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Abstract. This paper concerns the rigorous periodic homogenization for a non-linear strongly
coupled system, which models a suspension of magnetizable rigid particles in a non-conducting carrier
viscous Newtonian fluid. The fluid drags the particles, thus alters the magnetic field. Vice versa, the
magnetic field acts on the particles, which in turn affect the fluid via the no-slip boundary condition.
As the size of the particles approaches zero, it is shown that the suspension’s behavior is governed
by a generalized magnetohydrodynamic system, where the fluid is modeled by a stationary Navier-
Stokes system, while the magnetic field is modeled by Maxwell equations. A corrector result from
the theory of two-scale convergence allows us to obtain the limit of the product of several weakly
convergent sequences, where the div-curl lemma, which is a typical tool in these types of problems,
is not applicable.
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1. Introduction. This paper is a counterpart of our previous works [16, 15],
where we carried out the rigorous periodic homogenization of a weakly (one-way)
coupled non-linear system modeling a non-dilute suspension of magnetizable particles
in a viscous Newtonian fluid. In [16, 15], the fluid is assumed to be described by the
stationary Stokes flow, and the particles are either paramagnetic or diamagnetic. The
one-way coupling is understood as follows: the magnetic field alters the movement
of the magnetizable particles, then the particles affect the fluid flow via a no-slip
boundary assumption; however, the reverse effect is assumed to be negligible. For
details and information about the manifestations of the one-way coupling (as well as
of the full coupling), its applications, and further literature on the subject, we refer
the reader to [16, 15] and references cited therein. In this paper, the full (two-way)
coupling is considered, i.e. we also take into account the reverse effect: the fluid
flow pushes the particles, thus generates an induced magnetic field that acts back on
the original one. The mathematical formulation of the fully coupled model of the
magnetic non-dilute suspension is given in section 2 below.

Starting with the seminal work of Einstein on the effective viscosity of a suspension
[23], there have been numerous studies on this subject, ranging from formal asymptotic
analysis such as [43, 44, 42] to rigorous analysis, e.g. [48, 17, 32, 40, 45, 28, 20, 41, 37,
22, 19, 21, 7, 8] and references cited therein. The coupling between the velocity and
the magnetic fields distinguishes our paper from the previously cited. In this paper, we
propose a non-linear system to model the two-way coupling in the magnetorheological
fluid, and derive, and rigorously justify, the corresponding effective system.

To overview the literature on this topic, we start with the phenomenological
models proposed in e.g. [46, 52, 24, 50, 33], whose well-posedness were studied in
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2 T. DANG, Y. GORB, AND S. JIMÉNEZ BOLAÑOS

e.g. [51, 34, 27, 6, 53]. A coupling mechanism, similar to the one discussed in this
paper, was also considered in [49], where a different model describing fluids was used.
The authors in [49] though obtained the results using formal asymptotic analysis.
Although similar models in different contexts were also studied in [56, 25], to the best
of our knowledge, this paper is the first one to deal with the fully-coupled model for
magnetorheological fluids using the rigorous homogenization approach. Lastly,
we mention that the rigorous homogenization for the system described by one-way
fluid-particle coupling was solved in [16, 15] with a fairly general assumption on the
smoothness of the coefficients.

In what follows below, after a non-linear model for the magnetorheological fluid
is established, we obtain the well-posedness and a priori estimates for its solution by
adapting the general functional analysis framework of stationary magnetohydrody-
namics, c.f. [54, 36, 29, 35] and references therein. Then, the two-scale convergence
method, c.f. [3, 47, 9, 14], is utilized to obtain the effective, or homogenized, system.
The main difficulty lies in the non-linearity of the system, c.f. (2.5a) and (2.5f), and,
the full coupling mechanism captured by (2.5a), (2.5f) and (2.9) that make the choice
of suitable oscillating test functions in the energy method by Tartar [55], which is a
typical tool in homogenization problems, to become extremely tricky. To overcome
this difficulty, we rely on the corrector result from the two-scale convergence method,
see Theorem 2.6. The results obtained in this paper can be extended to the stochastic
setting, thanks to the work on stochastic two-scale convergence, c.f. [11, 57, 38, 39]
and references cited therein.

This paper is organized as follows. In section 2, the main notations are introduced
and the formulation of the fine-scale problem is discussed. Our main result is stated
in Theorem 3.1, and the conclusions are given in section 4.

2. Formulation.

2.1. Notation. Throughout this paper, the scalar-valued functions, such as the
pressure p, are written in usual typefaces, while vector-valued or tensor-valued func-
tions, such as the velocity u and the Cauchy stress tensor σ, are written in bold.
Sequences are indexed by superscripts (φi), while elements of vectors or tensors are
indexed by numeric subscripts (xi). Finally, the Einstein summation convention is
used whenever applicable; δij is the Kronecker delta, and εijk is the Levi-Civita per-
mutation symbol.

2.2. Set up of the problem. Consider Ω ⊂ Rd, for d ≥ 2, a simply connected
and bounded domain of class C1,1, and let Y := (0, 1)d be the unit cell in Rd. The
unit cell Y is decomposed into:

Y = Ys ∪ Yf ∪ Γ,

where Ys, representing the magnetic inclusion, and Yf , representing the fluid domain,
are open sets in Rd, and Γ is the closed C1,1 interface that separates them. Let
i = (i1, . . . , id) ∈ Zd be a vector of indices and {e1, . . . , ed} be the canonical basis of
Rd. For a fixed small ε > 0, we define the dilated sets:

Y εi := ε(Y + i), Y εi,s := ε(Ys + i), Y εi,f := ε(Yf + i), Γεi := ∂Y εi,s.

Typically, in homogenization theory, the positive number ε � 1 is referred to as
the size of the microstructure. The effective or homogenized response of the given
suspension corresponds to the case ε = 0, whose derivation and justification is the
main focus of this paper.
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HOMOGENIZATION OF A NONLINEAR COUPLED MODEL 3

Fig. 1. Reference cell Y and domain Ω.

We denote by ni, nΓ and n∂Ω the unit normal vectors to Γεi pointing outward
Y εi,s, on Γ pointing outward Ys and on ∂Ω pointing outward, respectively; and also, we

denote by dHd−1 the (d− 1)-dimensional Hausdorff measure. In addition, we define
the sets:

Iε := {i ∈ Zd : Y εi ⊂ Ω}, Ωεs :=
⋃
i∈Iε

Y εi,s, Ωεf := Ω \ Ωεs, Γε :=
⋃
i∈Iε

Γεi .

see Figure 1.

2.3. The model. Denote by ρf , ρs, νes, µ and g the (mass) density of fluid, the
density of inclusions, the electric conductivity of inclusions, the magnetic permeability
and the external force field, respectively. The unknowns include the fluid velocity
uε, the fluid pressure pε and the magnetic field Bε (which in turn, determines the
magnetising field Hε). For simplicity, we assume that the magnetic permeability is
piecewise-constant and given by

µ(x) =

{
µf , if x ∈ Ωεf ,

µs, if x ∈ Ωεs,

where µf , µs > 0.
We consider the following non-linear system modeling a suspension of rigid inclu-

sions in a non-conducting carrier fluid:

ρf

[
∂uε

∂t
+ (uε · ∇)uε

]
− divσε = ρfg in Ωεf ,(2.1a)

div uε = 0 in Ωεf(2.1b)

D(uε) = 0 in Ωεs,(2.1c)

curl Hε = 0 in Ωεf ,(2.1d)

∂Bε

∂t
+

1

νes
curl curl Hε = curl (uε ×Bε) in Ωεs,(2.1e)

div Bε = 0 in Ω,(2.1f)

Bε = µHε in Ω.(2.1g)

Suppose that the induced electric field is negligible, then the Lorentz force can be
written as:

fmag = curl Hε ×Bε =

{
0, in Ωεf ,

curl Hε ×Bε, in Ωεs.
(2.2)
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4 T. DANG, Y. GORB, AND S. JIMÉNEZ BOLAÑOS

Thus by the Law of Inertia [31, Axiom 5.2, page 171], we obtain the balance equations
of force and torque:∫

Yi,s

ρsu̇ε dx =

∫
Γi

σε(uε, pε)n dΓ +

∫
Yi,s

curl Hε ×Bε dx+

∫
Yi,s

ρsg dx,(2.3a)∫
Yi,s

ρs (x−Gi)× u̇ε dx =

∫
Γi

(x−Gi)× σε(uε, pε)n dΓ

+

∫
Yi,s

(x−Gi)× (curl Hε ×Bε) dx

+

∫
Yi,s

ρs (x−Gi)× g dx,(2.3b)

where u̇ε := ∂uε

∂t + (uε · ∇) uε is the convective derivative, and Gi is the center of
mass of the particle Yi,s. The (outer) boundary conditions on the external boundary
∂Ω are

uε = 0, curl Hε × n = 0, Bε · n = q,(2.4)

where σε(uε, pε) := 2ηD(uε) − pεI, D(uε) :=
∇uε + (∇uε)

>

2
, and q ∈ H1/2(∂Ω)

satisfying the compatibility condition
∫
∂Ω
q dHd−1 = 0. Since µ is piecewise-constant,

from now on, we write:

Hε =


Bε

µf
, if x ∈ Ωεf ,

Bε

µs
, if x ∈ Ωεs.

2.4. Dimensional analysis. Let L,U,B, and µs be the characteristic scales
corresponding to length, velocity, magnetic field and magnetic permeability, respec-
tively. The characteristic time T and body density force F are defined by T = L

U and

F = U2

L .

