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AN OPTIMAL SEPARATION OF RANDOMIZED AND QUANTUM

QUERY COMPLEXITY∗

ALEXANDER A. SHERSTOV† , ANDREY A. STOROZHENKO† , AND PEI WU‡

Abstract. We prove that for every decision tree, the absolute values of the Fourier coefficients

of a given order ℓ > 1 sum to at most cℓ
√

(d
ℓ

)

(1 + logn)ℓ−1, where n is the number of variables,

d is the tree depth, and c > 0 is an absolute constant. This bound is essentially tight and settles
a conjecture due to Tal (arxiv 2019; FOCS 2020). The bounds prior to our work degraded rapidly

with ℓ, becoming trivial already at ℓ =
√

d.

As an application, we obtain, for every integer k > 1, a partial Boolean function on n bits that has

bounded-error quantum query complexity at most k and randomized query complexity Ω̃(n1− 1
2k ).

This separation of bounded-error quantum versus randomized query complexity is best possible, by
the results of Aaronson and Ambainis (STOC 2015) and Bravyi, Gosset, Grier, and Schaeffer (2021).
Prior to our work, the best known separation was polynomially weaker: O(1) versus Ω(n2/3−ε) for
any ε > 0 (Tal, FOCS 2020).

As another application, we obtain an essentially optimal separation of O(logn) versus Ω(n1−ε) for
bounded-error quantum versus randomized communication complexity, for any ε > 0. The best pre-
vious separation was polynomially weaker: O(logn) versus Ω(n2/3−ε) (implicit in Tal, FOCS 2020).

Key words. Quantum-classical separations, query complexity, communication complexity, for-
relation, Fourier analysis of Boolean functions, Fourier weight of decision trees
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1. Introduction. Understanding the relative power of quantum and classical
computing is of basic importance in theoretical computer science. This question has
been studied most actively in the query model, which is tractable enough to allow
unconditional lower bounds yet rich enough to capture most of the known quantum
algorithms. Illustrative examples include the quantum algorithms of Deutsch and
Jozsa [15], Bernstein and Vazirani [6], Grover [19], and Shor’s period-finding [27].
In the query model, the task is to evaluate a fixed function f on an unknown n-
bit input x. In the classical setting, query algorithms are commonly referred to as
decision trees. A decision tree accesses the input one bit at a time, choosing the
bits to query in adaptive fashion. The objective is to determine f(x) by querying
as few bits as possible. The minimum number of queries needed to determine f(x)
in the worst case is called the query complexity of f . The quantum model is a far-
reaching generalization of the classical decision tree whereby all bits can be queried
in superposition with a single query. The catch is that the outcomes of those queries
are then also in superposition, and it is not clear a priori whether quantum query
algorithms are more powerful than decision trees. We focus on the bounded-error

regime, where the query algorithm (quantum or classical) is allowed to err on any
given input with probability ε for some constant ε < 1/2.

The comparative power of randomized and quantum query algorithms has been
studied for more than two decades. In pioneering work, Deutsch and Jozsa [15] gave
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a quantum query algorithm that solves, with a single query, a problem on n bits that
any deterministic decision tree needs at least n/2 queries to solve. Unfortunately,
this separation does not apply to the more subtle, bounded-error setting. This was
addressed in follow-up work by Simon [28], who exhibited a problem with bounded-
error quantum query complexity O(log2 n) and randomized query complexity Ω(

√
n).

These are striking examples of the computational advantages afforded by the quantum
model.

1.1. Forrelation and rorrelation. The above results leave us with a funda-
mental question: what is the largest possible separation between bounded-error quan-
tum and randomized query complexity, for a problem with n-bit input? This question
was raised by Buhrman et al. [11] and, a decade later, by Aaronson and Ambainis [1],
who presented it as being essential to understanding the phenomenon of quantum
speedups. Toward this goal, the authors of [1] exhibited a problem that can be solved
to bounded error with a single quantum query but has randomized query complexity
Ω̃(

√
n). They left open the challenge of obtaining a separation of O(1) versus Ω(nα)

for some α > 1/2. In more detail, Aaronson and Ambainis [1] introduced and stud-
ied the k-fold forrelation problem. The input to the problem is a k-tuple of vectors
x1, x2, . . . , xk ∈ {−1, 1}n, where n is a power of 2. Define

(1.1) φn,k(x1, x2, . . . , xk) =
1

n
1⊺Dx1HDx2HDx3H · · ·HDxk

1,

where 1 is the all-ones vector, H is the Hadamard transform matrix of order n,
and Dxi

is the diagonal matrix with the vector xi on the diagonal. Since each of
the linear transformations H,Dx1 , Dx2 , . . . , Dxn

preserves Euclidean length, it follows
that |φn,k(x1, x2, . . . , xk)| 6 1. Given x1, x2, . . . , xk, the forrelation problem is to
distinguish between the cases |φn,k(x1, x2, . . . , xk)| 6 α and φn,k(x1, x2, . . . , xk) >

β, where the problem parameters 0 < α < β < 1 are suitably chosen constants.
Equation (1.1) directly gives a quantum algorithm that solves the forrelation problem
with bounded error and query cost k, where the k queries correspond to the k diagonal
matrices. The cost can be further reduced to ⌈k/2⌉ by viewing (1.1) as the inner

product of two vectors obtained by ⌈k/2⌉ and ⌊k/2⌋ applications, respectively, of
diagonal matrices [1]. Aaronson and Ambainis complemented this with an Ω̃(

√
n)

lower bound on the randomized query complexity of the forrelation problem for k = 2,
hence the 1 versus Ω̃(

√
n) separation mentioned above.

Tal [31] built on [1] to give an improved separation of O(1) versus Ω(n2/3−ε) for
bounded-error quantum and randomized query complexities, for any constant ε > 0.
For this, Tal replaced (1.1) with the more general quantity

(1.2) φn,k,U (x1, x2, . . . , xk) =
1

n
1⊺Dx1UDx2UDx3U · · ·UDxk

1,

where U is an arbitrary but fixed orthogonal matrix. On input x1, x2, . . . , xk ∈
{−1, 1}n, the author of [31] considered the problem of distinguishing between the
cases |φn,k,U (x1, x2, . . . , xk)| 6 2−k−1 and φn,k,U (x1, x2, . . . , xk) > 2−k. This problem
is referred to in [31] as the k-fold rorrelation problem with respect to U. The quantum
algorithm of Aaronson and Ambainis, adapted to the arbitrary choice of U, solves
this new problem with ⌈k/2⌉ queries and advantage Ω(2−k) over random guessing,
which counts as a bounded-error algorithm for any constant k. On the other hand,
Tal [31] proved that the randomized query complexity of the k-fold rorrelation problem
for uniformly random U is Ω(n2(k−1)/(3k−1)/k logn) with high probability. While



RANDOMIZED VERSUS QUANTUM QUERY COMPLEXITY 3

this is weaker than Aaronson and Ambainis’s bound for k = 2, setting k to a large
constant gives a separation of O(1) versus Ω(n2/3−ε) for bounded-error quantum and
randomized query complexity for any constant ε > 0.

1.2. Our results: separations for partial functions. Prior to our paper,
Tal’s separation of O(1) versus Ω(n2/3−ε) was the strongest known, and Aaronson
and Ambainis’s challenge of obtaining an O(1) versus Ω(n1−ε) separation remained
open. The main contribution of our work is to resolve this question. In what follows,
we let fn,k,U denote the k-fold rorrelation problem with respect to U. We prove:

Theorem 1.1. Let n be a positive integer. Let U ∈ R
n×n be a uniformly random

orthogonal matrix. Then with probability 1− o(1) over the choice of U, one has

R 1
2−γ(fn,k,U ) = Ω

(

γ2

k
· n1− 1

k

(logn)2−
1
k

)

(1.3)

for all integers k 6
1
3 logn− 1 and all 0 6 γ 6 1/2.

For k = 2, this lower bound is the same (up to a
√
logn factor) as Aaronson and

Ambainis’s lower bound for the forrelation problem (which is fn,2,H in our notation).
For k = 3 already, Theorem 1.1 is a polynomial improvement on all previous work,
including Tal’s recent result [31]. Up to logarithmic factors, Theorem 1.1 is tight for
every k due to the matching upper bound Ok(n

1−1/k) of Bravyi, Gosset, Grier, and
Schaeffer [8, Theorem 6].

For any constant k, the rorrelation problem fn,k,U has a bounded-error quantum
query algorithm with cost ⌈k/2⌉ (see Section 5.2 for details). As a result, by taking
k = 2t for an integer t, we obtain the following separation of bounded-error quantum
and randomized query complexities.

Corollary 1.2. Let t > 1 be a fixed integer. Then there is a partial Boolean

function f on {−1, 1}n with

Q 1
2−Ω(1)(f) 6 t,

R1/3(f) = Ω

(

n1− 1
2t

(logn)2−
1
2t

)

.

The separation in Corollary 1.2 is best possible. Indeed, Bravyi et al. [8, Theorems 3
and 6] show that for every constant t, every quantum algorithm with t queries can

be converted into a randomized decision tree of cost O(1ε · n1− 1
2t ) whose acceptance

probabilities for all inputs are within an additive ε of the quantum algorithm’s corre-
sponding acceptance probabilities. Taking t large in Corollary 1.2 gives the following
clean result:

Corollary 1.3. Let ε > 0 be given. Then there is a partial Boolean function f
on {−1, 1}n with

Q1/3(f) = O(1),

R1/3(f) = Ω(n1−ε).

Again, this separation of bounded-error quantum and randomized query complexities
is best possible for all f due to the aforementioned result of Bravyi et al. that every
quantum algorithm with t queries can be simulated by a randomized query algorithm
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of cost Ot(n
1− 1

2t ). In particular, Corollary 1.3 shows that the rorrelation problem sep-
arates quantum and randomized query complexity optimally, of all problems f . The
following incomparable corollary can be obtained by taking k = k(n) in Theorem 1.1
to be an arbitrarily slow-growing function, e.g., k = log log logn:

Corollary 1.4. Let α : N → N be any monotone function with α(n) → ∞ as

n→ ∞. Then there is a partial Boolean function f on {−1, 1}n with

Q1/3(f) 6 α(n),

R1/3(f) > n1−o(1).

As before, this quantum-classical separation is best possible since [8] rules out the
possibility of an O(1) versus n1−o(1) gap.

A satisfying probability-theoretic interpretation of our results is that the phe-
nomenon of quantum-classical gaps is a common one. More precisely, our results
show that the set of orthogonal matrices U for which fn,k,U does not exhibit a best-
possible quantum-classical separation has Haar measure 0. Prior to our work, this was
unknown for any integer k > 2.

1.3. Our results: separation for total functions. Our results so far pertain
to partial Boolean functions, whose domain of definition is a proper subset of the
Boolean hypercube. For total Boolean functions, such large quantum-classical gaps
are not possible. In a seminal paper, Beals et al. [5] prove that the bounded-error
quantum query complexity of a total function f is always polynomially related to
the randomized query complexity of f . A natural question to ask is how large this
polynomial gap can be. Grover’s search [19] shows that the n-bit OR function has
bounded-error quantum query complexity Θ(

√
n) and randomized complexity Θ(n).

For a long time, this quadratic separation was believed to be the largest possible. In
a surprising result, Aaronson et al. [2] proved the existence of a total function f with
R1/3(f) = Ω̃(Q1/3(f)

2.5). This was improved by Tal [31] to R1/3(f) > Q1/3(f)
8/3−o(1).

We give a polynomially stronger separation:

Theorem 1.5. There is a function f : {−1, 1}n → {0, 1} with

R1/3(f) > Q1/3(f)
3−o(1).

Theorem 1.5 follows immediately by combining our Corollary 1.4 with the “cheat-
sheet” framework of Aaronson et al. [2]. Specifically, they prove that any partial
function f on n bits that exhibits an no(1) versus n1−o(1) separation for bounded-
error quantum versus randomized query complexity, can be automatically converted
into a total function with R1/3(f) > Q1/3(f)

3−o(1). A recent paper of Aaronson et
al. [3] conjectures that R1/3(f) = O(Q1/3(f)

3) for every total function f, which would
mean that our separation in Theorem 1.5 is essentially optimal. The best current up-
per bound is R1/3(f) = O(Q1/3(f)

4) due to [3], derived there from the breakthrough
result of Huang [20] on the sensitivity conjecture.

1.4. Our results: separations for communication complexity. Via stan-
dard reductions, our quantum-classical query separations imply analogous separations
for communication complexity. In more detail, let f be a (possibly partial) Boolean
function on {−1, 1}n. For any communication problem g : {−1, 1}m × {−1, 1}m →
{−1, 1}, we let f ◦ g stand for the (possibly partial) communication problem on
({−1, 1}m)n×({−1, 1}m)n given by (f◦g)(x, y) = f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)).
Buhrman, Cleve, and Wigderson [9] proved that any quantum query algorithm for f
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gives a quantum communication protocol for f ◦ g with the same error and approxi-
mately the same cost. Quantitatively,

(1.4) Qcc
ε (f ◦ g) 6 Qε(f) ·O(m+ log n),

where Qcc
ε denotes ε-error quantum communication complexity. Reversing this in-

equality has seen a great deal of work, mainly in the classical setting. A well-studied
function g in this line of research is the inner product function IPm : {−1, 1}m ×
{−1, 1}m → {−1, 1}, given by IPm(u, v) =

⊕m
i=1(ui ∧ vi). In particular, Chattopad-

hyay, Filmus, Koroth, Meir, and Pitassi [12, Theorem 1] prove that

(1.5) Rcc
1/3(f ◦ IPc logn) = Ω(R1/3(f) logn)

for every (possibly partial) function f on {−1, 1}n, where Rcc
ε denotes ε-error ran-

domized communication complexity and c > 1 is an absolute constant. In light of
this connection between query complexity and communication complexity, our main
results have the following consequences.

Theorem 1.6. Let ε > 0 be given. Then there is a partial Boolean function F on

{−1, 1}N × {−1, 1}N with

Qcc
1/3(F ) = O(logN),

Rcc
1/3(F ) = Ω(N1−ε).

Proof. Take f as in Corollary 1.3 and define N = cn logn and F = f ◦ IPc logn.
Then the communication bounds follow from (1.4) and (1.5), respectively.

Theorem 1.6 is essentially optimal and a polynomial improvement on previous work.
The best previous quantum-classical separation for communication complexity was
O(logN) versus Ω(N2/3−ε), implicit in Tal [31] and preceded in turn by other expo-
nential separations [25, 26, 16]. Similarly, our Corollary 1.4 translates in a black-box
manner to communication complexity:

Theorem 1.7. Let α : N → N be any monotone function with α = ω(1). Then
there is a partial Boolean function F on {−1, 1}N × {−1, 1}N with

Qcc
1/3(F ) 6 α(N) logN,

Rcc
1/3(F ) > N1−o(1).

