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Abstract. We introduce a new framework, Bayesian Distributionally Robust Optimization
(Bayesian-DRO), for data-driven stochastic optimization where the underlying distribution is
unknown. Bayesian-DRO contrasts with most of the existing DRO approaches in the use of
Bayesian estimation of the unknown distribution. To make computation of Bayesian updating
tractable, Bayesian-DRO first assumes the underlying distribution takes a parametric form with
unknown parameter and then computes the posterior distribution of the parameter. To address
the model uncertainty brought by the assumed parametric distribution, Bayesian-DRO constructs
an ambiguity set of distributions with the assumed parametric distribution as the reference dis-
tribution and then optimizes with respect to the worst case in the ambiguity set. We show the
consistency of the Bayesian posterior distribution and subsequently the convergence of objective
functions and optimal solutions of Bayesian-DRO. Our consistency result of the Bayesian poste-
rior requires simpler assumptions than the classical literature on Bayesian consistency. We also
consider several approaches for selecting the ambiguity set size in Bayesian-DRO and compare
them numerically. Our numerical experiments demonstrate the out-of-sample performance of
Bayesian-DRO in comparison with Kullback-Leibler-based (KL-) and Wasserstein-based empiri-
cal DRO as well as risk-neutral Bayesian Risk Optimization. Our numerical results shed light on
how to choose the modeling framework (Bayesian-DRO, KL-DRO, Wasserstein-DRO) for specific
problems, but the choice for general problems still remains an important and open question.

1 Introduction

Consider the following stochastic optimization problem

min
x∈X

EQ[G(x, ξ)], (1.1)

where X ⊂ Rn is a nonempty closed set, Q is a probability distribution of random vector ξ
supported on Ξ ⊂ Rd, and G : X × Ξ→ R is the cost function. The notation

EQ[Z] =

∫
Ξ

Z(ξ)dQ(ξ) (1.2)
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emphasizes that the expectation is taken with respect to the probability measure1 (distribution)
Q of random variable (measurable function) Z : Ξ→ R. We use the same notation ξ viewed as
random vector or as its realization, the particular meaning will be clear from the context.

In many applications, the underlying ‘true’ distribution of ξ is not known and should be
derived (estimated) from the available data. A popular approach to deal with this distributional
uncertainty is to construct an ambiguity set M of probability distributions and to consider the
following minimax (worst-case) counterpart of problem (1.1):

min
x∈X

sup
Q∈M

EQ[G(x, ξ)]. (1.3)

Such Distributionally Robust Optimization (DRO) approach to stochastic programming has a
long history. In the setting of an inventory model, it was considered in the pioneering paper [23].
Various methods have been developed for construction of the ambiguity sets, such as methods
based on moment constraints (e.g., [5]), φ-divergence (e.g. [2]), Wasserstein distance (e.g., [8]),
and Bayesian guarantees [13].

A different approach is to fit a parametric family Pθ, θ ∈ Θ, of distributions to the (observed)
data (ξ1, ..., ξN). We assume that the parameter set Θ ⊂ Rk is closed, and that the parametric
family is defined by density f(·|θ). The value of the parameter vector θ is then estimated, say by
the Maximum Likelihood method. This involves two approximations of the ‘true’ distribution.
First, the parametric family is just a model, and as the famous quote is saying “every model
is wrong, but some are useful”. Second, the estimated value of the parameter vector may be
not accurate especially when the available data are limited. The popular Bayesian approach is
aimed at reducing variability of the parameter evaluation. That is, the parameter vector θ is
assumed to be random whose probability distribution is supported on the set Θ and defined by
a prior probability density p(θ). Then given the data (sample) ξ(N) = (ξ1, ..., ξN), the posterior
distribution is determined by Bayes’ rule

p(θ|ξ(N)) =
f(ξ(N)|θ)p(θ)∫

Θ
f(ξ(N)|θ)p(θ)dθ

, (1.4)

where f(ξ(N)|θ) =
∏N

i=1 f(ξi|θ) is the conditional density of the sample by assuming ξi’s are
independent and identically distributed (i.i.d.).

Recently, [28] takes the Bayesian approach with the motivation to use the Bayesian posterior
distribution (which encodes the likelihoods of all possibilities) to replace the ambiguity set (which
treats every possibility inside the set with equal probability), and further take a risk functional
with respect to the posterior distribution to allow more flexible risk attitude. This leads to the
following Bayesian Risk Optimization (BRO) formulation

min
x∈X

ρθN
(
Eξ|θ[G(x, ξ)]

)
, (1.5)

where ρθN is a risk functional (such as expectation, mean-variance, Value-at-Risk, Conditional
Value-at-Risk) taken with respect to the posterior distribution p(θ|ξ(N)), and Eξ|θ is the expec-
tation taken with respect to the parametric distribution f(ξ|θ) conditional on θ. However, as
mentioned above, the assumed parametric family introduces model uncertainty.

1Probability measure Q is defined on the sample (measurable) space (Ξ,B), where B is the Borel sigma algebra
of Ξ.
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In this paper, we propose a new formulation termed Bayesian Distributionally Robust Op-
timization (Bayesian-DRO), which poses robustness against the model uncertainty (ambiguity)
of the assumed parametric distributions while maintaining the advantage of Bayesian estimation
when data are limited. It constructs an ambiguity set by taking the parametric distribution
as the reference distribution and optimizes the worst-case of the Bayesian average of the true
problem. More specifically, for every θ ∈ Θ let Mθ be a set of probability measures on (Ξ,B).
We propose the following DRO formulation:

min
x∈X

EθN

[
sup
Q∈Mθ

EQ|θ[G(x, ξ)]

]
, (1.6)

where EQ|θ is the expectation with respect to distribution Q of ξ conditional on θ and

EθN [Y ] :=

∫
Θ

Y (θ)p(θ|ξ(N))dθ (1.7)

denotes the expectation of random variable Y : Θ→ R with respect to the posterior distribution
p(θ|ξ(N)). We refer to Mθ as the ambiguity set; a specific construction of the ambiguity sets
will be discussed in the next section. Please note that the posterior distribution depends on
choice of the prior density p(θ) and parametric model f(·|θ). The choice of p(θ) and f(·|θ) could
both be subject to ambiguity. In this paper we mainly deal with ambiguity with respect to
the parametric model. In Section 2.1.3 we give a brief discussion of modeling ambiguity of the
posterior distribution, which of course also depends on ambiguity of the prior density.

We show the consistency of Bayesian posterior distributions. In particular, when the para-
metric model is mis-specified (i.e., when the true distribution lies outside the parametric family
of distributions), the posterior distribution converges to the parametric distribution which has
the minimum Kullback-Leibler (KL) divergence (within the parametric family) from the true
distribution. Consistency of Bayesian posterior distribution under model mis-specification has
been studied in the literature (e.g., [10, 14, 17]), but the assumptions required in our results are
in general simpler and easier to verify than constructing a testing sequence as usually required in
the existing literature. Built on this result, we show the objective functions and optimal solutions
of Bayesian-DRO are strongly consistent.

When the ambiguity set is constructed using the KL divergence and its radius is small,
we show that Bayesian-DRO is approximately equivalent to a weighted sum of the mean and
standard deviation under the posterior distribution, where the weight depends on the size of
the ambiguity set. This reveals that the robustness of Bayesian-DRO comes from the trade-off
between the posterior mean and variability of the solution performance. Similar interpretation
of robustness has also been observed in divergence-based empirical DRO (see [7, 11]), but the
difference is that empirical DRO trades off the empirical mean and standard deviation (i.e.,
with respect to the empirical distribution) and in Bayesian-DRO these are with respect to the
posterior distribution. To determine the ambiguity set size, we propose several theoretical and
empirical methods and compare their performance numerically.

The rest of the paper is organized as follows. Section 2 formally introduces the Bayesian-DRO
formulation, discusses the construction of the ambiguity set, and understands the robustness of
Bayesian-DRO by sensitivity analysis. Section 3 analyzes convergence of Bayesian-DRO and
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considers how to determine the size of the ambiguity set. Section 4 presents numerical results
to illustrate the performance of Bayesian-DRO in comparison with empirical DRO as well as
BRO-mean. Section 5 concludes the paper with a brief discussion of future work.

2 Bayesian distributionally robust optimization

The risk neutral formulation of the Bayesian counterpart of problem (1.1) can be written as

min
x∈X

{
g(x) := EθN

[
Eξ|θ[G(x, ξ)]

]}
, (2.1)

where the expectation Eξ|θ is taken with respect to the distribution of ξ conditional on θ, defined
by density f(·|θ), and the expectation EθN is taken with respect to the posterior distribution
p(θ|ξ(N)) defined in (1.4). Note that the nested expectation in (2.1) can be considered as the
expectation with respect to the joint distribution of ξ and θ. An unbiased estimate of g(x)
can be obtained by generating a random realization of θ according to the posterior distribution
p(θ|ξ(N)) and then generating a random realization of ξ ∼ f(·|θ) conditional on generated θ. This
allows to apply either the Sample Average Approximation (SAA) or Stochastic Approximation
(SA) optimization methods for solving problem (2.1), provided that there is an efficient way to
generate such random samples.

Now let us consider the uncertainty with respect to the choice of the parametric family of
distributions of ξ, with a specified prior distribution of θ, which is often taken as an uninformative
prior when there is no prior knowledge. We view (2.1) as the nominal model with observed (given)
data ξ(N), and the reference parametric family defined by the probability density function (pdf)
f(·|θ), θ ∈ Θ. We assume that the ambiguity set Mθ consists of probability measures defined by
density functions, i.e., every distribution of the ambiguity set has respective pdf q(·|θ), θ ∈ Θ.
We also assume that the ambiguity set contains the nominal distribution. There are many ways
how the ambiguity set can be constructed, and we will discuss a specific construction, well suited
for our purposes, in Section 2.1 below.