Let x∗ := x
L ,u

ε∗ := u
U , p

ε∗ := pL
ηU ,g

∗ := gL
U2 and µ∗ := µ

µs
. The dimension-

less quantities that appear are the hydrodynamic Reynolds number Re =
ρfUL
η , the

magnetic Reynolds number Rm = µsνesUL, the Alfven number Al = B2L
ηµsU

, and the

density ratio which, for simplicity, is assumed to satisfy ρs
ρf

= 1. Also, in the sequel,

we drop the star to lighten the notation. The dimensionless versions of (2.1), (2.3)
and (2.4) are:

Re

[
∂uε

∂t
+ (uε · ∇)uε

]
− divσε(uε, pε) = Reg in Ωεf ,(2.5a)

div uε = 0 in Ωεf(2.5b)

D(uε) = 0 in Ωεs,(2.5c)

curl Bε = 0 in Ωεf ,(2.5d)

∂Bε

∂t
+

1

Rm
curl curl Bε = curl (uε ×Bε) in Ωεs,(2.5e)

div Bε = 0 in Ω.(2.5f)
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HOMOGENIZATION OF A NONLINEAR COUPLED MODEL 5

equipped with the balance equations:

Re

∫
Y ε
i,s

u̇ε dx =

∫
Γε
i

σε(uε, pε)n dHd−1

+Al

∫
Y ε
i,s

curl Bε ×Bε dx+Re

∫
Y ε
i,s

g dx,(2.6a)

Re

∫
Y ε
i,s

(x−Gε
i )× u̇ε dx =

∫
Γε
i

(x−Gε
i )× σε(uε, pε)n dHd−1+

+Al

∫
Y ε
i,s

(x−Gε
i )× (curl Bε ×Bε) dx

+Re

∫
Y ε
i,s

(x−Gε
i )× g dx,(2.6b)

and the boundary conditions:

uε = 0, curl Bε × n = 0, Bε · n = q,(2.7)

where now σε(uε, pε) := 2D(uε)− pεI.
Hereafter, we consider the stationary flow, i.e., the time derivative is ignored:

Re(u
ε · ∇)uε − divσε(uε, pε) = Reg in Ωεf ,(2.8a)

div uε = 0 in Ωεf ,(2.8b)

D(uε) = 0 in Ωεs,(2.8c)

curl Bε = 0 in Ωεf ,(2.8d)

1

Rm
curl curl Bε − curl (uε ×Bε) = h in Ωεs,(2.8e)

div Bε = 0 in Ω.(2.8f)

equipped with the balance equations:

Re

∫
Y ε
i,s

(uε · ∇)uε =

∫
Γε
i

σεn dHd−1

+Al

∫
Y ε
i,s

curl Bε ×Bε dx+Re

∫
Y ε
i,s

g dx,(2.9a)

Re

∫
Y ε
i,s

(x−Gε
i )× (uε · ∇)uε =

∫
Γε
i

(x−Gε
i )× σεn dHd−1

+Al

∫
Y ε
i,s

(x−Gε
i )× (curl Bε ×Bε) dx

+Re

∫
Y ε
i,s

(x−Gε
i )× g dx,(2.9b)

the boundary conditions

uε = 0, curl Bε × n = 0, Bε · n = 0(2.10)

and the compatibility condition∫
Ωs

h · ∇ψ dx = 0 for all ∇ψ ∈ H1
n(Ω,Rd).(2.11)

This manuscript is for review purposes only.



6 T. DANG, Y. GORB, AND S. JIMÉNEZ BOLAÑOS

We note that the function h ∈ L2(Ω,Rd) appears in (2.8e) due to a lifting of the
non-homogeneous magnetic condition (2.4) to the homogeneous condition (2.10), i.e.
substracting Bε by a suitable function, see [36], and [29, Section 3.8]. Here, H1

n(Ω,Rd)
is the set of weakly differentiable functions from Ω to Rd with vanishing normal trace,
see subsection 2.5.1 below.

2.5. Useful results from functional analysis. In this section, we collect some
background results from functional analysis used in the sequel. We separate the
functional spaces and theorems of the two-scale convergence method from the ones of
saddle point problems to make it easier to keep track.

2.5.1. Abstract framework for our non-linear problem. The results for
linear saddle point problems date back to the seminal works by I. Babuška and F.
Brezzi, c.f. [4, 10]. They are then adapted to the non-linear cases such as the Navier-
Stokes equations and magnetorhydrodynamic equations, c.f. [30, 54, 36, 29, 35]. We
summarize here the results used in our paper and refer the readers to the works cited
above for their proofs.

Let X and P be two real Hilbert spaces, and f ∈ X. Let a( · ; ·, ·) : X×X×X → R
be a non-linear form such that for any w ∈ X, a(w; ·, ·) is a bilinear continuous form
on X ×X. Let b : X × P → R be a continuous bilinear form. Consider the following
non-linear problem:

Find (u, p) ∈ X × P , such that for all (v, q) ∈ X × P ,

a(u;u, v) + b(v, p) = 〈f, v〉 ,(2.12a)

b(u, q) = 0,(2.12b)

where 〈·, ·〉 is the dual pairing. The unknown p can be regarded as the Lagrange
multiplier associated with the constraint (2.12b). The idea is to embed the constraint
(2.12b) into X by introducing the space

M = {u ∈ X : b(u, q) = 0 for all q ∈ P} ,

and consider a simpler problem that reads: Find u ∈M such that for all v ∈M,

a(u;u, v) = 〈f, v〉 .(2.13)

The continuity of b implies that M is a closed linear subspace of X, and, thus, M is
also a Hilbert space.

Theorem 2.1 (Existence and uniqueness of solution of (2.13)). If the following
conditions hold:

(i) there exists α > 0 such that for all v ∈M ,

a(v; v, v) ≥ α ‖v‖2X ;(2.14)

(ii) the space M is separable and such that for any sequence vn that weakly con-
verges to v in M , a(vn; vn, w) converges to a(v; v, w), for all w ∈M ;

then there exists at least one solution of problem (2.13): u ∈ M . If in addition, we
assume that:

(iii) the elliptic property (i) holds uniformly with respect to the first variable, i.e.
there exists α > 0 such that for all v, w ∈M ,

a(w; v, v) ≥ α ‖v‖2X ,(2.15)
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(iv) there exists a constant γ > 0 such that, for all u1, u2, v, w ∈M ,

|a(u2; v, w)− a(u1; v, w)| ≤ γ ‖u2 − u1‖X ‖v‖X ‖w‖X ,(2.16)

then problem (2.13) has a unique solution u ∈M , provided that

γ ‖w‖M
α2

< 1,(2.17)

where w ∈M is such that 〈f |M , v〉 = (w, v)X , ∀v ∈M , with f |M being the restriction
of f on M .

Theorem 2.1 allows us to establish the existence and uniqueness of the solution
u of (2.13). To recover the unknown p that solves (2.12), we need to introduce the
following definition.

Definition 2.2. The following is called the inf-sup condition or the Babuška-
Brezzi condition or the Ladyzhenskaya-Babuška-Brezzi condition:

∃β > 0 such that inf
q∈P\{0}

sup
v∈X\{0}

b(v, q)

‖v‖X ‖q‖P
≥ β.(2.18)

If the bilinear form b in (2.12) satisfies the inf-sup condition (2.18) then, by the
Riesz Representation Theorem and the Closed Range Theorem [13], the existence
and uniqueness of the solution u of (2.13) implies the existence and uniqueness of the
solution (u, p) of (2.12).

The inf-sup condition can be verified by

Proposition 2.3. Let B : X → P be the continuous linear operator associated to
the continuous bilinear form b by (Bv, q)P = b(v, q) for all (v, q) ∈ X×P (here we use
the Riesz Representation Theorem). Then the following statements are equivalent:

(i) The inf-sup condition (2.18) holds.
(ii) B> : P → X is injective and B> has a closed range. Here B> is the transpose

of B, i.e. (v,B>q)X = (Bv, q)P for all (v, q) ∈ X × P.
(iii) B : X → P is surjective.

2.5.2. The two-scale convergence method. Two-scale convergence was in-
vented by G. Nguetseng and further developed by G. Allaire. We collect here the
important notions and results relevant to this paper, whose proofs can be found in
[11, 57, 38, 39]. The following spaces are used in the paper below.
• Cper(Y ) – the subspace of C(Rd) of Y -periodic functions;
• C∞per(Y ) – the subspace of C∞(Rd) of Y -periodic functions;
• H1

per(Y ) – the closure of C∞per(Y ) in the H1-norm;
• D(Ω, X) – where X is a Banach space – the space infinitely differentiable func-

tions from Ω to X, whose support is a compact set of Rd contained in Ω.
• Lp(Ω, X) – where X is a Banach space and 1 ≤ p ≤ ∞ – the space of measurable

functions w : x ∈ Ω 7→ w(x) ∈ X such that ‖w‖Lp(Ω,X) :=
(∫

Ω
‖w(x)‖pX dx

) 1
p <∞.

• Lpper

(
Y,C(Ω̄)

)
– the space of measurable functions w : y ∈ Y 7→ w(·, y) ∈ C(Ω̄),

such that w is periodic with respect to y and
∫
Y

(supx∈Ω̄ |w(x, y)|)p dy <∞.
Definition 2.4 (Lp−admissible test function). Let 1 ≤ p < +∞. A function

ψ ∈ Lp(Ω× Y ), Y -periodic in the second component, is called an Lp−admissible test
function if for all ε > 0, ψ

(
·, ·ε
)

is measurable and

lim
ε→0

∫
Ω

∣∣∣ψ (x, x
ε

)∣∣∣p dx =
1

|Y |

∫
Ω

∫
Y

|ψ(x, y)|p dy dx.(2.19)
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It is known that functions belonging to the spaces D
(
Ω, C∞per(Y )

)
, C
(
Ω̄, Cper(Y )

)
,

Lpper

(
Y,C(Ω̄)

)
or Lp (Ω, Cper(Y )) are admissible [3], but the precise characterization

of those admissible test functions is still an open question.

