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Abstract. Inverse problems constrained by partial differential equations (PDEs) play a critical
role in model development and calibration. In many applications, there are multiple uncertain
parameters in a model that must be estimated. However, high dimensionality of the parameters and
computational complexity of the PDE solves make such problems challenging. A common approach is
to reduce the dimension by fixing some parameters (which we will call auxiliary parameters) to a best
estimate and use techniques from PDE-constrained optimization to estimate the other parameters.
In this article, hyper-differential sensitivity analysis (HDSA) is used to assess the sensitivity of
the solution of the PDE-constrained optimization problem to changes in the auxiliary parameters.
Foundational assumptions for HDSA require satisfaction of the optimality conditions which are not
always practically feasible as a result of ill-posedness in the inverse problem. We introduce novel
theoretical and computational approaches to justify and enable HDSA for ill-posed inverse problems
by projecting the sensitivities on likelihood informed subspaces and defining a posteriori updates.
Our proposed framework is demonstrated on a nonlinear multi-physics inverse problem motivated
by estimation of spatially heterogenous material properties in the presence of spatially distributed
parametric modeling uncertainties.
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1. Introduction. Inverse problems arise in scientific and engineering applica-
tions when quantities cannot be directly observed but rather are estimated using
observations of related quantities. In the case of inverse problems constrained by
partial differential equations (PDEs), the state variables (solution of the PDE) are
observed at (potentially sparse) locations in space and/or instances in time, and from
these observations one seeks to infer parameters in the model. There is a wealth of
literature developing theory and computational methods to solve these challenging
yet scientifically critical problems. We refer the interested reader to a small sampling
of the literature and the references therein [5, 10,25,28].

Among the many challenges faced in PDE-constrained inverse problems, data
sparsity, high dimensionality, and computational complexity are at the forefront. It is
common for PDE-based models of physical processes to have many uncertain parame-
ters, some of which are spatially and/or temporally distributed. Ideally, all uncertain
parameters are inverted for simultaneously to characterize dependences between them;
however, this is challenging because the high dimensionality of the parameter space
induces intractable ill-conditioning. A simplification employed in practice is to fix
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some of the uncertain parameters to a best estimate which reduces the dimension and
improves numerical conditioning. Although pragmatic, this fail to adequately address
dependence between the parameters.

In this article we focus on deterministic inverse problems and consider the sen-
sitivity of the solution to the inverse problem due to perturbations in parameters.
Although these fixed parameters are sometimes called nuisance parameters in the in-
verse problems literature, in this article we adopt the term auxiliary parameters for
greater generality. For problems with separable structure, variable projection may be
used to write the parameter of interest as a function of the auxiliary parameters [3].
The error introduced by fixing auxiliary parameters to a nominal estimate may be rep-
resented in a Bayesian approximation error approach to incorporate their uncertainty
in the inversion [21, 24]. Alternatively, this article uses hyper-differential sensitivity
analysis (HDSA) to assess the influence of the auxiliary parameters on the solution of
a PDE-constrained optimization problem. By differentiating through optimality con-
ditions, and leveraging adjoint-based derivative calculations along with randomized
and matrix free linear algebra, HDSA has been shown to provide a computation-
ally scalable approach to analyze uncertainty in large-scale optimization [15, 26, 30].
The resulting sensitivities provide critical information to characterize dependencies
between the inversion parameters and fixed auxiliary parameters. This characteriza-
tion of dependences supports model development, calibration, and data acquisition
strategies [16,29,30].

Large-scale PDE-constrained inverse problems, even with auxiliary parameters
fixed, are frequently ill-posed as a result of the parameter dimensionality and data
sparsity. This ill-posedness creates theoretical and computational challenges for the
HDSA framework [15] since it is build on the foundation of post-optimality sensitivity
analysis [8, 12]. In particular, satisfying first and second order optimality conditions
is required for HDSA. However, such satisfaction may not be easily attained for many
inverse problems where prior information is limited, nonlinearities are present, and
limited computational resources are available. Failure to satisfy these assumptions
prohibits the use of HDSA. This article introduces novel theoretical and computational
approaches to enable HDSA for ill-posed PDE-constrained inverse problems. Our
contributions include:

• defining HDSA on the likelihood informed subspace [11], the low dimensional
subspace informed by data, and demonstrating its advantages to combat ill-
conditioning due to ill-posedness and data sparsity,

• developing first and second order a posteriori updates to overcome the theo-
retical limitations of HDSA when optimality conditions are not satisfied,

• providing an algorithmic and computational framework to apply HDSA to
ill-posed inverse problems and demonstrating its effectiveness on a nonlinear
multi-physics application.

The article is organized as follows. Section 2 reviews PDE-constrained inverse
problems and HDSA. We introduce HDSA on the likelihood informed subspace in Sec-
tion 3 to facilitate a more useful interpretation of the sensitivities for ill-posed inverse
problems. A posteriori updates are developed in Section 4 to overcome the practical
challenges associated slow optimizer convergence which limit the use of HDSA. An
algorithmic overview is presented in Section 5. We demonstrate our approach on a
multi-physics subsurface flow application in Section 6 with uncertainty in a permeabil-
ity field, source, boundary conditions, and diffusion coefficient. Section 7 concludes
the article with a perspective on how these developments relate to the Bayesian for-
mulation of the inverse problem and opportunities for future work along these lines.



HDSA FOR ILL-POSED INVERSE PROBLEMS 3

2. Background. We consider inverse problems constrained by partial differen-
tial equations (PDEs). In many applications, the PDE depends on multiple uncertain
parameters; however, inverting for all parameters simultaneously is frequently in-
tractable. Rather, the common scenario in practice is to fix some parameters to a
best estimate and only invert for the parameters of greatest interest. To this end, let
z ∈ Rm be the parameters of interest being inverted for and θ ∈ Rn denote parame-
ters being fixed to a nominal estimate. We will refer to θ as the auxiliary parameters
since they are not of primary interest to estimate. Though results in this article are
applicable for low dimensional problems, we are generally interested in cases where
z and/or θ correspond to the discretization of infinite dimensional parameters and
hence m and/or n are high dimensional.

Let F : Rm × Rn → Rd denote the parameter-to-observable map. Evaluating
F (z,θ) involves solving the PDE and then applying an observation operator, i.e. a
map from the PDE solution space to the space of observable data. Evaluating F is
computationally costly due to the PDE solve.

Given data d ∈ Rd and a nominal estimate θ for the auxiliary parameters, the
inverse problem is to determine z such that

F (z,θ) ≈ d.

Since observed data is typically noisy and models are imperfect, we do not seek
F (z,θ) = d, but rather that F (z,θ) − d is on the same order of magnitude as the
noise in the data. Inverse problems are frequently ill-posed in the sense that there are
many z’s, which may be far from one another, such that F (z,θ) − d has the same
magnitude as the data’s noise. This causes considerable challenges when solving the
inverse problem.

2.1. Optimization problem. We focus on the optimization problem

min
z∈Rm

J(z;θ) := M(z,θ) +R(z)(2.1)

where

M(z,θ) =
1

2
(F (z,θ)− d)TW (F (z,θ)− d)

is the data misfit weighted by a symmetric positive definite matrix W and R(z) is a
regularization function. Since there are typically many z’s for which M(z,θ) is small,
the choice of the regularization function R is critical to impose prior knowledge on z.
Though not a focus for this article, the choice of regularization is linked to the prior
in a Bayesian inverse problem [10,20,25].