Proof. Take f as in Corollary 1.4 and define N = cn logn and F = f ◦ IPc logn.
Then the communication bounds follow from (1.4) and (1.5), respectively.

Finally, we obtain the following result for total functions.

Theorem 1.8. There is a function F : {−1, 1}N × {−1, 1}N → {0, 1} with

Rcc
1/3(F ) > Qcc

1/3(F )
3−o(1).

Proof. The cheatsheet framework [2] ensures that the quantum and classical query
complexities of f in Theorem 1.5 are polynomial in the number of variables n. With
this in mind, we proceed as before, setting N = cn logn and F = f ◦ IPc logn and
applying (1.4) and (1.5).

Again, Theorem 1.8 is a polynomial improvement on previous work, the best previous
result being a power of 8/3 separation implicit in [31].
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1.5. Our results: Fourier weight of decision trees. It is straightforward
to verify that a uniformly random input x ∈ ({−1, 1}n)k is with high probability a
negative instance of the rorrelation problem fn,k,U . With this in mind, Tal [31] proves
his lower bound for rorrelation by constructing a probability distribution Dn,k,U that
generates positive instances of fn,k,U with nontrivial probability yet is indistinguish-
able from the uniform distribution by a decision tree T of cost n2/3−O(1/k). His notion
of indistinguishability is based on the Fourier spectrum. Specifically, Tal [31] shows
that: (i) the sum of the absolute values of the Fourier coefficients of T of a given
order ℓ does not grow too fast with ℓ; and (ii) the maximum Fourier coefficient of
Dn,k,U of order ℓ decays exponentially fast with ℓ. In Tal’s paper, the bound for (ii)
is essentially optimal, whereas the bound for (i) is far from tight. The sum of the
absolute values of the order-ℓ Fourier coefficients of a decision tree T , which we refer
to as the ℓ-Fourier weight of T , is shown in [31] to be at most

(1.6) cℓ
√

dℓ(1 + log kn)ℓ−1,

where d is the depth of the tree and c > 1 is an absolute constant. This bound is
strong for any constant ℓ but degrades rapidly as ℓ grows. In particular, for ℓ =

√
d

already, (1.6) is weaker than the trivial bound
(

d
ℓ

)

. This is a major obstacle since
the indistinguishability proof requires strong bounds for every ℓ. This obstacle is
the reason why Tal’s analysis gives the randomized query lower bound n2/3−O(1/k)

as opposed to the optimal Ω̃(n1−1/k). Tal conjectured that the ℓ-Fourier weight of a

depth-d decision tree is in fact bounded by cℓ
√

(

d
ℓ

)

(1 + log kn)ℓ−1, which is a factor

of
√
ℓ! improvement on (1.6) and essentially optimal. We prove his conjecture:

Theorem 1.9. Let T : {−1, 1}n → {0, 1} be a function computable by a decision

tree of depth d. Then

∑

S⊆{1,2,...,n}:
|S|=ℓ

|T̂ (S)| 6 cℓ

√

(

d

ℓ

)

(1 + logn)ℓ−1, ℓ = 1, 2, . . . , n,

where c > 1 is an absolute constant.

It is well known and easy to show that Theorem 1.9 is essentially tight, even for
nonadaptive decision trees [23, Theorem 5.19]. The actual statement that we prove
is more precise and takes into account the density parameter P[T (x) 6= 0]; see Theo-
rem 4.13 for details. With Theorem 1.9 in hand, all our main results (Theorem 1.1 and
its corollaries) follow immediately by combining the new bound on the Fourier weight
of decision trees with Tal’s near-optimal bounds on the individual Fourier coefficients
of Dn,k,U .

Theorem 1.9 is of interest in its own right, independent of its use in this paper
to obtain optimal quantum-classical separations. The study of the Fourier spectrum
has a variety of applications in theoretical computer science, including circuit com-
plexity, learning theory, pseudorandom generators, and quantum computing. Even
prior to Tal’s work, the ℓ-Fourier weight of decision trees was studied for ℓ = 1 by
O’Donnell and Servedio [24], who proved the tight O(

√
d) bound and used it to give

a polynomial-time learning algorithm for monotone decision trees. Fourier weight has
been studied for various other classes of Boolean functions, including bounded-depth
circuits, branching programs, low-degree polynomials over finite fields, and functions
with bounded sensitivity; see [18, 29, 30, 14, 13, 7, 22] and the references therein.
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1.6. Limitations of previous analyses. In this part, we overview Tal’s bound
on the ℓ-Fourier weight of decision trees. To build intuition, it is helpful to first ex-
amine the case ℓ = 1, due to O’Donnell and Servedio [24] and Tal [31]. For simplicity,
consider a perfect tree T of depth d with leaves labeled 0 and 1, where the i-th variable
queried in each path is xi. Throughout this discussion, we identify a decision tree with
the function that it computes, and use the same variable for both. By negating the
variables if necessary, we may assume that T̂ (i) > 0. In particular,

n
∑

i=1

|T̂ (i)| = E
x

[

T (x)

d
∑

i=1

xi

]

.

This gives a new perspective on
∑ |T̂ (i)| in terms of the random experiment whereby

one picks a random root-to-leaf path, sums all the variables in that path, and multi-
plies the result by the label of the leaf. The expected value of this experiment equals
∑ |T̂ (i)|. It is clear that this value is maximized when the leaves labeled 1 correspond
to paths with large sums. With this observation [31], one can prove that

(1.7)

n
∑

i=1

|T̂ (i)| = O

(

p

√

d ln
e

p

)

,

where p = P[T (x) 6= 0] is the fraction of nonzero leaves, which we refer to as the
density of T . By linearity, the same argument applies even to adaptive trees.

Tal’s analysis for ℓ > 2 is a natural inductive generalization of the above argument.
Let T be an arbitrary tree in variables x1, x2, . . . , xn. Let Vi denote the set of internal
nodes in T labeled by the variable xi. The key notion is that of the contraction of T
with respect to xi, which is a tree denoted by Ti with real-valued labels at the leaves.
This tree Ti is formed by the following two-step process: (i) for each path that does
not query xi, set the leaf label to 0; and (ii) for each v ∈ Vi, replace the subtree Tv
rooted at v by a single leaf labeled by the Fourier coefficient T̂v(i). The n contractions
of T give rise to the decomposition

(1.8)
∑

|S|=ℓ

|T̂ (S)| 6
n
∑

i=1

∑

|S|=ℓ−1

|T̂i(S)|,

which is the foundation of Tal’s inductive argument. The real-valued labels of the Ti
present no difficulty since one can replace each such label by its binary expansion and
thus write Ti as a linear combination of trees with binary labels. The key parameter in
Tal’s inductive proof is density, and it needs to be maintained carefully for each of the
trees involved. Since the contractions of T can overlap in complicated ways, it becomes
increasingly difficult to accurately keep track of the densities. This translates into
progressively larger losses at each step of the inductive argument. Cumulatively, the
argument incurs an extraneous factor of

√
ℓ! in the final bound. Despite considerable

efforts, we were not able to find a way forward within this framework.

1.7. Our approach. To obtain the near-optimal bound in Theorem 1.9, we
adopt a completely different approach. At a high level, we partition

∑

|S|=ℓ |T̂ (S)|
into well-structured parts. We discuss the partitioning strategy first, and then our
analysis of each part in the partition.

The partition. Let T be a perfect tree of depth d.We think of the vertices at any
given depth as forming a layer, and we number the layers of T consecutively 1 through
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d. Consider a grouping of the layers into ℓ disjoint blocks I1, I2, . . . , Iℓ ⊆ {1, 2, . . . , d},
where each block consists of consecutive layers from T , and the union I1 ∪ I2 ∪· · ·∪ Iℓ
may be a proper subset of {1, 2, . . . , d}. The numbering of these blocks corresponds
to the ordering of the elements, i.e., the elements of I1 are all less than the elements
of I2, which are in turn less than the elements of I3, and so on. As a canonical
example, we could partition the layers into ℓ blocks of roughly equal size. Viewed as
a function, T is the sum of the characteristic functions of the root-to-leaf paths, each
such path weighted by the corresponding leaf. If one alters this sum by keeping, for
each path, only those Fourier coefficients that have exactly one variable in each block,
the result is a real-valued function which we denote by T |I1∗I2∗···∗Iℓ . Here we define

I1 ∗ I2 ∗ · · · ∗ Iℓ = {S ∈
(

[d]
ℓ

)

: |S ∩ Ii| = 1 for each i}, and we refer to any such family

of sets in
(

[d]
ℓ

)

as an elementary family. Our challenge is to find an efficient partition

of
(

[d]
ℓ

)

into elementary families E1, E2, . . . , EN . Then

(1.9) T |([d]ℓ ) =
N
∑

i=1

T |Ei
,

and we can bound the Fourier weight of the degree-ℓ homogeneous part of T by
bounding that of T |Ei

for each i. For the proof of Theorem 1.9, we need a partition
that achieves

(1.10)

N
∑

i=1

√

|Ei| 6 Cℓ

√

(

d

ℓ

)

for an absolute constant C > 1. Such a partition would be essentially extremal due

to the trivial lower bound
∑
√

|Ei| >
√
∑

|Ei| =
(

d
ℓ

)1/2
for every partition of

(

[d]
ℓ

)

.
Unfortunately, with elementary families defined as above, such a partition does not
exist! For the sake of simplicity, we ignore this complication altogether in the remain-
der of this discussion. In the actual proof, we resolve this issue by allowing elementary
families to contain up to two variables per block. This makes the rest of the proof
more delicate, but still suffices for the purposes of proving Theorem 1.9. We give a
first-principles combinatorial construction of a partition with (1.10) in Section 3.

Analysis of individual parts. For any elementary family E , we prove that T |E
has ℓ-Fourier weight

(1.11)
√

|E | · O(log n)ℓ−1.

Along with (1.9) and (1.10), this implies Theorem 1.9. Indeed, applying the bound
just claimed to each summand in (1.9) shows that the decision tree has ℓ-Fourier

weight
∑N

i=1

√

|Ei| ·O(log n)ℓ−1, which by (1.10) is at most Cℓ
√

(

d
ℓ

)

·O(log n)ℓ−1.

In this overview, we focus on proving (1.11) for the special case E = I1∗I2∗· · ·∗Iℓ
with

|I1| = |I2| = · · · = |Iℓ| =
d

ℓ
.

Our bound (1.11) uses a generalization of decision trees where the leaves can be
labeled by polynomials. With this generalization, we can further define tree addition,
as well as tree multiplication by polynomials. This provides a powerful framework for
decomposing trees and expressing them as conical combinations of simpler trees. To
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see how this generalization comes into play, consider the subtree Tv rooted at some
node v in the first layer of Iℓ. By the structure of T |E , the only relevant aspect of
Tv is its degree-1 homogeneous part. Therefore, Tv can be replaced with its degree-1
homogeneous part. Now, let T ′ be the decision tree obtained by contracting every
node v in the first layer of Iℓ into a leaf labeled by the polynomial

∑n
i=1 T̂v(i)xi. We

show that analyzing the Fourier weight of T |I1∗I2∗···∗Iℓ is equivalent to analyzing that
of T ′ with respect to the smaller elementary family I1 ∗ I2 ∗ · · · ∗ Iℓ−1. The latter is a
delicate task, and our solution involves three stages.

(i) In the first stage, we group leaves v in T ′ according to the density αv of the
original subtree Tv. Applying Tal’s argument [31], we have

n
∑

i=1

|T̂v(i)| 6 c′αv

√

d

ℓ
ln

e

αv

for some constant c′ > 1. We decompose T ′ =
∑∞

j=0 T
′
j, where T

′
j keeps a leaf

v if αv ∈ (3−j−1, 3−j] and replaces it with 0 otherwise.
(ii) In the second stage, we further decompose T ′

j as follows. Let βj be the fraction
of nonzero leaves in T ′

j, and letm be the maximum Fourier weight of a nonzero

leaf v of T ′
j . We then express T ′

j as the conical combination T ′
j =

∑∞
r=1 crT

′
j,r

such that:
∑

cr = m; each nonzero leaf of T ′
j,r is labeled with some variable

or its negation; and the fraction of nonzero leaves in each T ′
j,r is βj .

(iii) In the final stage, we decompose T ′
j,r into n different trees according to the

n variables: T ′
j,r =

∑n
i=1 T

′
j,r,i · xi. The tree T ′

j,r,i keeps only those leaves v
that are labeled by ±xi, and the new label is exactly the sign of the variable
xi. Now T ′

j,r,i : {−1, 1}n → {−1, 0, 1} has density βj/n on average, and
T ′
j,r,i|I1∗I2∗···∗Iℓ−1

can be analyzed using the inductive hypothesis.
Of the three stages, the first stage is the least natural but crucial. To see this, let
ℓ = 2 and consider the following extreme case: for all nonzero leaves v in T ′, the
densities αv are equal, αv = α. Let p denote the density of T. Observe that p is the
product of α and the density of T ′, which means that T ′ has density p/α. There is
some j such that T ′ = T ′

j , and that specific T ′
j has density p/α. Consequently, T ′

j,r,i

has density p/(nα) on average. The 1-Fourier weight of T ′
j,r,i for average i can be

bounded by

c′ · p

nα

√

d

2
ln
enα

p
.

The Fourier weight of T ′|{1,2,...,d/2}∗{d/2+1,d/2+2,...,d} can then be bounded by

c′ · α
√

d

2
ln
e

α
·

n
∑

i=1

c′ · p

nα

√

d

2
ln
enα

p

= (c′)2 · p

√

(

d

2

)2

ln
e

α
· ln enα

p
.(1.12)

The corresponding bound for ℓ = 2 that Tal obtains is

O

(

p

√

d2 ln
e

p
· ln en

p

)

.

Comparing it with our bound (1.12) shows that for α≫ p, our factor ln e
α is substan-

tially smaller than Tal’s corresponding factor ln e
p ; while for α close to p, our factor
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ln enα
p is substantially smaller than Tal’s ln en

p . For ℓ = ω(1), the savings become

significant. This is the intuitive reason why the first stage allows us to avoid the
√
ℓ!

loss. Its surprising power comes from the framework of elementary families set up at
the beginning of the proof.