Definition 2.5. A sequence {vε}ε>0 in L2(Ω) is said to two-scale converge to

v = v(x, y), with v ∈ L2(Ω× Y ), and we write vε
2−−⇀ v, if and only if:

lim
ε→0

∫
Ω

vε(x)ψ
(
x,
x

ε

)
dx =

1

|Y |

∫
Ω

∫
Y

v(x, y)ψ(x, y) dy dx,(2.20)

for any test function ψ = ψ(x, y) with ψ ∈ D
(
Ω, C∞per(Y )

)
.

In (2.20), we can choose ψ be any (L2−)admissible test function. Any bounded
sequence vε ∈ L2(Ω) has a subsequence that two-scale converges to a limit v0 ∈
L2(Ω×Y ). Moreover, from [3, Theorem 1.8, Remark 1.10 and Corollary 5.4], we have

Theorem 2.6 (Corrector result). Let uε be a sequence of functions in L2(Ω)
that two-scale converges to a limit u0(x, y) ∈ L2(Ω× Y ). Assume that

lim
ε→0
‖uε‖L2(Ω) =

∥∥u0
∥∥
L2(Ω×Y )

.(2.21)

Then for any sequence vε in L2(Ω) that two-scale converges to v0 ∈ L2(Ω × Y ), one
has

uεvε −−⇀ 1

|Y |

∫
Y

u0(x, y)v0(x, y) dx dy in D′(Ω).(2.22)

Furthermore, if u0(x, y) belongs to L2 (Ω, Cper(Y )) or L2
per (Y,C(Ω)), then

lim
ε→0

∥∥∥uε(x)− u0
(
x,
x

ε

)∥∥∥
L2(Ω)

= 0.(2.23)

In fact, the smoothness assumption on u0 in (2.23) is needed only for u0
(
x, xε

)
is to

be measurable and to belong to L2(Ω). Finally, we recall that if ψ ∈ L2(Ω× Y ) is a
Carathéodory function then ψ

(
·, ·ε
)

is measurable. This fact is used later on to prove
that 1Ω×Ys

is an admissible test function.

3. Main results. We now define the admissible spaces on the C1,1−domain Ω
for the fluid velocity uε, the magnetic field Bε and the fluid pressure pε. Let

H1
n(Ω,Rd) :=

{
C ∈ H1(Ω,Rd) : C · n∂Ω = 0

}
,

L2
0(Ω) :=

{
q ∈ L2(Ω):

∫
Ω

q dx = 0

}
,

H :=
{
C ∈ L2(Ω,Rd) : curl C ∈ L2(Ω,Rd),div C ∈ L2(Ω),C · n∂Ω = 0

}
,

Vε :=
{
v ∈ H1

0 (Ω,Rd) : D(v) = 0 in Ωεs
}
,

Pε := div(Vε) =
{
q ∈ L2

0(Ω): ∃v ∈ Vε such that q = div v
}
,

Uε :=
{
v ∈ H1

0 (Ω,Rd) : D(v) = 0 in Ωεs, div v = 0 in Ωεf
}
,

Xε := Vε ×
{
C ∈ H1

n(Ω,Rd) : curl C = 0 in Ωεf
}
,

Yε := Uε ×
{
C ∈ H1

n(Ω,Rd) : curl C = 0 in Ωεf
}
.

These spaces are equipped with natural Sobolev norms. Moreover, given normed
spaces A and B, the norm of its product space A × B is defined by ‖(a, b)‖2A×B :=

‖a‖2A + ‖b‖2B for a ∈ A, b ∈ B.

This manuscript is for review purposes only.
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As we will see later, to utilize the framework presented in subsection 2.5.1, we
choose X = Xε, M = Yε, and P = Pε.

In addition, let κ−1
GR, be the norm of the embedding H→ H1, κS the norm of the

Sobolev embedding H1 → L4, and κ−1
K the constant in Korn’s inequality, respectively.

Then the main result of this paper is summarized in the following theorem.

Theorem 3.1. Suppose the data g and h are small enough such that

Re ‖g‖L2 +Al ‖h‖L2 ≤

(
min

{
Al

Rm
κGR, κK

})2

κS max {1, 2Al}
.(3.1)

Then, for ε > 0, the system (2.8) has a unique solution uε ∈ H1
0 (Ω,Rd), pε ∈ L2

0(Ω),
Bε ∈ H1

n(Ω,Rd). Moreover, there exist a constant, symmetric and elliptic fourth rank
tensor N, and two constant, symmetric and elliptic matrices M,E such that

uε −−⇀ u0 in H1(Ω,Rd), Bε −−⇀ B0 in H1(Ω,Rd), pε −−⇀ Π in L2
0(Ω)(3.2)

where u0 ∈ H1
0 (Ω,Rd), Π ∈ L2

0(Ω), and B0 ∈ H1
n(Ω,Rd) satisfy the following effective

system of equations all defined on the domain Ω,

div u0 = div B0 = 0,(
u0 · ∇

)
u0 − div

(
2Nijmn

[
D(u0)

]
ij

em ⊗ en −Π I
)

= Reg +Al
|Ys|
|Y |

curl B0 ×B0,

1

Rm
curl

(
Mjnεijk

∂B0
i

∂xk
en
)
− curl

(
Eknεijku

0
iB

0
j en
)

=
|Ys|
|Y |

h.

(3.3)

The road map of the proof of Theorem 3.1 goes as follows:
• First, we present the variational formulation for problem (2.8)–(2.11) and

prove their equivalence in subsection 3.1.
• Second, the existence and a priori estimates for the fine-scale velocity uε and

the magnetic field Bε are established in subsection 3.2, thanks to Theorem 2.1.
The first two steps are adapted from the classical theory of magnetohydrody-
namics, c.f. [30, 54, 36, 29, 35]. In particular, the presentation of those two
steps is inspired by [29, 54, 36].

• Third, in subsection 3.3, the existence and a priori estimate for the fine-scale
pressure pε are recovered by an inf-sup condition. A construction based on
the Bogovskĭı map allows us to control the norm of the pressure pε uniformly
with respect to ε, c.f. [2, 1, 21, 20, 18, 5, 41].

• Next, the two-scale homogenized problem is derived in subsection 3.4. Here,
a corrector result of two-scale convergence [3] is crucial for passing to the
limit of several integrals over a changing domain.

• Finally, the local and homogenized problems are recovered in subsection 3.5
and subsection 3.6. Explicit formulas for the effective viscosity N, the effective
magnetic reluctivity M and the effective electric conductivity E are provided
in (3.61).

3.1. Variational formulation. We define bilinear, trilinear, and linear forms
Aε(·, ·) : Xε × Xε → R, Bε(·, ·) : Xε × Pε → R, and Cε(·, ·, ·) : Xε × Xε × Xε → R,
Lε(·) : Xε → R by

Aε ((u,B), (v,C)) := 2

∫
Ωε

f

D(u) : D(v) dx
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+
Al
Rm

[∫
Ω

div B · div C dx+

∫
Ωε

s

curl B · curl C dx

]
,

Bε ((v,C), p) :=

∫
Ω

p div v dx,

Cε ((u1,C1), (u2,C2), (u3,C3)) := Re

∫
Ω

(u1 · ∇) u2 · u3 dx

−Al
∫

Ωε
s

[(curl C2 ×C1) · u3

+ (u2 ×C1) · curl C3] dx,

Lε(v,C) := Re

∫
Ω

g · v dx+Al

∫
Ωε

s

h ·C dx.

We consider the weak formulation of problem (2.8):
Find ((uε,Bε), pε) ∈ Xε ×Pε such that for all ((v,C), q) ∈ Xε ×Pε,

Aε ((uε,Bε), (v,C)) + Bε ((v,C), pε) + Cε ((uε,Bε), (uε,Bε), (v,C)) = Lε(v,C),

Bε ((uε,Bε), q) = 0.

(3.4)

Before showing that the weak formulation (3.4) is equivalent to the strong formulation
(2.8), we recall:

Lemma 3.2 (Lemma 3.17 [29]). If B ∈ H1
n(Ω,Rd), then there exists ψ ∈ H2(Ω)

such that

(3.5)

 −∆ψ = div B in Ω,
∂ψ

∂n
= 0 on ∂Ω.

In particular, ∇ψ ∈ H1
n(Ω,Rd).

Proposition 3.3. Suppose that h satisfies (2.11). Then ((uε,Bε), pε) ∈ Xε×Pε

is a weak solution of (3.4) if and only if it is a solution of (2.8)-(2.10).

Proof. The incompressibility condition (2.8b) is straightforward from the second
equation of (3.4). We rewrite the first equation of (3.4) as

2

∫
Ωε

f

D(uε) : D(v) dx+
Al
Rm

[∫
Ω

div Bε · div C dx+

∫
Ωε

s

curl Bε · curl C dx

]

+

∫
Ω

pε div v dx+Re

∫
Ω

(uε · ∇) uε · v dx

−Al
∫

Ωε
s

(curl Bε ×Bε) · v dx−Al
∫

Ωε
s

(uε ×Bε) · curl C dx

= Re

∫
Ω

g · v dx+Al

∫
Ωε

s

h ·C dx.