Computing the solution of (2.1) for large-scale inverse problems is computation-
ally challenging since it requires many PDE solves [5, 10, 25]. However, techniques
from PDE-constrained optimization may be leveraged to facilitate computational ef-
ficiency. Techniques include finite element discretization, matrix free linear algebra,
adjoint-based derivative computation, and parallel computing. The reader is referred
to [2,4–7,9,13,17–19,22,23,31,32] for a sampling of the PDE-constrained optimization
literature.

Solving (2.1) with auxiliary parameter θ provides an estimate of z. However, this
estimate is not accurate due to uncertainty in θ. Ideally, we would solve (2.1) for
many different θ’s but because this is computationally prohibitive, we use HDSA to
efficiently analyze the dependence of our estimated z on the auxiliary parameter θ.
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2.2. Hyper-differential sensitivity analysis. Through a combination of tools
from post-optimality sensitivity analysis, PDE-constrained optimization, and numer-
ical linear algebra, HDSA has provided unique and valuable insights into the depen-
dence of PDE-constrained inverse problems on high dimensional auxiliary parame-
ters [15,26,30]. This subsection provides essential background on HDSA. To facilitate
our analysis, assume that the objective function in (2.1), J : Rm × Rn → R, is twice
continuously differentiable with respect to (z,θ). Let z? be a local minimum of (2.1)
when the auxiliary parameters are fixed to θ ∈ Rn. A fundamental assumption is
that z? satisfies the well known first and second order optimality conditions:

(A1) ∇zJ(z?;θ) = 0,
(A2) ∇z,zJ(z?;θ) is positive definite,

where ∇zJ and ∇z,zJ denote the gradient and Hessian of J with respect to z, re-
spectively.

Thanks to our assumption on differentiability of J , we may apply the Implicit
Function Theorem [?] to the first order optimality condition ∇zJ(z?;θ) = 0. This
gives the existence of a continuously differentiable operator G : N (θ)→ Rm, defined
on a neighborhood N (θ), such that ∇zJ(G(θ);θ) = 0 for all θ ∈ N (θ). Assuming
that ∇z,zJ(G(θ);θ) is positive definite for all θ ∈ N (θ), we may interpret G as a map
from auxiliary parameters θ to the solution of the optimization problem (2.1).

Furthermore, it follows from the Implicit Function Theorem that the Jacobian of
G, evaluated at θ, is given by

G′(θ) = −H−1B,(2.2)

where B = ∇z,θJ(z?,θ) denotes the Jacobian of ∇zJ with respect to θ, and H =
∇z,zJ(z?,θ) denotes the Hessian of J with respect to z, each evaluated at z = z?

and θ = θ. Hence we may interpret G′(θ)θ0 as the change in our estimate of z when
θ is perturbed in the direction θ0.

Note that HDSA may be formally developed for infinite dimensional problems
in a full space optimization framework. The reader is directed to [15] for additional
details. Also note that G′(θ) is a local sensitivity around θ. Global sensitivities may
be considered, see [15], but are beyond the scope of this article.

3. Projection on the likelihood informed subspace. For ill-posed inverse
problems, it is common that H has small eigenvalues, or equivalently, H−1 has large
eigenvalues. If the span of the eigenvectors corresponding to these eigenvalues inter-
sects the range of B, then G′(θ) will be large in those directions. However, changes
in the optimal solution along directions which are poorly informed by the data do
not provide physical insight into the relationship between z and θ. Rather, such
uninformed directions can be analyzed in the posterior distribution of z. We focus
on sensitivities which provide physical insight informed by the data. This motives
us to define a projector onto the likelihood informed subspace (LIS) [11]. The LIS is
defined by r largest positive eigenvectors of the generalized eigenvalue problem

HMvj = λjHRvj , j = 1, 2, . . . , r,(3.1)

where

HM = ∇2
z,zM(z?,θ) and HR = ∇2

z,zR(z?)

are the misfit Hessian and regularization Hessian, respectively. These dominant eigen-
vectors coincide with the directions in parameter space which are informed by the
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misfit more than the regularization. This may be observed by multiplying (3.1) by
vTj and solving for the Rayleigh quotient

λj =
vTj HMvj
vTj HRvj

, j = 1, 2, . . . , r.(3.2)

The eigenvalues measure the ratio of contributions from the misfit and regularization
in the directions of the eigenvectors. A “global LIS” may be defined by computing
the expected misfit Hessian with respect to z. However, since HDSA is local about
z? our LIS definition provides a useful subspace for what follows.

We define the projector

P = VVTHR(3.3)

where the columns of V = [v1,v2, . . . ,vr] are the eigenvectors of (3.1) normalized so
that vTj HRvj = 1, j = 1, 2, . . . , r. This corresponds to computing hyper-differential
sensitivities in the directions which are informed more by the misfit rather than the
regularization. The truncation rank r is chosen by the user by leveraging the interpre-
tation of the eigenvalues as the ratio of misfit and regularization. For ill-posed inverse
problems, r is typically small as a result of data sparsity and dissipative physics.

To associate sensitivity with individual parameters we define the hyper-differential
sensitivity indices

Si = ||PG′(θ)ei||Wz = ||PH−1Bei||Wz i = 1, 2, . . . , n,(3.4)

where ei ∈ Rn is the ith canonical basis vector which has 1 in its ith entry and 0 in all
others. The norm || · ||Wz is defined by a symmetric positive definite weighting matrix
Wz ∈ Rm×m for generality. This is important if z corresponds to a discretization of
a function as Wz encodes the inner products from the infinite dimensional space. We
interpret Si as the change in the LIS projection of the solution if the ith auxiliary
parameter is perturbed.

Computing PH−1 as in (3.4) corresponds to spectral regularization of the Hessian
to eliminate ill-conditioning due to the uninformed directions. Theorem 3.1 provides
an expression for the sensitivity indices which only depends on the r leading gener-
alized eigenvalues and eigenvectors in (3.1). This is computationally adventageous
for ill-posed inverse problems since the leading generalized eigenvalues and eigenvec-
tors of (3.1) can be computed efficiently. The computational benefit is significant for
large-scale applications where inverting H without preconditioning would take many
conjugate gradient iterations to converge.

Theorem 3.1. If H is positive definite then the LIS-hyper-differential sensitivities
Si, i = 1, 2, . . . , n, (where P is defined by (3.3)) are given by

Si =
∣∣∣∣PH−1Bei

∣∣∣∣
Wz

=

√√√√ r∑
k=1

r∑
j=1

(
vTj Bei
1 + λj

)(
vTk Bei
1 + λk

)
vTkWzvj .(3.5)

For conciseness and clarity of the presentation, proofs for Theorem 3.1 and all subse-
quent theorems are given in the appendix. Theorem 3.1 is similar in concept to using
a low rank approximation of the prior preconditioned misfit hessian [25].
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4. Enabling HDSA for ill-posed inverse problems. For ill-posed inverse
problems, it is frequently the case that a user does not solve (2.1) to optimality, i.e.
the solution may fail to satisfy the first and/or second order optimality conditions.
This lack of optimality occurs for a variety of interrelated reasons:

• The objective function J is flat in directions which are not well informed by
the data and lacks strong regularization to overcome this uncertainty.

• The Hessian is ill-conditioned since the directions along which the objective
function is flat corresponds to small eigenvalues. Hence, numerical optimiza-
tion schemes exhibit slow convergence around the local minimum as a result
of error in second order information (for instance, error in the linear solve of
a Newton step because of ill-conditioning).

• Due to limited prior information, solving to optimality (which is computa-
tionally intensive) is unnecessary.