Our complete analysis of the Fourier weight of decision trees is presented in Sec-
tion 4. Sections 4.1 and 4.2 supply Fourier-theoretic and analytic preliminaries. In
Section 4.3, we study the Fourier weight of decision trees with respect to elementary
families of special form, as in the proof overview above. These results are generalized
to arbitrary elementary families in Section 4.4. Our main result on the Fourier weight
of decision trees is then established in Section 4.5. The concluding Section 5 leverages
these contributions to establish our main results on quantum versus classical query
complexity.

1.8. Independent work by Bansal and Sinha. Independently and concur-
rently with our work, Bansal and Sinha [4] also obtained an optimal, ⌈k/2⌉ versus
Ω̃(n1−1/k) separation of quantum and randomized query complexity. Their result uses
completely different techniques and is incomparable with ours. In more detail, Bansal
and Sinha [4] construct a function f with randomized query complexity

R 1
2−γ(f) = Ω

(

γ2

k29
·
(

n

log(k + n)

)1− 1
k

)

, ∀γ ∈ [0, 1/2].(1.13)

This is essentially the same as our lower bound on randomized query complexity
(Theorem 1.1):

R 1
2−γ(fn,k,U ) = Ω

(

γ2

k
· n1− 1

k

(logn)2−
1
k

)

, ∀γ ∈ [0, 1/2].

In both cases, the function in question has a quantum query algorithm with cost ⌈k/2⌉
and error 1

2 − 2−Θ(k). In particular, for an arbitrary constant k > 1, the bounded-
error quantum query complexity is at most ⌈k/2⌉. (The original version of [4], released
concurrently with our paper, had a poorer error parameter: 1

2 − (logn)−Θ(k). But the
authors of [4] were able to improve it several weeks later to match our error parameter,
1
2 − 2−Θ(k).)

The two approaches have incomparable strengths. To start with, Bansal and
Sinha [4] prove their lower bound for an explicit function f (namely, the forrelation
and rorrelation problems with a properly chosen gap parameter), as opposed to the
uniformly random choice of fn,k,U in this paper.

On the other hand, our analysis has the advantage of determining the ℓ-Fourier
weight of decision trees. This result is of independent interest beyond quantum com-
puting, given the numerous recent applications of Fourier weight to learning theory
and pseudorandom generators. We believe that our techniques may be relevant to
other unresolved questions on the Fourier spectrum of Boolean functions. The work
in [4], by contrast, does not imply any improved bounds on Fourier weight.

Another strength of our analysis is methodological. The proof in [4] uses advanced
analytic machinery, whereas our approach is elementary and self-contained. Indeed,
the only analytic fact used in this paper and Tal [31] is the p.d.f. of the multivari-
ate normal distribution. With this simple toolkit, we obtain all the same optimal
quantum-classical separations for query complexity and communication complexity
as in [4].
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1.9. Follow-up work and future directions. Of the work subsequent to our
paper, the most relevant result is due to Girish, Tal, and Wu [17]. Those authors prove
an upper bound of dℓ/2 · O(ℓ logn)ℓ on the ℓ-Fourier weight of any parity decision
tree of depth d in n variables. Plugging this bound into the machinery of Bansal
and Sinha [4], Girish et al. obtain a separation of t versus Ω̃(n1− 1

2t ) for quantum
query complexity versus randomized parity decision tree complexity, for any constant
t > 1. To compare their results with the corresponding contributions of our work
(Corollary 1.2 and Theorem 1.9), the parity decision tree model of Girish et al. is
more powerful than the standard randomized decision trees that we consider. On
the other hand, the Fourier weight bound of [17] deteriorates rapidly with ℓ and is
not known to be tight beyond ℓ = O(1). Recall that our Fourier weight bound in
Theorem 1.9 is essentially optimal for every ℓ. There are methodological differences
as well. For example, the quantum-classical separation in [17] relies on the advanced
machinery of Bansal and Sinha [4], whereas our separation does not.

We close this section with a direction for future work. In our separation of quan-
tum versus classical query complexity (Corollary 1.2), the classical algorithm needs

Ω̃(n1− 1
2t ) queries to solve the problem with bounded error, whereas the quantum al-

gorithm makes precisely t queries and succeeds with probability 1
2 +2−O(t). The same

applies to the quantum-classical query separation due to Bansal and Sinha [4] and the
follow-up separation of Girish et al. [17]. In these results, the quantum algorithms
conform to the bounded-error regime only for constant t. A natural open problem is
to obtain an optimal separation in the bounded-error regime for all t = ω(1).

2. Preliminaries.

2.1. General notation. There are two common arithmetic encodings for the
Boolean values: the traditional encoding false ↔ 0, true ↔ 1, and the Fourier-
motivated encoding false ↔ 1, true ↔ −1. Throughout this manuscript, we use the
former encoding for the range of a Boolean function and the latter for the domain.
With this convention, Boolean functions are mappings {−1, 1}n → {0, 1} for some n.

We denote the empty string as usual by ε. For an alphabet Σ and a natural
number n, we let Σ6n denote the set of all strings over Σ of length up to n, so that
Σ6n = {ε}∪Σ∪Σ2∪· · ·∪Σn. For a string v over a given alphabet, we let |v| denote the
length of v. For a set S, we let v|S denote the substring of v indexed by the elements
of S. In other words, v|S = vi1vi2 · · · vi|S|

where i1 < i2 < · · · < i|S| are the elements
of S. In the same spirit, we define v6i = v1v2 . . . vi.

The power set of a set S is denoted by P(S). For a set S and a nonnegative
integer k, we let

(

S
k

)

denote the family of subsets of S that have cardinality exactly k:

(

S

k

)

= {S′ ⊆ S : |S′| = k}.

We further define

Pn,k =

({1, 2, . . . , n}
k

)

= {S ⊆ {1, 2, . . . , n} : |S| = k}.

The following well-known bound [21, Proposition 1.4] is used in our proofs without
further mention:

(n

k

)k

6

(

n

k

)

6

(en

k

)k

, k = 1, 2, . . . , n,(2.1)
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where e = 2.7182 . . . denotes Euler’s number.
We adopt the standard notation N = {0, 1, 2, 3, . . .} and Z

+ = {1, 2, 3, . . .} for the
sets of natural numbers and positive integers, respectively. We adopt the extended real
number system R ∪ {−∞,∞} in all calculations. The functions lnx and log x stand
for the natural logarithm of x and the logarithm of x to base 2, respectively. To avoid
excessive use of parentheses, we follow the notational convention that ln a1a2 . . . ak =
ln(a1a2 . . . ak) for any factors a1, a2, . . . , ak. The binary entropy function H : [0, 1] →
[0, 1] is given by

H(x) = x log
1

x
+ (1− x) log

1

1− x
.

Basic calculus reveals that

(2.2) H(x) 6 1− 2

ln 2

(

x− 1

2

)2

.

For nonempty sets A,B ⊆ R, we write A < B to mean that a < b for all a ∈ A, b ∈ B.
It is clear that this relation is a partial order on nonempty subsets of R. We use the
standard definition of the sign function:

sgnx =











−1 if x < 0,

0 if x = 0,

1 if x > 0.

For a finite set X , we let R
X denote the family of real-valued functions on X. For

f, g ∈ R
X , we let f ·g ∈ R

X denote the pointwise product of f and g, with (f ·g)(x) =
f(x)g(x). We use the standard inner product 〈f, g〉 =∑x∈X f(x)g(x).

2.2. Fourier transform. Consider the real vector space of functions {−1, 1}n →
R. For S ⊆ {1, 2, . . . , n}, define χS : {−1, 1}n → {−1, 1} by χS(x) =

∏

i∈S xi. Then

〈χS , χT 〉 =
{

2n if S = T,

0 otherwise.

Thus, {χS}S⊆{1,2,...,n} is an orthogonal basis for the vector space in question. In
particular, every function φ : {−1, 1}n → R has a unique representation of the form

φ =
∑

S⊆{1,2,...,n}

φ̂(S)χS

for some reals φ̂(S), where by orthogonality φ̂(S) = 2−n〈φ, χS〉. The reals φ̂(S) are

called the Fourier coefficients of φ, and the mapping φ 7→ φ̂ is the Fourier transform

of φ. Put another way, every function φ : {−1, 1}n → R has a unique representation
as a multilinear polynomial

(2.3) φ(x) =
∑

S⊆{1,2,...,n}

φ̂(S)
∏

i∈S

xi,

where the real numbers φ̂(S) are the Fourier coefficients of f. The order of a Fourier

coefficient φ̂(S) is the cardinality |S|.
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For k = 0, 1, 2, . . . , n, we introduce the linear operator Lk : R
{−1,1}n → R

{−1,1}n

that sends a function φ : {−1, 1}n → R to the function Lkφ : {−1, 1}n → R given by

(Lkφ)(x) =
∑

S∈Pn,k

φ̂(S)χS(x).

We refer to Lkφ as the degree-k homogeneous part of φ.
For any polynomial p ∈ R[x1, x2, . . . , xn], we let |||p||| denote the sum of the abso-

lute values of the coefficients of p. One easily verifies the well-known fact that ||| · ||| is a
norm on the polynomial ring R[x1, x2, . . . , xn].We identify a function φ : {−1, 1}n → R

with its unique representation (2.3) as a multilinear polynomial, to the effect that

|||φ||| =
∑

S⊆{1,2,...,n}

|φ̂(S)|

is the sum of the absolute values of the Fourier coefficients of φ.

Proposition 2.1. For any functions φ, ψ : {−1, 1}n → R and reals a, b,

|||aφ+ bψ||| 6 |a| |||φ||| + |b| |||ψ|||.

Proof. We have

|||aφ+ bψ||| =
∑

S⊆{1,2,...,n}

|aφ̂(S) + bψ̂(S)|

6 |a|
∑

S⊆{1,2,...,n}

|φ̂(S)|+ |b|
∑

S⊆{1,2,...,n}

|ψ̂(S)|

= |a| |||φ||| + |b| |||ψ|||,

where the first step uses the linearity of the Fourier transform.

We also note the following submultiplicative property.

Proposition 2.2. For any functions φ, ψ : {−1, 1}n → R,

|||φ · ψ||| 6 |||φ||| |||ψ|||.

Proof. We have

φ · ψ =





∑

S⊆{1,2,...,n}

φ̂(S)χS









∑

T⊆{1,2,...,n}

ψ̂(T )χT





=
∑

S,T⊆{1,2,...,n}

φ̂(S)ψ̂(T )χ(S\T )∪(T\S).

Applying Proposition 2.1,

|||φ · ψ||| 6
∑

S,T⊆{1,2,...,n}

|φ̂(S)| |ψ̂(T )|.

The right-hand side of this inequality is clearly |||φ||| |||ψ|||.
We will frequently use the norm ||| · ||| in conjunction with the operator Lk to refer to
the sum of the absolute values of the Fourier coefficients of a given order k:

|||Lk φ||| =
∑

S∈Pn,k

|φ̂(S)|.
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2.3. Generalized decision trees. Throughout this manuscript, we assume de-
cision trees to be perfect binary trees, with each internal node having two children
and all leaves having the same depth. This convention is without loss of generality
since a decision tree computing a given function f can be made into a perfect binary
tree for f of the same depth, by querying dummy variables as necessary. We denote
the variables of a decision tree by x1, x2, . . . , xn ∈ {−1, 1}, and identify the vertices
of a decision tree in the natural manner with strings in {−1, 1}∗. Thus, ε denotes
the root of the tree, and a string v ∈ {−1, 1}k denotes the vertex at depth k reached
from the root by following the path v1v2 . . . vk. Formally, a decision tree of depth d
in Boolean variables x1, x2, . . . , xn ∈ {−1, 1} is a function T on {−1, 1}6d with the
following two properties.

(i) One has T (v) ∈ {1, 2, . . . , n} for every v ∈ {−1, 1}6d−1, with the interpreta-
tion that T (v) is the index of the variable queried at the internal node found
by following the path v = v1v2v3 . . . from the root of the decision tree. We
note that a variable cannot be queried twice on the same path, and therefore
the d numbers T (ε), T (v1), T (v1v2), . . . , T (v1v2 . . . vd−1) are pairwise distinct
for every v ∈ {−1, 1}d−1.

(ii) One has T (v) ∈ R[x1, x2, . . . , xn] for every v ∈ {−1, 1}d, with the inter-
pretation that T (v) is the label of the leaf reached by following the path
v = v1v2 . . . vd from the root of the tree. Thus, every leaf is labeled with a
real-valued polynomial in the input variables x1, x2, . . . , xn. At a given leaf
v ∈ {−1, 1}d, the variables xT (ε), xT (v1), . . . , xT (v1v2...vd−1) have been queried
and therefore have fixed values. For this reason, we require T (v) to be a real
polynomial in variables other than xT (ε), xT (v1), . . . , xT (v1v2...vd−1). We refer

to a leaf v ∈ {−1, 1}d as a nonzero leaf if T (v) is not the zero polynomial.
While we formally allow arbitrary real polynomials, the identity x2i = xi
effectively forces T (v) for each v ∈ {−1, 1}d to be multilinear.

Our formalism generalizes the traditional notion of a decision tree, where the leaf
labels are restricted to the Boolean constants 0 and 1.

Proposition 2.3. Let T be a given decision tree of depth d. Then the function

f : {−1, 1}n → R computed by T is given by

(2.4) f(x) =
∑

v∈{−1,1}d

T (v) ·
d
∏

i=1

1 + vixT (v1v2...vi−1)

2
.

We emphasize that T (v) in this expression is a polynomial in x1, x2, . . . , xn and not
necessarily a constant value. In fact, the norm |||T (v)||| for leaves v is a prominent
quantity in this paper.

Proof. For an input x ∈ {−1, 1}n and a leaf v ∈ {−1, 1}d, the product

d
∏

i=1

1 + vixT (v1v2...vi−1)

2

evaluates to 1 if the input x reaches the leaf v in T , and evaluates to 0 otherwise.
Recall that any given input x reaches precisely one leaf v, and the output of the tree
on x is defined to be the corresponding polynomial T (v) ∈ R[x1, x2, . . . , xn] evaluated
at x. Thus, (2.4) evaluates to T (v) where v is the leaf reached by x.

For a decision tree T of depth d, we let dns(T ) denote the fraction of leaves in T with
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nonzero labels:
dns(T ) = P

v∈{−1,1}d
[T (v) 6= 0].

We refer to this quantity as the density of T . Another important complexity measure
is the degree of T, denoted deg(T ) and defined as the maximum of the degrees of the
polynomials T (v) ∈ R[x1, x2, . . . , xn] for v ∈ {−1, 1}d. Recall that the zero polynomial
0 is considered to have degree −∞. For an internal node v ∈ {−1, 1}6d−1, we let Tv
denote the subtree of T rooted at v. Thus, Tv is the tree of depth d − |v| given by
Tv(u) = T (vu) for all u ∈ {−1, 1}6d−|v|. The following fact is straightforward and
well-known.