By constructing an ambiguity Mθ for each fixed θ in (2.1), we define the Bayesian distribu-
tionally robust optimization problem (1.6), which is re-stated below for clarity:

min
x∈X

EθN

[
sup
Q∈Mθ

EQ|θ[G(x, ξ)]

]
. (2.2)

For this problem, define the following distributionally robust functional

R(Z) := EθN

[
sup
Q∈Mθ

EQ|θ[Z]

]
. (2.3)

This functional is defined on an appropriate linear space of measurable functions (random
variables) Z : Ξ → R. The functional R can be viewed as a nested conditional functional. We
can refer to [20] for a detailed discussion of such conditional functionals. For random variable
Z : Ξ→ R, the respective expectation in (2.3) is

EQ|θ[Z] =

∫
Ξ

Z(ξ)q(ξ|θ)dξ, (2.4)

3



where q(·|θ) is the pdf of Q ∈Mθ. The maximum (supremum) in the right hand side of (2.3) is
taken over all pdfs qθ(ξ) = q(ξ|θ) from the ambiguity set Mθ.

The distributionally robust counterpart of problem (2.1) is obtained by employing the above
distributionally robust functional. That is, problem (2.2) can be written as

min
x∈X

R(Gx), (2.5)

where Gx(ξ) := G(x, ξ). Of course, it should be verified that the above distributionally robust
functionals are well defined for every Z = Gx, x ∈ X . We will discuss this in the next section.

Remark 2.1. In problem (2.2), if we take Mθ constant for all θ ∈ Θ, i.e., Mθ = M,∀θ ∈ Θ,
then this problem becomes a DRO problem

min
x∈X

sup
Q∈M

EQ[G(x, ξ)]. (2.6)

Hence, {Mθ, θ ∈ Θ} in (2.2) can be viewed as a finer characterization of the ambiguity set
based on the likelihood of each θ, whereas the usual DRO takes a “blanket” ambiguity set for
every θ. Moreover, the outer expectation in (2.2) aggregates all θ ∈ Θ by their posterior density
rather than fixating on the worst case in the ambiguity set.

When Mθ is a singleton consisting of only f(·|θ), then (2.2) reduces to (2.1) or BRO-mean
(i.e., (1.5) with expectation being the risk functional). This implies that as opposed to BRO-
mean, Bayesian-DRO imposes additional robustness with respect to the possibly misspecified
likelihood.

2.1 Construction of the ambiguity set

Consider now construction of the ambiguity set for the parametric family. The functional

%|θ(·) := sup
Q∈Mθ

EQ|θ[ · ] (2.7)

can be viewed as a coherent risk measure conditional on θ ∈ Θ. We have that EQ|θ[Z] is a
function of θ ∈ Θ defined by the corresponding integral (see (2.4)) which is assumed to be
well defined. It could happen that by taking the maximum (supremum) of such functions over
possibly uncountable family of distributions, the resulting value %|θ(Z), considered as a function
of θ ∈ Θ, is not measurable. In that case the corresponding integral, defining R(Z), does not
exist. We will deal with this issue in the specific construction below.

There are many ways how the ambiguity sets can be constructed. The following approach, of
the so-called φ-divergence ([4],[18]), is general and flexible. Let φ : R→ R+∪{+∞} be a convex
lower semi-continuous function such that φ(1) = 0 and φ(x) = +∞ for x < 0. For ε ≥ 0 and
fθ(ξ) := f(ξ|θ) define the corresponding set of pdfs qθ(ξ) = q(ξ|θ), representing the ambiguity
set, as

Mθ
ε :=

{
qθ :

∫
Ξ

φ
(
qθ(ξ)/fθ(ξ)

)
fθ(ξ)dξ ≤ ε

}
. (2.8)
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That is, the ambiguity set consists of pdfs having φ-divergence ≤ ε from the reference para-
metric pdf f(ξ|θ). Note that Mθ

ε contains the reference measure (distribution) defined by the
pdf f(ξ|θ). Note also that the probability measure defined by the pdf qθ in (2.8) is assumed to
be absolutely continuous with respect to the reference measure fθ for every θ ∈ Θ.

Consider the conjugate φ∗(y) = supx≥0{yx− φ(x)} of φ. Note that the conjugate of λφ(·) is
(λφ)∗(y) = λφ∗(y/λ) for λ > 0. It can be shown by duality arguments (cf., [1],[2],[25]), that for
a random variable Z : Ξ→ R,

%|θ(Z) = inf
λ≥0,µ

{
λε+ µ+ Eξ|θ

[
(λφ)∗(Z − µ)

]}
. (2.9)

Hence, the functional (2.3) can be written as

R(Z) = Eθ
[

inf
λ>0,µ

Eξ|θ
[
λε+ µ+ λφ∗

(
(Z − µ)/λ

)]
︸ ︷︷ ︸

%|θ(Z)

]
. (2.10)

The measurability of the infimum %|θ(Z) in the right hand side of (2.9), considered as a
function of θ, can be verified under mild regularity conditions. For example, we have the following
result.

Proposition 2.1. Suppose that for almost every (with respect to the Lebesgue measure) ξ the
density function f(ξ|θ) is lower semicontinuous in θ ∈ Θ. Then %|θ(Z) is measurable in θ.

Proof. Since the conjugate function φ∗(·) is lower semicontinuous and f(ξ|·) is lower semicontin-
uous, we have that for almost every ξ the function λε + µ + λφ∗

(
(Z(ξ) − µ)/λ

)
f(ξ|θ) is lower

semicontinuous in (λ, µ, θ). It follows by Fatou’s lemma that its integral

Eξ|θ
[
λε+ µ+ λφ∗

(
(Z − µ)/λ

)]
=

∫
Ξ

[λε+ µ+ λφ∗
(
(Z(ξ)− µ)/λ

)
]f(ξ|θ)dξ

is lower semicontinuous in (λ, µ, θ) and hence is measurable. Therefore the above integral is a
normal integrand [22, Corollary 14.41], and hence its infimum over (λ, µ) ∈ R+×R is measurable
[22, Theorem 14.37].

2.1.1 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence from a pdf q(·) to a pdf f(·), on Ξ, is

DKL(q‖f) :=

∫
Ξ

q(ξ) ln
(
q(ξ)/f(ξ)

)
dξ =

∫
Ξ

(q(ξ)/f(ξ)) ln
(
q(ξ)/f(ξ)

)
f(ξ)dξ. (2.11)

The KL-divergence is a particular instance of the φ-divergence with

φ(x) := x lnx− x+ 1, x ≥ 0.

The corresponding ambiguity set Mθ
ε is formed by pdfs qθ such that DKL(qθ‖fθ) ≤ ε. We

will show that the KL-divergence approach is in accordance with the consistency of the Bayesian

5



posterior distribution in Section 3.1, and therefore is a natural approach to construction of the
corresponding ambiguity set.

We make the following assumption in the remainder of the paper: for x ∈ X and Z := Gx it
follows that

Eξ|θ
[
etZ
]
< +∞ for any t ∈ R and θ ∈ Θ. (2.12)

For the KL-divergence, given λ > 0 the minimizer over µ in (2.9) is given by µ = λ lnEξ|θ
[
eZ/λ

]
,

and hence the minimum becomes

%|θ(Z) = inf
λ>0

{
λε+ λ lnEξ|θ

[
eZ/λ

]}
. (2.13)

Consequently, the DRO problem (2.3) can be written as

min
x∈X

EθN
[

inf
λ>0

{
λε+ λ lnEξ|θ[eGx/λ]

}]
. (2.14)

The above optimization problem (2.14) can be viewed as a two-stage stochastic program with
the second stage given by the optimization problem with respect to λ > 0. It can be solved, for
example, by the Sample Average Approximation (SAA) method; we will discuss this further in
Section 4.

2.1.2 Robustness via sensitivity analysis

We now consider the sensitivity of the Bayesian-DRO objective value with respect to ε, size of
the ambiguity set. Note that for ε = 0 the minimum (infimum) in (2.13) is attained as λ→ +∞,
and equals Eξ|θ[Z]. For ε > 0 the optimization problem (2.13) has unique optimal solution λ̄,
with λ̄ tending to +∞ as ε ↓ 0.

Consider minimization problem in the right hand side of (2.13) for θ ∈ Θ and small ε > 0.
By condition (2.12), the log-moment generation function Λ(t) := lnEξ|θ

[
etZ
]

is finite valued and
infinitely differentiable with its first and second derivatives at t = 0 being the respective mean
and variance. Consequently, by using the second order Taylor expansion of the log-moment
generating function, we can write

λε+ λ lnEξ|θ
[
eZ/λ

]
= λε+ µ+ 1

2σ
2/λ+O(λ−2), (2.15)

where2 µ := Eξ|θ[Z] , σ2 := Varξ|θ(Z) by minimizing the right hand side of (2.15) we obtain
approximation λ̄ ≈ σ√

2ε
of the optimal solution of (2.13), and consequently for small ε > 0 the

approximation
min
λ>0

{
λε+ λ lnEξ|θ

[
eZ/λ

]}
≈ µ+ σ

√
2ε. (2.16)

Plugging the approximation (2.16) into the Bayesian-DRO problem (2.14) reveals that when
the ambiguity set is small, Bayesian-DRO is approximately equal to a weighted sum of the poste-
rior mean and posterior standard deviation of the performance function, with weight depending
on the ambiguity set size ε. A similar interpretation of mean-variance trade-off has also been
observed for divergence-based empirical DRO (see [7, 11]), but its mean and standard deviation

2Of course, µ and σ depend on θ, we suppress this in the notation.
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are with respect to the empirical distribution. Moreover, [12] shows that the empirical DRO can
be interpreted as a trade-off between the mean and worst-case sensitivity (we refer the reader to
[12] for the definition of worst-case sensitivity); whether such an interpretation can be extended
to Bayesian-DRO will be left as a future work.