A common observation in ill-posed problems is that the first few iterations of a numer-
ical optimization routine is significantly informed by the data with a corresponding
decrease in the objective function J , followed by potentially many time consuming
iterations that produce small changes in the objective as the optimizers moves in the
directions where J is flat. Hence, it is advantageous for a user to terminate the op-
timization routine prematurely yielding a z? which fails to satisfy Assumption (A1),
and possibly Assumption (A2).

These observations pose significant theoretical and numerical challenges when
applying HDSA to ill-posed inverse problems. The optimality conditions required to
define and interpret the operator G′ in (2.2) are not satisfied. This calls into question
the theoretical validity of HDSA in this context and begs the question how it may be
generalized. In this section we propose “a posteriori updates” to provide a theoreti-
cal foundation needed to justify HDSA when optimality conditions are not satisfied.
In particular, we introduce first and second order updates when Assumptions (A1)
and (A2) are not satisfied, and demonstrate that these updates introduce negligible
computational overhead and the resulting inferences are robust to perturbations of
the updates.

4.1. First order a posteriori update. Assume that an optimization routine
has been used to solve (2.1) and was terminated before convergence yielding a solution
z? for which ∇zJ(z?;θ) 6= 0, i.e. it fails to satisfy Assumption (A1). For this
subsection we will assume that Assumption (A2) is satisfied. Subsection 4.2 considers
the case when it is not.

One may compute the expression for the hyper-differential sensitivity indices (3.4);
however, it lacks theoretical justification since the derivation of (3.4) is based on the
assumption that z? satisfies the first order optimality condition, Assumption (A1).
To facilitate HDSA we propose to “update” the objective function so that z? is a
local minimum of the updated objective. This corresponds to solving a perturbed
inverse problem which is justified if the change in the problem is only associated with
directions which are poorly informed by the data. We will modify the regularization
and show that the HDSA results are robust since we project onto the likelihood
informed subspace. In other words, the lack of theoretical validity arising from failure
to meet the first order optimality condition is alleviated when sub-optimality occurs
in uninformed directions.

We propose an additive update to the regularization (replacing R with R + R̃).
In other words, the perturbed inverse problem has the same misfit objective and an
updated regularization. To facilitate our analysis, we require that the regularization
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update R̃ be quadratic, convex, and non-negative. To ensure that the perturbed
inverse problem is “close” to the original problem, we seek a minimum norm function
R̃ for which z? is a stationary point of the updated objective J̃ := J + R̃. We solve

min
R̃∈Q
||R̃||L1(µ)(4.1)

s.t. ∇zR̃(z?) = −∇zJ(z?;θ)

where

Q = {R̃ : Rm → R|R̃ ≥ 0, R̃ is quadratic, R̃ is convex}

is the set of candidate updates and ||R̃||L1(µ) is the L1 norm with respect to a Gaussian
measure µ with mean z? and covariance matrix α2I. This choice of norm emphasizes
the size of R̃ around the solution z? with weighting from the covariance matrix α2I
having length scale α in all directions. We assume z has been scaled appropriately
and define α as one half the distance between the minimum and maximum values
in z?. Taking small values of α results in only considering characteristics of R̃ in
a small neighborhood of z? while taking very large values of α results in finding
an update R̃ which is very flat (nearly a constant function). Later in the article
(Theorem 4.3) we will revisit the choice of α and show that our proposed framework
is robust with respect to perturbations of α. More general measures and norms on
R̃ may be considered; however, this L1 norm with a Gaussian measure is preferred
because of its clear interpretation and amenability for analysis.

To enable computational efficiency and rigorous analysis, a closed form solution
of (4.1) is given by Theorem 4.1. The proof (given in the appendix) leverages our
choice of the L1 norm and properties of the Gaussian measure (closed form expression
for the expectation of quadratic functions) to transform the function space optimiza-
tion problem into a linear algebra problem which may be analyzed using the spectral
decomposition.

Theorem 4.1. The global minimizer of (4.1) is given by

R̃(z) =
α

2
||g||2 − (z − z?)Tg +

1

2
(z − z?)T 1

α||g||2
ggT (z − z?),(4.2)

where g = ∇zJ(z?;θ) 6= 0 is the gradient of J evaluated at z? and θ.

The form (4.2) of the optimal update R̃ is unsurprising in that its Hessian is
proportional to the outer product of the nonzero gradient with itself, ensuring positive
curvature in the gradient direction while having zero curvature in all other directions.
The following observations:

• R̃(z?) = α
2 ||g||2,

• the maximum of R̃ in a size α ball around z? is 2α||g||2,
• the norm of R̃ is given by ||R̃||L1(µ) = α||g||2,

demonstrate that R̃ is well behaved as a function in the sense that it does not vary
rapidly. Furthermore, its global minima are

z? + α
g

||g||2
+ u

where (u, g)2 = 0, hence, it is not overfitting to z? since the minima of R̃ may be far
from z?.
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By adding R̃, we define the perturbed optimization problem

min
z∈Rm

J̃(z;θ) := J(z;θ) + R̃(z),(4.3)

for which z? is a local minima when θ = θ. Assuming that ∇z,zJ̃(z?;θ) is positive
definite (subsection 4.2 considers when it is not), we may compute and interpret
hyper-differential sensitivity indices for the perturbed optimization problem whose
solution coincides with the solution of (4.3).

It is possible to compute “sensitivities” (which are not theoretically justified)
using (3.4) or (3.5) for the original optimization problem (2.1) despite failures to meet
optimality conditions. This raises the question: if sensitivity indices are computed for
the original problem ignoring the fact that the gradient norm is nonzero, how much
will they differ from the sensitivity indices computed for the perturbed problem (4.3),
which are theoretically sound? Theorem 4.2 answers this question.

Theorem 4.2. Let H and H̃ denote the Hessian of J and J̃ with respect to z,
evaluated at z? and θ, respectively, and B and B̃ denote the Jacobian of ∇zJ and
∇zJ̃ , with respect to θ, evaluated at z? and θ, respectively. Assuming that H is
positive definite, the quantities

Si =
∣∣∣∣PH−1Bei

∣∣∣∣
Wz

and S̃i =
∣∣∣∣∣∣PH̃−1B̃ei

∣∣∣∣∣∣
Wz

i = 1, 2, . . . , n,

satisfy

|S̃i − Si|
||H−1Bei||Wz

≤ ||Pn||Wz

sTn+ α
,

where

s = − g

||g||2
and n = −H−1g, g = ∇zJ(z?;θ).

Conceptually, Theorem 4.2 indicates that the relative difference between the ith

sensitivity index for perturbed and original optimization problems is given by the size
of the projection of the Newton step Pn in the next optimization iterate, divided by
the portion of the Newton step pointing in the negative gradient direction plus the
length scale parameter α. Hence if z? is optimized in the subspace defined by the
range of P (the likelihood informed subspace), then ||Pn||Wz will be small implying
that the difference between the theoretically justified sensitivity indices for the per-
turbed optimization problem and the ill-defined “sensitivity indices” for the original
optimization problem will be small. We may compute ||Pn||Wz using the eigenval-
ues and eigenvectors defining the LIS to certify its magnitude in practice. For the
permeability inversion problem in Section 6 we have ||Pn||Wz = O(10−4).

Prior to developing the first order update we had no justification for applying
HDSA to (2.1) with sub-optimal solutions. Our formulation of R̃ and Theorem 4.2 pro-
vides the theoretical insights needed to properly define and interpret hyper-differential
sensitivity indices for suboptimal solutions. For many practical applications, early ter-
mination is common due to the extensive compute time needed to drive the optimizer
to convergence. Thanks to this theoretical analysis, HDSA may be used to understand
properties of the inverse problem at a modest computational expense.