Fact 2.4. Let T be a given decision tree of degree at most 0. Let f : {−1, 1}n → R

be the function computed by T . Then

P
x∈{−1,1}n

[f(x) 6= 0] = dns(T ).

Proof. Let d be the depth of T . Since T is a perfect binary tree, the fraction
of inputs x ∈ {−1, 1}n that reach any given leaf of T is exactly 2−d. Therefore, the
probability that a random input x ∈ {−1, 1}n reaches a leaf with a nonzero label is
precisely the fraction of leaves with nonzero labels, which is by definition dns(T ).

We will be working with special classes of trees described by several parameters.
Specifically, we let T (n, d, p, k) denote the set of all trees in n Boolean variables
x1, x2, . . . , xn ∈ {−1, 1} of depth d and density p such that for every leaf v ∈ {−1, 1}d,
the label T (v) is either the zero polynomial 0 or a homogeneous multilinear polynomial
of degree k. We further define T ∗(n, d, p, k) to be the set of all trees T ∈ T (n, d, p, k)
that have the additional property that T (v) ∈ {0}∪{±

∏

i∈S xi : S ∈ Pn,k} for every

leaf v ∈ {−1, 1}d. Thus, every nonzero leaf in a tree T ∈ T ∗(n, d, p, k) is labeled with
a signed monomial of degree k.

The Fourier spectrum of decision trees has been studied in several works, as
discussed in the introduction. We will need the following special case of a result due
to Tal [31, Theorem 7.5].

Theorem 2.5 (Tal). Let f : {−1, 1}n → {−1, 0, 1} be given, f 6≡ 0. Define

p = Px∈{−1,1}n [f(x) 6= 0]. Suppose that f can be computed by a depth-d decision tree.

Then

|||L1 f ||| 6
(

d

1

)1/2

Cp

√

ln
e

p
,

|||L2 f ||| 6
(

d

2

)1/2

C2p

√

ln
e

p

√

ln
en

p
,

where C > 1 is an absolute constant.

Tal states his result for functions f : {−1, 1}n → {0, 1} rather than f : {−1, 1}n →
{−1, 0, 1}. But Theorem 2.5 follows immediately by writing f = f+ − f−, where
f+, f− : {−1, 1}n → {0, 1} are the positive and negative parts of f, and applying
Tal’s result separately to f+ and f−.

3. Elementary set families. As explained in the introduction, we obtain our
Fourier weight bound by combining the Fourier coefficients of a decision tree into
well-structured groups and bounding the sum of the absolute values in each group.
In this section, we lay the combinatorial groundwork for this result by proving that
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Pn,k can be efficiently partitioned into what we call “elementary families.” We start
in Section 3.1 with some technical calculations. Section 3.2 formally defines elemen-
tary families and studies the associated complexity measure for representing general
families as the disjoint union of elementary parts. Finally, Section 3.3 proves that our
family of interest Pn,k has an efficient partition of this form.

3.1. A binomial recurrence. Our starting point is a technical calculation re-
lated to the entropy function.

Lemma 3.1. There is an absolute constant c > 1 such that for all integers k > 1,

k−1
∑

i=1

(

k

i

)i/2 (
k

k − i

)(k−i)/2
1

√

i(k − i)
6 c

√

2k

k
.

Proof. To begin with,

k−1
∑

i=1

(

k

i

)i/2 (
k

k − i

)(k−i)/2
1

√

i(k − i)

=
k−1
∑

i=1

2H(i/k)·k/2

√

i(k − i)

6 2k/2
k−1
∑

i=1

exp

(

−k
(

i

k
− 1

2

)2
)

· 1
√

i(k − i)
,(3.1)

where the last step uses (2.2). Continuing,

⌈k/4⌉−1
∑

i=1

exp

(

−k
(

i

k
− 1

2

)2
)

1
√

i(k − i)
6

⌈k/4⌉−1
∑

i=1

exp

(

−k
(

i

k
− 1

2

)2
)

6

⌈k/4⌉−1
∑

i=1

e−k/16

<
ke−k/16

4
.(3.2)

Symmetrically,

(3.3)
k−1
∑

i=⌊3k/4⌋+1

exp

(

−k
(

i

k
− 1

2

)2
)

1
√

i(k − i)
<
ke−k/16

4
.

Finally,

⌊3k/4⌋
∑

i=⌈k/4⌉

exp

(

−k
(

i

k
− 1

2

)2
)

1
√

i(k − i)

6
4√
3k

⌊3k/4⌋
∑

i=⌈k/4⌉

exp

(

−k
(

i

k
− 1

2

)2
)

6
4√
3k

∞
∑

i=−∞

exp

(

−k
(

i

k
− 1

2

)2
)
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6
4√
3k

+
4√
3k

∫ ∞

−∞

exp

(

−k
(

x

k
− 1

2

)2
)

dx

=
4√
3k

+
4
√
π√
3k
.(3.4)

Combining (3.1)–(3.4), we conclude that

k−1
∑

i=1

(

k

i

)i/2 (
k

k − i

)(k−i)/2
1

√

i(k − i)
6 2k/2

(

ke−k/16

2
+

4√
3k

+
4
√
π√
3k

)

.

This settles the lemma for a large enough absolute constant c > 1.

As an application of the previous lemma, we proceed to solve a key recurrence that
we will need to study Pn,k.

Theorem 3.2. Let N : {1, 2, 4, 8, 16, . . .}×Z
+ → [0,∞) be any function that sat-

isfies

N(n, k) 6

(

n

k

)1/2

if min{n, k} 6 2,

N(n, k) 6 2N
(n

2
, k
)

+

k−1
∑

i=1

N
(n

2
, i
)

N
(n

2
, k − i

)

if min{n, k} > 2.

Let c > 1 be the absolute constant from Lemma 3.1. Then for all n, k,

N(n, k) 6
(2 +

√
2)k−1ck−1

√
k

(n

k

)k/2

.(3.5)

Proof. The proof of (3.5) is by induction on the pair (n, k) ∈ {1, 2, 4, 8, 16, . . .} ×
Z
+. For min{n, k} 6 2, the claimed bound (3.5) is a weakening of N(n, k) 6

(

n
k

)1/2
.

This establishes the base case. For the inductive step, fix any n ∈ {4, 8, 16, 32, . . .}
and k > 3. Abbreviate α = 2 +

√
2. Then

N(n, k) 6 2N
(n

2
, k
)

+

k−1
∑

i=1

N
(n

2
, i
)

N
(n

2
, k − i

)

6 2 · (αc)
k−1

√
k

( n

2k

)k/2

+

k−1
∑

i=1

(αc)i−1

√
i

( n

2i

)i/2

· (αc)
k−i−1

√
k − i

(

n

2(k − i)

)(k−i)/2

= 2 · (αc)
k−1

√
k

( n

2k

)k/2

+ (αc)k−2
( n

2k

)k/2 k−1
∑

i=1

1
√

i(k − i)

(

k

i

)i/2 (
k

k − i

)(k−i)/2

6 2 · (αc)
k−1

√
k

( n

2k

)k/2

+
(αc)k−2c√

k

(n

k

)k/2

6
1√
2
· (αc)

k−1

√
k

(n

k

)k/2

+
(αc)k−2c√

k

(n

k

)k/2
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=
(αc)k−1

√
k

(n

k

)k/2

,

where the second step applies the inductive hypothesis; the fourth step appeals to
Lemma 3.1; and the fifth step uses k > 3. This completes the inductive step and
thereby settles (3.5).

3.2. The partition measure. For set families A ,B ⊆ P(Z), we define A ∗
B = {A ∪ B : A ∈ A , B ∈ B}. We collect basic properties of this operation in the
proposition below.

Proposition 3.3. Let A ,B,C ⊆ P(Z) be given. Then:

(i) A ∗∅ = ∅ ∗ A = ∅;
(ii) A ∗ {∅} = {∅} ∗ A = A ;
(iii) (A ∗ B) ∗ C = A ∗ (B ∗ C );
(iv) A ∗ B = B ∗ A ;
(v) (A ∪ B) ∗ C = (A ∗ C ) ∪ (B ∗ C ).

Proof. All properties are immediate from the definition of the ∗ operation.

We define an integer interval to be any finite set whose elements are consecutive
integers, namely, {i, i + 1, i + 2, . . . , j} for some i, j ∈ Z. As a special case, this
includes the empty interval ∅. An elementary family is any family of the form

(3.6) E =

(

I1
k1

)

∗
(

I2
k2

)

∗ · · · ∗
(

Iℓ
kℓ

)

,

where ℓ is a positive integer, I1, I2, . . . , Iℓ are pairwise disjoint integer intervals, and
k1, k2, . . . , kℓ ∈ {0, 1, 2}. Trivial examples of elementary families are

(

∅

0

)

= {∅} and
(

∅

1

)

= ∅. Another example of an elementary family is the singleton family {A} for

any nonempty finite set A ⊆ Z, using {A} =
(

{a1}
1

)

∗
(

{a2}
1

)

∗ · · · ∗
(

{aℓ}
1

)

where
a1 < a2 < · · · < aℓ are the distinct elements of A. We now define a partition measure
that captures how efficiently a family can be partitioned into elementary families.

Definition 3.4 (Partition measure π). For any family A ⊆ P({1, 2, . . . , n}),
define π(A ) to be the minimum

(3.7)

N
∑

i=1

|Ei|1/2

over all integers N and all elementary families E1, E2, . . . , EN that are pairwise disjoint

and satisfy E1 ∪ E2 ∪ · · · ∪ EN = A .

Straight from the definition,

π(∅) = 0,

π({∅}) = 1.

More generally,

(3.8) |A |1/2 6 π(A ) 6 |A |

for every A ⊆ P({1, 2, . . . , n}). The upper bound here corresponds to the trivial
partition A =

⋃

A∈A
{A}. The lower bound holds because (3.7) is no smaller than

(
∑ |Ei|)1/2 = |A |1/2. The following four lemmas will be useful to us in analyzing the
partition measure for families of interest.
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Lemma 3.5. Let A ,B ⊆ P({1, 2, . . . , n}) be given with A ∩ B = ∅. Then

π(A ∪ B) 6 π(A ) + π(B).

Proof. If A = ∅ or B = ∅, the claim is trivial. In the complementary case, let
A = E1∪· · ·∪EN and B = E ′

1∪· · ·∪E ′
N ′ be partitions of A and B, respectively, into

elementary families. Then A ∪ B = (E1 ∪ · · · ∪ EN ) ∪ (E ′
1 ∪ · · · ∪ E ′

N ′) is a partition
of A ∪ B into elementary families.

Lemma 3.6. Let A ⊆ P({1, 2, . . . ,m}) and B ⊆ P({m + 1,m + 2, . . . , n}) be

given, for some 1 6 m < n. Then

π(A ∗ B) 6 π(A )π(B).

Proof. If A = ∅ or B = ∅, we have A ∗B = ∅ by Proposition 3.3 and therefore
π(A ∗B) = 0. In the complementary case, let A = E1∪· · ·∪EN and B = E ′

1∪· · ·∪E ′
N ′

be partitions of A and B, respectively, into elementary families for which π(A ) and
π(B) are achieved. Then

(3.9) A ∗ B =

(

N
⋃

i=1

Ei

)

∗ B =

N
⋃

i=1

(Ei ∗ B) =

N
⋃

i=1

N ′
⋃

j=1

(Ei ∗ E
′
j ),

where the last two steps use the distributivity and commutativity properties in Propo-
sition 3.3. For any elementary families Ei ⊆ P({1, 2, . . . ,m}) and E ′

j ⊆ P({m +
1,m + 2, . . . , n}), the family Ei ∗ E ′

j ⊆ P({1, 2, . . . , n}) is also elementary, with
|Ei ∗ E ′

j | = |Ei| |E ′
j |. Since all unions in (3.9) are disjoint, we obtain

π(A ∗ B) 6
N
∑

i=1

N ′
∑

j=1

|Ei ∗ E
′
j |1/2 =

N
∑

i=1

N ′
∑

j=1

|Ei|1/2|E ′
j |1/2 = π(A )π(B).

For a set A ⊆ Z and an integer x, we define A+x = {a+x : a ∈ A}. Analogously,
for a family A ⊆ P(Z), we define A + x = {A+ x : A ∈ A }. As one would expect,
the partition measure is invariant under translation by an integer.

Lemma 3.7. Let A ⊆ P({1, 2, . . . , n}) be given. Then for all x ∈ N,

π(A ) = π(A + x).

Proof. Consider an elementary family E of the form (3.6), where I1, I2, . . . , Iℓ are
pairwise disjoint integer intervals and k1, k2, . . . , kℓ ∈ {0, 1, 2}. Then

E + x =

(

I1 + x

k1

)

∗
(

I2 + x

k2

)

∗ · · · ∗
(

Iℓ + x

kℓ

)

is also an elementary family because the translated integer intervals I1 + x, I2 +
x, . . . , Iℓ + x are pairwise disjoint. Thus, any partition A =

⋃N
i=1 Ei into elementary

families gives an analogous partition A + x =
⋃N

i=1(Ei + x) into elementary families,
with |Ei + x| = |Ei| for all i.
In general, A ⊆ B does not imply π(A ) 6 π(B). However, π enjoys the following
monotonicity property.

Lemma 3.8. For any positive integers n,m, k with n 6 m,

π(Pn,k) 6 π(Pm,k).
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Proof. Consider an elementary family E of the form (3.6), where I1, I2, . . . , Iℓ are
pairwise disjoint integer intervals and k1, k2, . . . , kℓ ∈ {0, 1, 2}. Then

E ∩ P({1, 2, . . . , n}) =
(

I1 ∩ {1, 2, . . . , n}
k1

)

∗ · · · ∗
(

Iℓ ∩ {1, 2, . . . , n}
kℓ

)

is also an elementary family because the integer intervals Ij ∩ {1, 2, . . . , n} for j =

1, 2, . . . , ℓ are pairwise disjoint. Thus, any partition Pm,k =
⋃N

i=1 Ei into elementary
families gives an analogous partition for Pn,k:

Pn,k = Pm,k ∩ P({1, 2, . . . , n})

=

N
⋃

i=1

Ei ∩ P({1, 2, . . . , n}).

Moreover, the elementary families in the new partition obey |Ei ∩P({1, 2, . . . , n})| 6
|Ei| for all i.

3.3. An efficient partition for Pn,k. Our analysis of the Fourier spectrum of
decision trees relies on the partition measure of the family Pn,k. Recall from (3.8)
that

π(Pn,k) >

(

n

k

)1/2

.