(3.6)

Let C = 0 and choose v ∈ C∞c (Ωεf ,Rd), then using integration by parts, we obtain

(2.8a). Setting C = 0 again and choosing v ∈ H1
0 (Ω,Rd) with D(v) = 0 on Ωεs, we

obtain the balance equations (2.9).

This manuscript is for review purposes only.
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Next, choosing v = 0 in (3.6) results in

Al
Rm

[∫
Ω

div Bε · div C dx+

∫
Ωs

curl Bε · curl C dx

]
−Al

∫
Ωs

(uε ×Bε) · curl C dx = Al

∫
Ωs

h ·C dx.

(3.7)

Let ψ as in Lemma 3.2 and select C = ∇ψ in (3.7), then by (2.11),

− Al
Rm

∫
Ω

(div Bε)2 dx = 0

so we obtain (2.8f). Therefore, (3.7) is simplified to

1

Rm

∫
Ωs

curl Bε · curl C dx−
∫

Ωs

(uε ×Bε) · curl C dx =

∫
Ωs

h ·C dx,

Choose C ∈ C∞c (Ωs,Rd) and integrate by parts, this implies (2.8e).

3.2. Existence and a priori estimates for the fine-scale velocity and the
magnetic field. First, we recall an important estimate for proving ellipticity (2.15):

Proposition 3.4 (Theorem 3.8 [30]). There exists κGR > 0 such that, for any
B ∈ H,

κGR ‖B‖2H1(Ω,Rd) ≤ ‖curl B‖2L2(Ω,Rd) + ‖div B‖2L2(Ω) .(3.8)

Lemma 3.5. The form Aε is continuous and coercive on Xε ×Xε, with coercivity

constant α independent of ε. In fact, α = min
{
Al

Rm
κGR, κK

}
> 0, where κGR is the

constant in (3.8) and κ−1
K is the constant in Korn’s inequality.

Proof. For any ((u,B) , (v,C)) in Xε × Xε, we have:

|Aε ((u,B) , (v,C))| ≤ 2 ‖D(u)‖L2(Ω,Rd×d) ‖D(v)‖L2(Ω,Rd×d)

+
Al
Rm

[
‖div B‖L2(Ω) ‖div C‖L2(Ω)

+ ‖curl B‖L2(Ω,Rd) ‖curl C‖L2(Ω,Rd)

]
≤ C

(
Ω,

Al
Rm

)
‖(u,B)‖Xε ‖(v,C)‖Xε .

Therefore, Aε is continuous. Moreover, by (3.8) and Korn’s inequality,

Aε ((u,B), (u,B)) ≥
∫

Ωf

|D(u)|2 dx+
Al
Rm

[∫
Ω

|div B|2 dx+

∫
Ωs

|curl B|2 dx

]
=

∫
Ω

|D(u)|2 dx+
Al
Rm

[∫
Ω

|div B|2 dx+

∫
Ω

|curl B|2 dx

]
≥ α ‖(u,B)‖2Xε .

Lemma 3.6. The trilinear form Cε is continuous on Xε × Xε × Xε. Moreover,
suppose ρf = ρs, then for all ((u,B), (v,C), (w,D)) ∈ Xε × Xε × Xε with div u = 0,
one has

Cε ((u,B), (v,C), (w,D)) = −Cε ((u,B), (w,D), (v,C)) .
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Proof. We write

|Cε ((u,B), (v,C), (w,D))|
≤ C (‖u‖H1 ‖v‖H1 ‖w‖H1 + ‖C‖H1 ‖B‖H1 ‖w‖H1 + ‖v‖H1 ‖B‖H1 ‖D‖H1)

≤ C ‖(u,B)‖Xε ‖(v,C)‖Xε ‖(w,D)‖Xε .

The second part is a consequence of the following identities:

(B× curl C) · v = (v ×B) · curl C,∫
U

(u · ∇) v · v dx = −1

2

∫
U

|v|2 div u dx+
1

2

∫
∂U

|v|2 u · n dHd−1,

for U = Ωεf or U = Ωεs.
Indeed, from the above identities and the definition of Cε, one has

Cε ((u,B), (v,C), (v,C)) = 0

for all (v,C) ∈ Xε; therefore,

0 = Cε ((u,B), (v −w,C−D), (v −w,C−D))

= Cε ((u,B), (v,C), (v −w,C−D))− Cε ((u,B), (w,D), (v −w,C−D))

= Cε ((u,B), (v,C), (v,C))− Cε ((u,B), (v,C), (w,D))

− {Cε ((u,B), (w,D), (v,C))− Cε ((u,B), (w,D), (w,D))}
= −Cε ((u,B), (v,C), (w,D))− Cε ((u,B), (w,D), (v,C)) .

(3.9)

We now define:

aε ((u,B); (v,C), (w,D)) := Aε ((v,C), (w,D)) + Cε ((u,B), (v,C), (w,D)) .
(3.10)

Lemma 3.7. The following properties hold:
(i) For any (v,C) in Yε, we have:

aε ((v,C); (v,C), (v,C)) ≥ α ‖(v,C)‖2Xε .(3.11)

Here α is the coercivity constant of Aε in Lemma 3.5.
(ii) If (un,Bn) weakly converges to (u,B) in Yε, then for all (v,C) in Xε we

have:

lim
n→∞

aε ((un,Bn); (un,Bn), (v,C)) = aε ((u,B); (u,B), (v,C)) .(3.12)

(iii) For all (u1,B1), (u2,B2), (v,C) and (w,D) in Xε, we have:

|aε ((u1,B1); (v,C), (w,D))− aε ((u2,B2); (v,C), (w,D))|
≤ κS max{1, 2Al} ‖(u1,B1)− (u2,B2)‖Xε ‖(v,C)‖Xε ‖(w,D)‖Xε ,

(3.13)

where κS = κS(d,Ω) is the norm of the Sobolev embedding H1 to L4.

Proof. (i) This is a direct consequence of (3.10), Lemma 3.5 and Lemma 3.6.
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(ii) Suppose (un,Bn) −−⇀ (u,B) in Yε. Write

|aε ((un,Bn); (un,Bn), (v,C)− aε ((u,B); (u,B), (v,C)))|
≤ |Aε ((un − u,Bn −B), (v,C))|

+ |Cε ((un − u,Bn −B), (un,Bn), (v,C))|
+ |Cε ((u,B), (un − u,Bn −B), (v,C))| .

(3.14)

Next, we have

Aε (un − u,Bn −B), (v,C))

= 2

∫
Ωε

f

D(un − u) : D(v) dx

+
Al
Rm

[∫
Ω

div(Bn −B) · div C dx+

∫
Ωε

s

curl(Bn −B) · curl C dx

]

= 2

∫
Ω

D(un − u) : D(v) dx

+
Al
Rm

[∫
Ω

div(Bn −B) · div C dx+

∫
Ωε

s

curl(Bn −B) · curl C dx

]
,

and thus, for each fixed ε > 0, the right-hand side converges to 0 as n→∞.
For the second term on the right hand side of (3.14), we have by Hölder’s
inequality:

|Cε ((un − u,Bn −B), (un,Bn), (v,C))|

:=

∣∣∣∣∫
Ω

((un − u) · ∇) un · v dx

−Al
∫

Ωε
s

[(curl Bn × (Bn −B)) · v + (un × (Bn −B)) · curl C] dx

∣∣∣∣∣ ,
≤ ‖un − u‖L4 ‖∇un‖L2 ‖v‖L4

+ 2Al [‖∇Bn‖L2 ‖Bn −B‖L4 ‖v‖L4 + ‖un‖L4 ‖Bn −B‖L4 ‖curl C‖L2 ] .

By the Rellich–Kondrachov theorem, we have that, up to a subsequence,
(un,Bn) strongly converges to (u,B) in L4(Ω,Rd) × L4(Ω,Rd). Therefore,
the estimate above shows that the second term on the right hand side of
(3.14) also converges to 0 as n→∞.
The last term on the right hand side of (3.14) is:

|Cε ((u,B), (un − u,Bn −B), (v,C))| :=
∣∣∣∣∫

Ω

(u · ∇) (un − u) · v dx

−Al
∫

Ωε
s

(curl(Bn −B)×B) · v dx−
∫

Ωε
s

((un − u)×B) · curl C dx

∣∣∣∣∣ ,
The first and the last integrals converge to 0 by a similar argument as above.
The middle one converges to 0 due to the weak convergence Bn −−⇀ B in

H1(Ω,Rd).
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(iii) From definition (3.10) and the Sobolev embedding H1 to L4, where the norm
of the embedding is denoted by κS(d,Ω), we obtain

|aε ((u1,B1); (v,C), (w,D))− aε ((u2,B2); (v,C), (w,D))|
= |Cε ((u1,B1); (v,C), (w,D))− Cε ((u2,B2); (v,C), (w,D))|
= |Cε ((u1 − u2,B1 −B2); (v,C), (w,D))|
≤ ‖u1 − u2‖L4 ‖∇v‖L2 ‖w‖L4 + 2Al ‖∇C‖L2 ‖B1 −B2‖L4 ‖w‖L4

+ 2Alµs ‖v‖L4 ‖B1 −B2‖L4 ‖∇D‖L2

≤ κS(d,Ω) max{1, 2Al} [‖u1 − u2‖H1 ‖∇v‖H1 ‖w‖H1

+ ‖∇C‖H1 ‖B1 −B2‖H1 ‖w‖H1 + ‖v‖H1 ‖B1 −B2‖H1 ‖∇D‖H1 ]

≤ κS(d,Ω) max{1, 2Al} ‖(u1,B1)− (u2,B2)‖Xε ‖(v,C)‖Xε ‖(w,D)‖Xε .