2.1.3 Variants of Bayesian-DRO Formulations

In this section we briefly discuss some other possible DRO formulations in the Bayesian setting
and their pros and cons. We first consider the alternative formulation

min
x∈X ,λ>0

EθN
[
λε+ λ lnEξ|θ[exp(Gx/λ)]

]
. (2.17)

The nested Bayesian-DRO problem (2.14) can be viewed as a relaxation of problem (2.17). In
(2.17) the parameter λ is chosen before observing a realization of θ, while in (2.14) the parameter
λ is a function of θ. We have that the optimal value of the Bayesian-DRO problem (2.14) is less
than or equal to the optimal value of problem (2.17). It could be noted that the relaxation (2.17)
is computationally easier to solve than (2.14), since it avoids nested Monte Carlo simulation that
is needed in solving the nested formulation (2.14).

Now let’s consider another variant of formulation. As it was mentioned in section 1, the
posterior distribution depends on the choice of the prior density and parametric family. In the
above derivations we considered the ambiguity with respect to the reference parametric pdf f(·|θ),
and consequently the corresponding Bayesian-DRO problem (2.2). It is possible to apply the KL-
divergence ambiguity approach to the posterior distribution rather than the parametric family.
That is for ε > 0 letMε be the family of pdfs p(θ), θ ∈ Θ, such that DKL

(
p‖p(·|ξ(N))

)
≤ ε. Let

R(Y ) := sup
p∈Mε

{
Ep[Y ] =

∫
Θ

Y (θ)p(θ)dθ

}
(2.18)

be the corresponding distributionally robust functional defined on a space of random variables
Y : Θ→ R. Similar to (2.13) we have the following representation of that functional

R(Y ) = inf
λ>0

{
λε+ λ lnEθN

[
eY/λ

]}
. (2.19)

The corresponding DRO problem is obtained by replacing the expectation EθN in (2.1) with
R, that is minimization of R

(
Eξ|θ[Gx]

)
over x ∈ X . By (2.19) we can write this optimization

problem as
min

x∈X ,λ>0
λε+ λ lnEθN

[
exp

(
Eξ|θ[Gx/λ]

)]
. (2.20)

Now by interchanging the expectation EθN and the supremum in the definition (2.3) of the
distributionally robust functional R, we can consider the functional

<(Z) := sup
Q∈Mθ

EθN
[
EQ|θ[Z]

]
(2.21)

and the corresponding Bayesian-DRO problem. We have that <(·) ≤ R(·) and the inequality
can be strict since the extreme measure Q in (2.3) could depend on θ. The maximization in
(2.21) is over the pdfs of the ambiguity set. Because the expectation with respect to these pdfs
is inside the expectation EθN , it is not clear how to represent the corresponding optimization
problem in the KL-divergence framework. It is also not clear what could be an interpretation of
the functional < and the corresponding optimization problem.
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3 Analysis

Suppose that the data ξ1, . . . , ξN are generated i.i.d. from the true (data-generating) distribution

Q∗, i.e., ξi
iid∼ Q∗, and that Q∗ has density (pdf) denoted q∗. Recall that p(θ) denotes the prior

pdf, f(ξ|θ) denotes the reference parametric family, and p(θ|ξ(N)) denotes the posterior pdf as
defined in (1.4).

3.1 Consistency of Bayesian posterior distributions

In this section we discuss convergence of the posterior pdf p(θ|ξ(N)) as N goes to infinity. The
analysis of this section is a first step in establishing consistency of the Bayesian-DRO, discussed
in the next section. We make the following assumptions which are relatively easy to verify and
well suited for the considered framework.

Assumption 3.1. (i) The set Θ is convex compact with nonempty interior. (ii) ln p(θ) is bounded
on Θ, i.e., there are constants c1 > c2 > 0 such that c1 ≥ p(θ) ≥ c2 for all θ ∈ Θ. (iii) q∗(ξ) > 0
for ξ ∈ Ξ. (iv) f(ξ|θ) > 0, and hence p(θ|ξ(N)) > 0, for all ξ ∈ Ξ and θ ∈ Θ. (v) f(ξ|θ) is
continuous in θ ∈ Θ. (vi) ln f(ξ|θ), θ ∈ Θ, is dominated by an integrable (with respect to Q∗)
function.

Assumptions 3.1(i)-(ii) provide sufficient conditions for uniform convergence of the posterior
distribution. Without these assumptions, convergence of the posterior still holds but may not
be uniform. The rest of Assumption 3.1 are regularity assumptions.

Consider function

ψ(θ) := Eq∗
[

ln f(ξ|θ)
]

=

∫
Ξ

ln f(ξ|θ)Q∗(dξ) =

∫
Ξ

q∗(ξ) ln f(ξ|θ)dξ. (3.1)

Under Assumption 3.1, the function ψ : Θ → R is real valued. Moreover, we have that for
θ ∈ Θ,

lim
θ′→θ

ψ(θ′) = lim
θ′→θ

∫
Ξ

ln f(ξ|θ′)Q∗(dξ) =

∫
Ξ

lim
θ′→θ

ln f(ξ|θ′)Q∗(dξ) = ψ(θ),

where we use continuity of f(ξ|θ) in θ, and the interchange of the limit and integral follows by the
Dominated Convergence Theorem since ln f(·|θ) is dominated by an integrable function. Thus
ψ(θ) is continuous on Θ.

Consider the KL-divergence

DKL

(
q∗‖fθ

)
=

∫
Ξ

q∗(ξ) ln

(
q∗(ξ)

f(ξ|θ)

)
dξ = Eq∗ [ln q∗(ξ)]− Eq∗ [ln f(ξ|θ)]︸ ︷︷ ︸

ψ(θ)

.

Let
Θ∗ := arg min

θ∈Θ
DKL(q∗‖fθ) = arg max

θ∈Θ
Eq∗ [ln f(ξ|θ)]︸ ︷︷ ︸

ψ(θ)

.

Since the set Θ is compact and ψ(·) is continuous, it follows that the set Θ∗ is nonempty.
Note that if the model is correct, then Θ∗ = {θ ∈ Θ : q∗ = fθ}.
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For a point θ∗ ∈ Θ∗ and ε > 0, define the sets

Vε := {θ ∈ Θ : ψ(θ∗)− ψ(θ) ≥ ε}, Uε := Θ \ Vε = {θ ∈ Θ : ψ(θ∗)− ψ(θ) < ε}. (3.2)

Since ψ(θ∗) = maxθ∈Θ ψ(θ), the sets Vε and Uε remain the same for any θ∗ ∈ Θ∗. Note that
Uε is a neighborhood of the set Θ∗. Since the set Θ is convex with nonempty interior, it follows
that volume

∫
Uε
dθ, of the set Uε, is greater than zero for any ε > 0.

The following theorem shows that the posterior pdf p(θ|ξ(N)) converges almost surely to a
distribution with probability mass concentrated on Θ∗. If Θ∗ is the singleton {θ∗}, then p(θ|ξ(N))
converges almost surely to the Dirac delta function δ(θ∗). The convergence is uniform in θ ∈ Θ
regardless of the choice of the prior pdf p(θ). In what follows by writing w.p.1 (almost surely)
we mean that the considered property holds with probability one with respect to the probability
measure Q∞∗ . Construction of the probability measure Q∞∗ for the sequence {ξ1, ...} is verified by
Kolmogorov’s existence theorem. By saying that: “a property holds w.p.1 for N large enough”,
we mean that there is a subset of the considered probability space having measure zero such that
for any element of the probability space outside this measure-zero set, there is N ′ (depending on
that element) such that the property holds for that element for any N ≥ N ′.

Lemma 3.1. Suppose that Assumption 3.1 holds. Then for 0 < β < α < ε, it follows that w.p.1
for N large enough

sup
θ∈Vε

p(θ|ξ(N)) ≤ κ(β)−1e−N(α−β), (3.3)

where Vε and Uε are defined in (3.2), and 3 κ(β) :=
∫
Uβ
dθ.

Proof. Define

φN(θ) := N−1 ln f(ξ(N)|θ) = N−1

N∑
i=1

ln f(ξi|θ).