We will now prove that this lower bound is tight up to a factor of 2O(k), by combining
Lemmas 3.5–3.8 with the recurrence solved in Theorem 3.2.

Theorem 3.9. Let c > 1 be the absolute constant from Lemma 3.1. Then for all

positive integers n and k,

(3.10) π(Pn,k) 6
(2 +

√
2)k−1ck−1

√
k

(

2n

k

)k/2

.

Proof. We first treat the case when n is a power of 2. If k 6 2, the family Pn,k

is elementary to start with. As a result,

π(Pn,k) 6

(

n

k

)1/2

, k 6 2.(3.11)

If n 6 2, the family Pn,k is empty unless k 6 2. Therefore, again

π(Pn,k) 6

(

n

k

)1/2

, n 6 2.(3.12)
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For n, k > 3, we have

π(Pn,k) = π

(

k
⋃

i=0

(({1, 2, . . . , n/2}
i

)

∗
({n/2 + 1, n/2 + 2, . . . , n}

k − i

))

)

6

k
∑

i=0

π

(({1, 2, . . . , n/2}
i

)

∗
({n/2 + 1, n/2 + 2, . . . , n}

k − i

))

6

k
∑

i=0

π

(({1, 2, . . . , n/2}
i

))

π

(({n/2 + 1, n/2 + 2, . . . , n}
k − i

))

=

k
∑

i=0

π(Pn/2,i)π
(

Pn/2,k−i +
n

2

)

=

k
∑

i=0

π(Pn/2,i)π(Pn/2,k−i)

= 2π(Pn/2,k) +

k−1
∑

i=1

π(Pn/2,i)π(Pn/2,k−i),(3.13)

where the second, third, and fifth steps apply Lemmas 3.5, 3.6, and 3.7, respectively,
and the last step uses π({∅}) = 1.

The recurrence relations (3.11)–(3.13) show that the hypothesis of Theorem 3.2 is
satisfied for the function N(n, k) := π(Pn,k). As a result, Theorem 3.2 implies that

π(Pn,k) 6
(2 +

√
2)k−1ck−1

√
k

(n

k

)k/2

for any n ∈ {1, 2, 4, 8, 16, . . .} and k > 1. This upper bound in turn implies (3.10) for
any n > 1 and k > 1:

π(Pn,k) 6 π(P2⌈log n⌉,k)

6
(2 +

√
2)k−1ck−1

√
k

(

2⌈logn⌉

k

)k/2

6
(2 +

√
2)k−1ck−1

√
k

(

2n

k

)k/2

,

where the first step uses Lemma 3.8.

4. Fourier spectrum of decision trees. This section is devoted to the proof
of our main result on the Fourier spectrum of decision trees. Stated in its simplest
terms, our result shows that for any function f : {−1, 1}n → {−1, 0, 1} computable
by a decision tree of depth d, the sum of the absolute values of the Fourier coefficients
of order k is at most

Ck

√

(

d

k

)

(1 + lnn)k−1,

where C > 1 is an absolute constant that does not depend on n, d, k. Sections 4.1–4.3
focus on partitioning the Fourier spectrum of f into highly structured parts and
analyzing each in isolation. Sections 4.4 and 4.5 then recombine these pieces using
the machinery of elementary families.
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4.1. Slicing the tree. Let T be a given decision tree of depth d in Boolean vari-
ables x1, x2, . . . , xn. For a set family S ⊆ P({1, 2, . . . , d}), we define a real function
T |S : {−1, 1}n → R by

(4.1) T |S (x) =
∑

S∈S

∑

v∈{−1,1}d

T (v) · 2−d
∏

i∈S

vixT (v1v2...vi−1).

A straightforward but crucial observation is that T |S is additive with respect to S ,
in the following sense.

Proposition 4.1. Let T be a depth-d decision tree. Consider any set families

S ′,S ′′ ⊆ P({1, 2, . . . , d}) with S ′ ∩ S ′′ = ∅. Then

T |S ′∪S ′′ = T |S ′ + T |S ′′ .

Proof. Immediate by taking S = S ′ ∪ S ′′ in the defining equation (4.1).

The relevance of (4.1) to the Fourier spectrum of decision trees is borne out by the
following lemma.

Lemma 4.2. Let T be a decision tree of depth d and degree at most 0, computing

a function f : {−1, 1}n → R. Then

Lkf = T |Pd,k
, k = 0, 1, 2, . . . , n.

Proof. By Proposition 2.3,

f(x) =
∑

v∈{−1,1}d

T (v) ·
d
∏

i=1

1 + vixT (v1v2...vi−1)

2

=
∑

v∈{−1,1}d

T (v) · 2−d
∑

S⊆{1,2,...,d}

∏

i∈S

vixT (v1v2...vi−1)

=

d
∑

k=0

∑

S∈Pd,k

∑

v∈{−1,1}d

T (v) · 2−d
∏

i∈S

vixT (v1v2...vi−1).(4.2)

Since deg(T ) 6 0, the coefficients T (v) for v ∈ {−1, 1}d are real numbers. Moreover,
for any v ∈ {−1, 1}d and S ⊆ {1, 2, . . . , d}, the definition of a decision tree ensures
that the product

∏

i∈S vixT (v1v2...vi−1) is a signed monomial of degree |S|.We conclude
from (4.2) that the degree-k homogeneous part of f is

Lkf =
∑

S∈Pd,k

∑

v∈{−1,1}d

T (v) · 2−d
∏

i∈S

vixT (v1v2...vi−1)

= T |Pd,k.

In particular, Lkf = 0 for k > d+ 1.

Looking ahead, much of our analysis of the Fourier spectrum of decision trees T focuses
on T |E for elementary families E ⊆ Pd,k. This analysis proceeds by induction, with
the following lemma required as part of the inductive step. The reader may wish to
review Sections 2.2 and 2.3 for the meaning of the symbols T ,T ∗, and ||| · |||.
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Lemma 4.3. Let T ∈ T (n, d, p, k) be a decision tree and S ⊆ P({1, 2, . . . , d}).
Define m = maxv∈{−1,1}d |||T (v)|||. Then for each i = 1, 2, . . . ,

(

n
k

)

, there is a real

0 6 pi 6 1 and a decision tree Ui ∈ T ∗(n, d, pi, 0) such that

p =

(nk)
∑

i=1

pi,

|||T |S ||| 6 m

(nk)
∑

i=1

|||Ui|S |||.

Proof. Let φ =
∑

S⊆{1,2,...,n} φ̂(S)χS be an arbitrary nonzero polynomial with

|||φ||| 6 1. Consider the random variable X ∈ {±χS : φ̂(S) 6= 0} distributed according
to

P[X = σχS ] =
|φ̂(S)|
|||φ|||

(

1

2
+

|||φ|||
2

· σ sgn φ̂(S)
)

for all σ ∈ {−1, 1} and S ⊆ {1, 2, . . . , n}. Then

EX =
∑

S⊆{1,2,...,n}

∑

σ∈{−1,1}

σχS · |φ̂(S)||||φ|||

(

1

2
+

|||φ|||
2

· σ sgn φ̂(S)
)

=
∑

S⊆{1,2,...,n}

χS · |φ̂(S)||||φ||| · |||φ||| · sgn φ̂(S)

= φ(x).

In conclusion, φ can be viewed as the expected value of a random variable X ∈ {±χS :

φ̂(S) 6= 0}.
We may assume that T has at least one nonzero leaf, since otherwise the lemma

holds trivially with p1 = p2 = · · · = p(nk)
= p = 0. Recall from the definition of m that

|||T (v)/m||| = |||T (v)|||/m 6 1 for each v. Now the previous paragraph implies that for
every leaf v ∈ {−1, 1}d with T (v) 6= 0, the polynomial T (v)/m is the expected value
of a random variable Xv whose support is contained in the set of the nonzero degree-k
monomials of T (v) with ±1 coefficients. The joint distribution of the Xv is immaterial
for our purposes, but for concreteness let us declare them to be independent. Then

T |S (x) = m
∑

S∈S

∑

v∈{−1,1}d

T (v)

m
· 2−d

∏

i∈S

vixT (v1v2...vi−1)

= m
∑

S∈S

∑

v∈{−1,1}d:
T (v) 6=0

E[Xv] · 2−d
∏

i∈S

vixT (v1v2...vi−1)

= mE











∑

S∈S

∑

v∈{−1,1}d:
T (v) 6=0

Xv · 2−d
∏

i∈S

vixT (v1v2...vi−1)











.
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Applying Proposition 2.1,

|||T |S ||| 6 mE

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

S∈S

∑

v∈{−1,1}d:
T (v) 6=0

Xv · 2−d
∏

i∈S

vixT (v1v2...vi−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.(4.3)

In the last expression, each random variable Xv is a signed monomial of degree k that
does not contain any of the variables xT (ε), xT (v1), . . . , xT (v1v2...vd−1) queried along
the path from the root to v. Therefore, the expectation in (4.3) is over |||U |S ||| for
some trees U ∈ T ∗(n, d, p, k). We conclude that there is a fixed decision tree U ∈
T ∗(n, d, p, k) with

(4.4) |||T |S ||| 6 m |||U |S |||.

Finally, decompose

U |S =
∑

S∈Pn,k

US |S · χS ,

where US is the depth-d decision tree given by

US(v) =



















U(v) if |v| 6 d− 1,

−1 if |v| = d and U(v) = −χS,

1 if |v| = d and U(v) = χS ,

0 otherwise.

In other words, US is the decision tree obtained from U by setting to 1 every leaf
labeled χS , setting to −1 every leaf labeled −χS , and setting all other leaves to 0.
It is clear that the densities of the US sum to the density of U . We conclude that
US ∈ T ∗(n, d, pS , 0) for some reals 0 6 pS 6 1 with

∑

S∈Pn,k
pS = p. Moreover,

|||T |S ||| 6 m |||U |S |||
6 m

∑

S∈Pn,k

|||US |S · χS |||

6 m
∑

S∈Pn,k

|||US |S |||,

where the first step is a restatement of (4.4); the second step applies Proposition 2.1;
and the last step is justified by Proposition 2.2. In summary, the decision trees
U1, U2, . . . , U(nk)

in the statement of the lemma can be taken to be the US, in arbitrary

order.

4.2. Analytic preliminaries. For positive integers m and k, define

Λm,k(p) =



































0 if p = 0,

p

√

(

1

k
ln
ekmk−1

p

)k

if 0 < p 6 1/m,

p

√

(

ln
e

p

)

(ln em)k−1 if 1/m < p 6 1.
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Our bound for the Fourier spectrum of decision trees is in terms of this function. As
preparation for our main result, we now collect the analytic properties of Λm,k that
we will need.

Lemma 4.4. Let m and k be any positive integers. Then:

(i) Λm,k is continuous on [0, 1];
(ii) Λm,k is monotonically increasing on [0, 1];
(iii) Λm,k is concave on [0, 1].

Proof. (i) The continuity on (0, 1/m) ∪ (1/m, 1] is immediate. The continuity at
p = 0 and p = 1/m follows by examining the one-sided limits at those points, which
are 0 and (ln em)k/2/m, respectively.

(ii) Considering the derivative Λ′
m,k separately on (0, 1/m) and (1/m, 1], one finds

in both cases that the derivative is positive:

Λ′
m,k(p) =



























√

(

1

k
ln
ekmk−1

p

)k (

1− k

2 ln(ekmk−1/p)

)

if 0 < p < 1/m,

(

√

ln
e

p
− 1

2
√

ln(e/p)

)

√

(ln em)k−1 if 1/m < p 6 1.

Since Λm,k is continuous on [0, 1], it follows that Λm,k is monotonically increasing on
[0, 1].

(iii) The one-sided derivatives of Λm,k at p = 1/m are both (ln em)
k−2
2 ln(

√
em).

Along with the formulas derived in (ii) for Λ′
m,k on (0, 1/m) and (1/m, 1], this shows

that Λm,k is continuously differentiable on (0, 1]. The formulas in (ii) further reveal
that Λ′

m,k is monotonically decreasing on (0, 1/m) and on (1/m, 1]. Indeed, the for-
mula for (0, 1/m) shows that Λ′

m,k is the product of two nonnegative factors, each of
which clearly decreases with p; the formula for (1/m, 1] shows that Λ′

m,k is a constant

multiple of
√

ln(e/p)− 1/(2
√

ln(e/p)), where the minuend decreases with p and the
subtrahend increases with p.

Since Λ′
m,k is monotonically decreasing on (0, 1/m) and on (1/m, 1], and contin-

uous on (0, 1], we conclude that Λ′
m,k is monotonically decreasing on (0, 1], which in

turn makes Λm,k concave on (0, 1]. Since Λm,k is continuous at 0, we conclude that
Λm,k is concave on the entire interval [0, 1].

The function Λm,k arises in our work not as the closed form defined above, but rather
as a certain optimization problem from an inductive argument. We now describe this
optimization view and prove its equivalence with the above definition.

Lemma 4.5. Let m and k be positive integers. Then for 0 < p 6 1,

(4.5) Λm,k(p) = pmax

{

k
∏

i=1

√

ln exi : xi > 1 and x1x2 . . . xi 6
mi−1

p
for all i

}

.

Proof. For k = 1, the left-hand side and right-hand side are clearly p
√

ln(e/p).
In what follows, we treat the complementary case k > 2.

For 0 < p 6 1/m, the upper bound in (4.5) follows by taking x1 = x2 = · · · =
xk = (mk−1/p)1/k. For 1/m < p 6 1, the upper bound follows by setting x1 = 1/p
and x2 = · · · = xk = m.

For the lower bound in (4.5), fix reals x1, x2, . . . , xk > 1 with x1 6 1/p and
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x1x2 . . . xk 6 mk−1/p. Then

√

ln ex1 ·
k
∏

i=2

√

ln exi 6
√

ln ex1

(

1

k − 1
ln ek−1x2 . . . xk

)(k−1)/2

6
√

ln ex1

(

1

k − 1
ln
ek−1mk−1

px1

)(k−1)/2

,(4.6)

where the first step applies the AM–GM inequality. Elementary calculus shows
that (4.6) as a function of x1 is monotonically increasing on [1, (mk−1/p)1/k] and
monotonically decreasing on [(mk−1/p)1/k,mk−1/p]. Recalling that 1 6 x1 6 1/p, we
conclude that (4.6) is maximized at

x1 = min

(

(

mk−1

p

)1/k

,
1

p

)

=

{

(mk−1/p)1/k if 0 < p 6 1/m,

1/p if 1/m < p 6 1.

Making this substitution shows that (4.6) does not exceed Λm,k(p).

This optimization view of Λm,k implies a host of useful facts that would be a hassle
to prove directly. We state them as corollaries below.