From Theorem 2.1, Lemma 3.5, Lemma 3.6 and Lemma 3.7, we conclude that

Proposition 3.8. Let α = min
{
Al

Rm
κGR, κK

}
be the coercivity constant of Aε

in Lemma 3.5 and κS = κS(d,Ω) be the norm of the Sobolev embedding H1 to L4.
Then the variational problem (3.4) has a solution ((uε,Bε), pε) ∈ Xε ×Pε such that:

‖(uε,Bε)‖Xε ≤
‖Lε‖

(Yε)
′

α
.(3.15)

Moreover, if

κS max{1, 2Al} ‖Lε‖(Yε)
′ ≤ α2,(3.16)

then the solution is unique.

By Hölder’s inequality:

|Lε(v,C)| ≤ Re ‖g‖L2 ‖v‖L2 +Al ‖h‖L2 ‖C‖L2

≤ 2 (Re ‖g‖L2 +Al ‖h‖L2) ‖(v,C)‖Xε .

Thus, from (3.15), we obtain the following a priori estimate:

‖(uε,Bε)‖Xε ≤
2

α
(Re ‖g‖L2 +Al ‖h‖L2) ,(3.17)

where the right-hand side is surely independent of ε.

3.3. Existence and a priori estimate for the fine-scale pressure. The
following result is adapted from [2, Theorem 4.1] (see also [1, Theorem 2.6], and [26,
Theorem III.3.1]),

Theorem 3.9. Let Ω ⊂ Rd be a Lipschitz domain with Lipschitz constant `.
Then, there exists a bounded linear operator Bog : L2

0(Ω) → H1
0 (Ω,Rd), f 7→ Bog f ,

called the Bogovskĭı map, such that, for all f ∈ L2
0(Ω),

div Bog f = f.(3.18)

Moreover, the norm ‖Bog‖ depends only on d, ` and diam(Ω).

For p ∈ Pε, there exists v ∈ Vε such that p = div v. Thus p = 0 in Ωεs since
D(v) = 0 in Ωεs. Adapting the construction in [21, Step 1, Proof of Lemma 3.3] (see
also [20, Step 4, Proof of Proposition 2.1], [18, Lemma 3.2], [5, Theorem 2.1], [41,
Lemma 4.8]) and using Theorem 3.9, we obtain
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Lemma 3.10. For each p ∈ Pε, there exists v ∈ H1
0 (Ω,Rd) such that

1. v is constant on Y εi,s for all i (and thus v ∈ Vε).
2. div v = p.
3. ‖v‖H1

0
≤ ‖Bog‖ ‖p‖L2 .

Note that we don’t necessarily have v = Bog p. Actually, v is obtained by modifying
Bog p so that 1 and 3 are satisfied.

Lemma 3.11. The space Pε defined in section 3 is a Hilbert space with respect to
the L2−inner product.

Proof. Let the space Pε be equipped with the L2−inner product. It is well-known
that L2

0(Ω) is a Hilbert space with respect to this inner product (see [12, Lemma
IV.1.9]). Since Pε is a subset of L2

0(Ω) closed under addition and scalar multiplication,
we only need to show that Pε is closed. For that, let Pε 3 qn → q0 ∈ L2

0(Ω), we will
prove that q0 ∈ Pε.

Since qn ∈ Pε = div(Vε), by Lemma 3.10, we have qn = div vn, for some vn ∈ Vε

and

‖vn‖H1
0 (Ω,Rd) ≤ ‖Bog‖ ‖qn‖L2

0(Ω) .

Since qn converges to q0 in L2
0(Ω), it is bounded in L2

0(Ω), which implies that
vn is also bounded in H1

0 (Ω,Rd). On the one hand, since H1
0 (Ω,Rd) is reflexive,

the Eberlain–Šmulian theorem states that, up to a subsequence, there exists a v0 ∈
H1

0 (Ω,Rd) such that vn ⇀ v0 weakly in H1
0 (Ω,Rd). Testing this convergence with

Q ∈ C∞c (Ω,Rd×d), with suppQ ⊂ Ωεs shows that v0 ∈ Vε. On the other hand, by
letting ψ ∈ C∞c (Ω), we observe that:∫

Ω

(q0 − div v0)ψ dx =

∫
Ω

(q0 − qn)ψ dx+

∫
Ω

(div vn − div v0)ψ dx
n→∞−−−−→ 0.

Therefore, q0 = div v0, which means that q0 ∈ Pε.

Lemma 3.12. The bilinear form Bε is continuous on Xε × Pε and satisfies the
inf-sup condition

∃β > 0 such that inf
q∈Pε\{0}

sup
(v,C)∈Xε\{(0,0)}

Bε ((v,C), q)

‖(v,C)‖Xε ‖q‖Pε

≥ β.(3.19)

Moreover, the constant β is independent of ε. In particular, one can choose β =
‖Bog‖−1

, where Bog is the Bogovskĭı map defined in Theorem 3.9.

Proof. Recall that Pε inherits the L2−norm from L2
0(Ω). We have:

|Bε ((v,C), q)| ≤ C ‖q‖L2 ‖div v‖L2 ≤ C ‖q‖Pε ‖(v,C)‖Xε ,

so Bε is continuous on Xε ×Pε.
Since Pε is a Hilbert space by Lemma 3.11, there exists a Riesz isomorphism

ıR : Pε → (Pε)
′
. Let B := ıR ◦ div then B is a continuous surjective map from Vε to

(Pε)
′
. Moreover, for v ∈ Vε and q ∈ Pε,

(Pε)′〈Bv, p〉Vε = (Pε)′〈ıR (div v) , q〉Vε = (div v, q)L2 = Bε ((v,C), q) ,(3.20)

so B is the operator associated to Bε. Therefore, the inf-sup condition follows by
Proposition 2.3.
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Fix a function q ∈ Pε, denote by vq the corresponding field obtained from
Lemma 3.10. We have

sup
(v,C)∈Xε\{(0,0)}

Bε ((v,C), q)

‖(v,C)‖Xε ‖q‖Pε

≥ sup
(v,C)∈Xε\{(0,0)}

C=0

Bε ((v,C), q)

‖(v,C)‖Xε ‖q‖Pε

= sup
v∈Vε

∫
Ω
q div v dx

‖v‖H1
0
‖q‖L2

≥
∫

Ω
q div vq dx

‖vq‖H1
0
‖q‖L2

=
‖q‖L2

‖vq‖H1
0

≥ 1

‖Bog‖
.

(3.21)

Therefore, we choose β = ‖Bog‖−1
, which is independent of ε.

Proposition 3.8 and Lemma 3.12 imply the existence and uniqueness of the fine-
scale pressure pε. Moreover, from (3.19) (with β = ‖Bog‖−1

), (3.4), (3.17), we have

‖pε‖L2 ≤ ‖Bog‖ sup
(v,C)∈Xε\{(0,0)}

Bε ((v,C), q)

‖(v,C)‖Xε

≤ ‖Bog‖ sup
(v,C)∈Xε\{(0,0)}

1

‖(v,C)‖Xε

{|Aε ((uε,Bε), (v,C))|

+ |Cε ((uε,Bε), (uε,Bε), (v,C))|+ |Lε(v,C)|}

≤ C
(
‖(uε,Bε)‖Xε + ‖(uε,Bε)‖2Xε +Re ‖g‖L2 +Al ‖h‖L2

)
.

In particular, by (3.17), we obtain

‖pε‖L2 ≤ C (Re ‖g‖L2 +Al ‖h‖L2 + 1)
2
,(3.22)

where C is independent of ε.

3.4. The two-scale homogenized problem. By (3.17) and (3.22), there exist
u0 ∈ H1

0 (Ω,Rd),B0 ∈ H1
n(Ω,Rd), u1 ∈ L2

(
Ω, H1

per(Y,Rd)/R
)
,B1 ∈ L2

(
Ω, H1

per(Y,Rd)/R
)

and p0 ∈ L2
0(Ω× Y ) such that, up to a subsequence:

uε −−⇀ u0, Bε −−⇀ B0 weakly in H1(Ω,Rd),

uε
2−−⇀ u0, Bε 2−−⇀ B0 two-scale,

∇uε
2−−⇀ ∇u0(x) +∇yu1(x, y), ∇Bε 2−−⇀ ∇B0(x) +∇yB1(x, y) two-scale,

pε
2−−⇀ p0 two-scale.

(3.23)

Let v = v0(·) + εv1
(
·, ·ε
)

and C = C0(·) + εC1
(
·, ·ε
)
, with v0,C0 ∈ D(Ω,Rd)

and v1,C1 ∈ D
(
Ω, C∞per(Y,Rd)

)
. Let q = q0(·) + εq1

(
·, ·ε
)

with q0 ∈ D(Ω) and

q1 ∈ D
(
Ω, C∞per(Y )

)
.

The effective form corresponding to Aε.

By definition and (2.5c),

Aε ((uε,Bε), (v,C))

= 2

∫
Ωε

f

D(uε) : D(v) dx+
Al
Rm

(∫
Ω

div Bε · div C dx+

∫
Ωε

s

curl Bε · curl C dx

)

= 2

∫
Ω

D(uε) : D(v) dx+
Al
Rm

(∫
Ω

div Bε · div C dx+

∫
Ωε

s

curl Bε · curl C dx

)
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=: 2Q1 +
Al
Rm

(Q2 +Q3)

Then (3.23) implies

lim
ε→0

Q1 = lim
ε→0

∫
Ω

D(uε) : D(v) dx

= lim
ε→0

∫
Ω

D(uε) :
[
D(v0)(x) + εD

(
v1
) (
x,
x

ε

)
+ Dy(v1)

(
x,
x

ε

)]
dx

=
1

|Y |

∫
Ω

∫
Y

[
D(u0) + Dy(u1)

]
:
[
D(v0) + Dy(v1)

]
dy dx.