By the Law of Large Number (LLN) we have for θ ∈ Θ that

lim
N→∞

φN(θ) = ψ(θ), w.p.1. (3.4)

Hence we can write
N−1 ln[f(ξ(N)|θ)] = ψ(θ) + εN(θ), (3.5)

where εN(θ) tends to 0 w.p.1 for any θ ∈ Θ. Now for θ∗ ∈ Θ∗ and θ ∈ Vε we have

ln p(θ∗|ξ(N))− ln p(θ|ξ(N)) = ln f(ξ(N)|θ∗)− ln f(ξ(N)|θ) + ln p(θ∗)− ln p(θ). (3.6)

It follows by (3.5) that

N−1[ln p(θ∗|ξ(N))− ln p(θ|ξ(N))] = ψ(θ∗)−ψ(θ) + εN(θ∗)− εN(θ) +N−1[ln p(θ∗)− ln p(θ)]. (3.7)

Consider a point θ ∈ Vε. Then

N−1[ln p(θ∗|ξ(N))− ln p(θ|ξ(N))] ≥ ε+ γN(θ), (3.8)

3Recall that under Assumption 3.1, κ(β) > 0 for any β > 0.
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where γN(θ) tends to zero w.p.1. It follows that for any α ∈ (0, ε), w.p.1 for N large enough

ln p(θ∗|ξ(N))− ln p(θ|ξ(N)) ≥ Nα, (3.9)

or equivalently
e−Nαp(θ∗|ξ(N)) ≥ p(θ|ξ(N)). (3.10)

In the similar way by using (3.7), we obtain for θ ∈ Uε and β ∈ (0, ε) that w.p.1 for N large
enough

ln p(θ∗|ξ(N))− ln p(θ|ξ(N)) ≤ Nβ,

or equivalently
e−Nβp(θ∗|ξ(N)) ≤ p(θ|ξ(N)). (3.11)

Now let us show that w.p.1 for N large enough

p(θ∗|ξ(N)) ≤ eNβ/κ(β). (3.12)

Indeed since p(θ|ξ(N)) is a density we have

1 =

∫
Θ

p(θ|ξ(N))dθ ≥
∫
Uβ

p(θ|ξ(N))dθ ≥ e−Nβκ(β)p(θ∗|ξ(N)),

where for the last inequality we used (3.11) with κ(β) =
∫
Uβ
dθ.

By Assumption 3.1 the set Θ is compact and ln f(ξ|θ), θ ∈ Θ, is dominated by an integrable
(with respect to Q∗) function. Then by the uniform LLN (e.g., [26, Theorem 7.48]) the limit
(3.4) can be strengthened to the uniform limit

lim
N→∞

sup
θ∈Θ
|φN(θ)− ψ(θ)| = 0, w.p.1, (3.13)

i.e., εN(θ) = N−1 ln[f(ξ(N)|θ)] − ψ(θ) tends to 0 w.p.1 uniformly in θ ∈ Θ. Assumption 3.1
further supposes that ln p(θ) is bounded on Θ, i.e., there are constants c1 > c2 > 0 such that
c1 ≥ p(θ) ≥ c2 for all θ ∈ Θ. Then

N−1[ln p(θ∗|ξ(N))− ln p(θ|ξ(N))] = ψ(θ∗)− ψ(θ) + ηN(θ), (3.14)

where
ηN(θ) := εN(θ∗)− εN(θ) +N−1[ln p(θ∗)− ln p(θ)]

tends to 0 w.p.1 uniformly in θ ∈ Θ. Thus for any α ∈ (0, ε) we have that w.p.1 for N large
enough

ln p(θ∗|ξ(N)) ≥ Nα + sup
θ∈Vε

ln p(θ|ξ(N)). (3.15)

By (3.12) it follows that for 0 < β < α < ε, w.p.1 for N large enough

sup
θ∈Vε

p(θ|ξ(N)) ≤ e−Nαp(θ∗|ξ(N)) ≤ e−N(α−β)/κ(β). (3.16)

This completes the proof.
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Let θN be random vector with the posterior pdf p(θ|ξ(N)). We have that probability of the
event {θN ∈ Vε} is given by the integral

∫
Vε
p(θ|ξ(N))dθ. Consequently under Assumption 3.1, we

have by (3.3) that for any ε > 0, w.p.1 for N large enough,

Prob{θN ∈ Vε} ≤ κ(β)−1νe−N(α−β), (3.17)

where ν is volume of the set Θ. It follows that probability of the event {θN ∈ Uε} converges
w.p.1 to one as N → ∞. Note that for an appropriate ε > 0, the set Uε = Θ \ Vε can be an
arbitrarily tight neighborhood of the set Θ∗. Therefore by (3.17) we have the following result.

Theorem 3.1. Suppose that Assumption 3.1 holds. Then with w.p.1 the distance from θ̂N to
the set Θ∗ converges in probability to zero. In particular if Θ∗ = {θ∗} is the singleton, then for
almost every sequence {ξ1, ...}, we have that θN converges in probability to θ∗.

Remark 3.1. Convergence of Bayesian posterior distributions has been studied for a long time,
dating back to Doob’s consistency [6]. We refer the reader to [10] for a nice overview of Bayesian
consistency results. Our analysis here resembles the proof and result of Schwartz consistency
[24], but we do not require the assumption of the existence of a testing sequence, which is a
common assumption in many of Bayesian consistency results (e.g., [24, 10, 14, 29]) but usually
hard to verify in practice. Instead we impose simpler and maybe stronger assumptions (see
Assumption 3.1). These assumptions are easy to verify and sufficient for our problems.

3.2 Consistency of Bayesian optimization problems

As in the previous section by writing w.p.1 we mean this with respect to the probability measure
Q∞∗ . Consider a function H : X ×Θ→ R and the corresponding optimization problem

min
x∈X

{
EθN [Hx] =

∫
Θ

H(x, θ)p(θ|ξ(N))dθ

}
. (3.18)

In this section we discuss convergence of the optimal value and the set of optimal solutions
of the above problem as N →∞. In the considered applications the function H(x, θ) is given by

H(x, θ) := Eξ|θ[G(x, ξ)] and H(x, θ) := supQ∈Mθ EQ|θ[G(x, ξ)] (3.19)

in the cases of the risk-neutral Bayesian problem (2.1) and the Bayesian-DRO problem (2.2),
respectively. Note that in both cases, the function H(x, θ) is convex in x if G(x, ξ) is convex in
x.

Let us discuss convergence of random variables Hx(θN) = H(x, θN), θN ∼ p(·|ξ(N)).

Lemma 3.2. Suppose that Assumption 3.1 holds and Θ∗ = {θ∗} is the singleton. Then for any
upper semi-continuous4 function h : Θ→ R it follows that

lim
N→∞

∫
Θ

h(θ)p(θ|ξ(N))dθ = h(θ∗), w.p.1. (3.20)

4Recall that function h(θ) is said to be upper semi-continuous if h(θ) ≥ lim supθ′→θ h(θ′) for θ ∈ Θ. Of course,
any continuous function is upper semi-continuous.
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Proof. Let ε > 0 and consider γε := supθ∈Uε h(θ) − h(θ∗). By the definition (3.2) we have that
Vε ∪ Uε = Θ. Note that since θ∗ ∈ Uε, we have that γε ≥ 0. Note also that since function h(θ) is
upper semi-continuous, it attains its maximum over θ ∈ Θ, and thus the constant

λ := sup
θ∈Θ
{h(θ)− h(θ∗)}

is finite (and non-negative). Then we can write∣∣∣∣∫
Θ

h(θ)p(θ|ξ(N))dθ − h(θ∗)

∣∣∣∣ =

∣∣∣∣∫
Θ

h(θ)p(θ|ξ(N))dθ − h(θ∗)

∫
Θ

p(θ|ξ(N))dθ

∣∣∣∣
=

∣∣∣∣∫
Uε

(
h(θ)− h(θ∗)

)
p(θ|ξ(N))dθ +

∫
Ve

(
h(θ)− h(θ∗)p(θ|ξ(N))dθ

∣∣∣∣
≤ γε

∫
Uε

p(θ|ξ(N))dθ + λ

∫
Vε

p(θ|ξ(N))dθ

≤ γε + λ

∫
Vε

p(θ|ξ(N))dθ.

By (3.3) the term
∫
Vε
p(θ|ξ(N))dθ can be arbitrarily small w.p.1 for N large enough. Since h(·) is

upper semi-continuous and Uε shrinks to {θ∗} as ε ↓ 0, we have that lim supε↓0 γε ≤ 0. Because
γε ≥ 0, it follows that γε tends to zero as ε ↓ 0. Consequently the assertion (3.20) follows.

In both settings of (3.19) it can be verified under standard regularity conditions that Hx(·)
is upper semi-continuous on Θ. Indeed, in the risk-neutral case we have

lim
θ′→θ

Hx(θ
′) = lim

θ′→θ

∫
Gx(ξ)f(ξ|θ′)dξ =

∫
lim
θ′→θ

Gx(ξ)f(ξ|θ′)dξ = Hx(θ), (3.21)

i.e., Hx(·) is continuous, provided that f(ξ|θ) is continuous in θ ∈ Θ and the limit and integral
can be interchanged (this can be ensured by the respective dominance condition). In the DRO
setting of KL-divergence approach, we have that

Hx(θ) = inf
λ>0

{
λε+ λ lnEξ|θ[eGx/λ]

}
. (3.22)

The above function is finite valued by assumption (2.12). Since infimum of a family of continuous
functions is upper semi-continuous, it follows that the above Hx(·) is upper semi-continuous
provided that Eξ|θ[eGx/λ] is continuous in θ.

For x ∈ X suppose that Hx(·) is upper semi-continuous on Θ. Then under the assumptions
of Lemma 3.2 we have by (3.20) that

lim
N→∞

EθN [Hx] = H(x, θ∗), w.p.1. (3.23)

The above can be viewed as a point-wise LLN for random variables Hx(θN). Under mild ad-
ditional assumptions this point-wise LLN can be extended (we will discuss this below) to the
respective uniform LLN:

lim
N→∞

sup
x∈X

∣∣EθN [Hx]−H(x, θ∗)
∣∣ = 0, w.p.1. (3.24)
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Now consider the limiting optimization problem

min
x∈X

H(x, θ∗). (3.25)

Denote by ϑN and ϑ∗ the optimal value of the respective problems (3.18) and (3.25), and the
corresponding sets

SN := argmin
x∈X

EθN [Hx] and S∗ := argmin
x∈X

H(x, θ∗)

of optimal solutions. Suppose that the optimal value ϑ∗ of problem (3.25) is finite. Then the
uniform LLN (3.24) implies that (e.g., [26, Proposition 5.2])

lim
N→∞

ϑN = ϑ∗ w.p.1. (3.26)

Under mild additional conditions, it is possible to show that the uniform LLN implies that5

lim
N→∞

D(SN ,S∗) = 0, w.p.1 (3.27)

(see, e.g., [26, Theorems 5.3 and 5.4]). This means that if xN is an optimal solution of problem
(3.18), then the distance from xN to S∗ tends to zero w.p.1. In particular, if S∗ = {x∗} is the
singleton, then xN converges to x∗ w.p.1.