The length scale parameter α defining R̃ appears throughout our analysis. Theo-
rem 4.3 below establishes our previous assertion that the sensitivity indices are robust
with respect to changes in α.
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Theorem 4.3. Let H̃(α) denote the Hessian of J̃ with respect to z and B̃(α) de-
note the Jacobian of ∇zJ̃ with respect to θ, each evaluated at z? and θ, and considered
as functions of α. Letting S̃i(α) be the sensitivity index defined by (3.5), as a function
of α, and assuming that H is positive definite we have

|S̃i(α+ αβ)− S̃i(α)|
||H−1Bei||Wz

< |β| · ||Pn||Wz

sTn+ α(1 + β)
for − 1 < β < 1

where

s = − g

||g||2
and n = −H−1g, g = ∇zJ(z?;θ).

Theorem 4.3 states that for perturbations of α in the form α(1 + β) for β ∈ (−1, 1),
changes in the hyper-differential sensitivities are proportional to |β| times ||Pn||,
which is generally small since P projects on to the likelihood informed subspace. This
ensures that inferences drawn from HDSA are robust with respect to the length scale
parameter α. Or in other words, our assumption on length scales defining the norm
in (4.1) does not have a significant influence on the resulting analysis.

4.2. Second order a posteriori update. The first order a posteriori update
R̃ developed in Subsection 4.1 addresses the theoretical challenge posed by failing
to meet the first order optimality condition ∇zJ(z?;θ) = 0. In this subsection, we
assume that first order optimality has been satisfied by either the optimizer or the
first order update. We address the theoretical challenge posed by failing to meet the
second order optimality condition (Assumption (A2)), that H = ∇z,zJ(z?;θ) is pos-
itive definite. This may occur in nonlinear inverse problems where H has eigenvalues
which are negative but small in magnitude, for instance, as a result of having lim-
ited prior information to define the regularization and terminating the optimization
routine prematurely because of ill-conditioning and slow convergence. We propose to
overcome this theoretical limitation with another regularization perturbation which
we call the second order update.

Rather than posing an optimization problem to determine the second order update
(as was done in (4.1) for the first order update), consider the expression (3.5) for the
LIS-hyper-differential sensitivity indices in Theorem 3.1. We define an update that
ensures the Hessian is positive definite while not effecting the terms in (3.5), i.e. the
update does not effect the likelihood informed subspace. This will provide a theoretical
basis to justify the sensitivity indices but will not require any additional computation.

Theorem 4.4 characterizes the Hessian’s positive definiteness in terms of the gen-
eralized eigenvalues which define the likelihood informed subspace.

Theorem 4.4. Let HM ,HR ∈ Rm×m be symmetric matrices and HR be positive
definite. Then HM +HR is positive definite if and only if the generalized eigenvalues
of (HM ,HR) are greater than -1, i.e. HMvj = λjHRvj with λj > −1 ∀j.

If the second order optimality condition is not satisfied, then it follows from
Theorem 4.4 that there exist generalized eigenvalue less than or equal to −1. Let

λ1 ≥ λ2 ≥ · · · ≥ λK > −1 ≥ λK+1 ≥ · · · ≥ λm,

be the generalized eigenvalues of (HM ,HR). We ensure positive definiteness of the
Hessian by adding an update in the directions of the generalized eigenvectors whose
corresponding eigenvalues are less than or equal to −1. This update is characterized
in Theorem 4.5.
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Theorem 4.5. Let HM ,HR ∈ Rm×m be symmetric matrices and HR be positive
definite. Assume that

HMvj = λjHRvj and vTj HRvj = 1, j = 1, 2, . . . ,m.

For some δ > 0, define the updates

Ui(δ) = δHRvivTi HR i = K + 1,K + 2, . . . ,m.

Then (HM + Ui(δ))vj = λjHRvj, j 6= i and (HM + Ui(δ))vi = (λi + δ)HRvi.
Theorems 4.4 and 4.5 suggest that we define the second order update

˜̃R(z) =
1

2

m∑
i=K+1

(z − z?)TUi (−1− λi + ε) (z − z?)

for an arbitrarily small ε > 0. Adding ˜̃R(z) to J̃ preserves the first order optimality

condition since ∇z ˜̃R(z?) = 0 and ensures that the second order optimality condition
is satisfied at z?.

The generalized eigenvalues less than −1 correspond to directions where the misfit
has negative curvature and the regularization (which is convex) has positive curva-
ture which is smaller in magnitude. This occurs in directions that are not informed
by data and hence are not in the LIS. As Theorem 4.5 demonstrates, an update in
these directions does not change the leading generalized eigenvectors nor the sensi-
tivity indices, hence it is not necessary to explicitly compute them. This theoretical
development serves to justify HDSA when the second order optimality condition is
not satisfied, but does not require additional computation. In fact, we do not need to
compute the negative generalized eigenvalues, but rather the theory guarantees that
ignoring them is not detrimental to our sensitivity analysis.

5. Algorithmic overview. The developments of Sections 3 and 4 are encapsu-
lated in Algorithm 5.1 to provide a concise perspective on the computational compo-
nents of our proposed analysis which we will refer to as LIS-HDSA. Line 1 solves the
PDE-constrained optimization problem. Lines 2 and 3 are the computational steps
required for analysis, and Line 4 is a simple postprocessing of the data from Lines 2
and 3 to compute the sensitivities. The subsections below expand on Lines 2 and 3
of Algorithm 5.1.

The computational cost is dominated by the PDE solves required to compute
matrix-vector products with HM in Line 2 and with B in Line 3. The cost of the
first order update is negligible and the second order update is a strictly theoretical
tool and does not require computation. Note that Line 2 uses the first order update
regularization HR+HR̃ rather than HR which was presented in (3.1). This is because
the LIS projection was presented before the a posteriori updates for clarity of the
exposition, but it is theoretically appropriate to analyze the perturbed optimization
problem. However, since adding the first order update increases the regularization
in the gradient direction, which we assume is uninformed, the LIS for the perturbed
problem will be close to (or even equal to) the LIS for the original problem.

5.1. Hessian generalized eigenvalue problem. In general, the misfit Hessian
is only accessible via matrix-vector products so the Hessian generalized eigenvalue
problem (GEVP), Line 2 of Algorithm 5.1, may be solved with either iterative methods
(such as Krylov solvers) or randomized methods. Each matrix-vector product with
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Algorithm 5.1 Computation of LIS-hyper-differential sensitivity indices

1: Solve the optimization problem (possibly with early termination)

min
z∈Rm

J(z,θ) := M(z,θ) +R(z)

2: Compute the leading positive eigenpairs HMvj = λj(HR +HR̃)vj , j = 1, . . . , r
3: Compute Bei = ∇z,θJ(z?;θ)ei, i = 1, 2, . . . , n
4: Compute the hyper-differential sensitivity indices using (3.5)

the misfit Hessian requires two PDE solves (assuming that adjoints are used [30]).
Randomized methods afford greater parallelism than iterative methods when adequate
computational resources are available [15, 26]. Algorithm 5.2 adapts Algorithm 6 in
[27] by iterating on the number of desired eigenvalues. It terminates on a user specified
minimum eigenvalue, which may be chosen using the eigenvalues interpretation as the
ratio of misfit and regularization (3.2).