(3.24)

Similarly, we have

lim
ε→0

Q2 = lim
ε→0

∫
Ω

div Bε · div C dx

=
1

|Y |

∫
Ω

∫
Y

(
div B0 + divy B1

)
·
(
div C0 + divy C1

)
dy dx.

(3.25)

To compute the limit of the integral Q3, we make use of the following limiting
behaviors of the domain Ωεs, which varies as ε goes to 0. Clearly,

1Ωε
s

2−−⇀ 1Ω×Ys
and lim

ε→0

∥∥1Ωε
s

∥∥
L2(Ω)

= ‖1Ω×Ys
‖L2(Ω×Y ) .(3.26)

Since 1Ω×Ys
∈ L2

per (Y,C(Ω)), we obtain from Theorem 2.6 that

lim
ε→0

∥∥∥1Ωε
s
(x)− 1Ω×Ys

(
x,
x

ε

)∥∥∥
L2(Ω)

= 0.(3.27)

Now we write

Q3 =

∫
Ωε

s

curl Bε(x) · curl C0(x) dx+ ε

∫
Ωε

s

curl Bε(x) · curly C1
(
x,
x

ε

)
dx

+

∫
Ωε

s

curl Bε · curly C1
(
x,
x

ε

)
dx

=: L1 + L2 + L3.

Clearly, limε→0 L2 = 0. By (3.26), (3.23) and (2.22) of Theorem 2.6 we have

lim
ε→0

L1 = lim
ε→0

∫
Ω

1Ωε
s
(x) curl Bε(x) · curl C0(x) dx

=
1

|Y |

∫
Ω

∫
Ys

(
curl B0(x) + curly B1(x, y)

)
· curl C0(x) dy dx.

And finally, for L3, we have

L3 =

∫
Ω

curl Bε(x) ·
(
1Ωε

s
(x)− 1Ω×Ys

(
x,
x

ε

))
curly C1

(
x,
x

ε

)
dx

+

∫
Ω

curl Bε(x) · 1Ω×Ys

(
x,
x

ε

)
curly C1

(
x,
x

ε

)
dx,
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For the first integral above, we obtain∣∣∣∣∫
Ω

curl Bε(x) ·
(
1Ωε

s
(x)− 1Ω×Y

(
x,
x

ε

))
curly C1

(
x,
x

ε

)
dx

∣∣∣∣
≤ C

∥∥∇yC1
∥∥
L∞
‖∇Bε‖L2

∥∥∥1Ωε
s
(x)− 1Ω×Ys

(
x,
x

ε

)∥∥∥
L2
−−→ 0

as ε→ 0 due to (3.27) and Hölder’s inequality. By the latter and (3.23), we have

lim
ε→0

L3 = lim
ε→0

∫
Ω

curl Bε(x) · 1Ω×Ys curly C1
(
x,
x

ε

)
dx

=
1

|Y |

∫
Ω

∫
Ys

(
curl B0(x) + curly B1(x, y)

)
· curly C1(x, y) dy dx.

In conclusion, we have

lim
ε→0

Q3 =
1

|Y |

∫
Ω

∫
Ys

(
curl B0 + curly B1

)
·
(
curl C0 + curly C1

)
dy dx.(3.28)

From (3.24), (3.25) and (3.28), the effective form A0, corresponding to the limit
as ε→ 0 of Aε, is given by

A0 :=
2

|Y |

∫
Ω

∫
Y

(
D(u0) + Dy(u1)

)
:
[
D(v0) + Dy(v1)

]
dy dx

+
Al
Rm

{
1

|Y |

∫
Ω

∫
Y

(
div B0 + divy B1

)
·
(
div C0 + divy C1

)
dy dx

+
1

|Y |

∫
Ω

∫
Ys

(
curl B0 + curly B1

)
·
(
curl C0 + curly C1

)
dy dx

}
.

(3.29)

The effective forms corresponding to Bε and Lε.

From the last limit of (3.23), we have

lim
ε→0

Bε ((v,C), pε) = lim
ε→0

∫
Ω

pε div v dx

= lim
ε→0

∫
Ω

pε(x)
(

div v0(x) + εdiv v1
(
x,
x

ε

)
+ divy v1

(
x,
x

ε

))
dx

=
1

|Y |

∫
Ω

∫
Y

p0
(
div v0 + divy v1

)
dy dx.

(3.30)

Moreover,

lim
ε→0

Bε ((uε,Bε) , q) = lim
ε→0

∫
Ω

q div uε dx

=
1

|Y |

∫
Ω

∫
Y

q0(x)
(
div u0(x) + divy u1(x, y)

)
dy dx.

(3.31)

From (3.26), we have

lim
ε→0

Lε(v,C) = lim
ε→0

(
Re

∫
Ω

g · v dx+Al

∫
Ωε

s

h ·C dx

)

= Re

∫
Ω

g · v0 dx+Al
|Ys|
|Y |

∫
Ω

h ·C0 dx.

(3.32)
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The effective form corresponding to Cε.

Recall that

Cε ((uε,Bε), (uε,Bε), (v,C))

= Re

∫
Ω

(uε · ∇) uε · v dx

−Al
∫

Ωε
s

(curl Bε ×Bε) · v dx−Al
∫

Ωε
s

(uε ×Bε) · curl C dx

=: ReI1 −AlI2 −AlI3.

• To obtain limε→0 I1, we split

I1 =

∫
Ω

(uε · ∇) uε · v dx

=

∫
Ω

(
(uε − u0) · ∇

)
uε · v dx+

∫
Ω

(
u0 · ∇

)
uε · v dx

=: J1 + J2.

(3.33)

From (3.17) and (3.23), we have

lim
ε→0
|J1| ≤ lim

ε→0

∥∥uε − u0
∥∥
L2 ‖∇uε‖L2 ‖v‖L∞

≤ lim
ε→0

∥∥uε − u0
∥∥
L2

1

α
(Re ‖g‖L2 +Al ‖h‖L2) ‖v‖L∞ = 0.

From the above, (3.23) and since (uε · ∇) uε = uεi
∂
∂xi

uε, we obtain

lim
ε→0

I1 = lim
ε→0

J2 = lim
ε→0

∫
Ω

uεi (x)
∂

∂xi
uε(x) ·

(
v0(x) + εv1

(
x,
x

ε

))
dx

=
1

|Y |

∫
Ω

∫
Y

u0
i (x)

(
∂

∂xi
u0(x) +

∂

∂yi
u1(x, y)

)
· v0(x) dy dx.

(3.34)

• Similarly, to obtain limε→0 I2, we split

I2 =

∫
Ωε

s

(curl Bε ×Bε) · v dx

=

∫
Ωε

s

[
curl Bε ×

(
Bε −B0

)]
· v dx+

∫
Ωε

s

(
curl Bε ×B0

)
· v dx

=: K1 +K2.

From (3.17) and (3.23), we have

lim
ε→0
|K1| = lim

ε→0
‖curl Bε‖L2

∥∥Bε −B0
∥∥
L2 ‖v‖L∞

≤ lim
ε→0

2 ‖∇Bε‖L2

∥∥Bε −B0
∥∥
L2 ‖v‖L∞

≤ lim
ε→0

2
1

α
(Re ‖g‖L2 +Al ‖h‖L2)

∥∥Bε −B0
∥∥
L2 ‖v‖L∞ = 0.
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From the above, (3.23), (3.26) and (2.22) of Theorem 2.6, we obtain

lim
ε→0

I2 = lim
ε→0

K2

= lim
ε→0

∫
Ω

1Ωε
s
(x)
(
curl Bε(x)×B0(x)

)
·
(
v0(x) + εv1

(
x,
x

ε

))
dx

=
1

|Y |

∫
Ω

∫
Ys

(
curl B0(x) + curly B1(x, y)

)
×B0(x) · v0(x) dy dx.

• Finally, to obtain limε→0 I3:

I3 =

∫
Ωε

s

(uε(x)×Bε(x)) ·
(

curl C0(x) + ε curl C1
(
x,
x

ε

)
+ curly C1

(
x,
x

ε

))
dx

=

∫
Ω

1Ωε
s

(uε(x)×Bε(x)) · curl C0(x) dx

+

∫
Ω

1Ωε
s

(uε(x)×Bε(x)) · curly C1
(
x,
x

ε

)
dx

=: M1 +M2.

By the Rellich–Kondrachov theorem, we have uε and Bε strongly converge
to u0 and B0 in L4(Ω,Rd), respectively. Moreover, since C0 is smooth, we
have (uε ×Bε) · curl C0 strongly converges to

(
u0 ×B0

)
· curl C0 in L2. Also

1Ωε
s
−−⇀ 1

|Y |
∫
Y
1Ω×Ys

dy in L2, so

lim
ε→0

M1 =
1

|Y |

∫
Ω

∫
Ys

(
u0(x)×B0(x)

)
· curl C0(x) dy dx.