Let us discuss now the uniform LLN (3.24). It is relatively easy to derive the uniform LLN
in the following convex case.

Assumption 3.2. Suppose that the set X is compact and there is a convex neighborhood 6 V of
X such that function H(·, θ) is finite valued convex on V for every θ ∈ Θ.

Convexity of H(·, θ) implies convexity of the expectation function
∫

Θ
H(·, θ)p(θ|ξ(N))dθ. It

is known by convex analysis that an extended real valued convex function is continuous on the
interior of its domain. Moreover, if fk : Rn → R is a sequence of convex functions and f : Rn → R
is a convex function such that its domain has a nonempty interior, and fk(x) converges to f(x)
for all x in a dense subset of Rn, then fk(·) converges uniformly to f(·) on every compact subset
of Rn which does not contain a boundary point of the domain of f (e.g., [22, Theorem 7.17]). By
using this result it is not difficult to derive the following uniform LLN (e.g., [26, Theorem 7.50]).

Proposition 3.1. Suppose that Assumption 3.2 is fulfilled and the point-wise LLN (3.23) holds
for every x ∈ V. Then the uniform LLN (3.24) follows.

Without the convexity assumption we need to impose additional conditions. The following
is similar to a derivation of the uniform LLN in the standard case (e.g., [26, Theorem 7.48]).

Theorem 3.2. Suppose that Assumption 3.1 holds, the set Θ∗ = {θ∗} is the singleton, the set
X is compact, and the function H(x, θ) is continuous on X ×Θ. Then the uniform LLN (3.24)
follows.

5By D(A,B) we denote the deviation of set A ⊂ Rn from set B ⊂ Rn, that is D(A,B) := supx∈A dist(x,B),
with dist(x,B) = supy∈B ‖x− y‖.

6By the “neighborhood” we mean that the set V is open and X ⊂ V.
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Proof. For a point x̄ ∈ X , a sequence νk of positive numbers converging to zero and Vk := {x ∈
X : ‖x− x̄‖ ≤ νk}, consider

∆k(θ) := sup
x∈Vk
|H(x, θ)−H(x̄, θ)|, θ ∈ Θ.

Since H(x, θ) is continuous on X × Θ and X is compact, it follows that ∆k(·) is continuous on
Θ. Then by Lemma 3.2 we have that

lim
N→∞

EθN [∆k] = ∆k(θ
∗), w.p.1. (3.28)

By continuity of H(·, θ∗), we have that ∆k(θ
∗) tends to zero as k →∞. We also have by Lemma

3.2 that
lim
N→∞

EθN [Hx̄] = H(x̄, θ∗), w.p.1. (3.29)

Furthermore for x ∈ Vk,∣∣EθN [Hx]− EθN [Hx̄]
∣∣ ≤ ∣∣EθN [Hx]−H(x̄, θ∗)

∣∣+
∣∣EθN [Hx̄]−H(x̄, θ∗)

∣∣
≤ EθN [∆k] +

∣∣EθN [Hx̄]−H(x̄, θ∗)
∣∣.

It follows that for a given ε > 0 there is a neighborhood W of x̄ such that w.p.1 for N large
enough

sup
x∈X∩W

∣∣EθN [Hx]− EθN [Hx̄]
∣∣ ≤ ε. (3.30)

The proof can be completed now exactly in the same way as in the proof of Theorem 7.48 in [26]
by using compactness of the set X .

The assumed continuity of H(x, θ) on X ×Θ can be verified under mild regularity conditions.
That is, assume that G(x, ξ) is continuous in x ∈ X , f(ξ|θ) is continuous in θ ∈ Θ and Gx(ξ)fθ(ξ),
(x, θ) ∈ X × Θ, is dominated by an integrable function. Then in the risk neutral case the
continuity of H(x, θ) can be verified similar to (3.21). In the DRO setting, with H(x, θ) given
in (3.22), the continuity of H(x, θ) also follows since the objective function in the right hand
side minimization of problem (3.22) is strictly convex in λ > 0, and thus the corresponding
minimizer is unique. By convexity of the objective function, this minimizer is a continuous
function of (x, θ) ∈ X × Θ. Therefore, for (x, θ) in a neighborhood of a considered point the
minimization can be restricted to a bounded (compact) subset of R+, and hence the continuity
at the considered point follows.

3.3 Determination of the ambiguity set size

We consider how to determine the ambiguity set size ε in the Bayesian-DRO problem (2.14).
Recall that Q∗ denotes the true distribution of ξ with q∗ denoting its pdf, and µ := Eξ|θ[Z] ,
σ2 := Varξ|θ(Z) for Z : Ξ→ R. The true objective function can be written as

EQ∗ [Z] = µ+ Eξ|θ
[
Z(ξ)

q∗(ξ)− f(ξ|θ)
f(ξ|θ)

]
= µ+ Eξ|θ

[
(Z(ξ)− µ)

q∗(ξ)− f(ξ|θ)
f(ξ|θ)

]
,
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where the second equality uses the fact Eξ|θ
[
q∗(ξ)−f(ξ|θ)

f(ξ|θ)

]
= 0. Applying Cauchy-Schwartz in-

equality to the right hand side of the equation above, we have

EQ∗ [Z] ≤ µ+ σEξ|θ

[(
q∗(ξ)− f(ξ|θ)

f(ξ|θ)

)2
]1/2

,

where the last term can be simplified as

Eξ|θ

[(
q∗(ξ)− f(ξ|θ)

f(ξ|θ)

)2
]

= EQ∗
[
q∗(ξ)

f(ξ|θ)

]
− 1.

If we let 2ε = EQ∗
[
q∗(ξ)
f(ξ|θ)

]
− 1, then by (2.16) we have

EQ∗ [Z] ≤ µ+ σ
√

2ε ≈ min
λ>0

{
λε+ λ lnEξ|θ

[
eZ/λ

]}
, (3.31)

which implies the objective value of the Bayesian-DRO problem (2.14) is an upper bound on the
true objective value. Note here ε depends on θ.

A plausible idea of choosing the ambiguity set size is to make sure the ambiguity set contains
the true distribution. That is, we would set

ε(θ) = DKL(q∗‖fθ).

When q∗ is close to fθ, we can write DKL(q∗‖fθ) ≈ EQ∗
[
q∗(ξ)
f(ξ|θ)

]
− 1. However, (3.31) shows

even choosing ε half of the size, i.e. ε =
(
EQ∗

[
q∗(ξ)
f(ξ|θ)

]
− 1
)
/2, the Bayesian-DRO objective is still

an upper bound on the true objective, which indicates this choice of ambiguity set size might
be too conservative. Moreover, since q∗ is unknown and has to be replaced by a continuous
approximation of its empirical distribution, the number of samples required to achieve a certain
approximation accuracy grows exponentially in dimension, which makes this method impractical
in high dimension.

Now we consider a different method, which is inspired by [3]. We choose the ambiguity set
to be the minimum KL ball containing at least one distribution under which the corresponding
problem has the same optimal solution as the true problem. More specifically, we define a set of
distributions as

Q(x∗) := {Q : x∗ ∈ argmin
x

EQ[G(x, ξ)]},

where x∗ is an optimal solution to the true problem. When G(x, ξ) is convex in x and x∗ is an
interior point of X , we can simplify by the first-order optimality condition,

Q(x∗) = {Q : EQ[∇xG(x∗, ξ)] = 0}.

In general, we can represent the condition in Q(x∗) by KKT conditions. Clearly, Q∗ ∈ Q(x∗),
i.e., the true distribution falls in the set Q(x∗). Now we set the ambiguity set size by minimizing
the KL divergence from Q(x∗) to fθ:

ε̂(θ) = min
q∈Q(x∗)

DKL(q||fθ). (3.32)
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We do not know the optimal solution x∗, so in implementation we can replace x∗ by the empir-
ical optimal solution x̂N , which is the optimal solution to the SAA problem minx∈X EQ̂N [G(x, ξ)],

where Q̂N is the empirical distribution of the data ξ(N). Since x̂N−x∗ = Op(N
−1/2) under certain

regularity conditions, in particular if the true optimal x∗ is unique (see Section 5.1 of [26]), and
under mild conditions ε(θ, x) = minq∈Q(x) DKL(q||fθ) is a smooth function in x, one can expect
that ε(θ, x̂N) is a good approximation of ε̂(θ).

4 Numerical Experiments

In this section, we demonstrate the performance of Bayesian-DRO on problems of one-dimension
and multi-dimension with randomness having continuous and finite support respectively. The
Bayesian-DRO problem (2.14) is restated as follows:

min
x∈X

EθN
[

inf
λ>0

{
λε+ λ lnEξ|θ

[
eGx/λ

]}]
, (4.1)

where N is the number of data points, Gx stands for the cost function G(x, ξ). In implementation,
we apply SAA (e.g., [26]) to solve problem (4.1). We generate 100 samples of θ from the posterior

distribution p
(
θ | ξ(N)

)
and 100 samples of ξ from the reference distribution f(ξ|θ) conditioned

on each sampled θ. We compare the following approaches.