Corollary 4.6. Let m and k be positive integers. Then for all p, q ∈ [0, 1],

qΛm,k(p) 6 Λm,k(pq).

Proof. If p = 0 or q = 0, the left-hand side and right-hand side both vanish. If
p, q ∈ (0, 1], the claim can be equivalently stated as Λm,k(p)/p 6 Λm,k(pq)/pq, which
in turn amounts to saying that Λm,k(p)/p is monotonically nonincreasing in p ∈ (0, 1].
This monotonicity is immediate from Lemma 4.5.

Corollary 4.7. Let m, k, ℓ be positive integers. Then for all p, q ∈ [0, 1],

Λm,k(p) Λm,ℓ

( q

m

)

6
Λm,k+ℓ(pq)

m
.

Proof. If p = 0 or q = 0, the left-hand side and right-hand side both vanish. In
what follows, we treat p, q ∈ (0, 1]. By Lemma 4.5,

(4.7) Λm,k(p) Λm,ℓ

( q

m

)

=
pq

m
max

{

k+ℓ
∏

i=1

√

ln exi

}

,

where the maximum is over all x1, x2, . . . , xk+ℓ > 1 such that

x1x2 . . . xi 6
mi−1

p
, i = 1, 2, . . . , k,(4.8)

xk+1xk+2 . . . xi 6
mi−k−1

q/m
, i = k + 1, . . . , k + ℓ.(4.9)

Equations (4.8) and (4.9) imply that the maximum in (4.7) is over x1, x2, . . . , xk+ℓ > 1
that satisfy, among other things, x1x2 . . . xi 6 mi−1/(pq) for i = 1, 2, . . . , k + ℓ. Now
Lemma 4.5 implies that the right-hand side of (4.7) is at most Λm,k+ℓ(pq)/m.
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Corollary 4.8. Let m and k be positive integers. Then for all p ∈ [0, 1],

(4.10) Λm,k(p) 6
√

2kp · Λm,k(
√
p).

Proof. For p = 0, the left-hand side and right-hand side both vanish. For p ∈
(0, 1], we have:

Λm,k(p) = pmax

{

k
∏

i=1

√

ln exi : xi > 1 and x1x2 . . . xi 6
mi−1

p
for all i

}

6 pmax

{

k
∏

i=1

√

ln ex2i : xi > 1 and x1x2 . . . xi 6
mi−1

√
p

for all i

}

6
√
2k pmax

{

k
∏

i=1

√

ln exi : xi > 1 and x1x2 . . . xi 6
mi−1

√
p

for all i

}

=
√

2kp · Λm,k(
√
p),

where the first and last steps use Lemma 4.5.

4.3. Contiguous intervals. We have reached a focal point of this paper, where
we analyze T |E for arbitrary decision trees T and “canonical” elementary families E .
The families that we allow are those of the form

E =

(

I1
k1

)

∗
(

I2
k2

)

∗ · · · ∗
(

Iℓ
kℓ

)

,

where k1, k2, . . . , kℓ ∈ {1, 2} and the integer intervals I1, I2, . . . , Iℓ form a partition of
{1, 2, . . . , d} with d being the depth of T. The proof proceeds by induction on ℓ, with
Lemmas 4.2, 4.3, and the analytic properties of Λm,k applied in the inductive step.
We will later generalize this result to arbitrary elementary families E and, from there,
to all of Pd,k via the results of Section 3.

Theorem 4.9. Let T ∈ T ∗(n, d, p, 0) be given, for some 0 6 p 6 1 and integers

n, d > 1. Let ℓ > 1. Let I1, I2, . . . , Iℓ be pairwise disjoint integer intervals with I1∪I2∪
· · ·∪Iℓ = {1, 2, . . . , d}, and let k1, k2, . . . , kℓ ∈ {1, 2}. Abbreviate k = k1+k2+ · · ·+kℓ.
Then

(4.11)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T |(I1k1)∗(I2k2)∗···∗(Iℓkℓ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6 2Ck 12ℓ−1Λn2,k(p)

ℓ
∏

i=1

(|Ii|
ki

)1/2

,

where C > 1 is the absolute constant from Theorem 2.5.

Proof. The proof is by induction on ℓ. The base case ℓ = 1 corresponds to I1 =
{1, 2, . . . , d}. Let f : {−1, 1}n → {−1, 0, 1} be the function computed by T. If f ≡ 0,
we have T |(I1k1) ≡ 0 and the bound holds trivially. In the complementary case f 6≡ 0,

recall from Fact 2.4 that

(4.12) P
x∈{−1,1}n

[f(x) 6= 0] = p.
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Then

|||T |(I1k1)||| = |||Lk1f |||

6

(|I1|
k1

)1/2

Ck1p

k1
∏

i=1

√

ln
eni−1

p

6

(|I1|
k1

)1/2

· 2Ck1p

k1
∏

i=1

√

ln
eni−1

√
p

6

(|I1|
k1

)1/2

· 2Ck1Λn2,k1
(p)

=

(|I1|
k1

)1/2

· 2CkΛn2,k(p),

where the first step is valid by Lemma 4.2; the second step uses Theorem 2.5 along
with (4.12) and k1 6 2; and the fourth step applies Lemma 4.5 with m = n2 and
k = k1 6 2. This settles the base case. We note that the last derivation could be
sharpened so as to replace Λn2,k with Λn,k; however, this savings would not make a
difference because the bound in the inductive step requires Λn2,k.

We now turn to the inductive step, ℓ > 2. If kj > |Ij | for some j, then

T |(I1k1)∗(I2k2)∗···∗(
Iℓ
kℓ
) = T |∅ = 0,

and the claimed bound holds trivially. We may therefore assume that kj 6 |Ij | for
every j = 1, 2, . . . , ℓ. This means in particular that the intervals I1, I2, . . . , Iℓ are
nonempty. Furthermore, by renumbering the intervals if necessary, we may assume
that I1 < I2 < · · · < Iℓ. Put d

′ = max Iℓ−1, so that Iℓ = {d′ + 1, d′ + 2, . . . , d}.
Abbreviate

S
′ =

(

I1
k1

)

∗
(

I2
k2

)

∗ · · · ∗
(

Iℓ−1

kℓ−1

)

,

S = S
′ ∗
(

Iℓ
kℓ

)

.

For j = 0, 1, 2, . . . , define a depth-d′ decision tree T ′
j by

T ′
j(v) =















T (v) if v ∈ {−1, 1}6d′−1,

Tv|({1,2,...,|Iℓ|}kℓ
) if v ∈ {−1, 1}d′

and dns(Tv) ∈ (3−j−1, 3−j]

0 otherwise.

,

This definition corresponds to part (i) of the program set forth in the introduction
(page 9). Observe that T ′

j is a valid decision tree in that for every leaf v ∈ {−1, 1}d′

,
the label T ′

j(v) ∈ R[x1, x2, . . . , xn] is a function that does not depend on any of the
variables

(4.13) xT (ε), xT (v1), xT (v1v2), . . . , xT (v1v2...vd′−1)

queried along the path from the root to v. Indeed, recall from Lemma 4.2 that
Tv|({1,2,...,|Iℓ|}kℓ

) is the kℓ-th homogeneous part of the function computed by the subtree
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Tv, which by definition does not use any of the variables (4.13). We also note that
all but finitely many of the trees T0, T1, T2, . . . are identically zero; however, working
with the infinite sequence is more convenient from the point of view of notation and
calculations.

The weighted densities of T ′
0, T

′
1, T

′
2, . . . are given by

∞
∑

j=0

3−j dns(T ′
j) =

∞
∑

j=0

3−j P
v∈{−1,1}d′

[T ′
j(v) 6= 0]

6

∞
∑

j=0

3−j P
v∈{−1,1}d′

[3−j−1 < dns(Tv) 6 3−j]

6 3 E
v∈{−1,1}d′

dns(Tv)

= 3 dns(T )

= 3p.(4.14)

The relevance of T ′
j to our analysis of T |S is clear from the following claims, whose

proofs we will present shortly.

Claim 4.10. T |S =
∑∞

j=0 T
′
j |S ′ .

Claim 4.11. For j = 0, 1, 2, . . . , one has

|||T ′
j |S ′ ||| 6 8Ck 12ℓ−2

(|I1|
k1

)1/2

· · ·
(|Iℓ|
kℓ

)1/2

·
√
3−jΛn2,k(

√
3−j dns(T ′

j)).

We now complete the proof of the theorem. Set s =
∑∞

i=0

√
3−i = 2.3660 . . . .

Then

∞
∑

j=0

√
3−jΛn2,k(

√
3−j dns(T ′

j)) = s

∞
∑

j=0

√
3−j

s
Λn2,k(

√
3−j dns(T ′

j))

6 sΛn2,k





∞
∑

j=0

√
3−j

s
·
√
3−j dns(T ′

j)





6 3Λn2,k





s

3

∞
∑

j=0

√
3−j

s
·
√
3−j dns(T ′

j)





6 3Λn2,k(p),(4.15)

where the second step is valid by Lemma 4.4 (iii); the third step uses Corollary 4.6
with q = s/3; and the final step is justified by (4.14) and Lemma 4.4 (ii). As a result,

|||T |S ||| 6
∞
∑

j=0

|||T ′
j |S ′ |||

6 8Ck 12ℓ−2

(|I1|
k1

)1/2

· · ·
(|Iℓ|
kℓ

)1/2 ∞
∑

j=0

√
3−jΛn2,k(

√
3−j dns(T ′

j))

6 2Ck 12ℓ−1

(|I1|
k1

)1/2

· · ·
(|Iℓ|
kℓ

)1/2

Λn2,k(p),



30 ALEXANDER A. SHERSTOV, ANDREY A. STOROZHENKO, AND PEI WU

where the first step is valid by Proposition 2.1 and Claim 4.10, bearing in mind once
again that all but finitely many of the T ′

j |S ′ are identically zero; the second step is
a substitution from Claim 4.11; and the final step uses (4.15). This completes the
inductive step.

Proof of Claim 4.10. Let T ′ be the depth-d′ decision tree given by

T ′(v) =

{

T (v) if v ∈ {−1, 1}6d′−1,

Tv|({1,2,...,|Iℓ|}kℓ
) if v ∈ {−1, 1}d′

.

This definition implies that

T ′(v) =

{

T ′
0(v) = T ′

1(v) = T ′
2(v) = · · · if v ∈ {−1, 1}6d′−1,

T ′
0(v) + T ′

1(v) + T ′
2(v) + · · · if v ∈ {−1, 1}d′

.

As a result,

T ′|S ′ =
∑

S∈S ′

∑

v∈{−1,1}d′





∞
∑

j=0

T ′
j(v)



 · 2−d′ ∏

i∈S

vixT ′(v1v2...vi−1)

=

∞
∑

j=0

∑

S∈S ′

∑

v∈{−1,1}d′

T ′
j(v) · 2−d′ ∏

i∈S

vixT ′
j(v1v2...vi−1)

=

∞
∑

j=0

T ′
j|S ′ .(4.16)

Thus, the proof will be complete once we show that T ′|S ′ = T |S .
Since S is the family of sets S expressible as S = S′ ∪ S′′ with S′ ∈ S ′ and

S′′ ∈
(

Iℓ
kℓ

)

, we have

T |S =
∑

S∈S

∑

v∈{−1,1}d

T (v) · 2−d
∏

i∈S

vixT (v1v2...vi−1)

=
∑

S′∈S ′

∑

S′′∈(Iℓkℓ)

∑

v∈{−1,1}d

T (v) · 2−d
∏

i∈S′∪S′′

vixT (v1v2...vi−1).(4.17)

Recall that S ′ ⊆ P({1, 2, . . . , d′}) and Iℓ = {d′ +1, d′ +2, . . . , d}. As a result, (4.17)
yields

T |S =
∑

S′∈S ′

∑

S′′∈(Iℓkℓ)

∑

v′∈{−1,1}d′

v′′∈{−1,1}d−d′

T (v′v′′) · 2−d
∏

i∈S′

v′ixT (v′
1v

′
2...v

′
i−1)

×
∏

i∈S′′

v′′i−d′xT (v′v′′
1 v′′

2 ...v′′
i−1−d′

).

A change of index now gives

T |S =
∑

S′∈S ′

∑

S′′∈({1,2,...,|Iℓ|}kℓ
)

∑

v′∈{−1,1}d′

v′′∈{−1,1}d−d′

T (v′v′′) · 2−d
∏

i∈S′

v′ixT (v′
1v

′
2...v

′
i−1)

×
∏

i∈S′′

v′′i xT (v′v′′
1 v′′

2 ...v′′
i−1)

.
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Since T (v′v′′) = Tv′(v′′) and T (v′v′′1 v
′′
2 . . . v

′′
i−1) = Tv′(v′′1 v

′′
2 . . . v

′′
i−1), we arrive at

T |S =
∑

S′∈S ′

∑

v′∈{−1,1}d′

2−d′ ∏

i∈S′

v′ixT (v′
1v

′
2...v

′
i−1)

×







∑

S′′∈({1,2,...,|Iℓ|}kℓ
)

∑

v′′∈{−1,1}d−d′

Tv′(v′′) · 2−d+d′ ∏

i∈S′′

v′′i xTv′ (v
′′
1 v′′

2 ...v′′
i−1)






.

The large parenthesized expression is by definition Tv′ |({1,2,...,|Iℓ|}kℓ
) = T ′(v′), whence

T |S =
∑

S′∈S ′

∑

v′∈{−1,1}d′

T ′(v′) · 2−d′ ∏

i∈S′

v′ixT (v′
1v

′
2...v

′
i−1)

=
∑

S′∈S ′

∑

v′∈{−1,1}d′

T ′(v′) · 2−d′ ∏

i∈S′

v′ixT ′(v′
1v

′
2...v

′
i−1)

= T ′|S ′ .(4.18)

By (4.16) and (4.18), the proof is complete.