Next, rewrite M2 as

M2 =

∫
Ω

1Ωε
s

(
uε(x)×Bε(x)− u0(x)×B0(x)

)
· curly C1

(
x,
x

ε

)
dx

+

∫
Ω

1Ωε
s

(
u0(x)×B0(x)

)
· curly C1

(
x,
x

ε

)
dx

Since uε ×Bε strongly converges to u0 ×B0 in L2, we have∣∣∣∣∫
Ω

1Ωε
s

(
uε(x)×Bε(x)− u0(x)×B0(x)

)
· curly C1

(
x,
x

ε

)
dx

∣∣∣∣
≤
∥∥uε ×Bε − u0 ×B0

∥∥
L2

∥∥curly C1
∥∥
L∞
−−→ 0 as ε→ 0.

Thus, using 1Ωε
s

2−−⇀ 1Ω×Ys , we obtain

lim
ε→0

M2 =
1

|Y |

∫
Ω

∫
Ys

(
u0(x)×B0(x)

)
· curly C1(x, y) dy dx.

Therefore,

lim
ε→0

I3 =
1

|Y |

∫
Ω

∫
Ys

(
u0(x)×B0(x)

)
·
(
curl C0(x) + curly C1(x, y)

)
dy dx.

(3.35)
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Summary.
We now collect all relevant results obtained above in order to derive the two-scale
homogenized system. In the weak formulation (3.4), we choose v = v0(·) + εv1

(
·, ·ε
)
,

C = C0(·) + εC1
(
·, ·ε
)
, and q = q0 (·) + q1

(
·, ·ε
)
, with v0,C0 ∈ D(Ω,Rd), q0 ∈ D(Ω)

and v1,C1 ∈ D
(
Ω, C∞per(Y,Rd)

)
, q1 ∈ D

(
Ω, C∞per(Y )

)
. Then, letting ε → 0, we

obtain

2

|Y |

∫
Ω

∫
Y

(
D(u0(x)) + Dy(u1(x, y))

)
:
(
D(v0(x)) + Dy(v1(x, y))

)
dy dx

(3.36)

+
Al
Rm

{
1

|Y |

∫
Ω

∫
Y

(
div B0(x) + divy B1(x, y)

)
·
(
div C0(x) + divy C1(x, y)

)
dy dx

+
1

|Y |

∫
Ω

∫
Ys

(
curl B0(x) + curly B1(x, y)

)
·
(
curl C0(x) + curly C1(x, y)

)
dy dx

}
+

1

|Y |

∫
Ω

∫
Y

p0(x, y)
(
div v0(x) + divy v1(x, y)

)
dy dx

+Re
1

|Y |

∫
Ω

∫
Y

u0
i (x)

(
∂

∂xi
u0(x) +

∂

∂yi
u1(x, y)

)
· v0(x) dy dx

−Al
1

|Y |

∫
Ω

∫
Ys

(
curl B0(x) + curly B1(x, y)

)
×B0(x) · v0(x) dy dx

−Al
1

|Y |

∫
Ω

∫
Ys

(
u0(x)×B0(x)

)
·
(
curl C0(x) + curly C1(x, y)

)
dy dx

= Re

∫
Ω

g(x) · v0(x) dx+Al
|Ys|
|Y |

∫
Ω

h(x) ·C0(x) dx,

and

1

|Y |

∫
Ω

∫
Y

q0(x)
(
div u0(x) + divy u1(x, y)

)
dy dx = 0.(3.37)

Finally, testing (2.8b), (2.8c), (2.8d) and (2.8f) with suitable test functions and ap-
plying (3.23), we obtain

div u0 = 0 in Ω,

div B0 = 0 in Ω,

divy u1 = 0 in Ω× Y,
D
(
u0
)

+ Dy
(
u1
)

= 0 in Ω× Ys,
divy B1 = 0 in Ω× Y,

curl B0 + curly B1 = 0 in Ω× Yf .

(3.38)

These identities allow us to simplify (3.36)-(3.37) in later calculations.
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3.5. The local problem. The local problem is derived from (3.36)-(3.37) by
letting v0 = C0 = 0 and q0 = 0,

2

|Y |

∫
Ω

∫
Y

(
D(u0(x)) + Dy(u1(x, y))

)
: Dy(v1(x, y)) dy dx

+
Al
Rm

{
1

|Y |

∫
Ω

∫
Y

(
div B0(x) + divy B1(x, y)

)
· divy C1(x, y) dy dx

+
1

|Y |

∫
Ω

∫
Ys

(
curl B0(x) + curly B1(x, y)

)
· curly C1(x, y) dy dx

}
+

1

|Y |

∫
Ω

∫
Y

p0(x, y) divy v1(x, y) dy dx

−Al
1

|Y |

∫
Ω

∫
Ys

(
u0(x)×B0(x)

)
· curly C1(x, y) dy dx

= 0.

(3.39)

Letting v1(x, y) = w(y)ϕ(x) and C1(x, y) = G(y)ϕ(x), for w,G ∈ H1
per(Y,Rd)

and ϕ ∈ D(Ω), we deduce from (3.39) that, for a.e. x ∈ Ω,

2

∫
Y

(
D(u0(x)) + Dy(u1(x, y))

)
: Dy(w(y)) dy

+
Al
Rm

{∫
Y

(
div B0(x) + divy B1(x, y)

)
· divy G(y) dy

+

∫
Ys

(
curl B0(x) + curly B1(x, y)

)
· curly G(y) dy

}
+

∫
Y

p0(x, y) divy w(y) dy −Al
∫
Ys

(
u0(x)×B0(x)

)
· curly G(y) dy

= 0.

(3.40)

Define

XY :=

(ω,Θ) ∈ H1
per(Y,Rd)×H1

per(Y,Rd)

∣∣∣∣∣∣∣
divy ω = 0 in Y

Dy(ω) = 0 in Ys

curly Θ = 0 in Yf


So for (w,G) ∈ XY , from (3.40) the following holds a.e. x ∈ Ω,

2

∫
Y

(
D(u0(x)) + Dy(u1(x, y))

)
: Dy(w(y)) dy

+
Al
Rm

{∫
Y

(
div B0(x) + divy B1(x, y)

)
· divy G(y) dy

+

∫
Ys

(
curl B0(x) + curly B1(x, y)

)
· curly G(y) dy

}
−Al

∫
Ys

(
u0(x)×B0(x)

)
· curly G(y) dy

= 0.

(3.41)
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or equivalently,

2

∫
Y

Dy(u1) : Dy(w) dy +
Al
Rm

{∫
Y

divy B1 · divy G dy +

∫
Ys

curly B1 · curly G dy

}
= −

∫
Y

D(u0) : Dy(w) dy

− Al
Rm

{∫
Y

div B0 · divy G dy +

∫
Ys

curl B0 · curly G dy

}
+Al

∫
Ys

(
u0(x)×B0(x)

)
· curly G(y) dy.

(3.42)

Clearly, for fix x ∈ Ω, problem (3.42) has a unique solution
(
u1(x, ·),B1(x, ·)

)
∈

XY , because the left hand side of (3.42) is coercive, which in turn, comes from the
inequality (3.8) (note that this estimate also holds for a convex polyhedron, which is
why we can replace Ω by Y ). Therefore, as long as u0 and B0 are well-defined, u1

and B1 are independent of the choice of subsequences uε and Bε in (3.23). Finally,
p0(x, ·) ∈ L2

0(Y ) is also unique due to the inf-sup condition (repeating the first part
of the proof of Lemma 3.12).

First, we calculate u1 in terms of u0. In (3.41), let G = 0, then∫
Y

(
D
(
u0(x)

)
+ Dy

(
u1(x, y)

))
: Dy (w(y)) dy = 0(3.43)

with w ∈ H1
per

(
Y,Rd

)
satisfying divy w = 0 in Y and Dy(w) = 0 in Ys. For 1 ≤

i, j ≤ d, define the function Uij := yjδikek; then, by direct calculation, Dy(Uij) =
1
2 (δjmδin + δjnδim) en ⊗ em. Let ωij ∈ H1

per(Y,Rd) and πij ∈ L2
0(Y ) be the solutions

of

divy
(
Dy
(
Uij − ωij

)
− πij

)
= 0 in Yf ,

divy ω
ij = 0 in Yf ,

Dy
(
Uij − ωij

)
= 0 in Ys,∫

Γ

(
Dy
(
Uij − ωij

)
− πijI

)
nΓ dHd−1 = 0,∫

Γ

(
Dy
(
Uij − ωij

)
− πijI

)
nΓ × nΓ dHd−1 = 0.

(3.44)

Then, integrating by parts (3.43) and using (3.38) and (3.44), we see that u1 is
given by

u1(x, y) = −
[
D
(
u0(x)

)]
ij
ωij(y).(3.45)

We now calculate B1 in terms of B0. In (3.41), let w = 0 and use (3.38) to obtain∫
Ys

(
curl B0(x)−Rmu0(x)×B0(x) + curly B1(x, y)

)
· curly G(y) dy = 0,(3.46)

with G ∈ H1
per(Y,Rd) satisfying curly G = 0 in Yf . For 1 ≤ j ≤ d, let Θj ∈
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H1
per(Y,Rd) and Ψj ∈ H1

per(Y,Rd) be the solutions of

curly curly
(
Θj + ej

)
= 0 in Ys,(

Θj + ej
)
· nΓ = 0 on Γ,

divy Θj = 0 in Y,

curly
(
Θj + ej

)
= 0 in Yf ,

curly
(
Θj + ej

)
× nΓ = 0 on Γ,

(3.47)

and

curly curly
(
Ψj +Rmej

)
= 0 in Ys,(

Ψj +Rmej
)
· nΓ = 0 on Γ,

divy Ψj = 0 in Y,

curly Ψj = 0 in Yf ,

curly
(
Ψj +Rmej

)
× nΓ = 0 on Γ,

(3.48)

respectively. Then, integrating by parts (3.46), we see that B1 is given by

B1(x, y) = εijk
∂B0

i

∂xk
(x)Θj(y)− εikju0

i (x)B0
k(x)Ψj(y),(3.49)

here εijk is the (Levi-Civita) permutation symbol.
Now, we find a formula for p0 ∈ L2

0(Ω× Y ). Suppose

p0(x, y) = 2
[
D
(
u0(x)

)]
ij
πij(y) + Π(x, y)(3.50)

for some Π ∈ L2
0(Ω × Y ). We claim Π is independent of y. To see this, substitute

(3.45), (3.49) and use the local problems (3.44), (3.47), and (3.48) in (3.40) to obtain

∫
Y

p0(x, y) divy w(y) dy = 0, for any w ∈ H1
per(Y ).