(1) Bayesian-DRO, with pre-specified ambiguity set size ε, which varies in a certain range.

(2) Bayesian-DRO, with ambiguity set size ε1(θ) = DKL (q∗‖f(·; θ)), where the unknown true
distribution q∗ is estimated by the empirical distribution of the data.

(3) Bayesian-DRO, with ambiguity set size ε2(θ) = ε1(θ)
2

. It halves ε1 to reduce the over-
estimation, as shown in Section 3.3.

(4) Bayesian-DRO, with ambiguity set size ε3(θ), that is, solving problem (3.32) with x∗ re-
placed by the empirical optimal solution to the SAA problem minx∈X EQ̂N [G(x, ξ)], where

Q̂N is the empirical distribution.

(5) Bayesian average, that is, solving the Bayesian average problem (2.1), which is the risk-
neutral Bayesian average and is equivalent to letting ε = 0 in Bayesian-DRO.

(6) Empirical approach, that is, solving the SAA problem minx∈X EQ̂N [G(x, ξ)].

(7) When the distribution of ξ has a finite support {ξ1, . . . , ξm}, we compare with Empirical-
DRO (KL) in [12]. Specifically, we solve the following optimization problem:

min
x∈X

max
Q

EQ[G(x, ξ)], s.t.
m∑
i=1

qi log

(
qi
p̂i

)
≤ ε,

∑
i:p̂i>0

qi = 1, qi ≥ 0,

where Q = [q1, · · · , qm], p̂i is the probability mass on ξi in the empirical distribution.
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(8) We also compare with the DRO - Wasserstein. That is, we solve the following optimization
problem:

min
x∈X

max
Q

EQ[G(x, ξ)], s.t. Wp(Q, Q̂N) ≤ ε̃, (4.2)

where Wp(Q, Q̂N) is the Wasserstein distance of order p between Q and the empirical

distribution Q̂N , and ε̃ is the ambiguity set size. The dual of (4.2) is given by [8, 3, 9]:

min
x∈X ,λ≥0

λε̃p +
1

N

N∑
i=1

sup
ξ∈Ξ

[G(x, ξ)− λd(ξ, ξ̂i)
p],

where Ξ is the space of ξ, d(ξ, ξ̂i) is the metric (or distance function) between two points
ξ and ξ̂i, and {ξ̂i}Ni=1 are the data points. In our experiments, we consider Wasserstein
distance of order p = 1, 2, and the metric is chosen to be Euclidean norm. It is shown in
[8] that, under mild assumptions, the distributionally robust optimization problems over
Wasserstein balls can be reformulated as finite convex programs.

When the randomness has finite support, we choose the prior distribution in Bayesian-DRO
and Bayesian average to be an uninformative Dirichlet distribution on θ. Sampling from a
Dirichlet posterior distribution given the data is the same as Bayesian bootstrapping [15]. Please
note that in this case, we implicitly choose the parameterized family to contain all discrete
distributions on the support, which is the correct model. Numerical results for finite-support
examples are shown in the Online Appendix.

When the distribution of ξ is continuous, we compute the ambiguity set sizes in Bayesian-DRO
with the following implementation details.

• In Bayesian-DRO with ambiguity set size ε1(θ) and ε2(θ), the KL divergence from the
empirical distribution to the reference distribution is estimated using the estimation method
in [19]. Specifically, we compute the empirical cumulative distribution function (cdf) given
the data, construct linear interpolation of the empirical cdf, and then we use the finite
difference method to compute the estimated KL divergence as:

D̂KL(Q‖f(·; θ)) =
1

N

N∑
i=1

log

 δPc

(
ξ̂i

)
∆f
(
ξ̂i; θ

)
 ,

where
{
ξ̂i

}N
i=1

are the data points, Pc is the linear interpolation of the empirical cdf,

δPc

(
ξ̂i

)
= Pc

(
ξ̂i

)
− Pc

(
ξ̂i −∆

)
, ∆ < mini

{
ξ̂i − ξ̂i−1

}
.

• In Bayesian-DRO with ambiguity set size ε3(θ), to compute the minimum KL ball, we
conduct Monte Carlo sampling from f(ξ|θ). Essentially, we employ SAA to solve the
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problem

min
q

1

L

L∑
i=1

log(
q(ξi)

f(ξi|θ)
)
q(ξi)

f(ξi|θ)

s.t.
1

L

L∑
i=1

q(ξi)

f(ξi|θ)
= 1,

1

L

L∑
i=1

∇xG(x∗, ξi)
q(ξi)

f(ξi|θ)
= 0, q(ξi) ≥ 0,

where ξ1, · · · , ξL are L = 100 samples drawn from f(ξ|θ). We solve this optimization
problem using Gurobi 9.1 with Python 3.7 API and scipy package in Python. Algorithmic
description of this approach can be found in Algorithm 1 in the appendix.

We evaluate the performance of each algorithm following the procedure in [12], as follows. All
algorithms are run for K = 200 replications. In each replication j = 1, · · · , K, we collect N data
points ξ̂1, · · · , ξ̂N drawn i.i.d. from the true distribution Pθc . Then we run each algorithm with the
same data set and obtain its optimal solution, denoted by x(j)(ε), where ε is the corresponding am-
biguity set size. We then compute µ(j)(ε) = EPθc [G(x(j)(ε), ξ)] and v(j)(ε) = VarPθc [G(x(j)(ε), ξ)],
i.e., the (mean and variance) performance of the obtained solutions under the true system. The
out-of-sample mean and variance are then approximated using these K = 200 replications, with
µ̂N(ε) = 1

K

∑K
j=1 µ

(j)(ε) and v̂N(ε) = 1
K

∑K
j=1 v

(j)(ε) + 1
K−1

∑K
j=1(µ(j)(ε)− µ̂N(ε))2.

4.1 One-dimensional Newsvendor with Continuous Randomness

In this subsection, we run experiments on a one-dimensional newsvendor problem when the
randomness ξ has a continuous distribution and the data all come from the true distribution
(see [21] for a review on newsvendor models). We summarize notations used in the classical
newsvendor problem as follows.

• x: order amount, assumed to be in [0,M ], M is the maximal order amount.

• ξ: random customer demand.

• b: backorder cost per unit.

• h: holding cost per unit.

• c: ordering cost per unit.

The cost function is given by G(x, ξ) = h(x − ξ)+ + b(ξ − x)+ + cx, where (·)+ = max(·, 0).
We assume the customer demand ξ ∈ Ξ, where Ξ = (0,∞). Parameters used in the newsvendor
problem are summarized as follows: maximal ordering amount M = 50, backorder cost b = 8,
holding cost h = 3, ordering cost c = 0.

In the first experiment, we test the performance of our proposed algorithms under model
mis-specification. Specifically, the true distribution of the customer demand is normal distri-
bution with mean 10 and variance 100 truncated above 0. In Bayesian-DRO, we choose the
parametric family f(ξ|θ) to be the exponential distribution with rate parameter θ. To have
closed-form posterior update, we use the conjugate prior of gamma distribution with parameter
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(a) N = 5. (b) N = 20.

Figure 1: Newsvendor with continuous support: out-of-sample mean-variance frontiers of differ-
ent algorithms under different ε values. Data size N is 5 and 20 respectively. Bayesian-DRO has
model mis-specification.

N=5 ε1 ε2 ε3 Bayesian avg empirical true

ε value 0.58(0.04) 0.29(0.02) 0.07(0.01) - - -

solution 26.13(0.80) 24.04(0.65) 18.15(0.38) 15.46(0.31) 16.44(0.38) 17.41

mean 43.14(0.33) 41.62(0.71) 36.16(0.53) 35.81(0.31) 36.77(0.25) 30.96

variance 802.24(2.39) 769.72(2.11) 823.97(2.56) 1119.30(2.73) 1082.21(2.93) 640.59

N=20 ε1 ε2 ε3 Bayesian avg empirical true

ε value 0.34(0.02) 0.17(0.01) 0.03(0.00) - - -

solution 24.36(0.38) 22.13(0.30) 18.30(0.17) 16.16(0.15) 16.97(0.17) 17.41

mean 38.62(0.54) 36.19(0.60) 33.22(0.07) 32.22(0.06) 32.20(0.07) 30.96

variance 478.74(1.62) 485.15(1.49) 601.01(1.95) 832.66(2.38) 754.11(2.22) 640.59

Table 1: Newsvendor with continuous support: out-of-sample performance of variants of
Bayesian-DRO with model mis-specification. Data size N is 5 and 20 respectively.

(1, 1). Please note this choice of prior distribution is only for computational convenience. If the
Bayesian updating does not admit closed-form posterior, we may use Monte Carlo simulation,
such as Markov Chain Monte Carlo (MCMC) methods, to draw samples from the posterior; we
only need sample average approximation of the expectations when solving the Bayesian-DRO
problem. Figure 1 shows the out-of-sample mean-variance frontiers (with varying ε values) of
different algorithms for data size N = 5 and 20. For the empirical approach (abbreviated as em-
pirical), Bayesian average approach (abbreviated as Bayesian average), and Bayesian-DRO with
calibrated ambiguity set size ε1(θ), ε2(θ), ε3(θ), their performance is denoted by one point (not
a frontier) in the figure. Note that for Empirical-DRO with Wasserstein distance (abbreviated
as W. in the figure) of order p = 1, it is equivalent to the empirical approach (see Remark 6.7
in [8] and Theorem 3.2 in [16]) and is independent of the ambiguity set size. Table 1 shows the
out-of-sample performance of variants of Bayesian-DRO when data size is N = 5 and 20 respec-
tively; solving the true problem (abbreviated as true) is included as a benchmark for all compared
algorithms; standard errors of the average ε values, obtained solutions, and the out-of-sample
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performances are shown within the parentheses in the table.