Algorithm 5.2 Randomized Generalized Hermitian Eigenvalue Algorithm

1: Input: oversampling factor p ∈ N, initial target rank r0 ∈ N, rank increment
∆r ∈ N, minimum eigenvalue threshold λmin ∈ R

2: Set λiter =∞
3: Set r = r0

4: Generate a random matrix Ω ∈ Rn×(r0+p)

5: while λiter > λmin do
6: if Number of columns of Ω < r + p then
7: Ω = [Ω,Ω∆r] for a randomly generated Ω∆r ∈ Rn×∆r

8: Set r = r + ∆r
9: end if

10: Compute Y = (HR +HR̃)−1HMΩ
11: Compute Q, whose columns span the range of Y , with QT (HR +HR̃)Q = I
12: Compute T = QTHMQ
13: Compute the eigen decomposition T = SΛST (with decreasing eigenvalues on

the diagonal of Λ)
14: Set λiter = (Λ)r,r (the rth eigenvalue in Λ)
15: end while
16: Compute vj = Qsj , j = 1, 2, . . . , r, where si is the jth column of S (normalized

so that vTj (HR +HR̃)vj = 1)
17: Return: Estimated generalized eigenvalues and eigenvectors {λj ,vj}rj=1

The randomized GEVP algorithm sketches the range space of (HR+HR̃)−1HM ∈
Rm×m by applying it to a collection of independent random vectors. This defines a
low dimensional subspace from which the generalized eigenvalues and eigenvectors
may be estimated through direct methods. The accuracy of randomized solvers for
a given number of matrix-vector products is slightly poorer (though in many cases
not by much) than a Krylov method with a comparable number of matrix-vector
products; however, the randomized algorithm allows asynchronous computation which
may reduce wall clock time.

The input p (oversampling factor) ensures that the subspace defined by the lead-
ing r eigenvectors is well approximated by the range of (HR + HR̃)−1HMΩ. The
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oversampling factor is well understood and is typically taken to be on the order of
10-20 [14,27] to give an accurate approximation of the leading eigenvectors with high
probability. Since the generalized eigenvalues appear in the denominator in (3.5), and
the smallest generalized eigenvalues/vectors are the hardest to estimate, we suggest
taking p = 20 to ensure reliable computation. Assuming L processors are available to
execute parallel PDE solves, we set r0 = L−p and ∆r = L to execute all matrix-vector
products simultaneously.

The while loop terminates on a minimum eigenvalue threshold λmin which the user
chooses a priori using the interpretation of the eigenvalues (3.2). Setting λmin = 1
projects on the subspace where the data contributes more than the regularization.
Since there is some ambiguity in the choice of λmin we propose an approach to assess
the robustness of the sensitivity indices with respect to changes in λmin. Specifically,
the user may execute Algorithm 5.2 with λmin less than their desired threshold. The
LIS-hyper-differential sensitivities may be computed via (3.5) for different choices of r
(corresponding to different eigenvalue thresholds) at a negligible computational cost.
We demonstrate this in Section 6.

The computational cost of the Algorithm 5.2 is dominated by the products in-
volving HM in Lines 10 and 12. These lines may reuse matrix-vector products from
previous iterations of the while loop so the total number of matrix-vector products
involving HM is 2(r + p), where r is the target rank at the termination of the while
loop. Lines 10 and 12 are embarrassingly parallel due to the randomization decoupling
the vectors, hence the cost is mitigated when parallelization is enabled.

The random matrix generation in Lines 4 and 7 may be done in a variety of ways
but most commonly have entries sampled independently from a standard normal
distribution. The orthogonalization in Line 11 may be done with a combination of
Cholesky and QR matrix decompositions, see Algorithms 4 and 5 in [27] for details.
The eigen decomposition in Line 13 is on a small dense matrix and may be done using
classical dense linear algebra kernels.

5.2. Action of B. If {Bei}ni=1 are computed by taking n matrix vector products,
the computational cost for Line 3 of Algorithm 5.1 is 2n PDE solves [30] (n is the
dimension of the auxiliary parameters θ). For moderate n, this cost is easily mitigated
by parallelism of the matrix-vector products (it is embarrassingly parallel for up to
n processors). For large values of n, which is common when auxiliary parameters are
spatially or temporally distributed, Line 3 becomes computationally intensive. How-
ever, when n is large there is frequently low rank structure in the auxiliary parameter
space which may be exploited by computing its Singular Value Decomposition. This
has the potential to significantly reduce the number of matrix-vector products.

6. Numerical results. This section demonstrates the use of LIS-HDSA for a
prototypical permeability inversion using a tracer test. Such problems are critical
in ground water and petroleum reservoir management which are characterized by
spatial heterogeneity, data sparsity, and complex nonlinearities. Our prototypical
inverse problem emulates such features that are common in more complex material
property estimation and source identification problems.

6.1. Inverse problem formulation. We consider inverting for a log perme-
ability field κ via a tracer test. Specifically, we use observations of the tracer concen-
tration c and fluid pressure p which are modeled (in two dimensions) by the advection
diffusion equation and Darcy’s equation, respectively. We consider the optimization
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problem

min
κ

N∑
i=1

2

w2
c

||Tcc(κ, ti)− dc(ti)||22 +
1

w2
p

||Tpp(κ)− dp||22 + γ1||∇κ||2 + γ2||κ||2(6.1)

where Tc and Tp denote observation operators, dc(ti) and dp denotes the observed data
for concentration (at time nodes ti, i = 1, 2, . . . , N) and pressure, and (c(κ, t), p(κ))
satisfy the system of PDEs

−∇ · (eκ∇p) = 0 in D

∂c

∂t
−∇ ·

(
η(θ)∇c

)
+∇ ·

(
− eκ∇pc

)
= g(θ) in [0, T ]×D

p = p1(θ) on Γ1

p = p2(θ) on Γ3

eκ∇p · n = 0 on Γ0 ∪ Γ2

∇c · n = 0 on [0, T ]× {Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3}
c(0, x) = 0 in D

on the domain D = (0, 1)2 with Γi, i = 0, 1, 2, 3, denoting the four sides of the square
(depicted in Figure 1).

The PDE system has uncertainty in its pressure Dirichlet conditions p1 and p2,
its tracer source g, and its diffusion coefficient η. Each are parameterized by θ so that
θ = 0 corresponds to a nominal estimate of the parameter.

The pressure Dirichlet conditions are spatially varying and their uncertainty is
represented using linear finite element basis functions defined on each boundary. The
tracer source consists of 16 injection locations with its uncertainty parameterized
by taking linear finite element basis functions defined on 3x3 square meshes around
each injection point. The diffusion coefficient is a scalar and hence its uncertainty is
parameterized by a scalar. Parameterizations are given in Table 1.

Dirichlet Condition p1(θ) = (15 + cos(2πy) + .5 cos(4πy)) δp1(θ)
Dirichlet Condition p2(θ) = (10 + 2 cos(2πy)) δp2(θ)

Dirichlet Perturbation δp1(θ) = 1 + 0.1
∑21
j=1 θjφj

Dirichlet Perturbation δp2(θ) = 1 + 0.1
∑21
j=1 θ21+jφj

Source Term g(θ) =
∑16
k=1 10e−100((x−vk)2+(y−wk)2)δsk(θ)

Source Perturbations δsk(θ) = 1 + 0.1
∑9
j=1 θ(42+(k−1)9+j)ψj(vk, wk)

Diffusion Coefficient η(θ) = .025(1 + 0.1θ187)
Table 1

Expressions for the PDE parameters with uncertainty modeled by θ. The functions {φj}21j=1

are linear finite element basis functions defined on a uniform mesh of [0, 1]. The functions
{ψj(vk, wk)}9j=1 are linear finite element basis functions defined on a 3x3 square mesh centered

at (vk, wk). The set of points {(vk, wk)}16k=1 correspond to the injection locations depicted by the
diamonds in Figure 1.

