,1+2δγ

1,ΩR

(t)dt
≤ ∥gin∥2Yx,v

+C(d0, γ)Mh ∫ T

0
∥G∥2

Y
m,0
0,ΩR

(t)dt +C(d0, γ,m)Rγ−1−δγ ∥H∥YT ∫
T

0
∥G∥2

Y
m,1+2δγ
1,ΩR

(t)dt.
(7.1)

For m = 0, the term Rγ−1−δγ ∫ T

0
∥G∥2

Y
m,1+2δγ
1,ΩR

(t)dt = 0 and so our goal now is to prove that

for R large enough we have the estimate,

C(d0, γ,m)Rγ−1−δγ ∥H∥YT ∫
T

0
∥G∥2

Y
m,1+2δγ

1,ΩR

(t)dt ≤ ε. (7.2)

for all m ≤ 10.
By induction, assume (7.2) is true for m − 1, then we have,

∥G∥2
Y

m−1,0
0,ΩR

(T ) + ∫ T

0
∥G∥2

Y
m,1
0,ΩR

dt + ε∫ T

0
∥G∥2

Y
m,1+2δγ
1,ΩR

(t)dt
≤ ∥gin∥2ET

+C(d0, γ)Mh ∫ T

0
∥G∥2

Y
m−1,0
0,ΩR

(t)dt + ε.
Using Grönwall’s inequality we get,

∥G∥2
Y

m−1,0
0,ΩR

(T ) + ∫ T

0
∥G∥2

Y
m,1
0,ΩR

dt + ε∫ T

0
∥G∥2

Y
m,1+2δγ
1,ΩR

(t)dt ≤ (∥gin∥2Yx,v
+ ε) exp(C(d, γ)MhT ).

The bound on the second term implies (7.2) for all m ≤ 10 when

R ≥ 2( 1
ε2
(∥gin∥2Yx,v

+ ε) exp(C(d0, γ)MhT ))
1

1+δγ−γ

Proof of Lemma 4.1. Takin sup over t ∈ [0, T ] we get,

∥GR∥2ET,ΩR
≤ (∥gin∥2Yx,v

+ ε) exp(C(d0, γ)MhT ). (7.3)

Now consider the sequence of functions {GK} for K ∈ N of solutions to (4.4) on ΩK and with
ε = (lnK)−1. Note that this choice of ε still allows condition (7.2) to hold, for sufficiently
large K.
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The bound (7.3) holds for all such GK . Fix an L > 0 and remember that χL be a smooth
cut-off function on R6, supported on ΩL−1, equal to 1 in ΩL−2, radially symmetric, monotone
and such that for ∣α∣ + ∣β∣ = n, ∣∂αx∂βv χR∣ < 2n.

For large enough K we have that ∥χLGK∥ET
is uniformly bounded in K (we need K to

be large enough so that ψ10 ≥ χL which implies ∥χLGK∥ET
≤ ∥GK∥ET,ΩK

). From the trivial

bound , ∥χLGK∥XT
≤ ∥χLGK∥ET

, we have that ∥χLGK∥XT
is also uniformly bounded in K.

Therefore, we have a subsequence converging weakly to some limit GL ∈ XT supported on
the ball of radius L − 1. Note that GL and GL′ are equal on the ball of radius min(L,L′)
and for all t ∈ [0, T ].

Now we use a diagonal argument to take L to infinity and extract a subsequence (still
denoted {GK}) and a limit G ∈XT such that,

GK ⇀ G in XT on compact sets.

Lemma 5.4 and Lemma 5.5 imply that aij[h]ε∂2vivjGK ⇀ aij[h]∂2vivjG, c[hε]GK ⇀ c[h]G,
aij[hε] vi⟨v⟩∂vjGK ⇀ aij[h] vi⟨v⟩∂vjG and aij[hε]vivj⟨v⟩2

GK ⇀ aij[h]vivj⟨v⟩2
G weakly in the space H2

x,v

as ε→ 0.
Indeed for ∣α∣ + ∣β∣ ≤ 2, and for any φ ∈ L∞([0, T ];H2

x,v), we have,

∥∂αx ∂βv φ[∂αx∂βv (aij[h]∂2vivjG − aij[hε]∂2vivjGK)]∥L∞([0,T ];L1
xL

1
v)≤ ∥∂αx∂βv φ∂αx∂βv (aij[h − hε]∂2vivjGK)∥L∞([0,T ];L1

xL
1
v)