Substituting (3.50) into the above equation and integrating by parts, all terms cancel
by periodicity, except

∫
Y

∇yΠ0(x, y) ·w(y) dy = 0, for any w ∈ H1
per(Y ).

Therefore, ∇yΠ(x, y) = 0, i.e. Π is independent of y, and we write Π(x, y) ≡ Π(x).
Clearly, pε −−⇀ Π in L2(Ω).

3.6. The homogenized problem. The variational form of the homogenized
equation is derived by letting v1 = C1 = 0 and q1 = 0 in (3.36)–(3.37), and then
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simplifying it by using (3.38):

2

|Y |

∫
Ω

∫
Y

(
D(u0(x)) + Dy(u1(x, y))

)
: D(v0(x)) dy dx

+
Al
Rm

1

|Y |

∫
Ω

∫
Ys

(
curl B0(x) + curly B1(x, y)

)
· curl C0(x) dy dx

+
1

|Y |

∫
Ω

∫
Y

p0(x, y) div v0(x) dy dx

+Re
1

|Y |

∫
Ω

∫
Y

u0
i (x)

(
∂

∂xi
u0(x) +

∂

∂yi
u1(x, y)

)
· v0(x) dy dx

−Al
1

|Y |

∫
Ω

∫
Ys

curl B0(x)×B0(x) · v0(x) dy dx

−Al
1

|Y |

∫
Ω

∫
Ys

(
u0(x)×B0(x)

)
· curl C0(x) dy dx

= Re

∫
Ω

g(x) · v0(x) dx+Al
|Ys|
|Y |

∫
Ω

h(x) ·C0(x) dx,

(3.51)

In (3.51), let C0 = 0 and v0 ∈ H1
0 (Ω,Rd), we obtain

2

|Y |

∫
Ω

∫
Y

(
D(u0(x)) + Dy(u1(x, y))

)
: D(v0(x)) dy dx

+
1

|Y |

∫
Ω

∫
Y

p0(x, y) div v0(x) dy dx

+Re
1

|Y |

∫
Ω

∫
Y

u0
i (x)

(
∂

∂xi
u0(x) +

∂

∂yi
u1(x, y)

)
· v0(x) dy dx

−Al
|Ys|
|Y |

∫
Ω

curl B0(x)×B0(x) · v0(x) dx

= Re

∫
Ω

g(x) · v0(x) dx.

(3.52)

Define the effective viscosity N, which is a fourth-rank tensor, by

Nijmn :=
1

|Y |

∫
Y

[
Dy
(
Uij − ωij

)]
mn

dy.(3.53)

Substituting (3.45) and (3.50) into (3.52), we obtain

2

∫
Ω

Nijmn
[
D
(
u0
)]
ij

[
D
(
v0
)]
mn

dx+

∫
Ω

(
u0 · ∇

)
u0 · v0 dx+

∫
Ω

Π div v0 dx

−Al
|Ys|
|Y |

∫
Ω

curl B0 ×B0 · v0 dx = Re

∫
Ω

g · v0 dx.

(3.54)

Here, we use the fact that
∫
Y

∂
∂yi
ωij dy = 0 due to periodicity, and that

∫
Y
πij dy = 0

because πij ∈ L2
0(Y ). Integrating by parts (3.54), we have, on Ω, that

(
u0 · ∇

)
u0 − div

(
2Nijmn

[
D(u0)

]
ij

em ⊗ en −Π I
)

= Reg +Al
|Ys|
|Y |

curl B0 ×B0.

(3.55)
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In (3.51), letting v0 = 0 and C0 ∈ H1
n(Ω,Rd), we obtain

Al
Rm

1

|Y |

∫
Ω

∫
Ys

(
curl B0(x) + curly B1(x, y)

)
· curl C0(x) dy dx

−Al
1

|Y |

∫
Ω

∫
Ys

(
u0(x)×B0(x)

)
· curl C0(x) dy dx

= Al
|Ys|
|Y |

∫
Ω

h(x) ·C0(x) dx.

(3.56)

Define the matrices M and E, which represent the effective magnetic reluctivity and
the effective electric conductivity, respectively, by

Mjq :=
1

|Y |

∫
Ys

[(
curly Θj + ej

)]
q

dy, Ekq :=
1

|Y |

∫
Ys

[(
curly Ψk + ek

)]
q

dy.

(3.57)

Then, by substituting (3.49) into (3.56), and using (3.57), we obtain

1

Rm

∫
Ω

Mjqεijkεpqr
∂B0

i

∂xk

∂C0
p

∂xr
dx−

∫
Ω

Ekqεijkεpqru
0
iB

0
j

∂C0
p

∂xr
dx =

|Ys|
|Y |

∫
Ω

h ·C0 dx.

(3.58)

Using integration by parts, with C0 ∈ H1
n(Ω,Rd), we conclude that, on Ω,

1

Rm
curl

(
Mjnεijk

∂B0
i

∂xk
en
)
− curl

(
Eknεijku

0
iB

0
j en
)

=
|Ys|
|Y |

h.(3.59)

In summary, from (3.38), (3.55) and (3.59), we obtain the macroscopic system
that is about finding u0 ∈ H1

0 (Ω,Rd), Π ∈ L2
0(Ω), and B0 ∈ H1

n(Ω,Rd) satisfying on
Ω,

div u0 = div B0 = 0,(
u0 · ∇

)
u0 − div

(
2Nijmn

[
D(u0)

]
ij

em ⊗ en −Π I
)

= Reg +Al
|Ys|
|Y |

curl B0 ×B0,

1

Rm
curl

(
Mjnεijk

∂B0
i

∂xk
en
)
− curl

(
Eknεijku

0
iB

0
j en
)

=
|Ys|
|Y |

h.

(3.60)

Here N, and M, E are defined in (3.53), and (3.57), respectively. It is worth to
mention that by using the variational formulation of the local problem (3.44) and
(3.47)-(3.48), we have

Nijmn =
1

|Y |

∫
Y

Dy
(
Uij − ωij

)
: Dy (Umn − ωmn) dy,

Mij =
1

|Y |

∫
Ys

curly
(
Θi + ei

)
· curly

(
Θj + ej

)
dy,

Eij =
1

|Y |

∫
Ys

curly
(
Ψi + ei

)
· curly

(
Ψj + ej

)
dy.

(3.61)

Thus, the tensors are symmetric and elliptic. The well-posedness of system (3.60)
now follows from the classical theory of one-fluid magnetohydrodynamics, c.f. [30, 54,
36, 29, 35]. By the uniqueness of u0,B0,u1,B1 and p0, we conclude that the limits
in (3.23) hold for the full sequence. Theorem 3.1 is proved.
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4. Conclusions. The results obtained in Section 3.1 demonstrate the effective
response of a viscous fluid with a locally periodic array of magnetic particles sus-
pended in it. The original fine-scale problem is described by the system of equations
(2.8)-(2.11), and the effective equations are given by (3.60), in Section 3.6, with the
effective coefficients defined by (3.61). As evident from the effective system obtained,
these effective quantities depend on the instantaneous position of the particles, their
geometry, and the magnetic and flow properties of the original suspension decoded in
the cell problems (3.44) and (3.47)-(3.48). The effective medium is an incompressible
electromagnetic fluid described by the coupled set of Navier-Stokes and Maxwell’s
equations. The effective Cauchy stress of the fluid is 2Nijmn

[
D(u0)

]
ij

em ⊗ en −Π I,

where N is the effective viscosity, and the coupling between the homogenized fluid
velocity u and the homogenized magnetic field B is given through the Lorentz force.
The Maxwell’s equations are represented by the combination of Ampère’s law, Ohm’s
law, and Faraday’s law, where the first two laws eliminate the electric field from the
equation.

It is worth mentioning that this paper is not concerned with modeling issues for
colloids with magnetizable particles, but rather focuses on the homogenization results.
This study is the promised follow-up of the work in [16] by the authors, where they
considered a one-way coupling mechanism between the viscous fluid and the magnetic
particles that are suspended in a viscous fluid and described by the linear relation
between the magnetic flux density B and the magnetic field strength H. In contrast
to [16], this paper focuses on a non-linear model of the given magnetorheological fluid,
where the two phases are interacting via the full (two-way) coupling mechanism. And,
as in [16], the rigorous justification of the obtained effective system is derived. This
is also differing from previous contributions on the topic [43, 49], that dealt only with
formal asymptotics and did not consider the complicated non-linear model discussed
in this paper.
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[40] R. M. Höfer, Sedimentation of inertialess particles in Stokes flows, Comm. Math. Phys., 360
(2018), pp. 55–101, https://doi.org/10.1007/s00220-018-3131-y.
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