To avoid the inverse crime, we generate data by solving the forward problem on a
fine mesh, add zero-mean Gaussian white noise to the data, and sparsify in space (the
observation locations are depicted in Figure 1). The objective function weights wc and
wp nondimensionalize the misfit so that pressure and concentration data is compara-
ble, and the regularization coefficients γ1 and γ2 are chosen to avoid over smoothing
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the solution. The concentration data is multiplied by 2 to put greater weight on fit-
ting it. This improves the inversion by emphasizing the advective information in the
data. Problem parameter details are in Table 2.

Spatial mesh for data generation 128× 128 rectangular mesh
Spatial mesh for inverse problem 64× 64 rectangular mesh
Time steps for data generation 151
Time steps for inverse problem 76

Noise standard deviation 1% of the node data value
Final time T = 0.25

Discretized dimensions u ∈ R325325, z ∈ R4225, θ ∈ R187

Observation locations Depicted in Figure 1
Regularization coefficients γ1 = 10−5 and γ2 = 10−7

Misfit weights wc and wp Average concentration and pressure data
Table 2

Discretization, data generation, and objective function parameters defining the inverse problem.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Concentration

Pressure

Source

Fig. 1. Depiction of the computational domain with locations of concentration sensors (dots),
pressure sensors (circles), and source injection sites (diamonds).

6.2. Permeability field estimate. The optimization problem is solved with
θ = 0 using a truncated conjugate gradient trust region algorithm. Table 3 displays
the iteration history. The slow convergence observed in this example is typical for
large-scale nonlinear inverse problems. Comparing the solutions after 75 iterations and
125 iterations shows that the estimate is not noticeably different, despite the fact that
it took significantly more computation time to run these 50 iterations. Furthermore,
based on the trends in Table 3, it may take many additional iterations to convergence
(significant wall clock time) without improving the quality of the solution. This
challenge exemplifies our motivation to apply HDSA to suboptimal solutions rather
than requiring convergence to justify the analysis.

The initial iterate, estimated log permeability field, and the “true” log permeabil-
ity field which generated the data are given in Figure 2. We observe that the high and
low permeability regions in the middle of the domain are apparent in the solution,
while many of the fine scale features are not resolved. This is unsurprising given the
diffusivity and nonlinearity of the physics.
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Iteration Objective Gradient Norm Step Size
0 17.2 1.33 N/A
4 9.59 .697 15.6
10 3.29 .676 2.38
41 .897 .113 2.02
65 .578 .331 .115
75 .571 .102 .109
125 .529 .081 .034

Table 3
Iteration history for the optimization problem.

Fig. 2. Left: initial iterate for the inverse problem; center: estimated log permeability field
(after 75 iterations); right: true log permeability field used to generate the data.

Figure 3 displays (top row) the pressure and time snapshots of the concentra-
tion computed using the estimated log permeability field alongside (bottom row) the
corresponding data, {dc(ti),dp}, plotted as a field rather than sparse data. The pres-
sure Dirichlet conditions induce a flow from right to left. As a result of the high
permeability region around y = 0.5, the tracer, which enters the domains through
sixteen injection sites, is advected toward two outflow regions around (0, 0.4) and
(0, 0.6). The regions of greatest estimation error in Figure 2 are unsurprising given
the characteristics of the flow in Figure 3. Comparing the good fit of the state data in
Figure 3 with the log permeability field error in Figure 2 highlights the ill-posedness
of the problem, a characteristic commonly observed in practice.

Fig. 3. Pressure and time snapshots of concentration. The top row is computed by using the
estimated log permeability field (center panel of Figure 2) while the bottom row is computed by using
the true log permeability field (right panel of Figure 2) and adding noise. From left to right displays
the time evolution of the concentration with the pressure in the rightmost panel.
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6.3. HDSA results. There is no theoretical justification to use HDSA on the
solution of this inverse problem without the developments of Section 4. The sub-
optimal solution only reduces the gradient norm by two orders of magnitude despite
significant computational efforts, and the Hessian is indefinite due to insufficient infor-
mation in the regularization. This serves as an illustrative and motivating application
for the contributions of this article.

The length scale parameter is set to α = 0.5(max(z?) − min(z?)) = 1.4657 as
discussed in Subsection 4.1. We also repeated all computation (but omitted results
for conciseness) with a larger value of α to confirm that the resulting analysis is robust
with respect to α.

We compute hyper-differential sensitivity indices using Algorithms 5.1 and 5.2.
To explore the choice of eigenvalue threshold, Algorithm 5.2 is executed with p = 20,
r0 = 4, ∆r = 8 (the number of processors used), and λmin = 0.1. This choice of λmin
allows us to study the robustness of the sensitivities with respect to the eigenvalue
threshold.

Likelihood informed subspace and eigenvalue threshold. Figure 4 dis-
plays the generalized eigenvalues (on log scale). As mentioned in Section 5, the user
must specify an eigenvalue threshold λmin to define the LIS. In order to explore pos-
sible thresholds, we compute all eigenvalues greater than 0.1 (which corresponds to
the misfit magnitude being 10% of the regularization magnitude in the eigenvector
direction), and consider different thresholds. The vertical lines in Figure 4 indicate
three possible thresholds (with the horizontal axis indicating the value of r in (3.5)).
The left panel of Figure 5 shows the LIS-hyper-differential sensitivity indices (com-
puted using (3.5)) on the vertical axis as a function of the number of generalized
eigenvalues (the informed subspace dimension) on the horizontal axis. We observe
that the magnitude of the largest sensitivity indices varies depending on the thresh-
old but generally the conclusions we draw from the analysis (which parameters are
most/least influential) are unchanged. Zooming in on the smaller sensitivity indices
in the right panel of Figure 5 reveals a similar conclusion for the smallest sensitivity
indices. There is some variability but the conclusions of the analysis remain valid.
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Fig. 4. Log scale plot of the generalized eigenvalues. The vertical lines indicate potential
eigenvalue thresholds as a frame of reference for assessing robustness.

The spectral characteristics reveal low rank structure which is common in inverse
problems. In particular, the misfit Hessian in R4225×4225 is well characterized by
a likelihood informed subspace of dimension O(50). In this example, ||Pn||Wz =
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Fig. 5. Left: dependence of the hyper-differential sensitivity indices (vertical axis) on the
informed subspace dimension r (horizontal axis); right: same plot as the left but zoomed in on the
smaller sensitivity indices. The vertical lines indicate potential eigenvalue thresholds as a frame
of reference for assessing robustness. The curves (which are different colors to aid visualization)
correspond to different sensitivity indices.

O(10−4) and hence Theorems 4.2 and 4.3 ensure that the sensitivities computed with
this LIS are not strongly influenced by the first order update.

Interpretation of sensitivity indices. We take λmin = 1 due to its interpre-
tation as the threshold when the misfit and regularization contributions are equal.
The hyper-differential sensitivity indices are plotted in Figure 6 (without the scalar
sensitivity index for the diffusion coefficient which equals 0.0283). Four different
parameters (two pressure boundary conditions, a concentration source term, and dif-
fusion coefficient) are easily compared in the HDSA framework. As discussed in
subsection 6.2, the optimization problem is difficult even with these parameters fixed.
Performing joint inversion on all parameters is extremely challenging and thus under-
scores the utility of HDSA to provide quantitative insights for complex systems with
many sources of uncertainty.