+ ∥∂αx∂βv φ∂αx∂βv (aij[h]∂2vivj(G −GK))∥L∞([0,T ];L1
xL

1
v)
,

≤ ∥φ∥L∞([0,T ];H2
x,v)
∥H −Hε∥H2

T
∥Gk∥XT

+ ∥H∥L∞([0,T ];YT )
⟨ φ

⟨v⟩20 ,
∂2vivj(G −GK)

⟨v⟩ 12 ⟩
X2

T

.

Clearly φ

⟨v⟩20
∈ X2

T and
∂2
vivj
(G−GK)

⟨v⟩
1
2

∈X8
T and since GK ⇀ G in XT the second term goes to

zero. The first term goes to zero since ∥Gk∥XT
is uniformly bounded and Hε → H in H2

T .
Similar computations show the result for other coefficients.

Since we control at least 2 derivatives for G, it has sufficient regularity to be a solution
to the linearized equation (4.2) in W

1,∞
t H2

x,v on all of R6. Thanks to Lemma 4.2 GK is

nonnegative and thus G is too. Moreover, G inherits the bound (4.3) from (7.3).
�

We are now finally in good shape to use contraction to construct a solution to (4.1).

Theorem 7.2. Assume gin ∈ Yx,v and that

∥gin∥Yx,v
≤M0.

Then for some T ∈ [0, T0) depending on M0, there exists a nonnegative g ∈ ET solving
(4.1) with g(0, x, v) = gin(x, v).

Moreover, we have uniqueness of g in Ẽ4
T ∩C

0([0, T ); Ỹ 4
x,v).
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Proof. Define g0(t, x, v) = gin(x, v) and, for n ≥ 1, define the sequence {gn} recursively as the
solution of

∂tg
n
+ vi∂xi

gn + κ ⟨v⟩gn = aij[fn−1]∂2vivjgn − c[fn−1]gn − 2d(t)aij[fn−1] vi⟨v⟩∂vjgn
− d(t)( δij⟨v⟩ − (d(t) + 1)

vivj

⟨v⟩2)aij[fn−1]gn. (7.4)

Where fn = e−d(t)⟨v⟩gn and gn(0, x, v) = gin(x, v).
This is exactly the linearized equation (4.2). Then by Lemma 4.1, for any T ∈ [0, T0), each

gn exists, is nonnegative, belongs to the space ET and satisfies,

∥gn∥2ET
≤ ∥gin∥2Ex,v

exp(C(d0, γ)∥gn−1∥YT
T ) (7.5)

for some C(d0, γ) > 0 that is independent of n.
Assume by induction that for n ≥ 1,

∥gn−1∥YT
≤ 2M0 (7.6)

for some T ∈ (0, T0]. This hypothesis, holds for n = 1 by our assumption on gin. Then (7.5)
becomes ∥gn∥2ET

≤M2
0 exp(2C(d0, γ)M0T )

If we take

T ≤ min( 2 ln 2

C(d0, γ)M0

, T0) ,
then ∥gn∥ET

≤ 2M0. Also note that T is independent of n. Thus, (7.6) is true for all n ≥ 1.
Now we define wn = gn − gn−1. Equation (7.4) implies for n ≥ 2,
∂tw

n
+ vi∂xi

wn
+ κ ⟨v⟩wn = aij[fn−1]∂2vivjwn

− c[fn−1]wn
− 2d(t)aij[fn−1] vi⟨v⟩∂vjwn

− d(t)( δij⟨v⟩ − (d(t) + 1)
vivj

⟨v⟩2)aij[fn−1]wn

+ aij[vn−1]∂2vivjgn−1 − c[vn−1]gn−1 − 2d(t)aij[vn−1] vi⟨v⟩∂vjgn−1
− d(t)( δij⟨v⟩ − (d(t) + 1)

vivj

⟨v⟩2)aij[vn−1]gn−1,
(7.7)

with wn(0, x, v) = 0 and vn = wne−d(t)⟨v⟩.