(a) N = 5. (b) N = 20.

Figure 2: Newsvendor with continuous randomness: out-of-sample mean-variance frontiers of
different algorithms under different ε values. Data size N is 5 and 20 respectively. Bayesian-
DRO chooses the correct model.

N=5 ε1 ε2 ε3 Bayesian avg empirical true
ε value 0.35(0.04) 0.17(0.02) 0.09(0.00) - - -
solution 31.91(1.03) 28.73(0.96) 27.64(0.83) 23.30(0.73) 25.63(1.01) 25.99

mean 92.29(0.90) 90.25(0.85) 87.56(0.68) 86.99(0.72) 91.50(1.16) 77.66
variance 7743.27(44.87) 8134.65(44.00) 8743.18(37.55) 12409.66(37.35) 12184.37(42.12) 9760.90

N=20 ε1 ε2 ε3 Bayesian avg empirical true
ε value 0.18(0.01) 0.09(0.01) 0.03(0.00) - - -
solution 33.11(0.87) 30.95(0.84) 28.32(0.46) 24.71(0.39) 25.31(0.44) 25.99

mean 86.21(0.88) 82.65(0.83) 80.18(0.29) 80.15(0.22) 80.70(0.25) 77.66
variance 7470.54(34.99) 8067.69(36.30) 8968.67(19.86) 10773.79(19.98) 10570.40(22.20) 9760.90

Table 2: Newsvendor with continuous randomness: out-of-sample performance of variants of
Bayesian-DRO without model mis-specification. Data size N is 5 and 20 respectively.

In the second experiment, we test the performance of our proposed algorithms without model
mis-specification. Specifically, the true distribution of the customer demand is exponential dis-
tribution with mean 20. We choose the parametric family f(ξ|θ) to be the correct model, i.e., the
exponential distribution with rate parameter θ. Figure 2 shows the out-of-sample mean-variance
frontiers (with varying ε values) of different algorithms for data size N = 5 and 20. Table 2
shows the out-of-sample performance of variants of Bayesian-DRO when data size is N = 5 and
20 respectively.

We have the following observations from the two experiments above.

(1) Trade-off between out-of-sample mean and variance: both Bayesian-DRO and
Empirical-DRO show the trade-off. As the ambiguity set size ε grows larger, the out-
of-sample mean deteriorates, which trades for more robustness in terms of smaller out-
of-sample variance. Empirical approach is equivalent to Empirical-DRO with ε = 0, and
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Bayesian average is equivalent to Bayesian-DRO with ε = 0. Therefore, empirical approach
and Bayesian average produce solutions with larger out-of-sample variance and smaller out-
of-sample mean compared to Empirical-DRO and Bayesian-DRO respectively.

(2) Model mis-specification affects the performance of Bayesian-DRO: when there is
model mis-specification, Bayesian-DRO underperforms Empirical-DRO with Wasserstein
distance of order p = 2, as can be seen from the worse mean-variance frontier in Figure 1.
If we choose the correct model, Bayesian-DRO outperforms Empirical-DRO with Wasser-
stein distance of order p = 2, as can be seen from Figure 2. This is expected, since a
poorly chosen model, which serves as the reference distribution of the ambiguity set in
Bayesian-DRO, deteriorates the performance of Bayesian-DRO. However, the ambiguity
set in Bayesian-DRO still provides robustness against model mis-specification, as it can
be seen from Figure 1 that Bayesian-DRO (with ε3) has about the same out-of-sample
mean but much smaller variance than Bayesian average (which is equivalent to ε = 0 in
Baysian-DRO).

(3) Bayesian-DRO outperforms Empirical-DRO with KL divergence: in almost all
the experiments, the mean-variance frontier of Bayesian-DRO dominates that of Empirical-
DRO (KL). The reason is because the ambiguity sets of Bayesian-DRO contain distributions
supported on the domain of the randomness if the prior distribution is chosen to cover the
domain, whereas the Empirical-DRO with KL divergence only allows probability distri-
butions in the ambiguity set that are absolutely continuous with respect to the empirical
distribution (i.e., the observed data points) and leaves out distributions supported on the
unobserved domain.

(4) Parameter-dependent ambiguity set size outperforms pre-specified ones: for
Bayesian-DRO with parameter-dependent ambiguity set size ε2(θ), ε3(θ), the out-of-sample
performances are better compared to Bayesian-DRO with pre-specified ambiguity set size
(i.e., fixed ε for all θ). It shows we can gain better performance for Bayesian-DRO by
tuning an appropriate parameter-dependent ambiguity set size, although this incurs more
computational cost.

(5) Large data size reduces model uncertainty: as expected, solutions of all the methods
become more stabilized (smaller variance) as data size increases. In particular, solution of
the empirical approach gets closer to the true optimal solution with more data.

4.2 Multi-dimensional Newsvendor with Continuous Randomness

In this subsection, we consider a three-dimensional newsvendor problem with multi-items, where
the newsvendor sells three kinds of items (see [27] for a review on newsvendor models). Assume
the customer demands for each kind of item are independent and follow normal distribution with
mean 10, 12, 15 and standard deviation 20, 20, 20 respectively, truncated above 0. The objective
function is given by: G(x, ξ) =

∑3
i=1 hi (xi − ξi)

+ + bi (ξi − xi)+ . We set hi = 3, bi = 8 for i =
1, 2, 3.

The parametric distribution we choose is the exponential distribution with rate parameter θi
for each customer demand for item i. Figure 3 shows the out-of-sample mean-variance frontiers
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N=10 ε1 ε2 ε3 Bayesian avg empirical true
ε value 1.05(0.03) 0.53(0.02) 0.17(0.01) - - -

sol error 20.95(0.50) 18.84(0.43) 11.67(0.32) 10.33(0.28) 12.37(0.39) 0.00
mean 254.72(2.09) 238.56(1.83) 198.21(0.78) 184.13(0.76) 190.28(0.95) 171.28

variance 4585.39(35.09) 4759.10(28.18) 5845.42(16.55) 10030.76(20.25) 8613.13(20.35) 7066.05

Table 3: Multi-dimensional newsvendor with continuous randomness: out-of-sample performance
of variants of Bayesian-DRO that has model mis-specification. Data size N is 10.

Figure 3: Multi-dimensional newsvendor with continuous randomness: out-of-sample mean-
variance frontiers of different algorithms under different ε values. Data size N is 10. Bayesian-
DRO has model mis-specification.

(with varying ε values) of different algorithms when data size N = 10. Table 3 shows the
out-of-sample performance of variants of Bayesian-DRO when data size N = 10; in addition to
out-of-sample performance, we also show the solution error, which is obtained by calculating
each solution’s Euclidean distance from the true optimal solution; standard errors of the average
ε values, obtained solution error, and the out-of-sample performances are shown within the
parentheses in the table. Similar to the one-dimensional newsvendor problem, Bayesian-DRO
outperforms Empirical-DRO (KL) in the multi-dimensional newsvendor problem.

5 Conclusions and Future Work

We propose a new formulation, Bayesian Distributionally Robust Optimization (Bayesian-DRO),
to address the ambiguity about the probability distribution in static stochastic optimization.
Bayesian-DRO takes advantage of Bayesian estimation of parametric distributions and at the
same time imposes robustness against the uncertainty introduced by the assumed parametric
model. When the ambiguity set is constructed using Kullback-Leibler divergence and the size of
the set is small, the robustness of Bayesian-DRO can be interpreted as a trade-off between the
posterior mean and standard deviation of the cost function. We show the strong consistency of
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Bayesian posterior distributions, and subsequently show the convergence of objectives and opti-
mal solutions of Bayesian-DRO problems. Moreover, we consider several methods of determining
the ambiguity set size in Bayesian-DRO. Our numerical results demonstrate that when data are
limited, Bayesian-DRO has superior out-of-sample performance compared to KL-based empirical
DRO, the Bayesian-average approach, and the empirical approach; Bayesian-DRO outperforms
Wasserstein-based empirical DRO when the parametric family is correctly chosen (i.e., no model
mis-specification) but underperforms when there is model mis-specification. More future re-
search is needed to fully understand the connections between these frameworks (Bayesian-DRO,
empirical-DRO, BRO) and how to choose a framework for specific data-driven stochastic opti-
mization problems.

The nature of sequential Bayesian updating makes Bayesian approaches especially amenable
to multi-stage (dynamic) settings where data come sequentially in time. One of the future
works is to extend Bayesian-DRO to multi-stage stochastic optimization, including multi-stage
stochastic programming, stochastic control, and Markov decision processes.
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A Supplementary Numerical Experiments

A.1 Algorithm 1: Bayesian-DRO with ambiguity set size ε3

Algorithm 1: Bayesian-DRO with ambiguity set size ε3.

input : data points of size N , number of θ samples Nθ, number of ξ samples Nξ,
number of Monte Carlo samples to compute the ambiguity set size L

output: optimal solution x(ε3)
Solve for the SAA solution x∗N ;
for i = 1← 1 to Nθ do

Simulate θi from posterior distribution p(θ|ξ(N));
Simulate {ξj}Lj=1 from reference distribution f(ξ|θi), solve the optimization problem

ε3(θi) = min
q

1

L

L∑
j=1

log(
q(ξj)

f(ξi|θi)
)
q(ξi)

f(ξj|θ)

s.t.
1

L

L∑
j=1

q(ξj)

f(ξj|θi)
= 1,

1

L

L∑
j=1

∇xG(x∗N , ξj)
q(ξj)

f(ξj|θi)
= 0, q(ξj) ≥ 0;

Simulate {ξ̂j}
Nξ
j=1 from reference distribution f(ξ|θi) and store them as dataset Di;

end
Solve the Bayesian-DRO problem and obtain the optimal solution x(ε3)

min
x∈X ,λi>0

 1

Nθ

Nθ∑
i=1

λiε3 (θi) + λi log

 1

Nξ

∑
ξ̂∈Di

exp
(
G(x, ξ̂)/λi

) .