Proof of Claim 4.11. Recall from Lemma 4.2 that Tv|({1,2,...,|Iℓ|}kℓ
) is the kℓ-th ho-

mogeneous part of the function computed by the subtree Tv of T. This implies that
T ′
j ∈ T (n, d′, dns(T ′

j), kℓ). Moreover, every nonzero leaf v of T ′
j has norm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Tv|({1,2,...,|Iℓ|}kℓ
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6 2Ckℓ

(|Iℓ|
kℓ

)1/2

Λn2,kℓ
(dns(Tv))

6 2Ckℓ

(|Iℓ|
kℓ

)1/2

Λn2,kℓ
(3−j),

where the first step applies the inductive hypothesis to the tree Tv of depth |Iℓ|,
and the second step is legitimate by the monotonicity of Λn2,kℓ

(Lemma 4.4). Now
Lemma 4.3 gives, for each i = 1, 2, . . . ,

(

n
kℓ

)

, a real number 0 6 pi 6 1 and a decision

tree Uj,i ∈ T ∗(n, d′, pi, 0) such that

dns(T ′
j) =

( n
kℓ
)

∑

i=1

pi,(4.19)

|||T ′
j |S ′ ||| 6 2Ckℓ

(|Iℓ|
kℓ

)1/2

Λn2,kℓ
(3−j)

( n
kℓ
)

∑

i=1

|||Uj,i|S ′ |||.(4.20)

Applying the inductive hypothesis to each Uj,i|S ′ gives

( n

kℓ
)

∑

i=1

|||Uj,i|S ′ ||| 6 2Ck−kℓ 12ℓ−2

√

(|I1|
k1

)

· · ·
(|Iℓ−1|
kℓ−1

)
( n

kℓ
)

∑

i=1

Λn2,k−kℓ
(pi).(4.21)
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The final summation can be bounded via

( n

kℓ
)

∑

i=1

Λn2,k−kℓ
(pi) 6

(

n

kℓ

)

· Λn2,k−kℓ







(

n

kℓ

)−1 (
n

kℓ
)

∑

i=1

pi







= n2 · 1

n2

(

n

kℓ

)

· Λn2,k−kℓ

(

(

n

kℓ

)−1

dns(T ′
j)

)

6 n2Λn2,k−kℓ

(

dns(T ′
j)

n2

)

,(4.22)

where the first step is valid by Lemma 4.4 (iii); the second step is a substitution
from (4.19); and the third step uses kℓ 6 2 along with Corollary 4.6. Now

|||T ′
j |S ′ ||| 6 4Ck 12ℓ−2

√

(|I1|
k1

)

· · ·
(|Iℓ|
kℓ

)

· Λn2,kℓ
(3−j) · n2Λn2,k−kℓ

(

dns(T ′
j)

n2

)

6 8Ck 12ℓ−2

√

(|I1|
k1

)

· · ·
(|Iℓ|
kℓ

)

· Λn2,kℓ
(
√
3−j)√

3j
· n2Λn2,k−kℓ

(

dns(T ′
j)

n2

)

6 8Ck 12ℓ−2

√

(|I1|
k1

)

· · ·
(|Iℓ|
kℓ

)

·
√
3−jΛn2,k(

√
3−j dns(T ′

j)),

where the first step combines (4.20)–(4.22); the second step uses kℓ 6 2 and Corol-
lary 4.8; and the third step applies Corollary 4.7. The proof of the claim is complete.
We note that the final appeal to Corollary 4.7 is the reason why our Fourier weight
bound features Λn2,k rather than Λn,k.

4.4. Generalization to elementary families. The result on the Fourier spec-
trum of decision trees that we have just established (Theorem 4.9) holds only for
elementary families of special form, described at the beginning of Section 4.3. We
now generalize Theorem 4.9 to arbitrary elementary families.

Theorem 4.12. Let T ∈ T ∗(n, d, p, 0) be given, for some 0 6 p 6 1 and integers

n, d > 1. Let k be an integer with 1 6 k 6 d. Then every elementary family E ⊆ Pd,k

satisfies

(4.23) |||T |E ||| 6 (12C)kΛn2,k(p)
√

|E |,

where C > 1 is the absolute constant from Theorem 2.5.

Proof. If E = ∅, then T |E ≡ 0 and the claimed upper bound holds trivially. In
the complementary case of nonempty E , let ℓ be the minimum positive integer such
that

(4.24) E =

(

I1
k1

)

∗
(

I2
k2

)

∗ · · · ∗
(

Iℓ
kℓ

)

for some pairwise disjoint integer intervals I1, I2, . . . , Iℓ and some k1, k2, . . . , kℓ ∈
{0, 1, 2}. Since E 6= ∅, Proposition 3.3 (i) implies that

(

Ij
kj

)

6= ∅ for all j and therefore

|Ij | > kj , j = 1, 2, . . . , ℓ.(4.25)
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The reader will recall from the definition of the ∗ operator that

|E | =
ℓ
∏

j=1

(|Ij |
kj

)

,(4.26)

k =
ℓ
∑

j=1

kj .(4.27)

Since we chose a representation (4.24) with the minimum ℓ, Proposition 3.3 (ii) addi-
tionally implies that

(

Ij
kj

)

6= {∅} for all j, forcing

kj ∈ {1, 2}, j = 1, 2, . . . , ℓ.(4.28)

The previous two equations yield

(4.29) ℓ 6 k.

It follows from (4.25) and (4.28) that each Ij is a nonempty subset of {1, 2, . . . , d}.
Furthermore, by renumbering the intervals if necessary, we may assume that I1 <
I2 < · · · < Iℓ. We abbreviate I = I1 ∪ I2 ∪ · · · ∪ Iℓ and I = {1, 2, . . . , d} \ I.

It is obvious that every string v ∈ {−1, 1}d is uniquely determined by its sub-
strings v|I and v|I . Similarly, for every i ∈ I, the prefix v1v2 . . . vi−1 is uniquely
determined by the substrings (v1v2 . . . vi−1)|I and v|I . This means in particular that

T (v) = Uv|
I
(v|I), v ∈ {−1, 1}d(4.30)

T (v1v2 . . . vi−1) = Uv|I
((v1v2 . . . vi−1)|I), v ∈ {−1, 1}d, i ∈ I,(4.31)

where {Uw : w ∈ {−1, 1}|I|} is a suitable collection of decision trees of depth I. By
definition,

Uw ∈ T
∗(n, |I|, dns(Uw), 0), w ∈ {−1, 1}|I|.(4.32)

Moreover, the densities of the Uw are related in a natural way to the density of T.
Indeed, considering a uniformly random string v ∈ {−1, 1}d in (4.30) gives P[T (v) 6=
0] = P[Uv|

I
(v|I) 6= 0], which is equivalent to

(4.33) dns(T ) = E dns(Uv|
I
).

In what follows, all expectations are with respect to uniformly random v ∈
{−1, 1}d. We have:

T |E = E

[

∑

S∈E

T (v)
∏

i∈S

vixT (v1v2...vi−1)

]

= E







∑

S1∈(I1k1)

· · ·
∑

Sℓ∈(Iℓkℓ)

T (v)
ℓ
∏

j=1

∏

i∈Sj

vixT (v1v2...vi−1)







= E







∑

S1∈(I1k1)

· · ·
∑

Sℓ∈(Iℓkℓ)

Uv|
I
(v|I)

ℓ
∏

j=1

∏

i∈Sj

vixUv|
I
((v1v2...vi−1)|I)






,
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where the last step uses (4.30) and (4.31). It remains to shift the indexing variable i.
For this, let I ′1 < I ′2 < · · · < I ′ℓ denote the integer intervals that form a partition of
{1, 2, . . . , |I|} and satisfy |I ′j | = |Ij | for all j. Now the previous equation for T |E can
be restated as

T |E = E









∑

S1∈(I
′
1

k1
)

· · ·
∑

Sℓ∈(
I′
ℓ

kℓ
)

Uv|I
(v|I)

ℓ
∏

j=1

∏

i∈Sj

(v|I)i · xUv|
I
((v|I)6i−1)









= E

[

Uv|
I
|
(I

′
1

k1
)∗···∗(I

′
ℓ

kℓ
)

]

.(4.34)

As a result,

|||T |E ||| 6 E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Uv|I
|
(I

′
1

k1
)∗···∗(I

′
ℓ

kℓ
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6 E

[

2Ck 12ℓ−1Λn2,k(dns(Uv|I
))

ℓ
∏

i=1

(|I ′i|
ki

)1/2
]

= 2Ck 12ℓ−1E

[

Λn2,k(dns(Uv|
I
))

ℓ
∏

i=1

(|Ii|
ki

)1/2
]

= 2Ck 12ℓ−1
√

|E | E
[

Λn2,k(dns(Uv|I
))
]

6 2Ck 12ℓ−1
√

|E |Λn2,k(E dns(Uv|I
))

6 (12C)k
√

|E |Λn2,k(dns(T )),

where the first step applies Proposition 2.1 to (4.34); the second step is justified
by (4.32) and Theorem 4.9; the fourth step is a substitution from (4.26); the fifth step
is legitimate by Lemma 4.4 (iii); and the final step uses (4.29) and (4.33). Since T
has density p by hypothesis, the proof is complete.

4.5. Main result on decision trees. We now obtain our main result on the
Fourier spectrum of decision trees by combining Theorem 4.12 with an efficient de-
composition of Pd,k into elementary families (Theorem 3.9).

Theorem 4.13. Let f : {−1, 1}n → {−1, 0, 1} be a function computable by a de-

cision tree of depth d. Define p = Px∈{−1,1}n [f(x) 6= 0]. Then

|||Lkf ||| 6
(

d

k

)1/2

(58Cc)k Λn2,k(p), k = 1, 2, . . . , n,

where C > 1 and c > 1 are the absolute constants from Theorem 2.5 and Lemma 3.1,
respectively.

Proof. Lemma 4.2 ensures that Lkf = 0 for k > d, so that the theorem holds
vacuously in that case. We now examine the complementary possibility, 1 6 k 6

d. For some integer N > 1, Theorem 3.9 gives a partition Pd,k =
⋃N

i=1 Ei where
E1, E2, . . . , EN are elementary families with

(4.35)

N
∑

i=1

|Ei|1/2 6 (2 + 2
√
2)kck

(

d

k

)k/2

.
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Fix a decision tree T of depth d that computes f. Then Fact 2.4 shows that T ∈
T ∗(n, d, p, 0). As a result,

|||Lkf ||| = |||T |Pd,k
|||

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

i=1

T |Ei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6

N
∑

i=1

|||T |Ei
|||

6

N
∑

i=1

(12C)k Λn2,k(p)
√

|Ei|

6

(

d

k

)k/2

(58Cc)k Λn2,k(p),

where the first step is valid by Lemma 4.2; the second step uses Proposition 4.1; the
third step uses Proposition 2.1; the fourth step applies Theorem 4.12; and the final
step substitutes the upper bound from (4.35). In view of (2.1), the proof is complete.

Maximizing over 0 6 p 6 1, we establish the following clean bound conjectured by
Tal [31].

Corollary 4.14. Let f : {−1, 1}n → {−1, 0, 1} be a function computable by a

decision tree of depth d. Then

|||Lkf ||| 6 Ck

√

(

d

k

)

(1 + lnn)k−1, k = 1, 2, . . . , n,

where C > 1 is an absolute constant.

Proof. Recall from Lemma 4.4 (ii) that Λn2,k(p) 6 Λn2,k(1) =
√

(ln en2)k−1 for
all 0 6 p 6 1. Now the claimed bound is immediate from Theorem 4.13 after a change
of constant C.

Corollary 4.14 settles Theorem 1.9 from the introduction. By convexity (Proposi-
tion 2.1), Corollary 4.14 holds more generally for any real function f : {−1, 1}n →
[−1, 1] computable by a decision tree of depth d. We record the following generaliza-
tion for functions with range [−1, 1].

Corollary 4.15. Let f : {−1, 1}n → [−1, 1] be a function computable by a deci-

sion tree of depth d. Then

|||Lkf ||| 6 Ck

√

(

d

k

)

(1 + lnn)k−1, k = 1, 2, . . . , n,

where C > 1 is an absolute constant.

Proof. The proof is a reprise of Lemma 4.3. Any real number in [−1, 1] is a convex
combination of −1 and 1. With this in mind, the idea is to express a decision tree for
f as a convex combination of decision trees with leaf labels in {−1, 1}, then bound
the k-Fourier weight for each of them via Corollary 4.14, and finally infer a bound on
the k-Fourier weight of f by convexity.
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Formally, let T be a depth-d decision tree that computes f. Let T be a random
depth-d decision tree with leaf labels in {−1, 1} such that

T(v) = T (v), v ∈ {−1, 1}6d−1,

ET(v) = T (v), v ∈ {−1, 1}d.

By definition, T computes a function fT : {−1, 1}n → {−1, 1}, where E fT = f. Now
for each k = 1, 2, . . . , n,

|||Lkf ||| = |||Lk (E fT) |||
= |||ELkfT|||
6 E |||LkfT|||

6 E Ck

√

(

d

k

)

(1 + lnn)k−1

= Ck

√

(

d

k

)

(1 + lnn)k−1,

where the second step uses the linearity of Lk, the third step applies Proposition 2.1,
and the fourth step is valid for some absolute constant C > 1 by Corollary 4.14.

5. Quantum versus classical query complexity. Using our newly derived
bound for the Fourier spectrum of decision trees, we will now prove the main result
of this paper on quantum versus randomized query complexity.

5.1. Quantum and randomized query models. For a nonempty finite set
X, a partial Boolean function on X is a mapping X → {0, 1, ∗}, where the output
value ∗ is reserved for illegal inputs. Recall that a randomized query algorithm of cost

d is a probability distribution on decision trees of depth at most d. For a (possibly
partial) Boolean function f on the Boolean hypercube, we say that a randomized
query algorithm computes f with error ε if, for every input x ∈ f−1(0) ∪ f−1(1), the
algorithm outputs f(x) with probability at least 1−ε. Observe that in this formalism,
the algorithm is allowed to exhibit arbitrary behavior on the illegal inputs, namely,
those in f−1(∗). The randomized query complexity Rε(f) is the minimum cost of a
randomized query algorithm that computes f with error ε. The canonical setting of
the error parameter is ε = 1/3. This choice is largely arbitrary because the error of
a query algorithm can be reduced in an efficient manner by running the algorithm
several times independently and outputting the majority answer. Quantitatively, the
following relation follows from the Chernoff bound:

Rε(f) 6 O

(

1

γ2
log

1

ε

)

· R 1
2−γ(f)(5.1)

for all ε, γ 6 1/2.
These classical definitions carry over in the obvious way to the quantum model.