For all multi-indices with ∣α∣ + ∣β∣ ≤ 4, we differentiate the equation for wn by ∂αx∂
β
v ,

multiply by ⟨v⟩2ω̃α,β ∂αx ∂
β
vwn, and integrate in space and velocity (note that we are doing the

contraction in a much weaker space).
Here ω̃α,β = 10− (32 + δγ)∣α∣− (12 + δγ)∣β∣ and the spaces with tilde are the associated energy

spaces defined in the same way as Ek
T . The need to change the heirarchy for the contraction

is due to the presence of terms with gn−1 outside the coefficients because we can no longer
do integration by parts.

For the first few terms where the coefficents depends on fn−1, we use the estimates de-
veloped in the preceding sections and for the terms where we can’t perform integration by
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parts, we just estimate ∂α∂βgn−1 in ET and use that ∥gn∥ET
≤ 2M0 and hence ∥wn∥ET

≤ 4M0.
More concretely, we have the estimate

∫ T

0
∫
x
∫
v
⟨v⟩2ω̃α,β ∂αx∂

β
vw

n∂α
′

x ∂
β′

v aij[vn−1]∂vivj∂α′′x ∂β
′′

v gn−1 ≲ T ∥wn∥Ẽ4

T
∥wn−1∥Ẽ4

T
∥gn−1∥ET

.

This follows exactly in the same way as Lemma 5.8 except we don’t use Young’s inequality
to split the product and estimate everything in L∞t by putting all the extra ⟨v⟩ weights on

∂2vivj∂
α′′

x ∂
β′′

v gn−1. This is precisely where fact that we are estimating in a weaker weighted
space helps us.

The commutator term from κ∂αx ∂
β
v (⟨v⟩wn) gives a term of the form C(d0, γ)κ ∫ T

0
∥wn∥Ỹ 4

x,v
.

All the other terms are absorbed on the left hand side by the term with the extra ⟨v⟩ weight.
We thus get,

∥wn∥2Ẽ4

T
≤ C(d0, γ)κ∫ T

0
∥wn∥2Ỹ 4

x,v
(t)dt

+C(d0, γ)T ∥wn∥Ẽ4

T
∥wn−1∥Ẽ4

T
∥gn−1∥ET

,

≤ C(d0, γ)Tκ∥wn∥2Ỹ 4

T
+C(d0, γ)T ∥wn∥Ẽ4

T
∥wn−1∥Ẽ4

T
∥gn−1∥ET

.

Now we use the fact that ∥gn−1∥ET
≤M0 and if necessary, choosing T smaller, so that,

C(d0, γ)κT ≤ 1
2
and C(d0, γ)TM0 ≤ 1

4
.

Thus after absorbing the first term on LHS we get,

∥gn − gn−1∥2Ẽ4

T
≤ 1
2
∥gn−1 − gn−2∥Ẽ4

T
∥gn − gn−1∥Ẽ4

T
. (7.8)

This implies that {gn} is a convergent sequence and g ∈ Ẽ4
T is a classical solution of (4.1).

Now since {gn} is uniformly bounded in ET , it has subsequence that converges weakly to

some g ∈ ET . But then it is the weak limit in ẼT which implies that g = g a.e. Thus g ∈ ET .
Next we handle uniqueness in the same way: if g1 and g2 are two solutions of (4.1) in ET

with the same initial data, then w ∶= g1 − g2 satisfies

∂tw + vi∂xi
w + κ ⟨v⟩w = aij[g2]∂2vivjw − c[g2]w − 2d(t)aij[g2] vi⟨v⟩∂vjw

− d(t)( δij⟨v⟩ − (d(t) + 1)
vivj

⟨v⟩2)aij[g2]w
+ aij[w]∂2vivjg2 − c[w]g2 − 2d(t)aij[w] vi⟨v⟩∂vjg2
− d(t)( δij⟨v⟩ − (d(t) + 1)

vivj

⟨v⟩2)aij[w]g2,
and w(0, x, v) = 0. By the same estimate as above, Grönwall’s inequality, we conclude that∥w∥Ẽ4

T
= 0. �

Now Theorem 7.2 implies the main result, Theorem 1.1 with f = e−(d0−κt)⟨v⟩g.
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