There are two particularly large sensitivity indices near y = 0.5 on the x = 1
pressure Dirichlet boundary. Inspection of B acting on the basis functions corre-
sponding to these indices identifies this sensitivity as a large change in the estimated
log permeability field in the (1, 0.5) region. This result highlights the fact that the
log permeability field is not well informed by the tracer in this region (the tracer is
flowing away from it) and as a result the estimated log permeability field is highly
dependent on the pressure data which is strongly influence by the boundary condition
near x = 1. On the x = 0 pressure Dirichlet boundary, we observe greater sensitivity
corresponding to the lower permeability regions as the tracer outflow is determined by
the combination of the permeability and low pressure regions on the boundary. The
tracer injection sensitivities are generally small, indicating that errors in the tracer
injection will not have a significant effect on the log permeability field estimate.

The results in Figure 6 may be applied for model development, experimental
design, and uncertainty quantification. The influence of the pressure Dirichlet bound-
ary conditions indicates the importance of the pressure difference driving the flow
and how the log permeability field reconstruction is dependent on the features of the
velocity field. The high sensitivity around x = 1 and y = 0.5 highlights the im-
portance of characterizing the interaction between this region of the boundary and
the log permeability field. Observing such sensitivities in practice alerts the analyst
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Fig. 6. Hyper-differential sensitivity indices with λmin = 1. Left: x = 0 pressure Dirichlet
boundary condition sensitivities; center: x = 1 pressure Dirichlet boundary condition sensitivities;
right: tracer injection sensitivities.

of potential concerns which may be alleviated by collecting data and/or improving
modeling around the boundary.

7. Conclusion. Large-scale ill-posed inverse problems are challenging in many
respects. Uncertainty in model parameters that are fixed (out of computational ne-
cessity) introduce uncertainty in the solution of the inverse problem which is not
easily quantified in many applications. Through a likelihood informed subspace pro-
jection and development of a posteriori updates, we have enabled the use of HDSA
for ill-posed inverse problems for which optimizer convergence is challenging.

Our developments provides a pragmatic approach to analyze the dependence of
the optimal solution on the auxiliary model parameters. For challenging inverse prob-
lems plagued by high dimensional parameters and complex nonlinearities, HDSA pro-
vides a computationally efficient and quantitative approach to understand the complex
interactions between parameters. By extending the framework to optimization prob-
lem with suboptimal solutions, we have laid a theoretical basis to use HDSA on many
inverse problems arising in practice where convergence issues prohibited its use pre-
viously. Our analysis supports modeling, experimental design, and characterization
of uncertainty. In particular, it may aid in understanding parameter dependences to
facilitate modeling and experimental design to better characterize them. Moreover,
understanding parameter dependencies is crucial to enable forward uncertainty quan-
tification and system design under uncertainty since these dependences define a low
dimensional manifold in the parameter space which must be explored in such analysis.

This article focused on optimization-based approaches to inverse problems; how-
ever, a Bayesian approach is attractive since it provides a wholistic framework for un-
certainty quantification. Work is ongoing to develop and interpret HDSA for Bayesian
inverse problems through its application to both the maximum a posteriori probabil-
ity point and measures of posterior uncertainty [29]. A key computational component
of HDSA is efficient Hessian vector products. Such Hessian vector products are cru-
cial for other aspects of large-scale inverse problems [1, 25] and are topics of future
research. There are opportunities to couple the algorithmic framework for LIS-HDSA
with existing approaches for Hessian based exploration of the Bayesian posterior.

Appendix A. Theorem Proofs.

Theorem 3.1.

Proof. Let {λj ,vj}mj=1 denote the eigenvalues and eigenvectors (which are HR
orthonormal) of (3.1), i.e.
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HMvj = λjHRvj . Then using the spectral representation of HM we have

H =

m∑
j=1

λjHRvjvTj HR +HR

and by the Sherman-Morrison-Woodbury formula we have

H−1 = H−1
R −

m∑
j=1

λj
1 + λj

vjv
T
j .

Noting that Pvk = vk for k = 1, 2, . . . , r and Pvk = 0 for k = r + 1, r + 2, . . . ,m, we
have

Si =

∣∣∣∣∣
∣∣∣∣∣P
(
H−1
R −

m∑
i=1

λi
1 + λi

viv
T
i

)
Bei

∣∣∣∣∣
∣∣∣∣∣
Wz

=

∣∣∣∣∣∣
∣∣∣∣∣∣
r∑
j=1

1

1 + λj
vj
(
vTj Bei

)∣∣∣∣∣∣
∣∣∣∣∣∣
Wz

.

Expressing the Wz norm as the square root of the Wz inner product, i.e. || · ||Wz =√
(·, ·)Wz , and manipulating algebra completes the proof.

Theorem 4.1.
We derive a closed form solution to the optimization problem (from (4.1))

min
R̃∈Q
||R̃||L1(µ)(A.1)

s.t. ∇zR̃(z?) = −g

where Q is the set of nonnegative convex quadratic functions from Rm to R and
g = ∇zJ(z?;θ).

A general expression for a function belonging to Q and satisfying ∇zR̃(z?) = −g
is given by

R̃(z) =
1

2
(z − z?)TA(z − z?)− zTg + C(A.2)

where A ∈ Rm×m is symmetric (since it is a Hessian) positive semidefinite (to ensure
non-negativity) with g in the range of A, and C ∈ R is chosen to ensure that R̃ is
non-negative. The condition that g is in the range of A ensures that

1

2
(z − z?)TA(z − z?)− zTg(A.3)

is bounded below and hence a C exists that enforces R̃ ≥ 0.
To solve (A.1) we need to find a matrix A and a scalar C. Since we seek to

minimize the norm of R̃ while enforcing R̃ ≥ 0, we express C as a function of A by
setting it equal to the minimum value of (A.3). Setting the gradient of (A.3) equal
to zero yields the system of equations

A(z0 − z?) = g

which is guaranteed to admit a solution because g is in the range of A. Since, in
general, A is positive semidefinite, the set of critical points is given by z?+A†g+N(A),
where A† denotes the pseudo-inverse of A and N(A) denotes the null space of A.



20 J. HART AND B. VAN BLOEMEN WAANDERS

Plugging these critical points into (A.3) yields that the smallest C, as a function of
A, such that R̃ ≥ 0, is given by

C =
1

2
gTA†g + z?Tg.(A.4)

Having written C as a function of A, we may find the optimal quadratic update
by minimizing over A. By exploiting non-negativity of R̃ to drop the absolute value
in the L1 norm, properties of the Gaussian probability measure, and ignoring terms
which do not depend on A, we arrive at the optimization problem

min
A∈S+

m

f(A) := α2Tr(A) + gTA†g(A.5)

s.t. g ∈ R(A)

where S+
m denotes the set of m ×m positive semidefinite matrices with real entries

and Tr(A) denotes the trace of A.
To derive a closed form expression for (A.5) (and equivalently (A.1)), we prove

a sequence of lemmas to arrive at a unique solution. Using the spectral theorem
for symmetric matrices we may, without loss of generality, assume that the optimal
solution of (A.5) is a matrix HR̃ of the form

HR̃ =

m∑
j=1

λjvjv
T
j(A.6)

where λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 are the non-negative eigenvalues and {vj}mj=1 are the
orthonormal eigenvectors of HR̃.

Let r ∈ {1, 2, . . . ,m} be the rank of HR̃. Plugging (A.6) into (A.5), writing the
trace as the sum of eigenvalues, and using the spectral decomposition to express the
pseudo-inverse, we find that

f(HR̃) = α2
r∑
j=1

λj +

r∑
j=1

1

λj
(gTvj)

2.