A.2 One-dimensional Newsvendor with Finite-support Randomness

In this subsection, we first run experiments on a one-dimensional newsvendor problem when the
randomness ξ has a finite support and the data all come from the true distribution. Different
from the continuous-support case, the random customer demand is assumed to take discrete
values in {1, 2, · · · , 14, 15}. The true probability mass θc ∈ ∆15 is unknown to the decision
maker, where ∆15 stands for a probability simplex. Parameters used in the newsvendor problem
are summarized as follows. Maximal ordering amount M = 20, backorder cost b = 10, holding
cost h = 2, ordering cost c = 3.

Figure 4 shows the out-of-sample mean-variance frontiers (with varying ε values) of different
algorithms for data sizes N = 5, 10, 50 and 1000. Table 4 shows the out-of-sample performance
of each algorithm when data size is N = 5, 10, 50, 1000 respectively. Similar to the continuous-
support case, Bayesian-DRO performs better than Empirical-DRO in most cases, as the
mean-variance frontier of Bayesian-DRO dominates that of empirical-DRO (KL). Note that for a
small data size, Empirical-DRO (KL) will only put non-negative probability mass on the support
point ξ̂ that has been observed in the data. On the other hand, by imposing an appropriate prior
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(a) N = 5. (b) N = 10.

(c) N = 50. (d) N = 1000.

Figure 4: Newsvendor with finite-support randomness: out-of-sample mean-variance frontiers of
different algorithms under different ε values. Data size varies from 5, 10, 50 to 1000.

(in this problem we use a non-informative Dirichlet prior whose domain is a uniform distribution
on the support of ξ), Bayesian-DRO can put non-negative probability mass on all the support
points. Also note that the mean-variance frontiers of Bayesian-DRO and Empirical-DRO get
closer as the data size N goes to infinity due to the reduced model uncertainty.

Next, we consider a contaminated data model, where 80% data are generated from the true
distribution and 20% data are generated from an arbitrary distribution. In particular, the ar-
bitrary distribution is randomly generated (specified by its probability mass) and is different
in each replication. Figure 5 shows the out-of-sample mean-variance frontiers (with varying ε
values) of different algorithms for data size N = 5 and 50. Table 5 shows the out-of-sample per-
formance of all variants of Bayesian-DRO when data size is N = 5 and 50 respectively. Similar
to the non-contaminated case, Bayesian-DRO outperforms other benchmarks even when
data are contaminated. Note that the solution of the empirical approach does not get closer to
the true optimal solution with more data, since part of the data are not from the true distribution
and possibly become outliers.
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N=5 ε1 ε2 ε3 Bayesian avg empirical true

ε value 0.99(0.02) 0.50(0.01) 0.14(0.01) - - -

solution 12.77(0.17) 12.70(0.17) 11.29(0.14) 8.59(0.06) 8.55(0.24) 7.00

mean 50.92(0.43) 50.22(0.50) 49.24(0.47) 48.90(0.02) 50.01(0.28) 47.21

variance 72.27(2.15) 75.12(2.28) 101.24(2.38) 465.08(2.91) 693.63(3.63) 770.56

N=10 ε1 ε2 ε3 Bayesian avg empirical true

ε value 0.60(0.01) 0.30(0.01) 0.07(0.01) - - -

solution 12.28(0.16) 12.20(0.14) 10.61(0.10) 8.57(0.09) 7.50(0.20) 7.00

mean 50.20(0.37) 49.54(0.28) 48.93(0.30) 47.87(0.05) 48.94(0.15) 47.21

variance 71.99(2.07) 74.97(2.09) 91.97(2.14) 461.88(2.55) 786.58(3.56) 770.56

N=50 ε1 ε2 ε3 Bayesian avg empirical true

ε value 0.14(0.00) 0.07(0.00) 0.02(0.00) - - -

solution 11.24(0.04) 10.91(0.05) 9.26(0.06) 7.99(0.10) 7.36(0.13) 7.00

mean 50.44(0.05) 49.51(0.06) 48.22(0.04) 47.87(0.04) 48.21(0.05) 47.21

variance 118.65(1.99) 178.06(1.88) 241.68(1.89) 513.35(2.08) 761.45(2.86) 770.56

N=1000 ε1 ε2 ε3 Bayesian avg empirical true

ε value 0.006(0.00) 0.003(0.00) 0.001(0.00) - - -

solution 8.08(0.01) 7.82(0.01) 7.25(0.03) 7.18(0.05) 6.93(0.06) 7.00

mean 47.42(0.03) 47.12(0.03) 47.03(0.02) 47.32(0.01) 47.39(0.02) 47.21

variance 544.42(0.92) 593.85(1.29) 691.00(1.15) 728.15(1.47) 801.66(1.50) 770.56

Table 4: Newsvendor with finite-support randomness: out-of-sample performance of variants of
Bayesian-DRO. Data size N varies from 5, 10, 50 to 1000.

(a) N = 5. (b) N = 50.

Figure 5: Newsvendor with finite support: out-of-sample mean-variance frontiers of different
algorithms under different ε values with contaminated data. Data size N is 5 and 50 respectively.

A.3 Multi-dimensional Portfolio Optimization with Finite-support
Randomness

In this subsection, we consider a five-dimensional portfolio optimization problem when the ran-
domness ξ has finite support and the data all come from the true distribution. We summarize
notations used in the portfolio optimization problem as follows.
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N=5 ε1 ε2 ε3 Bayesian avg empirical true

ε value 1.00(0.02) 0.50(0.01) 0.07(0.01) - - -

solution 12.02(0.10) 11.72(0.13) 10.01(0.16) 8.59(0.08) 7.41(0.24) 7.00

mean 52.09(0.16) 51.58(0.27) 48.68(0.26) 48.29(0.05) 50.04(0.21) 47.21

variance 73.12(1.97) 87.09(1.98) 155.98(2.27) 459.39(2.47) 872.79(4.43) 770.56

N=50 ε1 ε2 ε3 Bayesian avg empirical true

ε value 0.13(0.00) 0.06(0.00) 0.02(0.00) - - -

solution 11.32(0.05) 10.72(0.06) 9.18(0.05) 7.86(0.11) 7.46(0.12) 7.00

mean 49.97(0.06) 49.04(0.07) 48.63(0.11) 48.53(0.03) 48.26(0.04) 47.21

variance 153.08(1.41) 247.25(1.53) 321.62(1.63) 568.38(2.58) 684.59(2.69) 770.56

Table 5: Newsvendor with finite support: out-of-sample performance of variants of Bayesian-
DRO algorithm with contaminated data. Data size N is 5 and 50 respectively.

• x: holding positions of assets. x ∈ [0, 1]5,
∑5

i=1 xi = 1.

• ξ: random returns of assets. ξi takes values in {−1, 0, 1} for i = 1, · · · , 5.

The cost function is given by G(x, ξ) = −ξ>x. Note that we do not allow shorting (i.e.,
xi > 0, i = 1, · · · , 5) and impose a budget constraint (

∑5
i=1 xi = 1). The true probability mass

of dimension i, denoted by θci ∈ ∆3, is unknown to the decision maker.

(a) N = 10. (b) N = 50.

Figure 6: Portfolio optimization with finite support: out-of-sample mean-variance frontiers of
different algorithms under different ε values. Data size N is 10 and 50 respectively.

Figure 6 shows the out-of-sample mean-variance frontiers (with varying ε values) of different
algorithms for data size N = 5 and 50. Table 6 shows the out-of-sample performance of variants
of Bayesian-DRO when data size is N = 10 and 50 respectively. In addition to out-of-sample
performance, we also show the solution error, which is obtained by calculating each solution’s
Euclidean distance from the true optimal solution, with sample standard deviation within the
parentheses in the tables. Similar to the one-dimensional newsvendor problem, Bayesian-DRO
outperforms other benchmarks in the multi-dimensional portfolio optimization problem.
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N=10 ε1 ε2 ε3 Bayesian avg empirical true

ε value 0.49(0.01) 0.25(0.01) 0.47(0.02) - - -

sol error 0.73(0.01) 0.70(0.02) 0.79(0.01) 0.76(0.05) 0.80(0.04) 0.00

mean -0.01(0.00) -0.03(0.00) -0.02(0.00) -0.09(0.01) -0.06(0.01) -0.17

variance 0.23(0.01) 0.31(0.01) 0.28(0.00) 0.62(0.01) 0.58(0.02) 0.59

N=50 ε1 ε2 ε3 Bayesian avg empirical true

ε value 0.10(0.00) 0.05(0.00) 0.18(0.01) - - -

sol error 0.53(0.02) 0.48(0.02) 0.61(0.01) 0.33(0.04) 0.40(0.04) 0.00

mean -0.09(0.00) -0.11(0.00) -0.08(0.00) -0.15(0.00) -0.13(0.00) -0.17

variance 0.33(0.01) 0.39(0.01) 0.27(0.00) 0.62(0.01) 0.66(0.01) 0.59

Table 6: Portfolio optimization with finite support: out-of-sample performance of variants of
Bayesian-DRO. Data size N is 10 and 50 respectively.
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