Here, the cost is the worst-case number of quantum queries on any input, and a
quantum algorithm is said to compute f with error ε if, for every input x ∈ f−1(0) ∪
f−1(1), the algorithm outputs f(x) with probability at least 1−ε. The quantum query

complexity Qε(f) is the minimum cost of a quantum query algorithm that computes f
with error ε. For an excellent introduction to classical and quantum query complexity,
we refer the reader to [10] and [32], respectively.
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5.2. The rorrelation problem. We now formally state the problem of interest
to us, Tal’s rorrelation [31], which was briefly reviewed in the introduction. Let n and
k be positive integers. For an orthogonal matrix U ∈ R

n×n, consider the multilinear
polynomial φn,k,U : ({−1, 1}n)k → R given by

(5.2) φn,k,U (x1, x2, . . . , xk) =
1

n
1⊺Dx1UDx2UDx3U · · ·UDxk

1,

where 1 denotes the all-ones vector and Dxi
denotes the diagonal matrix with vector

xi on the diagonal. In what follows, we treat the sets ({−1, 1}n)k and {−1, 1}n×k

interchangeably, thereby interpreting the input to φn,k,U as an n×k sign matrix. Let
‖ · ‖2 denote the Euclidean norm. Then for all x1, x2, . . . , xk ∈ {−1, 1}n, we have

|φn,k,U (x1, x2, . . . , xk)| =
1

n
〈1, Dx1UDx2UDx3U · · ·UDxk

1〉

6
1

n
‖1‖2 ‖Dx1UDx2UDx3U · · ·UDxk

1‖2

=
1

n
‖1‖2 ‖1‖2

= 1,(5.3)

where the second step applies the Cauchy–Schwarz inequality, and the third step is
valid because each of the matrices involved preserves the Euclidean norm. In partic-
ular, the multivariate polynomial φn,k,U ranges in [−1, 1] for all inputs. Generalizing
the forrelation problem of Aaronson and Ambainis [1], Tal [31] considered the partial
Boolean function fn,k,U : {−1, 1}n×k → {0, 1, ∗} given by

fn,k,U (x) =











1 if φn,k,U (x) > 2−k,

0 if |φn,k,U (x)| 6 2−k−1,

∗ otherwise.

Aaronson and Ambainis [1] showed that there is a quantum algorithm with ⌈k/2⌉
queries whose acceptance probability on input x ∈ {−1, 1}n×k is (φn,k,H(x) + 1)/2,
where H is the Hadamard transform matrix. Their analysis generalizes to any or-
thogonal matrix in place of H, to the following effect.

Fact 5.1 (Tal [31, Claim 3.1]). Let n and k be positive integers, where n is a

power of 2. Let U be an arbitrary orthogonal matrix. Then there is a quantum query

algorithm with ⌈k/2⌉ queries whose acceptance probability on input x ∈ {−1, 1}n×k

equals (φn,k,U (x) + 1)/2.

Corollary 5.2. Let n and k be positive integers, where n is a power of 2. Let U
be an arbitrary orthogonal matrix. Then

(5.4) Q 1
2−

1

2k+4
(fn,k,U ) 6

⌈

k

2

⌉

.

In particular,

(5.5) Q1/3(fn,k,U ) 6 O(k4k).

Proof. On input x, the query algorithm for (5.4) is as follows: with probability p,
run the algorithm of Fact 5.1 and output the resulting answer; with complementary
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probability 1 − p, output “no” regardless of x. By design, the proposed solution has
query cost at most ⌈k/2⌉ and accepts x with probability exactly

p · φn,k,U (x) + 1

2
.

We want this quantity to be at most 1
2 − 2−k−4 if φn,k,U (x) 6 2−k−1, and at least

1
2 +2−k−4 if φn,k,U (x) > 2−k. These requirements are both met for p = (1+ 3

2k+2 )
−1.

In summary, fn,k,U has a query algorithm with error at most 1
2 − 2−k−4 and query

cost ⌈k/2⌉. To reduce the error to 1/3, run this algorithm independently Θ(4k) times
and output the majority answer; cf. (5.1).

Corollary 5.2 shows that the rorrelation problem has small quantum query complex-
ity. By contrast, we will show that its randomized complexity is essentially the max-
imum possible. Specifically, we will prove an optimal, near-linear lower bound on the
randomized query complexity of rorrelation by combining Tal’s work [31] with our
near-optimal bounds for the Fourier spectrum of decision trees.

In what follows, we let Un,k denote the uniform probability distribution on
{−1, 1}n×k. Applying Parseval’s identity to the multilinear polynomial φn,k,U gives:

Fact 5.3 (Tal [31, Claim 4.4]). Ex∼Un,k
[φn,k,U (x)

2] = 1/n.

The other result from [31] that we will need is as follows.

Fact 5.4 (Tal [31, Lemmas 5.6, 5.7, and Claim 4.1]). Let n be a positive integer.

Let U ∈ R
n×n be a uniformly random orthogonal matrix. Then with probability 1−o(1)

over the choice of U, there exists for every positive integer k a probability distribution

Dn,k,U on {−1, 1}n×k such that:

E
x∼Dn,k,U

φn,k,U (x) >

(

2

π

)k−1

,(5.6)

E
x∼Dn,k,U

∏

(i,j)∈S

xi,j = 0, |S| = 1, 2, . . . , k − 1,(5.7)

∣

∣

∣

∣

∣

∣

E
x∼Dn,k,U

∏

(i,j)∈S

xi,j

∣

∣

∣

∣

∣

∣

6

(

c|S| logn
n

)

|S|
2 ·k−1

k

, |S| = k, k + 1, . . . , nk,(5.8)

where c > 1 is an absolute constant independent of n, k, U.

5.3. The quantum-classical separation. In this section, we derive our lower
bound on the randomized query complexity of the rorrelation problem by combining
Tal’s Facts 5.3 and 5.4 with our main result on decision trees (Corollary 4.14). The
technical centerpiece of this derivation is the following “indistinguishability” lemma,
which is a polynomial improvement on the analogous calculation by Tal [31, Theo-
rem 5.8] that used weaker Fourier bounds for decision trees.

Lemma 5.5. Let n be a positive integer. Let U ∈ R
n×n be a uniformly random

orthogonal matrix. Then with probability 1− o(1) over the choice of U, the following

holds for every integer k > 1 and every function g : {−1, 1}n×k → {0, 1}:

(5.9)

∣

∣

∣

∣

E
Un,k

g − E
Dn,k,U

g

∣

∣

∣

∣

6

(

cd · log
2− 1

k (n+ k)

n1− 1
k

)k/2

,

where Dn,k,U is as defined in Fact 5.4; d is the minimum depth of a decision tree

that computes g; and c > 1 is an absolute constant independent of n, k, U, g.
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Proof. Fact 5.4 guarantees that with probability 1 − o(1) over the choice of U,
there exists for every integer k > 1 a probability distribution Dn,k,U on {−1, 1}n×k

that obeys (5.6)–(5.8). Conditioned on this event, we will prove (5.9). To start with,
fix g and write out the Fourier expansion

g(x) =
∑

S⊆{1,2,...,n}×{1,2,...,k}

ĝ(S)
∏

(i,j)∈S

xi,j

=

nk
∑

ℓ=0

∑

|S|=ℓ

ĝ(S)
∏

(i,j)∈S

xi,j .

Then

∣

∣

∣

∣

E
Un,k

g − E
Dn,k,U

g

∣

∣

∣

∣

6

nk
∑

ℓ=0

∑

|S|=ℓ

|ĝ(S)|

∣

∣

∣

∣

∣

∣

E
Un,k

∏

(i,j)∈S

xi,j − E
Dn,k,U

∏

(i,j)∈S

xi,j

∣

∣

∣

∣

∣

∣

6

nk
∑

ℓ=1

∑

|S|=ℓ

|ĝ(S)|

∣

∣

∣

∣

∣

∣

E
Un,k

∏

(i,j)∈S

xi,j − E
Dn,k,U

∏

(i,j)∈S

xi,j

∣

∣

∣

∣

∣

∣

6

nk
∑

ℓ=k

∑

|S|=ℓ

|ĝ(S)|

∣

∣

∣

∣

∣

∣

E
Dn,k,U

∏

(i,j)∈S

xi,j

∣

∣

∣

∣

∣

∣

,

where the first step is an application of the triangle inequality; the second step is
justified by EUn,k

1 = EDn,k,U
1 = 1; and the third step is valid due to (5.7) and the

identity EUn,k

∏

(i,j)∈S xi,j = 0 for nonempty S. Let d be the minimum depth of a

decision tree that computes g. Applying (5.8) then Corollary 4.14, we conclude that

∣

∣

∣

∣

E
Un,k

g − E
Dn,k,U

g

∣

∣

∣

∣

6

nk
∑

ℓ=k

cℓ1

√

(

d

ℓ

)

(1 + lnnk)ℓ−1

(

c2ℓ logn

n

)
ℓ
2 ·

k−1
k

,

where c1 > 1 and c2 > 1 are the absolute constants in Corollary 4.14 and Fact 5.4.
In view of (2.1), this gives

∣

∣

∣

∣

E
Un,k

g − E
Dn,k,U

g

∣

∣

∣

∣

6

∞
∑

ℓ=k

(

c21 ·
ed

ℓ
· (1 + lnnk)

ℓ−1
ℓ ·

(

c2ℓ logn

n

)
k−1
k

)

ℓ
2

6

∞
∑

ℓ=k

(

c21 · ed · (1 + lnnk) ·
(

c2 logn

n

)
k−1
k

)

ℓ
2

6

∞
∑

ℓ=k

(

cd

4
· log

2− 1
k (n+ k)

n1− 1
k

)
ℓ
2

,

where c > 1 in the last step is a sufficiently large absolute constant. This settles (5.9)

in the case when cd log(2k−1)/k(n + k) 6 n(k−1)/k. In the complementary case, (5.9)
follows from the trivial bound |EUn,k

g −EDn,k,U
g| 6 1.

We have reached the main result of this section, an essentially tight lower bound on
the randomized query complexity of the k-fold rorrelation problem.
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Theorem 5.6. Let n be a positive integer. Let U ∈ R
n×n be a uniformly random

orthogonal matrix. Then with probability 1− o(1) over the choice of U, the following

holds for all positive integers k 6 1
3 logn− 1:

(5.10) R1/2k+1(fn,k,U ) = Ω

(

n1− 1
k

(log n)2−
1
k

)

,

and in particular

R 1
2−γ(fn,k,U ) = Ω

(

γ2

k
· n1− 1

k

(logn)2−
1
k

)

, 0 6 γ 6
1

2
.(5.11)

Proof. We will prove the lower bounds for every U that satisfies (5.6) and (5.9)
for all k > 1, which happens with probability 1 − o(1) by Fact 5.4 and Lemma 5.5.
To begin with,

P
Un,k

[fn,k,U (x) 6= 0] = P
Un,k

[|φn,k,U (x)| > 2−k−1]

6 4k+1 E
Un,k

[φn,k,U (x)
2]

6
4k+1

n

6
1

2k+1
,(5.12)

where the last three steps use Markov’s inequality, Fact 5.3, and k 6
1
3 logn − 1,

respectively. Also,

(

2

π

)k−1

6 E
Dn,k,U

φn,k,U (x)

6 2−k P
Dn,k,U

[φn,k,U (x) < 2−k] + P
Dn,k,U

[φn,k,U (x) > 2−k]

= 2−k(1− P
Dn,k,U

[fn,k,U (x) = 1]) + P
Dn,k,U

[fn,k,U (x) = 1]

= 2−k + (1 − 2−k) P
Dn,k,U

[fn,k,U (x) = 1],

where the first and second steps are justified by (5.6) and (5.3), respectively. The last
equation shows that

P
Dn,k,U

[fn,k,U (x) = 1] >

(

2

π

)k−1

− 2−k

> 2−k.(5.13)

Now fix arbitrary parameters d > 1 and 0 6 ε 6 1/2, and consider a random-
ized query algorithm of cost d that computes fn,k,U with error at most ε. Then the
algorithm’s acceptance probability on given input x is Er gr(x), where r denotes a
random string and each gr : {−1, 1}n×k → {0, 1} is computable by a decision tree of
depth at most d. Since the error is at most ε, we have

(5.14) P
r
[fn,k,U (x) = 0, gr(x) = 1] +P

r
[fn,k,U (x) = 1, gr(x) = 0] 6 ε
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for every x ∈ {−1, 1}n×k. We thus obtain the two inequalities

E
r

P
Un,k

[fn,k,U (x) = 0, gr(x) = 1] 6 ε,(5.15)

E
r

P
Dn,k,U

[fn,k,U (x) = 1, gr(x) = 0] 6 ε,(5.16)

by passing to expectations in (5.14) with respect to x ∼ Un,k and x ∼ Dn,k,U ,
respectively. On the other hand, (5.9) and k = O(log n) imply

(5.17) E
r

∣

∣

∣

∣

E
Dn,k,U

gr − E
Un,k

gr

∣

∣

∣

∣

6

(

c′d · (logn)
2− 1

k

n1− 1
k

)
k
2

for some absolute constant c′ > 1.
We now have all the ingredients to complete the proof. For each r, we have

E
Dn,k,U

gr = P
Dn,k,U

[gr(x) = 1]

> P
Dn,k,U

[fn,k,U (x) = 1]− P
Dn,k,U

[fn,k,U (x) = 1, gr(x) = 0]

> 2−k − P
Dn,k,U

[fn,k,U (x) = 1, gr(x) = 0],(5.18)

where the last step uses (5.13). Similarly,

E
Un,k

gr = P
Un,k

[gr(x) = 1]

6 P
Un,k

[fn,k,U (x) 6= 0] + P
Un,k

[fn,k,U (x) = 0, gr(x) = 1]

6 2−k−1 + P
Un,k

[fn,k,U (x) = 0, gr(x) = 1],(5.19)

where the last step uses (5.12). Passing to expectations in (5.18) and (5.19) with
respect to r gives

E
r

[

E
Dn,k,U

gr − E
Un,k

gr

]

> 2−k−1 −E
r

P
Dn,k,U

[fn,k,U (x) = 1, gr(x) = 0]

−E
r

P
Un,k

[fn,k,U (x) = 0, gr(x) = 1],

which in view of (5.15) and (5.16) simplifies to

E
r

[

E
Dn,k,U

gr − E
Un,k

gr

]

> 2−k−1 − 2ε.

Comparing this lower bound with (5.17), we arrive at

(

c′d · (logn)
2− 1

k

n1− 1
k

)
k
2

> 2−k−1 − 2ε.

Taking ε = 2−k−3 and solving for d, we find that

R2−k−3(fn,k,U ) = Ω

(

n1− 1
k

(log n)2−
1
k

)

.

By the error reduction formula (5.1), this settles (5.10) and (5.11).
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Theorem 5.6 settles Theorem 1.1 from the introduction. Corollary 1.2 now follows
from (5.4) and Theorem 1.1 by taking k = 2t and γ = 1/6. Similarly, Corollary 1.3
follows from (5.5) and Theorem 1.1 by taking k = ⌈1/ε⌉ + 1 and γ = 1/6. Finally,
Corollary 1.4 follows from (5.5) and Theorem 1.1 by setting γ = 1/6 and taking
k = k(n) to be a sufficiently slow-growing function.
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