The subsequent lemmas characterize the eigenvalues {λj}rj=1 and eigenvectors {vj}rj=1

by utilizing the fact that f(HR̃) ≤ f(A) for all A ∈ S+
m which satisfy g ∈ R(A).

Let λ1 have algebraic multiplicity `, i.e. λ1 = λ2 = · · · = λ` > λ`+1 (or λj = λ1,
j = 1, 2, . . . ,m if ` = m). Then we have the following.

Lemma A.1.

g ∈ span{v1,v2, . . . ,v`}.

Proof. We may rewrite the objective function as

f(HR̃) = α2
r∑
j=1

λj + ||g||22
r∑
j=1

γj
1

λj

where γj = (gTvj)
2/||g||22 ∈ [0, 1] and

∑r
i=1 γi = 1 by Parseval’s identity. Because of

the ordering of the eigenvalues, f(HR̃) is minimized when γi = 0 for i > `. Hence,
(gTvj) = 0 for j > `. Since {vj}mj=1 is an orthonormal basis for Rm,

g =
m∑
j=1

(gTvj)vj =
∑̀
j=1

(gTvj)vj .



HDSA FOR ILL-POSED INVERSE PROBLEMS 21

Applying Lemma A.1, we can simplify f(HR̃) to get

f(HR̃) = α2
r∑
j=1

λj + ||g||22
1

λ1
.(A.7)

Lemma A.2. λj = 0 for j > `.

Proof. The result follows by observing that all quantities in (A.7) are non-negative
and it is minimized when there are a minimum number of terms in the sum of eigen-
values.

We may now rewrite f(HR̃) as

f(HR̃) = α2`λ1 + ||g||22
1

λ1
.(A.8)

Lemma A.3. ` = 1 and v1 = ± g
||g||2 .

Proof. Since all quantities in (A.8) are nonnegative and ` ∈ {1, 2, . . . ,m}, then
(A.8) will be minimized when ` is minimized. Taking ` = 1 clearly minimizes it and
also implies that v1 = ± g

||g||2 to ensure that g ∈ R(HR̃).

Hence, we have established that HR̃ is given by the rank one matrix

HR̃ =
λ

||g||22
ggT(A.9)

where λ is the optimal eigenvalue which minimizes

α2λ+ ||g||22
1

λ
.(A.10)

By setting the derivative of (A.10) with respect to λ equal to zero and solving, we
find that HR̃ is given by

HR̃ =
1

α||g||2
ggT .(A.11)

Hence, the solution of (A.1) is (A.2) with A given by (A.11) and C given by (A.4).

Theorem 4.2.

Proof. First observe that B̃ = B since J̃ = J + R̃ and R̃ does not depend on θ.
Hence,

S̃i = ||P(H+HR̃)−1Bei||Wz and Si = ||PH−1Bei||Wz ,

where HR̃ = ggT /(α||g||2) is the Hessian of R̃.
Applying the reverse triangle inequality yields

|S̃i − Si| ≤ ||P
(
(H+HR̃)−1Bei −H−1Bei

)
||Wz .

Using the Sherman-Morrison formula for rank one updates and properties of norms
we have

|S̃i − Si| ≤

∣∣∣∣∣
∣∣∣∣∣P 1

1 + ||g||2
α sTH−1s

H−1HR̃H
−1Bei

∣∣∣∣∣
∣∣∣∣∣
Wz

≤ 1

1 + ||g||2
α sTH−1s

·
∣∣∣∣PH−1HR̃

∣∣∣∣
Wz
·
∣∣∣∣H−1Bei

∣∣∣∣
Wz
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Dividing by
∣∣∣∣H−1Bei

∣∣∣∣
Wz

, plugging in HR̃ = ggT /(α||g||2), and manipulating con-
stants yields

|S̃i − Si|
||H−1Bei||Wz

≤ ||g||2
α+ sTn

||PH−1ssT ||Wz .(A.12)

Notice that ||PH−1ssT ||Wz = ||PH−1s||Wz since it is a rank one matrix given by
the outer product of PH−1s and s with ||s||2 = 1. Plugging this into (A.12) and
manipulating constants completes the proof.

Theorem 4.3.

Proof. Noting that B̃(α)ei = B̃(α + αβ)ei = Bei for any β ∈ (−1, 1), applying
the reverse triangle inequality, and writing the Hessian of R̃ as HR̃(α) yields

|S̃i(α+ αβ)− S̃i(α)| ≤
∣∣∣∣∣∣P (H+HR̃(α(1 + β)))

−1 Bei − P (H+HR̃(α))
−1 Bei

∣∣∣∣∣∣
Wz

.

Following the same arguments as in the proof of Theorem 4.2 with the Sherman-
Morrison formula for rank one updates and properties of norms we have

|S̃i(α+ αβ)− S̃i(α)|
||H−1Bei||Wz

≤
∣∣∣∣ 1

α+ sTn
− 1

α(1 + β) + sTn

∣∣∣∣ · 1

||g||2
· ||PH−1ggT ||Wz

Then ||PH−1ggT ||Wz = ||g||2 · ||Pn||Wz since ||PH−1ssT ||Wz = ||PH−1s||Wz .
Hence,

|S̃i(α+ αβ)− S̃i(α)|
||H−1Bei||Wz

≤
∣∣∣∣ 1

α+ sTn
− 1

α(1 + β) + sTn

∣∣∣∣ ||Pn||Wz .

Algebraic manipulations give

|S̃i(α+ αβ)− S̃i(α)|
||H−1Bei||Wz

≤ |β| · α||Pn||Wz

(α+ sTn)(α(1 + β) + sTn)
.

Noting that sTn > 0 so α/(α+ sTn) < 1 completes the proof.

Theorem 4.4.

Proof. (→) Assume that HM +HR is positive definite and let HMvj = λjHRvj ,
j = 1, 2, . . . ,m. Without loss of generality, assume that vTj HRvj = 1, j = 1, 2, . . . ,m.
Then

0 < vTj (HM +HR)vj = vTj (λjHRvj +HRvj) = (λj + 1)vTj HRvj = λj + 1.

(←) Assume that HMvj = λjHRvj with λj > −1, j = 1, 2, . . . ,m. Let x ∈ Rm,x 6=
0. It is sufficient to show that xT (HM + HR)x > 0. Since {vj}mj=1 forms a HR
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orthonormal basis for Rm we can write x =
∑m
j=1(xTHRvj)vj . Then we have

xT (HM +HR)x =

 m∑
j=1

(xTHRvj)vj

T

(HM +HR)

(
m∑
k=1

(xTHRvk)vk

)

=

 m∑
j=1

(xTHRvj)vj

T (
m∑
k=1

(xTHRvk)(HMvk +HRvk)

)

=

 m∑
j=1

(xTHRvj)vj

T (
m∑
k=1

(xTHRvk)(λk + 1)HRvk

)

=

m∑
j=1

(xTHRvj)2(λj + 1)

> 0

since λj + 1 > 0 for all j = 1, 2, . . . ,m.

Theorem 4.5.

Proof. For j 6= i we have,

(HM + Ui(δ))vj = HMvj + δHRvivTi HRvj = λjHRvj + δHRvi(0) = λjHRvj

since {vj}mj=1 areHR orthogonal (a consequence of the spectral theorem for symmetric
matrices). As for vi, consider

(HM + Ui(δ))vi = HMvi + δHRvivTi HRvi = λiHRvi + δHRvi(1) = (λm + δ)HRvi.
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